
Power law error growth in multi-hierarchical chaotic

systems – a dynamical mechanism for finite

prediction horizon in weather forecasts

Jonathan Brisch and Holger Kantz

Max Planck Institute for the Physics of Complex Systems (MPIPKS), 01187

Dresden, Germany

E-mail: brisch@pks.mpg.de, kantz@pks.mpg.de

Abstract. We propose a dynamical mechanism for a scale dependent error growth

rate, by the introduction of a class of hierarchical models. The coupling of time scales

and length scales is motivated by atmospheric dynamics. This model class can be

tuned to exhibit a scale dependent error growth rate in the form of a power law, which

translates in power law error growth over time instead of exponential error growth

as in conventional chaotic systems. The consequence is a strictly finite prediction

horizon, since in the limit of infinitesimal errors of initial conditions, the error growth

rate diverges and hence additional accuracy is not translated into longer prediction

times. By re-analyzing data of the NCEP Global Forecast System published by Harlim

et al.[13] we show that such a power law error growth rate can indeed be found in

numerical weather forecast models.
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1. Introduction

There is a long (but sparse) debate in the community of atmospheric physics and

meteorology about the prediction horizon of weather forecasts. As it was prominently

pointed out by Lorenz (1963)[1], the chaotic nature of the atmosphere when seen as

a dynamical system has the consequence of sensitive dependence on initial conditions.

Hence, even infinitesimal errors in the initial condition of a forecast model compared

to the real atmospheric state grow exponentially fast in time and eventually reach

macroscopic scales. Then the model forecast has no similarity to the real state anymore,

and the forecast time after which this is the case is called the prediction horizon. As

argued in [2], this horizon has been pushed forward by about 1 day/decade in the

past 3-4 decades, and is now, with current observation technology including remote

sensing, current data assimilation, nowadays physical understanding of the atmospheric

processes, and computer power, at around 10 days. It is also argued in [2] that this

progress will continue and that one day one might be able to perform multi-seasonal

weather forecasts with high-resolution models.

Indeed, this assumption is compatible with the conventional idea of exponential

error growth defined by positive Lyapunov exponents[3]: An initial perturbation of a

state vector of size E0 grows in time t as E(t) = E0e
λt, where λ > 0 is the largest

Lyapunov exponent of the system. A reduction of E0 by 1/e (by more accurate/ more

complete observations of the current state) will extend the prediction horizon linearly

by one Lyapunov time 1/λ,

E(t) = E0e
λt, tpred =

1

λ
(ln(E∞)− ln(E0))→∞ for E0 → 0, (1)

where E∞ is the diameter of the attractor, which is the saturation amplitude of any

errors and which means complete loss of information about the true trajectory at time

tpred, the prediction horizon. Even if it is commonly assumed that reducing initial errors

by orders of magnitude for a linear gain in prediction horizon is infeasible, and hence

this classical notion of chaos usually implies unpredictability in the long, at least in

principle there is no limit to the prediction horizon.

Since long there have been warnings in the atmospheric physics literature that

error growth might be dramatically different here, starting from Thompson[4] in 1957,

Robinson[5] in 1967, and Lorenz[6] in 1969. In a recent paper Palmer et al. [7] coined

the notion of the ’the real butterfly effect’ for a strictly finite prediction horizon. In

Refs. [4, 6, 5, 8, 9] the authors investigated the Navier-Stokes equation or some similar

empirical flow equation in two and three-dimensions, with and without dissipation and

different energy spectra ranging from E(k) ∼ k−5/3 to k−3. They all conclude that

there exists a fundamental limit of predictability which is an intrinsic property of the

investigated flow equation. Applying the results to the atmosphere by setting similar

energy spectra and time and length scales the authors conclude that this fundamental

limit of predictability of the atmosphere lies between 7 days [4], 10 days [5] and approx

14 days [6, 10]. The recent study of ECMWF [11] on weather forecast systems comes
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to an intrinsic limitation of 15 days.

Atmospheric dynamics takes place on a hierarchy of spatial and temporal scales

which are coupled, see Figure1. Whereas synoptic scale structures of sizes of several

1000km (e.g., high and low pressure systems) live on time scales of several days, small

scale structures such as clouds show dynamics on the scale of minutes to hours. It is

plausible that along with these life-times, also error growth takes place on different time

scales: the smaller the spatial extent of some structure, the faster it evolves, and hence

its prediction might fail correspondingly earlier. This has given rise to the notion of

scale dependent error growth: The conventional Lyapunov exponent should be replaced

by a scale dependent quantity, e.g., a finite size Lyapunov exponent [12]. Indeed, in a

study of scale dependent error growth in the Global Forecast System of the National

Center for Environmental Prediction, Harlim et al. [13] have shown that there is a scale

dependent error growth rate which becomes very large if the errors become small (see

Figure 1 in [13]).

We propose that if the error growth rate with decreasing error magnitude grows

sufficiently fast, then this will induce a finite prediction horizon. This behavior could

naturally occur in systems which are described by partial differential equations PDEs

(such as the Navier Stokes equations), and would require that the dynamics creates

a hierarchy of spatial and temporal scales as it exists in the atmosphere. In the

mathematical sense, this would imply a maximal Lyapunov exponent of λ =∞, which,

however, would be inaccessible in standard numerical simulations because of coarse

graining of the continuum and thereby cut-offs in the spatial scale.

In the remainder of this Letter, we will first introduce the idea of a power law

dependence of the error growth rate on the error magnitude and show that this leads to

a strictly finite prediction horizon. We then introduce a class of dynamical systems which

shows exactly this behavior, and present as a specific example a hierarchy of coupled

Lorenz96-1 models where numerical simulations validate a power law divergence of the

error growth rate. Finally, we re-interprete data from the study by Harlim et al.[13] and

show that what they observed is a power law divergence of error growth rates, which

becomes evident in our new presentation of their data.

2. Power law divergence of scale dependent error growth

Let us assume that the dynamics exhibits a scale dependent error growth rate λ(E) :=
d ln(E(t))

dt
|E(t)=E where the rate of growth is a power law with an exponent −β and some

coefficient a > 0 and where E is the magnitude of a perturbation:

d ln(E)

dt
=
Ė

E
= aE−β. (2)

Integration by separation of variables leads to a power law growth of errors.

E(t) = (Eβ
0 + aβt)1/β. (3)

As for classical exponential error growth, Equation (3) becomes invalid for very large

times t when the error saturates at a value E∞ related to the finite extent of the
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Figure 1. Typical meteorological graph about time and length scales in the

atmosphere. Own reproduction.

attractor. What is strikingly different here is the diverging error growth rate for small

E0 and small t. The linear increment ∆t we gain in prediction time every time we cut

the error E0 into half becomes smaller and smaller (see Figure 2). The overall prediction

time converges to a finite value - a maximum prediction horizon tmax. If the tolerable

maximal error is denoted by Etol then tmax is given by

tpred =
Eβ

tol − Eβ
0

aβ
→ tmax =

Eβ
tol

aβ
<∞ for E0 → 0 (4)

This is a new and severe form of chaos, which we propose to exist in systems with

an infinite dimensional phase space. While we assume that under certain conditions

this will be exhibited by PDEs which intrinsically form cascades such as the Richardson

cascade in turbulence, we present here a paradigmatic model class which is based on

coupled low-dimensional systems with a hierarchy of scales imposed by our choice of

parameters.

Given a chaotic N -dimensional dynamical system in terms of an ODE, ~̇x = ~F (~x),

we introduce a hierarchical coupling by defining a family of spatial scaling factors αi
decreasing in i and of temporal scaling factors τi increasing in i. Here i denotes the level
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Figure 2. Exponential error growth in chaotic systems in blue, power law error growth

according to (3), prediction horizons indicated by vertical dashed lines. The inset shows

the divergence of scale dependent growth rate λ(E) as opposed to a standard Lyapunov

exponent.

of the hierarchy, where i = 1 is the top level and i = L the lowest. For the i-th level,

we replace ~x by ~xi/αi and t by τit and we obtain the equations of motion

~̇xi = τi[αi ~F (~xi/αi) + ~C(~xi+1, ~xi−1)] , (5)

for i = 1, . . . , L. Here, ~C(~a,~b) denotes a weak coupling term which in the simplest case

might be linear, ~C(~a,~b) = ~a +~b (also weak global coupling is thinkable). For a finite

number of levels L, the non-existing coupling inputs ~x0 and ~xL+1 are set to zero, and the

system then has NL degrees of freedom. Since coupling is weak and if the dynamics ~F

generates just one positive Lyapunov exponent λ, the hierarchical system has L positive

Lyapunov exponents which are approximately λi ≈ λτi. We chose the families of αi
and τi being monotonous in such a way that the top level hierarchy is slow but that the

spatial extent of its attractor and the error saturation value E∞ is large, and that the
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lowest level is the fastest and its phase space range is the smallest.

For infinitesimal errors, the error growth is governed by the maximum Lyapunov

exponent λτL of the fastest time scale, but this error growth saturates at the scale αL
which is small. Then the second largest Lyapunov exponent of the second lowest level

takes over, till also this error growth saturates at a scale of αL−1, and so on. This

way we generate a scale dependent error growth rate, where the properties of this scale

dependence are tunable.

One specific tuning which generates the proposed power-law-divergence of the error

growth rate is to chose both families of scaling factors in a geometric way, i.e., τi = ci,

and αi = di. As we will demonstrate by the help of the specific example below, the

resulting power β of the scaling of λ(E) ∝ E−β is then β = ln c/ ln d. Clearly, for finite

L this divergence is cut-off by a maximum rate of λ(E) ≤ λτL.

3. Multi-hierarchical model L96-H

We specify now the general model class by choosing the model L96-1 introduced in

Lorenz (1996)[14] for the dynamics ~F (~x). Its governing equations, using the notation of

[14], read

ẋn = xn−1 (xn+1 − xn−2)− xn + F (6)

with n = 1 . . . N , xn cyclic permutable with xn±N = xn, and F a constant driving

force. For N > 6 and F > 8 all instances behave chaotically with increasing positive

largest Lyapunov exponent for increasing N and F . Its equations of motion for some

inner level i read

ẋn,i = τi
[ 1

αi
xn−1,i (xn+1,i − xn−2,i)− xn,i (7)

+ αiFi + xn,i+1 +
αi+1

αi−1
xn,i−1

]
. (8)

The system is LN dimensional and the state space can be divided into L subspaces

of dimension N for each level of the hierarchy. We denote the state vector by
~X = {~x1, . . . , ~xL} with ~xi ∈ IRN . The coupling is bidirectional with upwards coupling

from lower to higher level xn,i+1 and with downwards coupling αi+1

αi−1
xn,i−1. The pre-factor

αi+1

αi−1
is chosen such that the downwards coupling has the same magnitude as the upwards

coupling. In the lowest level the undefined scale αL+1 is chosen as continuation of the

sequence of αi. The term αiFi +xn,i+1 + αi+1

αi−1
xn,i−1 can be considered as time dependent

driving force Fi(t). It is important to make sure that Fi(t) > αi ·8 for all times to ensure

that each level is chaotic.

In the following, we will present numerical results of this system for the parameters

N = 7, F = 15 for which the single level dynamics (without coupling) is chaotic with a

maximal Lyapunov exponent of λ ≈ 2.66 and an error saturation value E∞ ≈ 22.

We define the error E(t) as the ensemble average of the Euclidean distance

between a reference trajectory and an initially randomly perturbed error trajectory

with perturbation strength E0. Thereby we distinguish between the error of the total
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system ~X denoted Etot(t) and the error Ei(t) regarding only the subspace of one single

level ~xi. The scale dependent error growth rate is defined as the time derivative of

the logarithm of the error d lnE
dt

as a function of the error magnitude E(t) at time t.

Indeed, one can also study the propagation of the error from level to level by initial

perturbations in selected levels only, which leads to interesting transient behaviors but

eventually converges to error growth as for a global perturbation.

We study a hierarchy of L = 5 levels with the scale factors τi = 2i−5 and αi = 105−i.

The random initial perturbation has magnitude E0 = 10−2 while the saturation value

is at E∞,1 ≈ E∞α1 = 22 · 104. In Figure 3 the error growth is shown on a double

logarithmic plot. Both, the total error Etot(t) (blue) and the error growth of the levels

Ei(t) show power-law behavior, where the errors measured in the sub-spaces of a certain

level have additional features to be discussed elsewhere. For the resulting power law error

growth, the interplay of level-i-Lyapunov exponents λτi and of their saturation scales

E∞,i ≈ E∞αi is crucial. The inset shows the numerically determined error growth

rates as a function of error magnitude. The parameters τi and αi are chosen such

that the error growth rate decreases by a factor of 1/2 every time the error becomes

larger by a factor of 10. This proportionality is shown by the bold dashed line with

d(lnE)/dt ∝ E− ln(2)/ ln(10).

4. Re-analysis of the Harlim et al. results

We have presented evidence that a power law divergence of error growth rates can be

realized by a dynamical system with properties which resemble the observed coupling of

time and length scales in the atmosphere. Here, we want to strengthen this concept by a

study of a numerical weather forecast system. Actually, since the authors of this article

do neither have the skills nor the resources to do a study on real weather forecasts, we

use published results to support our ideas. Harlim et al.[13] have performed extensive

numerical experiments with the Global Forecast System of the National Center for

Environmental Prediction (NCEP -GFS), focusing with their studies on mid-latitudes

wind prediction (vorticity). We recall here some details from their original publication,

for more see[13]. They applied perturbations to reference trajectories and measured

numerically the rate of divergence of such two trajectories as a function of their Euclidian

distance in phase space. The results are depicted in Figure 1 of [13] as a scatter plot of

error growth rate versus error magnitude. We used the free software “WebPlotDigitizer”

[15] to obtain the coordinates of an essential sub-set of the dots in this diagram.

These data, in the same representation as the original figure (inset), and on a doubly

logarithmic scale are shown in Figure 4. Evidently, the error growth rate in this system

can be well described by a power law with divergence for small errors Equation (2), and

the estimated power β is about 0.63. There is hence considerable evidence that a real

weather forecast model does suffer not only from scale dependent error growth, but that

this is indeed governed by a power law with a maximum prediction horizon of 15-16

days, when we use Equation (4), insert E∞ = 1 (which is the saturation value in the
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Figure 3. Power-law error growth of the model L96-H on a double-logarithmic plot

normalization of [13]), a time unit of days, and a = 0.1 and β = 0.63 as obtained by our

fit.

5. Conclusions

Based on the idea of scale dependent error growth, which is motivated by meteorolog-

ical evidence, we proposed the possibility of deterministic dynamical systems with a

strict prediction horizon, which is given if the error growth rate diverges for small error

magnitudes like a power law. We proposed a class of chaotic dynamical systems which

exhibit such a behavior and illustrated this by a model system. The system models the

spatial and temporal hierarchies present in atmospheric dynamics. We then re-analyzed

data produced in [13] in terms of a power law divergence of error growth rates and found

thereby that indeed in this weather forecast system, this power law divergence is present

and that the maximum forecast range is limited to 15 days. We find it plausible that

the same holds for other weather forecast systems, as already also stated for the Euro-
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Figure 4. The dots are taken from Figure 1 of Harlim et al.[13] and denote error

growth rate in units of 1/day as a function of error magnitude for a numerical weather

model. The line is a power law fit with power β = 0.63. The inset shows the scanned

data in a representation as in the original publication and verifies that our recording

of the plotted data is reasonable.

pean IFS[11]. The dynamical origin of this phenomenon lies in the linkage of spatial and

temporal scales of this multi-scale phenomenon, where the smallest scales are the fastest.
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