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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus
disease 2019 (COVID-19) emerged in late 2019 and resulted in a devastating pandemic. Although the
first approved vaccines were already administered by the end of 2020, worldwide vaccine availability
is still limited. Moreover, immune escape variants of the virus are emerging against which the current
vaccines may confer only limited protection. Further, existing antivirals and treatment options
against COVID-19 show only limited efficacy. Influenza A virus (IAV) defective interfering particles
(DIPs) were previously proposed not only for antiviral treatment of the influenza disease but also
for pan-specific treatment of interferon (IFN)-sensitive respiratory virus infections. To investigate
the applicability of IAV DIPs as an antiviral for the treatment of COVID-19, we conducted in vitro
co-infection experiments with cell culture-derived DIPs and the IFN-sensitive SARS-CoV-2 in human
lung cells. We show that treatment with IAV DIPs leads to complete abrogation of SARS-CoV-2
replication. Moreover, this inhibitory effect was dependent on janus kinase/signal transducers
and activators of transcription (JAK/STAT) signaling. Further, our results suggest boosting of IFN-
induced antiviral activity by IAV DIPs as a major contributor in suppressing SARS-CoV-2 replication.
Thus, we propose IAV DIPs as an effective antiviral agent for treatment of COVID-19, and potentially
also for suppressing the replication of new variants of SARS-CoV-2.

Keywords: SARS-CoV-2; COVID-19; antiviral; influenza A virus; defective interfering particles; OP7;
DI244; innate immunity

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus
disease 2019 (COVID-19), poses a severe burden to public health, the economy, and society.
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To date, almost four million deaths are reported in the context of SARS-CoV-2 infection
(WHO, covid19.who.int). Since early 2020, there has been an unprecedented race for the
development of novel vaccines, their production, and execution of safety and immuno-
genicity studies in clinical trials [1–6]. These efforts led to the vaccination of the first
individuals outside clinical trials in late 2020. While vaccination typically provides the
best protection against virus infections and disease onset, the worldwide manufacturing
capacity of COVID-19 vaccines, and the infrastructure required for vaccination are still lim-
ited. In addition, vaccination is a prophylactic measure and not applicable for therapeutic
treatment of acute infections. Therefore, as an alternative option, the development of an-
tivirals for treatment of COVID-19 is essential. Yet, remdesivir (in clinical use) showed only
limited efficacy [7–9], while other repurposed drug candidates (e.g., hydroxychloroquine
and lopinavir-ritonavir) showed a lack of efficacy [10,11]. In addition, corticosteroids (i.e.,
dexamethasone [12]) and cocktails of monoclonal antibodies (e.g., bamlanivimab [13]) are
used in the clinic and show an antiviral effect. However, the appearance of new SARS-CoV-
2 variants poses a constant risk of losing efficacy of highly specific treatments, including
vaccination and therapeutic antibodies. Thus, there is a need to develop more broadly
acting, cost-effective antivirals that ideally are easily scalable in production.

Influenza A virus (IAV) defective interfering particles (DIPs) were previously proposed
for antiviral treatment against IAV infections [14–22], but also for pan-specific treatments
of other respiratory viral diseases [23,24]. IAV DIPs typically carry a large internal deletion
in their genome, rendering them defective in virus replication [25–27]. Furthermore, DIPs
suppress and interfere specifically with homologous viral replication in a co-infection
scenario, a process known as replication interference. As a result, administration of IAV
DIPs in mice resulted in full protection against an otherwise lethal IAV infection [21,28–30].
In the ferret model, treatment of IAV-infected animals resulted in a reduced severity of
disease pathogenesis [31]. Mice were also protected against a lethal infection with the
unrelated influenza B virus [32] and pneumonia virus of mice (PVM) from the family
Paramyxoviridae [33]. Here, protection was not attributed to replication interference but to
the ability of IAV DIPs to stimulate innate immunity.

SARS-CoV-2 replication seems to modulate and inhibit the interferon (IFN) response
in infected target cells [34–36]. Still, it was shown to be susceptible to inhibition by
exogenously added IFNs in vitro [37,38], in vivo [39], and in clinical trials [40]. Therapies
using recombinant IFNs, however, are cost intensive and pose the risk of unwanted side
effects including the formation of auto-antibodies against cytokines (reviewed in [41]).
To prevent this, we speculate whether IAV DIPs can suppress SARS-CoV-2 replication
through their ability to stimulate a physiological IFN response in target cells. To test this,
we produced two promising candidate DIPs: a prototypic, well-characterized conventional
IAV DIP “DI244” [23] and a novel type of IAV DIP “OP7” that contains point mutations
instead of a large internal deletion in the genome [42], using a cell culture-based production
process [29,30,43].

Here, we used Calu-3 cells (human lung cancer cell line) for in vitro co-infection
experiments with SARS-CoV-2 and DI244 or OP7. Both DIPs were able to completely inhibit
SARS-CoV-2 replication and spreading in a range comparable to IFN-β or remdesivir
treatment. Moreover, we show that the inhibitory effect of IAV DIPs was due to their
ability to induce innate immune responses that signal via janus kinase/signal transducers
and activators of transcription (JAK/STAT). In addition, our results show that IAV DIP
infection triggers elevated host cell type-I and type-III IFN production and subsequent
IFN-induced antiviral activity. Thus, we propose IAV DIPs as effective antiviral agents
for the treatment of COVID-19 and, potentially as universal antiviral agents not only
against different influenza subtypes but also against other (including newly emerging)
IFN-sensitive respiratory viruses.
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2. Materials and Methods
2.1. Cells and Viruses

Vero-6 cells (ATCC (Manassas, VA, USA), #CRL-1586) were maintained in DMEM
medium (Gibco (Carlsbad, CA, USA), 4.5 g/L glucose, w/o pyruvate), supplemented
with 10% fetal calf serum (FCS, Biowest (Nuaillé, France), #S1810-6500), 100 IU/mL peni-
cillin, 100 µg/mL streptomycin, 1× GlutaMax (Gibco), and 1× sodium pyruvate (Gibco).
Calu-3 cells (ATCC, #HTB-55) were cultured in MEM (Sigma, St. Louis, MO, USA) sup-
plemented with 10% FCS (Biowest, #S1810-6500), 100 IU/mL penicillin, 100 µg/mL strep-
tomycin, 1× GlutaMax (Gibco), and 1× sodium pyruvate (Gibco). Caco-2 cells (ATCC,
#HTB-37) were grown in MEM (Gibco), supplemented with 20% FCS (Biowest, #S1810-
6500), 100 IU/mL penicillin, 100 µg/mL streptomycin, 1× GlutaMax (Gibco), and 1×
non-essential amino acid solution (Gibco). All cells were maintained or infected at 37 ◦C in
a 5% CO2 atmosphere.

The IAV DIPs DI244 and OP7 were produced in a cell culture-based process using a
500 mL laboratory scale stirred tank bioreactor, followed by purification and concentration
by membrane-based steric exclusion chromatography [44,45], as described previously [29,30].
Production titers of 3.3 and 3.67 log hemagglutination (HA) units/100 µL (quantified by the
HA assay [46]) and 5.6 × 108 and 1.12 × 1011 DI vRNAs/mL (quantified by real-time
RT-qPCR [29,42,47]) were achieved for DI244 and OP7, respectively.

The SARS-CoV-2 isolate hCoV-19/Croatia/ZG-297-20/2020 was used. All experi-
ments with infectious SARS-CoV-2 were performed in the BSL-3 facility at the Helmholtz
Centre for Infection Research (Braunschweig, Germany). The SARS-CoV-2 seed virus
was produced in Caco-2 cells, and virus particles were enriched in Vivaspin 20 columns
(Sartorius, Göttingen, Germany) via centrifugation. Collected virus was stored at −80 ◦C.
SARS-CoV-2 titers were quantified by plaque assay.

2.2. SARS-CoV-2 Quantification

Quantification of SARS-CoV-2 was performed by plaque assay. Samples were serially
diluted in 10-fold steps and used to infect a confluent monolayer of Vero-6 cells (on 96-well
plates) for 1 h. Then, the inoculum was removed, and cells were overlaid with cell culture
medium containing 1.5% methyl-cellulose (Sigma, #C9481-500). At 3 dpi, cells were fixed
with 6% formaldehyde and stained with crystal violet. Wells were imaged using a Sartorius
IncuCyte S3 (4× objective, whole-well scan) and plaque counts were determined.

2.3. SARS-CoV-2 Infection and Antiviral Treatment

Confluent Calu-3 cells in 96-well plates (~6 × 104 cells/well) were infected with
SARS-CoV-2 (2000 pfu per well). At 1 or 24 hpi, we added active or inactive IAV DIPs
(DI244 or OP7) at indicated fractions (% v/v) with respect to the cell culture volume of
100 µL. Whenever indicated, we additionally added 0.8 µM ruxolitinib (Cayman Chemical
(Ann Arbor, MI, USA), #Cay11609-1) to these wells. Alternatively, remdesivir (MedChem
Express (Monmouth Junction, NJ, USAnited States), #HY-104077) or human IFN-β-1A
(PBL assay science (Piscataway, NJ, USA), #11415-1) (instead of IAV DIPs) were added at
indicated concentrations at 1 hpi. Supernatants were collected at indicated time points
for quantification of SARS-CoV-2 titers (plaque assay) and for protein quantification of
secreted IFNs using commercially available ELISA kits (see below). In addition, infected
cells were lysed using solution RL for subsequent total RNA extraction using the innuPREP
RNA Mini Kit 2.0 (Analytik Jena (Jena, Germany), #845-KS-2040050), according to the
manufacturer’s instructions, for gene expression analysis via real-time RT-qPCR.

2.4. Immunofluorescence Staining

(Co-)infected cells were fixed with 6% paraformaldehyde in PBS for 1 h at room
temperature, followed by washing with PBS. Cells were permeabilized with 0.1% Triton
X-100 in PBS for 10 min at room temperature, washed with PBS, and blocked with 2% BSA
in PBS for 1 h. Antibody labelling was performed with mouse anti-SARS-CoV-2 S protein
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(Abcalis (Braunschweig, Germany), #ABK68-A09-M) and secondary antibody anti-mouse
Alexa488 (Cell Signaling Technology (Danvers, MA, USA), #4408), each step was followed
by three washing steps with PBS containing 0.05% Tween-20. Finally, cells were overlaid
with Vectashield Mounting Medium (Biozol (Eching, Germany), #VEC-H-1000).

2.5. Assessment of IFN Production by Host Cells

Supernatants of (co-)infected cells were assessed for IFN-β and IFN-λ3 levels using
corresponding Quantikine ELISA kits (R&D Systems (Minneapolis, MN, USA), #DIFNB0
and #D28B00, respectively) according to the manufacturer’s instructions.

2.6. Gene Expression Analysis

mRNA expression levels in (co-)infected cells were assessed using real-time RT-qPCR.
500 ng of total RNA were reverse transcribed using an oligo(dT) primer and the en-
zyme Maxima H Minus (both from Thermo Scientific, Waltham, MA, USA) according
to the manufacturer’s instructions. Next, qPCR was conducted using the Rotor-Gene
Q real-time PCR cycler (Qiagen, Hilden, Germany) and the following primers: IFNB1,
5’-CATTACCTGAAGGCCAAGGA-3′ and 5′-CAGCATCTGCTGGTTGAAGA-3′; IFNL1,
5′-GGTGACTTTGGTGCTAGGCT-3′ and 5′-TGAGTGACTCTTCCAAGGCG-3′; MX1, 5′-
GTATCACAGAGCTGTTCTCCTG-3′ and 5′-CTCCCACTCCCTGAAATCTG-3′; RSAD2, 5′-
CCCCAACCAGCGTCAACTAT-3′ and 5′-TGATCTTCTCCATACCAGCTTCC-3′; GAPDH,
5′-CTGGCGTCTTCACCACCATGG-3′ and 5′-CATCACGCCACAGTTTCCCGG-3′ (all se-
quences from [37]); and DDX58, 5′-TGCAAGCTGTGTGCTTCTCT-3′ and 5′-TCCTGAAAA-
ACTTCTGGGGCT-3′ [48]. The qPCR reaction mixture (10 µL) comprised 1× Rotor-Gene
SYBR green PCR mix (Qiagen), 500 nM of each primer, and 4 µL of cDNA. DNA denatura-
tion was conducted for 5 min at 95 ◦C, followed by 40 PCR cycles: 10 s at 95 ◦C and 20 s
at 62 ◦C. Gene expression was calculated using the ∆∆CT method using GAPDH as the
reference gene and expressed as fold change relative to untreated, uninfected cells.

2.7. Quantification of Intracellular IAV DI vRNAs

Real-time RT-qPCR was used for quantification of intracellular DI vRNAs from puri-
fied total RNA, as described previously [29,30,42,47]. In brief, a primer system was used
that allows polarity- and gene-specific detection of individual IAV vRNAs [49]. To enable
absolute quantification, RNA reference standards were synthesized and levels of vRNAs
were calculated based on standard curves, as described previously [42].

For RT, 1 µL of the total RNA sample was combined with 1 µL of dNTPs (10 mM) and
1 µL of the RT primer (1 µM) and filled up to a volume of 15 µL with nuclease-free water. In-
cubation was performed at 65 ◦C for 5 min and 55 ◦C for 5 min. During the latter step, a pre-
warmed mixture (55 ◦C) consisting of 4 µL of 5x RT buffer, 0.5 µL (100 U) Maxima H Minus
reverse transcriptase, and 0.5 µL RiboLock RNase Inhibitor (all reagents from Thermo Scien-
tific) was added. RT primer: OP7, 5′-ATTTAGGTGACACTATAGAAGCGACTGTGACTGC-
TGAAGTGGTG-3′; DI244, 5′-ATTTAGGTGACACTATAGAAGCGAGCGAAAGCAGGTC-
AATTATATTC-3′. RT was conducted for 30 min at 60 ◦C, followed by 85 ◦C for 5 min.
Further, RNA reference standards in 10-fold dilution steps were reverse transcribed. Next,
the cDNA reaction products were diluted to 100 µL in nuclease-free water. For qPCR,
the Rotor-Gene Q real-time PCR cycler (Qiagen) was used. The qPCR mix (10 µL) con-
tained 1× Rotor-Gene SYBR green PCR mix (Qiagen), 500 nM of each primer, and 4 µL
of diluted cDNA. qPCR Primers: OP7, 5′-ATTTAGGTGACACTATAGAAGCG-3′ and 5′-
CATTTGCCTAGCCCGAATC-3′; DI244, 5′- ATTTAGGTGACACTATAGAAGCG-3′ and
5′-GGAATCCCCTCAGTCTTC-3′. The PCR cycling conditions comprised: initial denatu-
ration step at 95 ◦C for 5 min, followed by 40 PCR cycles of 95 ◦C for 10 s and 62 ◦C for
20 s.

2.8. Data Sharing

The full dataset (of Figures 1–4) is available in supplemental Table S1.
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3. Results
3.1. SARS-CoV-2 Replication Is Abrogated by IAV DIP Treatment In Vitro

In order to test the antiviral efficacy of IAV DIPs on replication of SARS-CoV-2, we
conducted in vitro co-infection experiments in Calu-3 cells. For this, we infected cells with
SARS-CoV-2 (multiplicity of infection (MOI) = 0.03) and highly concentrated IAV DIPs
(DI244 or OP7) from cell culture-based production and membrane-based chromatographic
purification [29,30,44]. At 3 days post infection (dpi), cells were stained for the SARS-CoV-2
spike (S) protein (Figure 1A). Indeed, S protein expression was significantly reduced in cells
co-treated with DI244 or OP7 compared with cells infected with SARS-CoV-2 only, indicat-
ing suppression of SARS-CoV-2 replication by IAV DIP co-infection. In agreement with
this observation, images from live-cell microscopy showed a clearly reduced cytopathic
effect upon DIP co-infection from ~36 hours post infection (hpi) (Figure 1B).

To test the antiviral efficiency of IAV DIPs in comparison with clinically relevant
antivirals, dose effect curves were generated by testing different concentrations of IAV
DIPs for the treatment of SARS-CoV-2-infected cells (Figure 1C). As a read-out for SARS-
CoV-2 replication, we determined the infectious titer from supernatants at 3 dpi using
plaque assays with Vero-6 cells. Infection with only defective, replication-incompetent
IAV DIPs does not result in the release of progeny virions, as demonstrated by negative
plaque titers [29,30]. Strikingly, SARS-CoV-2 replication was severely diminished upon
IAV DIP co-infection. In particular, at high DI244 and OP7 concentrations, SARS-CoV-2
plaque titers were no longer detectable, while untreated cells showed a titer of 7.5 × 104

plaque-forming units (pfu)/mL. Suppression of SARS-CoV-2 replication decreased with
increasing dilution of DIPs. Remarkably, though, the treatment with both DIPs at a
dilution of 1:5000 still resulted in a pronounced inhibition of SARS-CoV-2 replication,
corresponding to a 26-fold and 210-fold reduction in plaque titers for DI244 and OP7
treatment, respectively. OP7 showed an overall slightly higher interfering efficacy than
DI244 (Figure 1), in agreement with recent viral challenge studies involving IAV, conducted
in vitro and in vivo [29,30]. For comparison, we also tested the inhibitory capacity of IFN-β,
or remdesivir treatment, on SARS-CoV-2 replication in infected target cells. Both agents
were also able to diminish SARS-CoV-2 plaque titers to below the limit of detection (LOD),
until a concentration of 633 U/mL for IFN-β and 0.32 µM for remdesivir. Yet, inhibiting
effects ceased significantly faster with increasing dilutions, most apparently observed for
remdesivir, for which treatment with a concentration of 0.03 µM no longer resulted in an
inhibitory effect.

Figure 1D illustrates residual SARS-CoV-2 inhibition caused by inactivated DIPs.
These DIPs were previously ultraviolet (UV)-irradiated until no interfering efficacy against
IAV replication was observed in vitro [29,30], indicating the degradation of the causative
interfering agent, i.e., the genomic defective interfering (DI) viral RNA (vRNA). The finding
that inhibition caused by active DIPs was more efficient suggests a specific interfering
activity of active IAV DIPs with SARS-CoV-2 replication. Of note, active DIPs still conferred
a pronounced antiviral effect even when applied 24 h after preceding SARS-CoV-2 infection
(Figure 1E).
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analysis of the SARS-CoV-2 spike (S) protein expression (green, magenta: DNA) at 3 dpi. Scale bar, 100 μm. (B) Cytopathic 
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Figure 1. Inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and spreading by
influenza A virus (IAV) defective interfering particles (DIPs). SARS-CoV-2-infected Calu-3 cells (multiplicity of infection
(MOI) = 0.03) were treated with IAV DIPs (DI244 or OP7), interferon (IFN)-β, or remdesivir at 1 hour post infection (hpi). For
DI244 and OP7 treatment, chromatographically purified and highly concentrated cell culture-derived DIP material [29,30]
was used. % (v/v) indicates the fraction with respect to the cell culture volume of 100 µL. Stock concentration, 5.6 × 108 and
1.12 × 1011 defective interfering (DI) viral RNAs (vRNAs)/mL for DI244 and OP7, respectively. (A) Immunofluorescence
analysis of the SARS-CoV-2 spike (S) protein expression (green, magenta: DNA) at 3 dpi. Scale bar, 100 µm. (B) Cytopathic
effect. Confluence (% of initial) was measured by live-cell microscopy at 2 h intervals. Thick lines represent smoothened data
(Savitzky-Golay filter), dotted lines show SD of original data (n = 2, independent experiments). (C) Effective concentration
range of DI244 and OP7 compared to IFN-β and remdesivir. Viral titers were determined from the supernatant at 3 days
post infection (dpi) by plaque assay. Upper dotted line indicates virus titer in untreated cells, lower dotted line shows the
limit of detection (LOD). Independent experiments were conducted; mean ± SD (n = 3) is shown. pfu, plaque-forming
units. (D) SARS-CoV-2 growth inhibition by active and inactive DIPs. SARS-CoV-2 infected cells were treated with active or
ultraviolet (UV)-irradiated (inactivated) DIPs at 1 hpi. Percentage inhibition of viral growth relative to mock treatment is
shown; mean ± SEM (n = 4) is depicted. (E) DIP superinfection 24 h post SARS-CoV-2 infection. Independent experiments
were conducted; mean ± SD (n = 2) is shown.

In conclusion, treatment with both DI244 and OP7 IAV DIPs completely inhibited
SARS-CoV-2 replication during in vitro co-infections. While the inhibitory potential was
comparable to IFN-β and remdesivir treatment, the antiviral effects of IAV DIPs were more
sustained with increasing dilution.
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3.2. IAV DIP Infection Enhances Type-I and Type-III IFN Responses and Inhibit SARS-CoV-2
Replication via Janus Kinase Signaling

Next, to investigate our hypothesis of whether inhibition of SARS-CoV-2 replication
by DIPs is due to their ability to stimulate the IFN system, we used ruxolitinib in co-
infection experiments. This small molecule drug is an efficient inhibitor of JAK, which
are key effectors in the IFN system. Upon IFN sensing, JAKs typically recruit STATs,
ultimately leading to the upregulation of IFN-stimulated genes (ISGs). ISGs encode for
effector molecules that limit viral replication by inducing an antiviral state in the infected
as well as uninfected neighboring cells. Figure 2 shows the results of SARS-CoV-2 and
IAV DIP co-infection upon treatment with ruxolitinib. While DI244 and OP7 co-infection
almost completely inhibited SARS-CoV-2 replication, additional treatment with ruxolitinib
abrogated the suppressive effect of both IAV DIPs. Specifically, virus titers under JAK
signaling inhibition were comparable to SARS-CoV-2 infection in the absence of DIPs.
These results suggest a major contribution of unspecific innate immune activation by IAV
DIPs in interfering with SARS-CoV-2 replication.
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Figure 2. Suppression of SARS-CoV-2 replication by IAV DIPs under janus kinase (JAK) inhibition.
SARS-CoV-2-infected Calu-3 cells (MOI = 0.03) were co-infected with IAV DIPs (DI244 or OP7) at
1 hpi in the presence or absence of ruxolitinib (JAK inhibitor). % (v/v) indicates the fraction of DIPs
(highly concentrated cell culture-derived material) [29,30] with respect to the cell culture volume
of 100 µL. Viral titers were determined from the supernatant at 3 dpi by plaque assay. Dotted line
shows the LOD. Independent experiments were conducted; mean ± SD (n = 4) is depicted.

In order to investigate correlates of IAV DIP-mediated SARS-CoV-2 suppression, we
used real-time RT-qPCR for quantification of gene expression to assess innate immune
responses during co-infections in more detail (Figure 3A). We observed a significant up-
regulation of type I and III IFN (i.e., IFNB1 and IFNL1, respectively) expression at early
times following IAV DIP and SARS-CoV-2 co-infection compared with SARS-CoV-2 single
infection. Specifically, we detected one to two log10 higher IFNB1 and IFNL1 mRNA levels
at 6 hpi. In addition, canonical antiviral gene expression, indicated by MX dynamin-like
GTPase 1 (MX1) and radical S-adenosyl methionine domain-containing 2 (RSAD2), was elevated.
This early upregulation of innate immune responses may well explain the strong antiviral
activity of DI244 and OP7 against SARS-CoV-2 replication.
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Figure 3. Stimulation of IFN-induced antiviral activity by IAV DIP infection. SARS-CoV-2-infected
Calu-3 cells (MOI = 0.03) were treated with IAV DIPs (DI244 or OP7) at 1 hpi. For DI244 and OP7
infection, 10% (v/v) (100 µL culture volume) of highly concentrated cell culture-derived DIP material
was used [29,30]. At indicated times post-infection, infected cells were lysed to allow for total RNA
extraction, required for (A) gene expression analysis. In addition, supernatants were sampled for
(B,C) quantification of secreted IFNs. Illustration includes data from one experiment. (A) Gene
expression analysis of SARS-CoV-2 and IAV DIP co-infection. Transcript levels were quantified by
real-time RT-qPCR and expressed as fold change (relative to untreated, uninfected cells). MX1, MX
dynamin-like GTPase 1; RSAD2, radical S-adenosyl methionine domain-containing 2. (B,C) Host cell IFN
production. Protein levels of IFN-β (B) and IFN-λ3 (C) were assessed using ELISA.

In agreement with this, we detected significant uptake of the nonreplicating DI244 and
OP7 vRNA (~103 molecules/cell) (Figure 4A) and concomitant upregulation of DExD/H-
box helicase 58 (DDX58) (Figure 4B), encoding for retinoic acid inducible gene I (RIG-I); a
pattern recognition receptor (PRR) critical for detection of viral nucleic acids and initiation
of cellular antiviral responses. The significantly lower levels of DI vRNAs detected for
cells treated with inactive DIPs can be explained by their efficient degradation by the
inactivation procedure (i.e., UV-irradiation). In this context, the trend toward stronger
stimulation of IFN-induced antiviral activity by inactive OP7 compared with inactive DI244
(Figure 3) may be well explained by the higher DI vRNA levels detected upon inactive OP7
treatment (Figure 4A).
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Figure 4. Cellular uptake of IAV DI vRNAs and DExD/H-box helicase 58 (DDX58) expression. SARS-CoV-2-infected Calu-3
cells (MOI = 0.03) were treated with IAV DIPs (DI244 or OP7) at 1 hpi. For DI244 and OP7 infection, 10% (v/v) (100 µL
culture volume) of highly concentrated cell culture-derived DIP material was used [29,30]. At indicated times post-infection,
cells were lysed to allow for total RNA extraction, required for (A) quantification of intracellular DI vRNAs and (B) analysis
of DDX58 gene expression. Illustration includes data from one experiment. (A) Intracellular DI vRNA levels during SARS-
CoV-2 and IAV DIP co-infection. Cells were assayed for viral RNAs by real-time RT-qPCR. (B) DDX58 gene expression
analysis. DDX58 (encoding for RIG-I) transcript levels were quantified by real-time RT-qPCR and expressed as fold change
(relative to untreated, uninfected cells).

As a control, we infected cells with only active or inactive IAV DIPs. Here, only active
DIPs were able to mount a marked innate immune response (Figure 3A, lower panels).
Canonical antiviral gene expression (MX1 and RSAD2) was enhanced until 72 hpi for the
active DIP-only treatment, implying that DI244 and OP7 can potentially raise a long-lived
antiviral ISG response.

Consistent with the results from real-time RT-qPCR, protein levels of secreted IFN-β
and IFN-λ3 (investigated using ELISA) were elevated at later times post-infection for cells
co-infected with IAV DIPs and SARS-CoV-2 compared with cells infected with only SARS-
CoV-2 (Figure 3B and 3C). In conclusion, our results suggest the early stimulation and
subsequent boosting of the type-I and type-III IFN response as causative for the inhibiting
potential of IAV DIPs against SARS-CoV-2 replication.

4. Discussion

Despite the recent availability of vaccines against COVID-19, options for antiviral
treatment are urgently needed for therapeutic application. Here, we show that cell culture-
derived IAV DIPs are highly potent inhibitors of SARS-CoV-2 replication in human lung
cells. In addition, our data obtained from in vitro experiments suggest that suppression
of SARS-CoV-2 replication by IAV DIPs is predominantly attributed to their ability to
stimulate innate immune responses ultimately inducing an antiviral state in target cells.

In the clinic, already approved antivirals for treatment of COVID-19 showed only
limited efficacy. For instance, treatment with the polymerase inhibitor remdesivir did
not result in an overall decrease in mortality [8,9]. For patients receiving supplemental
oxygen, however, an improvement in the survival rate from 4% to 12% was observed [8].
In addition, the time required to recover from COVID-19 was decreased by five days [7,8].
Another option to treat COVID-19 is the use of monoclonal antibodies that target the
receptor binding domain of the SARS-CoV-2 S protein, thereby inhibiting engagement with
the host cell entry receptor angiotensin-converting enzyme 2 (ACE2) [50,51]. Here, it was
suggested to use antibody cocktails to prevent the emergence of viral escape variants in
treated individuals [52]. In clinical trials, treatment of outpatients with one such antibody
cocktail (i.e., bamlanivimab) accelerated the decrease in viral load and reduced the fraction
of patients requiring hospitalization from 6.3% to 1.6% [13]. The administration of the corti-
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costeroid dexamethasone (in clinical use) resulted in an overall lower mortality in critically
ill COVID-19 patients [53,54]. This has a caveat, though, as a decrease in mortality was
observed for patients requiring oxygen (including mechanical ventilation), but an increase
in mortality was reported for patients not requiring oxygen [53]. This comparatively little
progress in COVID-19 therapy has sparked calls to invest more research into broadly acting
antiviral agents against SARS-CoV-2 to combat future pandemics [55].

Treatment of COVID-19 patients with IFNs is not approved yet. In general, SARS-
CoV-2 infection can modulate and inhibit the IFN response [34–36]. In addition, it was
recently shown that the host cell entry receptor ACE2 is indeed an ISG, and it was spec-
ulated that SARS-CoV-2 may exploit the IFN-driven upregulation of ACE2 to enhance
infection [56]. However, SARS-CoV-2 replication is, in general, also susceptible to inhibi-
tion by exogenously added IFN. For instance, all IFNs (type I, II, and III) exhibited potent
antiviral activity with SARS-CoV-2 replication in vitro [37,38], suggesting that the antiviral
activities of IFNs can counterbalance any pro-viral effects derived from ACE2 induction.
Yet, type-I IFN treatment seems to play an ambiguous role in COVID-19, depending on the
stage of the disease (reviewed in [57]), and also type-III IFNs can contribute to COVID-19
pathogenesis [58]. Therefore, therapeutic administration of IFNs (or IAV DIPs) in the future
will have to be carefully evaluated with respect to timing. Nevertheless, it was shown
that intranasal IFN-I administration (in hamsters) pre- or post-virus challenge can reduce
SARS-CoV-2 disease burden [39]. Moreover, in a placebo-controlled phase 2 clinical trial,
administration of inhaled, nebulized IFN-β (to patients already admitted to the hospital
due to COVID-19 symptoms) resulted in a higher chance of disease improvement and a
more rapid recovery from COVID-19 [40].

In our cell culture experiments, IAV DIPs completely abrogated SARS-CoV-2 replica-
tion. Notably, the UV-irradiated and thus inactive DIP material (containing degraded DI
vRNAs) also showed a residual inhibitory effect. Yet, the observation of a much stronger
antiviral effect upon treatment with active DIPs hints to an immunostimulatory activity of
active IAV DIPs in the context of SARS-CoV-2 suppression. In principle, DIPs are defective
in virus replication; therefore, they fail to complete the entire infection cycle. Thus, the
genomic DI vRNAs entering the cell cannot multiply, but are typically very well detected
by RIG-I [59], which subsequently leads to the activation of an IFN-response [60], in line
with our results. In conclusion, it appears that physically (or chemically) inactivated vi-
ral particles are not sufficient to induce a strong antiviral immunity, in contrast to “live”
but propagation-incompetent IAV DIPs. Furthermore, infection with rhinovirus before
SARS-CoV-2 in vitro can also result in an accelerated ISG responses and a prevention of
SARS-CoV-2 replication [61]; yet, fully infectious and propagation-competent rhinovirus
was used, which may result in unfavorable side effects. With respect to the safety of IAV
DIPs for potential clinical application, it is important to note that administration of only
active DIPs did not cause apparent toxic effects in mice and ferrets [28–31].

Our results support the notion that IAV DIPs do not only protect host cells from IAV
infection but, in addition, may generally confer protection against other heterologous IFN-
sensitive respiratory viruses [24,32,33]. Considering the emergence of new SARS-CoV-2
variants, against which a decreasing efficacy of various vaccines is becoming evident, the
unspecific stimulation of innate immunity by IAV DIPs is considered advantageous; in
particular, regarding a potential universal efficacy against such new (and future) variants.
Furthermore, previous in vitro and in vivo experiments also revealed an antiviral effect
of IAV DIPs against a variety of different IAV subtypes, including pandemic and highly
pathogenic avian IAV strains [14,28,31,62].

Future work to clarify the therapeutic effects of IAV DIPs on the outcome of SARS-CoV-
2 infection and to decipher in more detail the underlying mode of action should comprise
animal trials in Syrian hamsters or genetically modified humanized K18-hACE2 mice,
which are susceptible to SARS-CoV-2 infection and develop a similar respiratory disease
compared with human COVID-19 [63–66]. Animal experiments will help to elaborate on
the potential applicability of IAV DIPs (e.g., administration via a droplet spray) as a pre-
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and post-exposure treatment for instance in acute SARS-CoV-2 outbreak scenarios in clinics
or geriatric institutions. In addition to vaccination, this represents an interesting option for
prophylactic treatment to boost antiviral immunity in persons at acute risk for an infection
or for therapeutic treatment during early phase post-infection and, as such, may prevent
fatal COVID-19 outcomes.

5. Patents

A patent for the use of OP7 as an antiviral agent for treatment of IAV infection is
pending. Patent holders are S.Y.K. and U.R. (Udo Reichl).

Another patent for the use of DI244 and OP7 as an antiviral agent for treatment of
coronavirus infection is pending. Patent holders are S.Y.K., U.R. (Udo Reichl), M.H., U.R.
(Ulfert Rand), and D.B.

P.M.G. and U.R. (Udo Reichl) are inventors in a pending patent application detailing
the technology used for the chromatographic purification of the influenza virus particles
used in this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10071756/s1, Table S1: Full dataset of Figures 1–4.
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