
PHYSICAL REVIEW B 104, 155409 (2021)

Universal properties of boundary and interface charges in continuum models
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We study single-channel continuum models of one-dimensional insulators induced by periodic potential
modulations which are either terminated by a hard wall (the boundary model) or feature a single region of
dislocations and/or impurity potentials breaking translational invariance (the interface model). We investigate
the universal properties of excess charges accumulated near the boundary and the interface, respectively. We
find a rigorous analytic proof for the earlier observed linear dependence of the boundary charge on the phase of
the periodic potential modulation as well as extend these results to the interface model. The linear dependence
on the phase shows a universal value for the slope and is intersected by discontinuous jumps by plus or minus
one electron charge at the phase points where localized states enter or leave a band of extended states. Both
contributions add up such that the periodicity of the excess charge in the phase over a 2π cycle is maintained.
While in the boundary model this property is usually associated with the bulk-boundary correspondence, in the
interface model a correspondence of scattering state and localized state contributions to the total interface charge
are unveiled on the basis of the so-called nearsightedness principle.
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I. INTRODUCTION

The notion of topology has provided a powerful, novel
viewpoint on a wide variety of phenomena in physics [1–8],
successfully solidifying and expanding our understanding of
condensed-matter systems [9–14]. For example, two fields
that have greatly profited from the paradigm of topology are
the quantum Hall effect (QHE) [3] and the microscopic theory
of polarization, now known as modern theory of polarization
(MTP) [15].

The field of the QHE significantly profited from the in-
sight that the integer n characterizing the quantum Hall
conductance σxy = ne2/h is linked to the topological invariant
characterizing bands, now known as the TKNN invariant [4]
and mathematically identified [5] with the first Chern index
C1. The importance of phase-singular points of the Bloch
states |ψkα〉 (with the quasimomentum k in the occupied bands
α) for both the conductance quantization and for the above-
mentioned identification of n = C1 was quickly recognized
[6]. This understanding subsequently led Hatsugai to the for-
mulation [8] of the seminal bulk-boundary correspondence,
which links the first Chern index (and thereby the topological
characterization of the Bloch states in the Brillouin zone in
terms of the Bloch wave function’s phase vorticities) to the
number of edge modes contained within the band gaps of the
insulating system.

On the other hand, the MTP relies heavily on concepts of
topology, since it establishes a connection between localized
charges QB at boundaries and the Zak-Berry phase γα
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〈ψkα| d
dk ψkα〉dk [16] of the bulk Bloch bands, even

beyond any symmetry constraints [15]. This is the so-called
surface charge theorem [17,18]. However, this connection is
in general not unique but only determined up to an unknown
integer [19], since the MTP does not give a prescription re-
garding which specific gauge of |ψkα〉 should be used: any
nontrivial gauge transformation with a nonzero winding num-
ber changes this relation by an integer.

Recently, systems have been proposed that capture both
the QHE and aspects of the MTP, simultaneously establish-
ing an analogy between the two [20,21]. Following the key
idea of the mapping between a two-dimensional QHE model,
which is translationally invariant in one dimension, and a
one-dimensional (1D) model of an insulator with a modulated
periodic potential, establishes the correspondence between the
Hall conductance and the derivative of the boundary charge
QB with respect to the phase of the modulations of the 1D peri-
odic potential. Studying a lattice model of a 1D insulator with
quite a large number (Z = 10) of sites per unit cell reveals a
linear dependence of QB on the phase, which is accompanied
by discontinuous jumps by plus/minus one electron charge at
the phase points where an edge state enters/leaves the band.
Thereby, QB was elevated to be a relevant physical observ-
able quantifying the spectral flow of the boundary eigenvalue
problem. The slope of the linear dependence is universally
given by the number of the occupied bands (in units of 2π/e),
suggesting that it should be identified not only with n but with
C1 as well.

A wider class of generalized Aubry-André-Harper models
[22,23] has been later studied analytically [24,25] in the semi-
infinite geometry with a hard-wall boundary condition at the
origin. The main conclusions of [21] have been confirmed,
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also proving that the slope of the linear dependence is indeed
determined by the Chern index. In addition, it was shown that
on top of the linear dependence, for every finite Z there is
an additional nonuniversal 2π

Z -periodic function contributing
to QB which is expected to vanish at larger Z . Moreover,
a distinguished gauge has been identified in which the re-
lation between the Zak-Berry phase and QB holds exactly.
This gauge is fixed by choosing the last component of the
Bloch vector to be real. As a consequence, the winding and
the phase-singular points of the first Bloch vector component
were shown to determine the universal values of the change
�QB under a lattice shift by one site and for the jumps in QB,
respectively.

In addition, in Ref. [26] the quantum fluctuation of
the boundary charge was studied and the so-called sur-
face fluctuation theorem formulated, relating the boundary
charge fluctuations generically to the fluctuations of the bulk
polarization. Furthermore, for one-dimensional systems, a
universal 1/Eg low-energy scaling was established, with Eg

denoting the size of the gap in which the chemical potential
lies. Other universal low-energy properties of the Wannier
functions in these models have been recently addressed in
Ref. [27].

An interface model combining the two semi-infinite lattice
models with a mutual phase mismatch has been studied in
Ref. [28]. It has been shown that the interface charge QI is
given—up to an integer—by the dipole moment mismatch
of the two subsystems. Furthermore, it was shown how to
determine the integer for a specific type of interface (realized
by a hopping attenuation between the two subsystems at no
phase mismatch), expressing it as a winding number of some
complex function defined in the Brillouin zone. A principle
stating that a local perturbation to a many-electron system
may only lead to an integer-valued change in accumulated
charges is called the nearsightedness principle [29]. On its
basis we expect a ubiquitous occurrence of winding number
expressions for this kind of changes: a charge robustness with
respect to numerous system parameters and its sharp quanti-
zation can be only guaranteed by a topological expression.

In this paper we study single-channel continuum models of
one-dimensional insulators. Mathematically they correspond
to the limit Z → ∞ (number of sites per unit cell), a → 0
(lattice spacing) at the fixed L = Za (unit cell length) of the
previously studied lattice models. We investigate properties of
both boundary and interface localized charges and reveal their
universal features. Most of them are expected on the basis
of our previous studies [24–28]: a linear phase dependence
of QB and QI , discontinuous jumps at the points where a
localized state enters/leaves a band of extended states, both
the surface charge and surface fluctuation theorems, and the
bulk-boundary correspondence. However, there are additional
features which are specific only to continuum models. In par-
ticular, the absence of the umklapp processes leads to the rigid
values of the Chern indices (= 1 for each band), as well as to
additional constraints on numbers of edge states leaving and
entering a specific band and on Bloch wave function vorticity
values. We find that these constraints stem from the properties
of the Hill’s equation which were thoroughly studied in the
mathematical literature (see, e.g., Refs. [30–33]). As an ad-
ditional motivation to study continuum models, we literally

quote the citation from Ref. [34] which we share without
reserve: “There are several advantages to working with a
continuum model instead of a tight-binding lattice model....
Continuum models apply to a broader range of experimental
situations....”

As for the continuum interface models, we establish that
the quantized part of QI is intimately related to analytic prop-
erties of the reflection coefficient. This observation accords
with the recent results of Ref. [35]. In particular, extracting a
function d̃kα , which is defined in the Brillouin zone for every
band α, from a scattering matrix denominator, we demonstrate
that d̃kα plays a role similar to that of the Bloch state phase in
the boundary problem. In sum, the present paper consolidates
the findings of our previous papers [24–28] on the subject
and firmly establishes the universal properties of both the
boundary and the interface charges, drawing a unified analogy
between the two quantities.

The paper is organized as follows. In Sec. II a general
construction of the Bloch states based on the approach of [36]
for a generic but periodic 1D potential is discussed. In Sec. III
we first determine eigenstates, both extended and localized, of
the boundary problem with a hard-wall boundary introduced
into the origin of the translationally invariant system. Next we
define the boundary charge which contains contributions from
all eigenstates below the chemical potential put into the gap ν.
We rigorously prove the surface charge theorem, emphasizing
the role of the gauge choosing the last component of the
Bloch state to be real. Then we establish the phase depen-
dence of edge state dispersions, recover the bulk-boundary
correspondence, and state the universal form for both the total
boundary charge and the band’s individual contributions to it.
In Sec. IV we formulate the interface eigenvalue problem and
construct both its scattering and localized eigenstates. Next
we evaluate the total interface charge, discussing individual
contributions to it from both of these types of eigenstates.
This section is concluded with an expression for the phase
dependence of the interface charge. All revealed properties are
listed in the Summary section, Sec. V. The appendices provide
detailed mathematical proofs of all intermediate statements
and identities used in our derivations.

II. BLOCH STATE CONSTRUCTION FOR
A PERIODIC 1D POTENTIAL

In this section we describe a construction of the Bloch
states for a periodic one-dimensional potential following the
ideas of Kohn [36]. In particular, we review properties of these
eigenstates and thereby fix notations for subsequent discus-
sions. Throughout the paper we use the units e = h̄ = 1.

The 1D Schrödinger equation,

− 1

2m
ψ ′′(x) + V (x) ψ (x) = E ψ (x), (1)

with a periodic potential V (x) = V (x + L) is a particular form
of the Hill’s equation whose properties are comprehensively
described in the mathematical literature (see, e.g., [30–33]).
For the following illustrations we arbitrarily choose a specific
potential landscape shown in Fig. 1, which does not have any
internal symmetries. It will be used in all exemplary calcula-
tions of this paper.
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FIG. 1. Potential landscape V (x) = a0 cos 2πω0
L x + a1 sin 2πω1

L x
+ a2 sin 2πω2

L x used in exemplary calculations. The parameters are
(a0, a1, a2) = (0.1, 0.4, 0.2) and (ω0, ω1, ω2) = (1, 3, 4).

At fixed E , a general solution of (1) can be ex-
pressed as combination of two linearly independent solutions,
ψ1(x, E ) ≡ ψ1(x) and ψ2(x, E ) ≡ ψ2(x), that is,

ψ (x) = c1 ψ1(x) + c2 ψ2(x). (2)

Choosing ψ1(x) and ψ2(x) to satisfy the initial conditions
ψ1(0) = 1, ψ ′

1(0) = 0 and ψ2(0) = 0, ψ ′
2(0) = 1, respec-

tively, we fix the fundamental matrix of the equation:(
ψ1(x) ψ2(x)

ψ ′
1(x) ψ ′

2(x)

)
. (3)

Its determinant, the Wronskian,

W (x) = ψ1(x) ψ ′
2(x) − ψ2(x) ψ ′

1(x) ≡ 1 �= 0, (4)

is a nonzero constant. It follows that W ′(x) = 0, and the spe-
cific value 1 results from the chosen initial conditions. This
property guarantees linear independence of the vectors (ψ1(x)

ψ ′
1(x))

and (ψ2(x)
ψ ′

2(x)) at all x. Note that all elements of (3) are real.
According to the Bloch theorem, a smooth and bounded

solution of (1) can be represented in the form

ψk (x) = uk (x) eikx, (5)

where uk (x) is a smooth and periodic function, uk (x) =
uk (x + L), and k ∈ [−π

L , π
L ). Thus we obtain the boundary

conditions for ψk (x):

ψk (0) = ψk (L) e−ikL, (6)

ψ ′
k (0) = ψ ′

k (L) e−ikL. (7)

On the other hand, the representation (2) is still valid, imply-
ing a k dependence of the coefficients:

ψk (x) = c1,k ψ1(x) + c2,k ψ2(x). (8)

From the boundary conditions (6) and (7) we find

0 = c1,k [ψ1(L) − eikL] + c2,k ψ2(L), (9)

0 = c1,k ψ ′
1(L) + c2,k [ψ ′

2(L) − eikL]. (10)

To find nonzero c1,k and c2,k , we claim

[ψ1(L) − eikL] [ψ ′
2(L) − eikL] − ψ2(L) ψ ′

1(L) = 0. (11)

Taking into account (4), we establish the dispersion relation

cos kL = 1
2 [ψ1(L) + ψ ′

2(L)] ≡ D(E ), (12)

where D(E ) is the so called Lyapunov function. Solving (12),
one traditionally obtains the bands εkα labeled by the band
index α and possessing the property εkα = ε−k,α (see Fig. 2).
As E → −∞, we can neglect V (x) in (1) and thereby es-
tablish that asymptotically D(E ) ≈ cosh(L

√
2m|E |) → +∞.

Since D(E ) is a continuous function, this means that the
bottom energy of the lowest band (α = 1) satisfies the equa-
tion D(E ) = +1. In addition, within the band α, the function
D(E ) is monotonous [which follows, e.g., from the Schwarz
inequality (A22)], and

sgn

[
∂D(E )

∂E

]
= (−1)α. (13)

Then, from (9) we find

c2,k

c1,k
= −ψ1(L) − eikL

ψ2(L)
, (14)

and inserting this into (8) we obtain

ψk (x) = c1,k

[
ψ1(x) − ψ1(L) − eikL

ψ2(L)
ψ2(x)

]
(15)

= 1√
Nk

[ψ1(x) ψ2(L) − ψ1(L) ψ2(x) + ψ2(x) eikL].

(16)

Hereby we introduced the normalization Nk by virtue of the
relation ∫ L

0
dx |ψk (x)|2 = 1. (17)

Noticing that (see Appendix A for details)

−ψ2(x − L) = ψ1(x) ψ2(L) − ψ1(L) ψ2(x), (18)

and explicitly writing the band index α, we get the Bloch
states in the form

ψkα (x) = 1√
Nkα

[−ψ2(x − L) + ψ2(x) eikL], (19)

along with

ukα (x) = e−ikx

√
Nkα

[−ψ2(x − L) + ψ2(x) eikL]. (20)

Here ψ2(x) = ψ2(x, εkα ) depends on k and α via εkα , but in
the following we omit for brevity an explicit indication of this
dependence.

Note that ψkα (x) = ψk+ 2π
L ,α (x) and ukα (x) = ukα (x + L),

while the reciprocal relations are not valid, i.e., ukα (x) �=
uk+ 2π

L ,α (x), ψkα (x) �= ψkα (x + L). It is remarkable that

ψkα (0) = ukα (0) = ukα (L) = ψ2(L)√
Nkα

(21)

is real. This property fixes the gauge of the Bloch states
which will prove to be advantageous for the calculation of
the boundary charge in Sec. III. In general, we also have the
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FIG. 2. (a) The Lyapunov function D(E ) [Eq. (12)] for the potential choice depicted in Fig. 1. In the calculation we set the mass m = 1
and the unit cell length L = 10. The bands given by the condition |D(E )| � 1 are indicated as the colored regions. Typically [37] there are
infinitely many bands (and band gaps), only the first four of them being shown in the figure. (b) The band structure for the same model in
dependence of k.

relations

ψ∗
kα (x) = ψ−k,α (x), (22)

u∗
kα (x) = u−k,α (x), (23)

which can be realized in arbitrary gauge.
Finally, we introduce the Bloch states

�kα (x) =
√

L

2π
ψkα (x) =

√
L

2π
ukα (x) eikx, (24)

which satisfy the following normalization and completeness
relations ∫

dx �∗
kα (x) �k′α′ (x) = δ(k − k′) δαα′ , (25)

∑
α

∫ π/L

−π/L
dk �kα (x) �∗

kα (x′) = δ(x − x′). (26)

Note that the prefactor
√

L/(2π ) in (24) is needed in order to
reconcile (25) with the normalization

∫ L
0 dx |ukα (x)|2 = 1.

Later on the states (24) are used for constructing physical
observables. Some properties of Nkα , εkα , and ψ2(L, εkα ),
which are also useful for this purpose, are quoted in
Appendix B.

III. BOUNDARY CHARGE

In this section we discuss solutions of the Schrödinder
equation (1) in the half-space x > 0. This eigenvalue problem
is equipped with the hard-wall boundary condition ψ (x =
0) = 0. Analogously to the case of 1D single-channel lattice
models [25], extended eigenstates of the present boundary
problem can be constructed in terms of the Bloch states intro-
duced in the previous section. In addition, we construct edge
states which are exponentially localized near the boundary.

The central object of our study in this section is the bound-
ary charge QB accumulated near the boundary. For a system’s
filling determined by the chemical potential μν lying in the

νth band gap, QB receives contributions not only from an edge
state eventually residing in this gap but also from all occupied
bands and the lower gaps’ edge states. We extend our previous
lattice considerations [25] to the case of continuum models
and establish specific expressions for all contributions to QB.
In particular, we provide a new rigorous proof of the surface
charge theorem also fixing an expression for the integer part
of QB, which is usually left unknown (cf., e.g., Ref. [19]).

Studying the dependence of QB on the modulation phase
of the potential [i.e., on the distance by which V (x) is being
shifted towards the boundary], we observe a manifestation of
the bulk-boundary correspondence in the spirit of Ref. [8]. We
also firmly establish the universal linear phase dependence of
QB, with the slope being given by the Chern index of a band
(bands). Thereby we provide a rigorous proof to the earlier
numerical findings of Ref. [21]. Moreover, we reveal that in
continuum models the Chern index for each band is strictly
equal to +1 and that the number of bounces of an edge-state
energy in a certain gap between two adjacent band edges
during one pump cycle is given by the gap index.

Finally, we investigate the boundary charge fluctuations
and conclude that in the narrow-gap limit they possess univer-
sal properties satisfying the surface fluctuation theorem which
was stated in the previous works [26,27].

A. Eigenstates of the semi-infinite model

In this section we construct the extended eigenstates of (1)
in the right half space x > 0 and use them to evaluate each
band’s contribution to the boundary charge. The boundary
problem eigenstates can be expressed in terms of the states
(24):

�b,kα (x) = �kα (x) − �−k,α (x), k ∈
[
0,

π

L

]
. (27)

They have the eigenenergies εkα (i.e., form the same bands as
in the translationally invariant model) and satisfy the bound-
ary condition

�b,kα (0) = 0. (28)
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FIG. 3. Envelope function in the right half-infinite system: f (x) = 1 for all unit cells lying to the left of X1, while decaying smoothly to
zero far from the boundary on a length scale X2 much larger than the unit cell length L.

Their normalization reads∫ ∞

0
dx �∗

b,kα (x) �b,k′α′ (x) = δ(k − k′) δαα′ . (29)

Note that the set of all �b,kα (x) is not complete, since local-
ized edge states are also permitted. These edge states will be
discussed in Sec. III D.

The simplicity of the form of (27) is due to the special
gauge choice which is fixed by the condition (21). Using (27)
we define the boundary charge [21,25] associated with the
band α,

QB,α =
∫ ∞

0
dx [ρα (x) − ρ̄α] f (x), (30)

in terms of the charge density,

ρα (x) =
∫ π/L

0
dk |�b,kα (x)|2, (31)

the average charge density in the bulk,

ρ̄α = 1

L

∫ L

0
dx

∫ π/L

−π/L
dk |�kα (x)|2 = 1

L
, (32)

and the envelope function f (x). The latter possesses the fol-
lowing properties: (1) f (x) ≈ 1 in the range |x| < X1; (2) in
the range X1 < |x| < X1 + X2 it smoothly crosses over to zero;
and (3) f (x) ≈ 0 for |x| > X1 + X2 (see Fig. 3). Here X1,2 
ξ  L are scales large in comparison with the localization
length ξ = κ−1 (see Sec. III D for the latter definition).

It can be shown [25] that the boundary charge (30) consists
of the Friedel charge

QF,α = − Re
∫ ∞

0
dx

∫ π/L

−π/L
dk �2

kα (x) (33)

= −L Re
∫ L

0
dx

∫ π/L

−π/L

dk

2π
ψ2

kα (x)

×
∞∑

n=1

e2i(kL+i0+ )(n−1)L, (34)

which results from the charge density modulation near the
boundary, and the polarization charge

QP,α = − 1

L

∫ L

0
dx x

(
L
∫ π/L

−π/L

dk

2π
|ψkα (x)|2 − 1

L

)
(35)

= 1

2
−

∫ L

0
dx x

∫ π/L

−π/L

dk

2π
|ukα (x)|2, (36)

which originates from the crossover region X1 � x � X1 + X2

of the envelope function f (x), and it is expressed via the
dipole moment of the unit cell (see below).

The Friedel charge (34) is independent of the envelope
function f (x), since the corresponding Friedel charge density
decays exponentially fast on the scale ξ � X1. In turn, the
polarization charge (36) relies on the properties of f (x), and
it is obtained from

QP,α =
∫ ∞

0
dx [ρ̄α (x) − ρ̄α] f (x) (37)

=
∞∑

n=0

∫ L

0
dx̄ [ρ̄α (x̄) − ρ̄α] f (x̄ + nL), (38)

ρ̄α (x) =
∫ π/L

−π/L
dk |�kα (x)|2 = ρ̄α (x + L), (39)

in the following way. Observing that the main contribution to
(38) comes from the range X1 < nL < X1 + X2, we expand the
envelope function f (x̄ + nL) ≈ f (nL) + x̄ f ′(nL). The lead-
ing contribution identically vanishes after averaging over x̄
(which is defined as x mod L), and we get

QP,α ≈
∞∑

n=0

f ′(nL)
∫ L

0
dx̄ x̄ [ρ̄α (x̄) − ρ̄α]. (40)

Using the properties of the envelope function, we approxi-
mately evaluate the sum

∞∑
n=0

f ′(nL) ≈ 1

L

∫ ∞

0
dy f ′(y) (41)

= 1

L
[ f (∞) − f (0)] = − 1

L
, (41)

and thus reproduce (35).
Evaluating the sum in (34) we express the Friedel charge

in the form

QF,α = −L
∫ L

0
dx

∫ π/L

−π/L

dk

2π
Re

{
ψ2

kα (x) e−ikL

−2i sin(kL + i0+)

}
.

(43)

Note that a convergence factor +i0+ was added to the sum
over n. We exchanged this summation with the integral over
k, and this action had to be complemented by proper regular-
ization.

Using a variant of the Sokhotski-Plemelj theorem,

1

sin(kL + i0+)
= 1

sin kL
− iπ δ(kL) + iπ δ(kL − π ), (44)

we obtain

QI
F,α = − L

∫ L

0
dx

∫ π/L

−π/L

dk

2π
Re

{
ψ2

kα (x) e−ikL

−2i sin kL

}
, (45)
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QII
F,α = − 1

4

∫ L

0
dx

∫ π/L

−π/L
d (kL)

× Re
{
ψ2

kα (x) e−ikL [δ(kL) − δ(kL − π )]
}

= − 1

4

∫ L

0
dx Re

{
ψ2

0,α (x) + ψ2
π
L ,α (x)

}
. (46)

Since ψ0,α (x) and ψπ
L ,α (x) are both real and normalized by

(17), we get QII
F,α = − 1

2 .
In turn,

QI
F,α = −L

∫ L

0
dx

∫ π/L

−π/L

dk

2π

× Re

{
[ψkα (x) e−ikL − ψ−k,α (x) eikL]

×ψkα (x) e−ikL eikL

−2i sin kL

}

+ L

2

∫ L

0
dx

∫ π/L

−π/L

dk

2π
|ψkα (x)|2 (47)

= −L
∫ L

0
dx

∫ π/L

−π/L

dk

2π

ψ2(x − L)

Nkα

× [ψ2(x − L) − ψ2(x) cos kL] + 1

2
. (48)

So finally we get

QF,α = −L
∫ L

0
dx

∫ π/L

−π/L

dk

2π

ψ2(x − L)

Nkα

× [ψ2(x − L) − ψ2(x) cos kL]. (49)

B. Berry phase expression for polarization

In this section we extend the observation previously made
for the lattice models in Ref. [25] that the boundary charge is
given by the Zak-Berry phase [16]. This statement is generally
known as the surface charge theorem [19]; however the role
of the gauge of the Bloch states used for a construction of
the Zak-Berry connection is usually not elucidated. Therefore
this theorem is often stated up to an unknown integer which
can be changed by a winding number of the phase of the gauge
transformation.

The importance of the gauge (20) (i.e., with the real last
component of the Bloch vector ukα) was first recognized in
Refs. [24,25]. In particular, it was shown therein that while
working in this specific gauge no additional integer contribu-
tion to QB arises in lattice models. Below we show that this
also holds true for continuum models.

Let us consider the expression

Im

[
u∗

kα (x) eik(L−x) d

dk
ukα (x) e−ik(L−x)

]
(50)

= Im

[
ψ∗

kα (x) eikL ∂

∂k
ψkα (x) e−ikL

]

+ dεkα

dk
Im

[
ψ∗

kα (x)
∂

∂E
ψkα (x)

]
(51)

= − L

Nkα

[ψ2(x − L) − ψ2(x) cos kL] ψ2(x − L)

+ 1

Nkα

dεkα

dk
sin kL F (x), (52)

where

F (x) = ψ2(x)
∂ψ2(x − L)

∂E
− ψ2(x − L)

∂ψ2(x)

∂E
. (53)

Due to the property∫ L

0
dx F (x) = 0, (54)

whose proof is given in Appendix A, we can write

QF,α =
∫ L

0
dx

∫ π/L

−π/L

dk

2π
Im

[
u∗

kα (x)
d

dk
ukα (x)

]

−
∫ L

0
dx (L − x)

∫ π/L

−π/L

dk

2π
|ukα (x)|2. (55)

Combining this expression with (36), we obtain

QB,α = −1

2
+

∫ π/L

−π/L

dk

2π
Akα, (56)

Akα = −i
∫ L

0
dx u∗

kα (x)
d

dk
ukα (x), (57)

where the last line expresses the Zak-Berry connection.

C. Universal properties of the boundary charge

The interesting behavior of QB under the shift of a poten-
tial towards the boundary was initially observed in numerical
studies of Ref. [21]. It was revealed that QB linearly depends
on the distance of the shift (i.e., on the potential modulation
phase), the slope acquiring quantized universal values. In this
section we provide an analytic proof of the linear dependence
and discuss other universal properties of the boundary charge.

Suppose we shift our system towards the wall by xϕ . It
means that we have to consider the boundary problem with
a new potential:

V (ϕ)(x) = V (x + xϕ ). (58)

The new solution ψ
(ϕ)
kα

(x) is related to the old one ψkα (x) by

ψ
(ϕ)
kα

(x) = ψkα (x + xϕ ) e−i�kα (xϕ ), (59)

u(ϕ)
kα

(x) = ukα (x + xϕ ) eikxϕ e−i�kα (xϕ ). (60)

To enable the usage of (56), (57) in the shifted system, we
must claim similarly to (21) that ψ (ϕ)

kα
(0) is real. This condition

fixes (up to the irrelevant sign) the phase factor

ei�kα (xϕ ) ∼ ψkα (xϕ ) = ukα (xϕ ) eikxϕ . (61)

Note that it is periodic in k due to the analogous property of
ψkα (x). In addition,

ei�kα (xϕ+L) = ei�kα (xϕ ) eikL. (62)

The boundary charge in the shifted system can be written
with respect to the reference system value QB,α (0) ≡ QB,α
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as

�QB,α (xϕ, 0) = QB,α (xϕ ) − QB,α (0) (63)

=
∫ π/L

−π/L

dk

2π

[
A(ϕ)

kα
− Akα

]
(64)

= xϕ

L
− wn [ei�kα (xϕ )], (65)

where

wn [ei�kα (xϕ )] = −wn [e−i�kα (xϕ )] (66)

= − i

2π

∫ π/L

−π/L
dk e−i�kα (xϕ ) d

dk
ei�kα (xϕ ) (67)

is the winding number of the corresponding phase factor. In
this derivation we used the periodicity of ukα (x) in x. Due to
the property (62), the boundary charge QB,α (xϕ ) is manifestly
periodic under a shift xϕ → xϕ + L, as it should be.

Piecewise, i.e., outside the points where the winding num-
ber jumps, the slope

L
dQB,α (xϕ )

dxϕ

= C1,α = 1 (68)

is universal and coincides with the first Chern index of the
band α defined on the two-dimensional torus (k, xϕ ):

C1,α = −
∫ π/L

−π/L

dk

2π

∫ L

0
dxϕ

× 2 Im
∫ L

0
dx

dψ
(ϕ) ∗
kα

(x)

dk

dψ
(ϕ)
kα

(x)

dxϕ

. (69)

This index is a sign-weighted count of the phase-singular
points across the band α [6,25], thus giving (up to the sign)
the net change of the winding number over one period in
xϕ . The value of C1,α must be synced—as done in the first
equality of (68)—with the slope of the linear part of QB,α (xϕ )
in order to maintain the periodicity QB,α (xϕ ) = QB,α (xϕ + L).
In Appendix C we show by explicit evaluation of (69) that
C1,α = 1 for each band, i.e., prove the fulfillment of the second
equality in (68).

The result (68) differs to some extent from the findings
of Ref. [25] for a lattice model with Z sites per unit cell.
There the slope (with respect to ϕ

2π
) could take integer val-

ues C1,α = 1 + sαZ with some integer sα . The limit Z → ∞
should bring us to the case of the presently studied continuum
models. In order to get finite Chern indices, it is necessary to
ensure that upon taking this limit the potential as a function
of the phase variable does not make any kinks between the
lattice sites. This procedure ensures sα = 0 and yields the
result C1,α = 1, which is consistent with that of our present
consideration.

The bulk-boundary correspondence [8] implies that the
found value of C1,α should be supported by the same value for
the difference between numbers of edge states entering and
leaving the band α on the interval 0 � xϕ < L. We inspect
this property in the next section.

To complete the discussion of the boundary charge, we
also outline expressions for the boundary charge in the left

subsystem:

QL
B,α =

∫ 0

−∞
dx [ρα (x) − ρ̄α] f (x), (70)

= QL
F,α + QL

P,α = −1 − QB,α, (71)

where

QL
F,α = −

∫ 0

−∞
dx

∫ π/L

−π/L
dk Re �2

kα (x) (72)

= −L Re
∫ L

0
dx

∫ π/L

−π/L

dk

2π
ψ2

kα (x)
0∑

n=−∞
e2i(kL−i0+ )(n−1)

(73)

= −1 − QF,α, (74)

QL
P,α = −QP,α. (75)

For simplicity we choose f (x) = f (−x) in (70). In general,
the values of X1,2 may, however, differ for each half space, but
this does not affect the results (74) and (75).

D. Edge states

Besides the eigenstates (27) the semi-infinite model with
the hard-wall boundary condition possesses edge-localized
states. We notice that the function (16) vanishes at x = 0, if
the condition

ψ2(L) = 0 (76)

is fulfilled. This cannot happen within the energy range of any
band, since according to the property (B7) the function ψ2(L)
is sign-definite there. Therefore the condition (75) can be only
fulfilled in band gaps. For this to happen we should allow for
complex-valued k.

The other condition (12) relating k and E to each other
contains the function D(E ), which is real at every E . This
imposes the constraint that complex-valued k can only be of
the form either k = ±π/L + iκ or k = iκ , both with real κ .

The condition (4) is also fulfilled at every E . Combining it
with (76), we obtain

ψ1(L) = 1

ψ ′
2(L)

. (77)

Furthermore, from (12) it follows that

(−1)s cosh κL = 1

2

(
ψ1(L) + 1

ψ1(L)

)
. (78)

Here s = 0 corresponds to the choice Re k = 0, and s = 1
corresponds to the choice Re k = ±π/L.

Equation (78) has two solutions: ψ1(L) = (−1)s eκL and
ψ1(L) = (−1)s e−κL. They give the following eigenfunctions
of edge states:

ψe(x) ∼ [−ψ1(L) + eikL] ψ2(x)

= −2 (−1)s sinh κL ψ2(x), (79)

ψe(x) ∼ [−ψ1(L) + eikL] ψ2(x) ≡ 0, (80)

respectively. Thus, a nontrivial solution has

eκL = (−1)s ψ1(L) > 0. (81)
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Labelling each band gap by the index α of the band which
lies beneath it, we search for the relation between s and α.
Comparing (A20) and (A21), we find that at the edge state
energy E = εe,α it holds that

sgn ψ1(L, εe,α ) = sgn
∂ψ2(L, εe)

∂E
= sgn D(εe,α ). (82)

But sgn D(εe,α ) = (−1)α (see Fig. 2), and therefore

(−1)s = (−1)α, (83)

i.e., edge states residing in odd gaps have Re k = ±π/L, while
edge states residing in even gaps have Re k = 0.

Being primarily interested in the right subsystem (x > 0),
we impose the condition κ > 0 in order to have a normalizable
(decaying) solution. From (81) it follows that a nontrivial edge
state solution in the right subsystem exists if

|ψ1(L)| > 1 ⇒ κ = 1

L
ln |ψ1(L)| > 0. (84)

In turn, a nontrivial edge state solution in the left subsystem
exists if

|ψ1(L)| < 1 ⇒ κ = 1

L
ln |ψ1(L)| < 0. (85)

In Appendix D we prove that in each band gap there is
precisely one edge state, corresponding either to the right
subsystem (x > 0, κ > 0) or to the left subsystem (x < 0,
κ < 0). Its normalized wave function reads

�e,α (x) = �(x sgn κ )√
Ne,α

ψ2(x), (86)

with the corresponding normalizations,

Ne,α =
∫ ∞

0
dx ψ2

2 (x) =
∞∑

n=0

∫ L

0
dx ψ2

2 (x + nL)

= (−1)α

4m

∂ψ2(L)

∂E

1

sinh κL
, κ > 0, (87)

Ne,α =
∫ 0

−∞
dx ψ2

2 (x) =
∞∑

n=0

∫ 0

−L
dx ψ2

2 (x − nL)

= − (−1)α

4m

∂ψ2(L)

∂E

1

sinh κL
, κ < 0. (88)

These expressions are derived with help of (A5), (A19) and
(18), (A20). We remark that at the edge-state energy E = εe,α ,
it always holds that (−1)α ∂ψ2(L)

∂E > 0 (see the discussion in
Appendix D).

E. Phase dependence of edge states

If we shift the potential V (x) towards the hard wall by xϕ ,
the edge state energy εe,α will change its position within the
band gap α. At some values of xϕ the function εe,α (xϕ ) can
touch either lower or upper bands adjacent to the correspond-
ing band gap. In the following we study the edge state energy
dependence on xϕ .

We start with expressing the fundamental system
{ψ (ϕ)

1 (x), ψϕ
2 (x)} of the shifted model with V (ϕ)(x) =

V (x + xϕ ) in terms of the original reference system

{ψ1(x), ψ2(x)}:
ψ

(ϕ)
1 (x) = c11 ψ1(x + xϕ ) + c12 ψ2(x + xϕ ), (89)

ψ
(ϕ)
2 (x) = c21 ψ1(x + xϕ ) + c22 ψ2(x + xϕ ). (90)

Applying the defining relations

ψ
(ϕ)
1 (0) = 1, ψ

(ϕ) ′
1 (0) = 0, (91)

ψ
(ϕ)
2 (0) = 0, ψ

(ϕ) ′
2 (0) = 1, (92)

we obtain the equations

1 = c11 ψ1(xϕ ) + c12 ψ2(xϕ ), (93)

0 = c21 ψ ′
1(xϕ ) + c22 ψ ′

2(xϕ ), (94)

and

0 = c21 ψ1(xϕ ) + c22 ψ2(xϕ ), (95)

1 = c21 ψ ′
1(xϕ ) + c22 ψ ′

2(xϕ ). (96)

Solving them we get(
c11 c12

c21 c22

)
=

(
ψ ′

2(xϕ ) −ψ ′
1(xϕ )

−ψ2(xϕ ) ψ1(xϕ )

)
. (97)

An immediate consequence of this solution is that the func-
tion D(E ) is independent of xϕ . Considering

D(ϕ)(E ) = 1
2 {ψ (ϕ)

1 (L) + ψ
(ϕ) ′
2 (L)}

= 1
2 {ψ ′

2(xϕ ) ψ1(L + xϕ ) − ψ ′
1(xϕ ) ψ2(L + xϕ )

−ψ2(xϕ ) ψ ′
1(L + xϕ ) + ψ1(xϕ ) ψ ′

2(L + xϕ )},
(98)

and employing (A4), (A5), and (4) we obtain

D(ϕ)(E ) = 1
2 {ψ1(L) + ψ ′

2(L)} = D(E ). (99)

Due to this property all band edges are flat with respect to
xϕ in Fig. 4. We also note that the relation (59) implies the
equality

ψ
(ϕ) ′
kα

(0)

ψ
(ϕ)
kα

(0)
= ψ ′

kα (xϕ )

ψkα (xϕ )
. (100)

With the help of (89), (90), (97), and (A6)–(A9), we verify
that it actually holds for all energies.

The edge state conditions in the shifted system,

ψ
(ϕ)
2 (L) = 0, (101)

ψ
(ϕ)
1 (L) = (−1)α eκ (xϕ )L, (102)

are expressed with help of the above relations as

ψ1(L + xϕ )

ψ1(xϕ )
= ψ2(L + xϕ )

ψ2(xϕ )
= (−1)α eκ (xϕ )L. (103)

Solving them, we find the edge state dispersions εe,α (xϕ ) and
showcase them in Figs. 4(a) and 4(b).
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FIG. 4. (a) Band structure including right/left (solid/dashed) edge state dispersions depending on xϕ for V (x) from Fig. 1. The number of
touching points with adjacent bands equals the gap index implying a net difference of one touching point between leaving and entering edge
states per band. By virtue of the bulk-boundary correspondence (see Secs. III C and III G), this fact reflects the constant band Chern index
C1,α = M (−)

α − M (+)
α = 1. (b) Closeup of εk,2. Edge states in the right system (κ > 0) and left system (κ < 0) alternate upon traversing the

touching points [see Eqs. (108) and (109)]. (c) Boundary charge �QB,2(xϕ, 0) = QB,2(xϕ ) − QB,2(0) [Eq. (65)] and Im[ke(xϕ )] = κ (xϕ ) for the
edge states adjacent to εk,2. The universal linear growth is disrupted by discontinuous jumps at the positions of the touching points [= zeros of
κ (xϕ )]. Since C1,α = 1 for each band we regain periodicity under a shift xϕ → xϕ + L.

F. Band-touching points and vorticities

At the band-touching point x∗
ϕ the condition

κ (x∗
ϕ ) = 0 (104)

is fulfilled. Following Ref. [8], we assign to this point the
vorticity:

sgn
dκ (x∗

ϕ )

dxϕ

. (105)

Using in the following the right system (x > 0) as the ref-
erence one, we observe that the vorticity −1 counts an edge
state entering the band (change of κ from positive to negative),
while the vorticity +1 counts an edge state leaving the band
(change of κ from negative to positive).

Evaluating (105) on the basis of (103) and (A4), (A5) we
obtain

sgn
dκ (x∗

ϕ )

dxϕ

= (−1)α sgn

[
ψ ′

1(L)
d

dxϕ

ψ2(x∗
ϕ )

ψ1(x∗
ϕ )

]

= (−1)α sgn [ψ ′
1(L)] (106)

and

sgn
dκ (x∗

ϕ )

dxϕ

= (−1)α sgn

[
ψ2(L)

d

dxϕ

ψ1(x∗
ϕ )

ψ2(x∗
ϕ )

]

= −(−1)α sgn [ψ2(L)]. (107)

From these expressions (which are equivalent, see below) we
draw an important conclusion: the vorticity value is a property
of the band edge, i.e., it has the same value for all touching
points at the same band edge. Distinguishing between the top
edge of the band α and the bottom edge of the band (α + 1),
both facing the same band gap α, and using (B7) we establish

sgn
dκ (x∗

ϕ )

dxϕ

∣∣∣∣
α+1, bottom

= −1, (108)

sgn
dκ (x∗

ϕ )

dxϕ

∣∣∣∣
α, top

= +1. (109)

Due to the continuity of εe,α (xϕ ) in xϕ , the edge state trajectory
for the right system originates in the lower band (at the top of
the band α) and terminates in the upper band (at the bottom of
the band α + 1).

To demonstrate the equivalence of (106) and (107), we
relate the functions ψ ′

1(L) and ψ2(L) at the band edge, where
D(E ) = (−1)α , via

ψ ′
1(L) ψ2(L) = −1 + ψ ′

2(L) ψ1(L)

= −1 + [2(−1)α − ψ1(L)] ψ1(L)

= −[(−1)α − ψ1(L)]2 � 0. (110)

This means that sgn [ψ ′
1(L)] = −sgn [ψ2(L)] (unless we have

a touching point at x∗
ϕ = 0, which can be always excluded by

choosing a different reference system).
The observation about the vorticity values made above

allows us to conclude that

M (−)
α = M (+)

α+1, (111)

where M (±)
α are the numbers of edge states which enter/leave

the band α (labels correspond to vorticities ∓1). These prop-
erties can be recognized in Fig. 4, where, within a gap, the
edge dispersions touch the adjacent bands the same number
of times, thus demonstrating the property (111).

G. Bulk-boundary correspondence

To prove the bulk-boundary correspondence, we have to
show that

M (−)
α − M (+)

α = C1,α = +1. (112)

Let us prove that

M (−)
α = α, (113)

M (+)
α = α − 1. (114)

These relations automatically imply (112).
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First, we summarize the conditions satisfied at the touching
points. Combining (103) and (104) as well as using (A4) and
(A5) we derive

ψ2(L) ψ1(x∗
ϕ ) + ψ2(x∗

ϕ ) ψ ′
2(L) = (−1)α ψ2(x∗

ϕ ). (115)

Eliminating ψ ′
2(L) = 2(−1)α − ψ1(L), we express this condi-

tion in the form

ψ1(x∗
ϕ ) ψ2(L) − [ψ1(L) − (−1)α] ψ2(x∗

ϕ ) = 0. (116)

Hereby one can recognize an equation for the roots of the
periodic (even α) and antiperiodic (odd α) solutions (16) of
Eq. (1).

A problem of counting zeros of periodic and antiperiodic
solutions of a linear differential equation with periodic co-
efficients has a long tradition in the mathematical literature
[30–32]. Adapting the existing statements and their proofs
initially formulated in Ref. [31] to our present notations (see
Appendix E for details), we eventually conclude that

M (−)
α = M (+)

α+1 = α. (117)

This relation is equivalent to (113) and (114), and the bulk-
boundary correspondence (112) is confirmed.

The discussed property is demonstrated in Fig. 4(c). In
order to ensure the periodicity of QB,α (xϕ ), which grows lin-
early in xϕ with the slope 1

L on the interval L, there must be
an overall discontinuous jump by −1. The jumps occur only
when an edge state either leaves or enters the band. Thus the
bulk-boundary correspondence (112) expresses the necessary
charge balance during a pump cycle.

H. Total boundary charge

Setting the chemical potential μν = ε νπ
L ,ν at the top of

the uppermost valence band, we sum up all contributions to
the total boundary charge, coming from both the bands and
the edge states. Thus we get

Q(ν)
B =

ν∑
α=1

QB,α +
ν−1∑
α=1

Qe,α. (118)

The edge state contribution from the gap α equals Qe,α = 1,
when κα > 0, and zero otherwise. Based on the fact that
the boundary charge for a single band is periodic in xϕ (see
Sec. III C) we recognize that this also holds true for the to-
tal boundary charge. Furthermore, considering the individual
contributions to Eq. (118), it can be seen that jumps in QB,α

occurring at the touching points are compensated by edge
states themselves, besides those jumps which occur at the
topmost band edge below μν . Therefore,

Q(ν)
B (xϕ ) = Q(ν)

B (0) + ν

L
xϕ −

ν∑
j=1

�(x∗
ϕ, j ), (119)

where {x∗
ϕ, j} is a set of touching points at which an edge

state leaves the top edge of the uppermost valence band ν.
According to (117) there are precisely ν such points, and this
is the number needed to ensure the periodicity Q(ν)

B (xϕ ) =
Q(ν)

B (xϕ + L). Figure 5 illustrates this behavior which was
already observed by the authors of [21] in a lattice model with
quite large Z = 10, rendering their results to be tractable in
terms of the present continuum theory.

FIG. 5. Total boundary charge for μ = ε π
L ,3. According to

Eq. (117), ν = 3 jumps downward are observed at the positions of
the touching points, with the adjacent band edge hence restoring
periodicity over a shift xϕ → xϕ + L.

Following the previous studies [26,27], we quote the ex-
pression for the fluctuations of (119):

X2 (�Q(ν)
B )2 =

ν∑
α,β=1

∫ π/L

−π/L

dk

2π
(Qk )αβ. (120)

Here (Qk )αβ is the geometric tensor [see (F1)], and the rela-
tion

1

X2
=

∫ ∞

−∞
dx [ f ′(x)]2 (121)

quantifies the crossover range of the envelope function
f (x). In the narrow-gap limit we rederive (see Appendix F)
the previously established universal low-energy scaling of
(120)—the so-called surface fluctuation theorem [26,27]:

X2
(
�Q(ν)

B

)2 ≈ vF,ν

8Eg,ν
, (122)

expressed in terms of the Fermi velocity vF,ν and the gap value
Eg,ν .

IV. INTERFACE CHARGE

This section discusses the properties of interface charges
QI that accumulate at interfaces with nontrivial conjunctions
of two half-infinite subsystems. Similarly to our proceedings
in Sec. III and particularly in Ref. [28] (see Appendix C
therein) we determine the scattering eigenstates by modeling
the interface microscopically. This construction, in turn, pro-
vides the scattering matrix that has already been shown to be
determining for the properties at the interface [38,39]. In ad-
dition, we construct interface localized states—exponentially
localized states with bilateral support. Energetically, these
states reside in the gaps between bands formed by the scat-
tering eigenstates.

At the interface we allow for a mutual phase mismatch
xϕ �= xϕ′ of the potentials in the two subsystems on the right
and left in addition to a local impurity potential λ δ(x). Fix-
ing the value of xϕ′ and cyclically pumping xϕ , we establish
a number of similarities between QI (xϕ ) and the boundary
charge discussed in the previous section. In particular, we
derive for QI (xϕ ) analogs of the universal expressions (65)
and (119). In doing so we identify a function d̃kα (xϕ ) whose
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FIG. 6. Potential �(x)V (x + xϕ ) + �(−x)V (x + xϕ′ ) + λ δ(x)
of the interface problem (black) and exemplary interface localized
state (green) belonging to the gap α = 1 and evaluated for the pa-
rameters xϕ = 0.1L, xϕ′ = 0, and λ = 1.

windings and phase-singular points play a tremendous de-
termining role in describing a spectral flow of the interface
problem, not to speak of the equation d̃kα (xϕ ) = 0 determining
the interface localized states.

It is then recognized that the linear change of QI (xϕ ) is
associated with an incomplete compensation of the dipole-
moment contributions (36) from the right and left subsystems,
which accords with the main motif of Ref. [28]. Other changes
to QI (xϕ ) are found to be discontinuously integer-valued, and
this serves as an additional justification for the nearsighted-
ness principle, which was heuristically postulated in Ref. [29].

A. Scattering eigenstates

We consider the periodic potential V (ϕ)(x) = V (x + xϕ )
in the right half-space, and the periodic potential V (ϕ′ )(x) =
V (x + xϕ′ ) in the left half-space. In addition, we add an ex-
tra impurity potential at the interface Vimp(x) = λ δ(x). The
overall interface potential used in numerical calculations is
depicted in Fig. 6.

In this section we construct scattering eigenstates of this
model using the two bases, �

(ϕ)
kα

(x) and �
(ϕ′ )
kα

(x), which are
the eigenstates of the bulk eigenvalue problems with the
corresponding periodic potentials. Note that these bulk eigen-
value problems are isospectral, since they are mutually related
by the unitary transformation—the translation by xϕ − xϕ′ .
Therefore the bands εkα of the scattering states in the interface
problem also coincide with those of the bulk models.

We make the following ansatz for the scattering eigen-
states:

�
(r)
kα

(x) = �(−x)
[
�

(ϕ′ )
kα

(x) + rkα �
(ϕ′ )
−k,α

(x)
]

+ �(x) tkα �
(ϕ)
kα

(x), (123)

�
(l )
kα

(x) = �(−x) t ′
kα �

(ϕ′ )
−k,α

(x)

+ �(x)
[
�

(ϕ)
−k,α

(x) + r′
kα �

(ϕ)
kα

(x)
]
, (124)

labeled by k ∈ [0, π
L ] and the band index α.

To establish the transmission (tkα, t ′
kα) and reflection

(rkα, r′
kα) amplitudes, we employ the wave function’s match-

ing conditions at the interface,

�
(η)
kα

(0−) = �
(η)
kα

(0+), (125)

d�
(η)
kα

dx
(0+) − d�

(η)
kα

dx
(0−) = 2mλ �

(η)
kα

(0), (126)

where η = r, l . Thereby we get

tkα ψ
(ϕ)
kα

(0) − rkα ψ
(ϕ′ )
−k,α

(0) = ψ
(ϕ′ )
kα

(0), (127)

tkα

[
ψ

(ϕ) ′
kα

(0) − 2mλ ψ
(ϕ)
kα

(0)
] − rkα ψ

(ϕ′ ) ′
−k,α

(0) = ψ
(ϕ′ ) ′
kα

(0),
(128)

and

t ′
kα ψ

(ϕ′ )
−k,α

(0) − r′
kα ψ

(ϕ)
kα

(0) = ψ
(ϕ)
−k,α

(0), (129)

t ′
kα

[
ψ

(ϕ′ ) ′
−k,α

(0) + 2mλ ψ
(ϕ′ )
−k,α

(0)
] − r′

kα ψ
(ϕ) ′
kα

(0) = ψ
(ϕ) ′
−k,α

(0),
(130)

where

ψ
(ϕ)
kα

(0) = ψ
(ϕ)
−k,α

(0) = ψ
(ϕ)
2 (L)√
N (ϕ)

kα

, (131)

ψ
(ϕ) ′
kα

(0) = −ψ
(ϕ)
1 (L) + eikL√

N (ϕ)
kα

. (132)

The solutions of these linear equations read

tkα = 2i sin kL ψ
(ϕ′ )
2 (L)

dkα

√√√√ N (ϕ)
kα

N (ϕ′ )
kα

, (133)

−rkα = 1 − 2i sin kL ψ
(ϕ)
2 (L)

dkα

, (134)

and

t ′
kα = 2i sin kL ψ

(ϕ)
2 (L)

dkα

√√√√N (ϕ′ )
kα

N (ϕ)
kα

, (135)

−r′
kα = 1 − 2i sin kL ψ

(ϕ′ )
2 (L)

dkα

, (136)

where

dkα =
√

N (ϕ)
kα

N (ϕ′ )
kα

{−ψ
(ϕ)
kα

(0) ψ
(ϕ′ ) ′
−k,α

(0)

+ [
ψ

(ϕ) ′
kα

(0) − 2mλ ψ
(ϕ)
kα

(0)
]

ψ
(ϕ′ )
−k,α

(0)
}

(137)

= ψ
(ϕ)
2 (L)

[
ψ

(ϕ′ )
1 (L) − e−ikL

]
− [

ψ
(ϕ)
1 (L) − eikL + 2mλ ψ

(ϕ)
2 (L)

]
ψ

(ϕ′ )
2 (L). (138)

This function is expressed in term of two different fundamen-
tal systems referring to potentials shifted by xϕ and xϕ′ . Using
the transformation laws (89), (90), (97) of a fundamental
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system under the potential shift, we express dkα in terms of
the unshifted fundamental system. This gives

dkα =
√

N (ϕ)
kα

N (ϕ′ )
kα

Nkα

d̃kα e−i�kα (xϕ ) + i�kα (xϕ′ ), (139)

d̃kα

Nkα

= −ψkα (xϕ ) ψ ′
−k,α (xϕ′ ) + ψ ′

kα (xϕ ) ψ−k,α (xϕ′ )

− 2mλ ψkα (xϕ ) ψ−k,α (xϕ′ ). (140)

The introduced function d̃kα plays an important role in the
forthcoming analysis of the interface properties, which will
be elucidated later.

The transmission and reflection coefficients form the scat-
tering matrix

Skα =
(

tkα r′
kα

rkα t ′
kα

)
, (141)

which is unitary (see Appendix G for verification). This prop-
erty implies the relations

|tkα|2 + |rkα|2 = 1, (142)

|t ′
kα|2 + |r′

kα|2 = 1, (143)

t∗
kα r′

kα + r∗
kα t ′

kα = 0, (144)

which guarantee the normalization and orthogonality of the
states (123) and (124).

B. Interface localized states

To find eigenstates which are exponentially localized near
the interface, we make the ansatz

ψi,α (x) = �(−x) aα

[−ψ
(ϕ′ )
2 (x − L) + ψ

(ϕ′ )
2 (x) (−1)α eκL

]
+�(x) bα

[−ψ
(ϕ)
2 (x − L) + ψ

(ϕ)
2 (x) (−1)α e−κL

]
,

(145)

which uses the (un-normalized) Bloch states (19)

−ψ
(ϕ)
2 (x − L) + ψ

(ϕ)
2 (x) (−1)α e∓κL ∝ ψ

(ϕ)
απ
L ±iκ (x) (146)

with complex k = απ
L ± iκ and κ > 0. Applying the matching

conditions (118), (119) we obtain the equations

bα ψ
(ϕ)
2 (L) = aα ψ

(ϕ′ )
2 (L), (147)

bα

[−ψ
(ϕ)
1 (L) + (−1)α e−κL − 2mλ ψ

(ϕ)
2 (L)

]
= aα

[−ψ
(ϕ′ )
1 (L) + (−1)α eκL

]
. (148)

The condition for the existence of a nontrivial solution
yields the equation

ψ
(ϕ′ )
2 (L)

[−ψ
(ϕ)
1 (L) + (−1)α e−κL − 2mλ ψ

(ϕ)
2 (L)

]
= ψ

(ϕ)
2 (L)

[−ψ
(ϕ′ )
1 (L) + (−1)α eκL

]
. (149)

Noticing that by virtue of (131), (132), and (100) it holds that

−ψ
(ϕ)
1 (L) + (−1)α e∓κL

ψ
(ϕ)
2 (L)

= ψ ′
kα (xϕ )

ψkα (xϕ )

∣∣∣∣
k= απ

L ±iκ

, (150)

we cast (149) to the form[
ψ ′

kα (xϕ )

ψkα (xϕ )
− ψ ′

−k,α (xϕ′ )

ψ−k,α (xϕ′ )

]
k= απ

L +iκ

− 2mλ = 0, (151)

which is equivalent to

d̃ απ
L +iκ,α = 0. (152)

In addition, we have the relations between κ and the localized
state’s energy εi,α ,

(−1)α cosh κL = D(ϕ)(εi,α ) = D(ϕ′ )(εi,α ) = D(εi,α ), (153)

where D(ϕ)(E ) is defined in (98), and in (99) it is shown to be
independent of xϕ . Note that to solve (151) for κ > 0 we have
to replace e±κL with |D| ± √

D2 − 1.
From the normalization condition∫ ∞

−∞
dx |ψi,α (x)|2 = 1 (154)

we derive the equation for |aα|2:

1

|aα|2 =
∞∑

n=1

e−2nκL
∫ L

0
dx

[ − ψ
(ϕ′ )
2 (x − L)

+ ψ
(ϕ′ )
2 (x) (−1)α eκL

]2

+
(

ψ
(ϕ′ )
2 (L)

ψ
(ϕ)
2 (L)

)2 ∞∑
n=0

e−2nκL

×
∫ L

0
dx

[−ψ
(ϕ)
2 (x − L) + ψ

(ϕ)
2 (x) (−1)α e−κL

]2
.

(155)

Using the identities (A16), (A19), and (A20) we then find

1

|aα ψ
(ϕ′ )
2 (L)|2 = 1∣∣bα ψ

(ϕ)
2 (L)

∣∣2
= 1

2m

d

dE

[
−ψ

(ϕ)
1 (L) + (−1)α e−κL

ψ
(ϕ)
2 (L)

− −ψ
(ϕ′ )
1 (L) + (−1)α eκL

ψ
(ϕ′ )
2 (L)

]
. (156)

Note that the function under the derivative in the right-
hand side is the same—up to the constant −2mλ—as the
one in Eq. (151), whose roots determine interface localized
states. This implies that a second-order root is impossible
(since otherwise the denominators in the left-hand side of
(156) becomes infinite, and the corresponding state is un-
normalizable). Hence, any two physical roots of (151) may
not coalesce, and on this basis we conclude that interface
localized states are always nondegenerate.

The wave function of an exemplary interface localized state
lying in the first gap is shown in Fig. 6. An important question
is for which parameter values such a state is present, and how
many of them can be accommodated in each gap? To system-
atically study this, we fix xϕ′ = 0 and vary the parameter xϕ .
There are two characteristic cases: λ > 0 [Figs. 7(a), 7(c) and
7(d)] and λ < 0 [Figs. 8(a), 8(c) and 8(d)]. The bands of the
scattering eigenstates energetically coincide with those of the
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FIG. 7. (a) Energy spectrum of the interface eigenvalue problem for the potential shown in Fig. 6 with λ = 1. The solid lines in the band
gaps represent energies of the interface localized states. (b) Total interface charge for a system with the chemical potential μ = ε π

L ,3, i.e.,
lying on top of the third band. Downward jumps occur whenever the localized states leave the topmost occupied band edge. (c) Closeup of
the first gap. The continuous curve connecting both physical (κ > 0) and unphysical (κ < 0) solutions of (152) exhibits the double period 2L.
(d) Closeup of the second band. (e) Second band’s contribution to the interface charge. Jumps occur in both downward and upward directions
at the touching points [which are the roots of the functions d̃ π

L ,2(xϕ ) = 0 and d̃0,2(xϕ ) = 0], depending on the direction of the localized state’s
spectral flow.

bulk eigenvalue problem. The localized state dispersions in xϕ

are depicted by solid lines lying in the band gaps. They are
continuously prolonged by gray dashed lines which represent
unphysical solutions (that is, with κ < 0) of the equation
(152). We remark that the whole continuous curve has a dou-
ble period 2L [see, particularly, closeups of the first gap in
Figs. 7(c) and 8(c) for a confirmation that this property holds

in each gap]. This is qualitatively different from the behavior
of an edge state dispersion in the boundary problem [Figs. 4(a)
and 4(b)], which has a period L. The only exception from the
double-period rule is the localized state residing beneath the
lowest band: it has a period L, and there is no counterpart
for this state in the boundary problem. Note that this state
may occur not only for negative λ but also for positive λ [see

FIG. 8. Same as in Fig. 7 for λ = −1.
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FIG. 9. Localized state dispersions for λ = −0.1, 0, 0.1. Illus-
tration of the nontrivial limits λ → 0± close to the translationally
invariant point xϕ = xϕ′ = 0 (shown is the third gap). In particular,
for λ → 0+ there is a state in the gap at ε π

L ,3 + 0+, while for λ → 0−

there is a state in the gap at ε π
L ,4 − 0+. At λ = 0 these states touch

the bands.

additionally Figs. 12(a), 12(c) and 13(a), 13(c) in Appendix H
for other values of λ]. It is also remarkable that, unlike in the
boundary problem, there are physical dispersions which both
enter and leave a band at the same band edge [as shown, e.g.,
in the first gap in Fig. 12(c)]. Overall, we may have either zero,
one, or two localized states in each gap for a fixed value of xϕ ,
as well as either zero or one state beneath the lowest band.

The case λ = 0 is realized by the limits λ → 0±, as shown
in Fig. 9. Note that these limits are especially nontrivial close
to the translationally invariant point xϕ = xϕ′ = 0. In particu-
lar, for λ > 0 the localized state detaches from the top of the
lower band, while for λ < 0 it detaches from the bottom of the
upper band.

C. Interface charge: Band’s contribution

The αth band’s contribution to the interface charge is de-
fined by

QI,α =
∫ ∞

−∞
dx f (x)

×
[∫ π/L

0
dk

(∣∣� (r)
kα

(x)
∣∣2 + ∣∣� (l )

kα
(x)

∣∣2) − ρ̄α

]
, (157)

with a symmetric envelope function f (−x) = f (x). Due to the
unitarity of the scattering matrix and the property (G2), the
average bulk charge density ρ̄α is canceled out, and (157) can
be represented as a sum QI,α = QR

I,α + QL
I,α of the two charge

contributions integrated over the right and left half-space,
respectively. They amount to

QR
I,α = L Re

∫ π/L

−π/L

dk

2π

∫ L

0
dx r′

kα ψ
(ϕ) 2
kα

(x)

×
∞∑

n=1

e2i(kL+i0+ )(n−1) + QP,α (xϕ ) (158)

and

QL
I,α = L Re

∫ π/L

−π/L

dk

2π

∫ L

0
dx r∗

kα ψ
(ϕ′ ) 2
kα

(x)

×
0∑

n=−∞
e2i(kL−i0+ )(n−1) − QP,α (xϕ′ ), (159)

where the polarization charge

QP,α (xϕ ) = − 1

L

∫ L

0
dx x

(
L
∫ π/L

−π/L

dk

2π
|u(ϕ)

kα
(x)|2 − 1

L

)

=xϕ

L
+ QP,α (160)

is an analog of (36). Note that the last equality follows from
(60) and the periodicity of u(ϕ)

kα
(x) in x.

Taking into account the special structure of the reflection
coefficients (134) and (136), the relation (71), and the bound-
ary charge formula (65) we deduce

QI,α = −1 + xϕ − xϕ′

L
− wn [ei�kα (xϕ )]

+ wn [ei�kα (xϕ′ )] + Q̄I,α (161)

where

Q̄I,α = −L Re
∫ π/L

−π/L

dk

2π

∫ L

0
dx

× ψ
(ϕ′ )
2 (L) ψ

(ϕ) 2
kα

(x) e−ikL + ψ
(ϕ)
2 (L) ψ

(ϕ′ ) 2
−k,α

(x) eikL

dkα

.

(162)

It can be shown that Q̄I,α is an integer contribution given in
terms of the winding number of dkα:

Q̄I,α = i
∫ π/L

−π/L

dk

2π

1

dkα

d

dk
dkα = −wn [dkα], (163)

see Appendix I for details of this derivation. By virtue of
(139), (140) we similarly obtain Eq. (161) in terms of d̃kα as

QI,α = − 1 + xϕ − xϕ′

L
− wn [d̃kα]. (164)

This is the first main result of this section. It establishes the
universal form of a band’s contribution to the interface charge.
This form is similar to the one obtained for the boundary
charge (65). The phase of the function d̃kα plays here a role
similar to that of the phase ei�kα in the boundary problem.

Without loss of generality we set xϕ′ = 0. Then, taking into
account (19) as well as (131), (132), we conclude

d̃kα (xϕ ) = −[−ψ2(xϕ − L) + ψ2(xϕ )eikL]

× [−ψ1(L) + e−ikL + 2mλ ψ2(L)]

+ [−ψ ′
2(xϕ − L) + ψ ′

2(xϕ )eikL] ψ2(L). (165)

Considering QI,α as a function of xϕ , we notice its pe-
riodicity QI,α (xϕ ) = QI,α (xϕ + L), which is due to the
properties d̃kα (xϕ + L) = d̃kα (xϕ )eikL and wn [d̃kα (xϕ + L)] =
wn [d̃kα (xϕ )] + 1. Note that the latter follow from the defini-
tions (165) and (67) of d̃kα (xϕ ) and of the winding number,
respectively.
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The behavior QI,α=2(xϕ ) is illustrated in Figs. 7(e) (for λ =
1) and 8(e) (for λ = −1) as well as in the analogous panels
in Appendix H (for other values of λ). For a detection of the
touching points we plot the real-valued functions d̃ π

L ,2(xϕ ) (for
the bottom band edge) and d̃0,2(xϕ ) (for the top band edge)
and determine their roots. Their roots give the band’s touch-
ing points at the corresponding edge. Whenever the localized
state enters/leaves the band, the value of QI,α=2(xϕ ) jumps by
±1. A relation between the winding number change and the
spectral flow of the localized states into/out of the bands is
discussed in greater detail in the next section.

D. Total interface charge

The total interface charge in the system with the chemical
potential μν at the top of the νth band is given by a sum of
contributions from all states below μν ,

Q(ν)
I (xϕ ) =

ν∑
α=1

QI,α (xϕ ) +
ν−1∑
α=0

Qi,α (xϕ ). (166)

Here Qi,α (xϕ ) is a number of the interface localized states in
the gap α. Note that in contrast to (118), the summation in the
second term of (166) begins from α = 0 (“zeroth gap,” i.e.,
the energy range beneath the lowest band), since a localized
interface can occur there as well.

To establish the xϕ dependence of Q(ν)
I , we first derive

Q(ν)
I (0) at finite λ, that is the zero phase mismatch result.

Then, exploiting the continuity of the spectral flow with xϕ ,
we address the sought-after dependence.

In the zero mismatch limit xϕ = 0, the bands’ contributions
are evaluated in terms of

d̃kα (0) = 2 ψ2(L) [i sin kL − mλ ψ2(L)]. (167)

This expression immediately follows from (165) after apply-
ing the defining relations of the functions ψ1 and ψ2, stated
after Eq. (2), and the properties (A6), (A7). Since the function
ψ2(L) = ψ2(L, εkα ) does not change its sign within the band
α [see (B7)], the complex function d̃kα (0) does not wind with
k around the origin, leaving wn [d̃kα (0)] = 0. Then from (164)
it follows that at xϕ = xϕ′ = 0 each band provides the −1
contribution to the interface charge, that is, QI,α (0) = −1.

To compute Q(ν)
I (0) by means of (166), we also need to

establish the number of localized states. At xϕ = xϕ′ = 0 they
obey the equation

−(−1)αmλ ψ2(L) = sinh κL, (168)

which follows from d̃kα (0) = 0 [note that ψ2(L) = 0 does not
give a nontrivial solution inside a gap away from band edges].
It is convenient to rewrite (168) as

−mλ
ψ2(L)

D(E )
=

√
D2(E ) − 1

|D(E )| . (169)

According to (B7) and (A21), the function in the left-hand side
is monotonically decreasing across the gap from a positive to
a negative value for λ > 0, and it is monotonically increasing
from a negative to a positive value for λ < 0. In turn, the
function in the right-hand side is positive within the gap and
vanishes at its ends. Since both sides of (169) are continuous
in E , they have a single intersection point for any λ �= 0,

FIG. 10. A sketch of the proof of (174). (a) Fixing notations for
the present and absent localized state before and after the touching
point, respectively. (b) The winding number changes upon traversing
the touching point. The contour of d̃kα (xϕ ) is swept across the origin.
The precise value of the change (+1 or −1) depends on a mutual
orientation of the normal and the tangent vectors to the contour in
the vicinity of the origin.

which gives the energy of the interface localized state. Thus
each gap hosts one localized state.

It is necessary to additionally inspect the “zeroth gap,” i.e.,
the energy range below the first band. The right-hand side
of (169) is monotonically decreasing from +1 (at E = −∞)
down to 0+. Remarking that

ψ2(L)
E→−∞≈ sinh(L

√
2m|E |)√

2m|E | , (170)

we conclude that the left-hand side of (169) for λ > 0 is
monotonically decreasing from 0− (at E = −∞) to a negative
value, and for λ < 0 it is monotonically increasing from 0+
(at E = −∞) to a positive value. Thus only in the latter case
do we obtain an additional localized solution. It is a remnant
of the bound state in the attractive (λ < 0) delta potential and
the flat background potential, which has the energy E = −mλ2

2
[note that this result is easily recovered from (169) with help
of (170)].

Summarizing the above results in the zero mismatch limit
xϕ = 0, we obtain

Q(ν)
I (0) =

{−1, λ > 0,

0, λ < 0.
(171)

Next we investigate how these universal values change with
xϕ .

Moving along the localized state dispersion in xϕ

[Fig. 10(a)], we establish that at the touching point x∗
ϕ [obey-

ing the equation d̃kα (x∗
ϕ ) = 0 with Re k = 0, π/L and κ = 0]

it holds that

dE (x∗
ϕ )

dxϕ

= (−1)αL sinh κL

D′(E )

dκ (x∗
ϕ )

dxϕ

= 0, (172)
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as well as

dκ (x∗
ϕ )

dxϕ

= −
∂ d̃kα

∂xϕ

∂ d̃kα

∂κ

=
(−1)α ∂ d̃kα

∂xϕ

Lψ2(L)[ψ1(x∗
ϕ ) + ψ ′

2(x∗
ϕ ) − 2mλ ψ2(x∗

ϕ )]
. (173)

On the other hand, looking at the touching point from the
band’s perspective, we notice that the winding number of d̃kα

associated with the band α changes upon going across the
touching point by

� wn [d̃kα] = wn [d̃kα (x∗
ϕ + ε)] − wn [d̃kα (x∗

ϕ − ε)]

= sgn

[
∂ d̃kα

∂xϕ

∂ Im d̃kα

∂k

]
, (174)

where

∂ Im d̃kα

∂k
= (−1)αLψ2(L)

× [ψ1(x∗
ϕ ) + ψ ′

2(x∗
ϕ ) − 2mλ ψ2(x∗

ϕ )]. (175)

The derivation of (174) is sketched in Fig. 10(b). For k =
0, π/L the function d̃kα becomes real. These values corre-
spond to points on the real axis, where the parametric plot of
d̃kα (or the loop) intersects the horizontal axis. Moving one of
these points (say, the left one, as shown on the sketch) across
the origin (where the touching point condition is satisfied) by
means of tuning xϕ leads to a change in the winding number.
This change (by either +1 or −1) depends on the orientation
of the tangent vector to the loop in the vicinity of the origin.
A careful inspection of all possible scenarios leads us to the
expression (174).

By analogy with (105) we introduce the interface vorticity
as a sign of (173). It quantifies whether the localized interface
state leaves the band (the value +1 indicates the change of κ

from negative to positive) or enters the band (the value −1 in-
dicates the change of κ from positive to negative). Comparing
(173) with (174), (175) we show that this vorticity equals

sgn

[
dκα (x∗

ϕ )

dxϕ

∣∣∣∣
α

]
= � wn [d̃kα]. (176)

Here in the left-hand side we additionally mark that the lo-
calized state in the gap α (encoded in κα) touches the band
α (encoded in the lowest subscript α). Analogously, we show
that upon touching the upper band it holds that

sgn

[
dκα (x∗

ϕ )

dxϕ

∣∣∣∣
α+1

]
= � wn [d̃k,α+1]. (177)

The expressions (176) and (177) have a transparent physi-
cal meaning: When the localized state enters/leaves the band,
the band’s contribution to the total interface charge changes
accordingly, so that there is no net contribution to Q(ν)

I . The
only uncompensated changes occur at the topmost occupied
band edge (since we put there the chemical potential and
therefore do not count the localized states touching that band
edge). Hence we obtain the following expression for the total

interface charge:

Q(ν)
I (xϕ ) = Q(ν)

I (0) + ν

L
xϕ −

ν+l∑
j=1

�(x−
ϕ, j ) +

l∑
j=1

�(x+
ϕ, j ).

(178)

This is the second main result of this section: the universal
dependence of the total interface charge on the pumping pa-
rameter xϕ . It is similar to (119), the main difference being
that the localized state energy may now both enter and leave a
band at the same band edge. Here {x±

ϕ, j} is a (model-specific)
set of points, where the interface localized state enters/leaves
the topmost occupied band edge. The difference between the
numbers of x−

ϕ, j and x+
ϕ, j must be exactly equal to ν, which is

needed to ensure the periodicity Q(ν)
I (xϕ + L) = Q(ν)

I (xϕ ).
The behavior Q(3)

I (xϕ ) for the three occupied bands is il-
lustrated in Figs. 7(b) (for λ = 1) and 8(b) (for λ = −1), as
well as in the analogous panels in Appendix H for the values
λ = ±0.1, which additionally give an idea about the behavior
of Q(3)

I (xϕ ) close to λ = 0.

V. SUMMARY

In this work we have studied universal properties of the
boundary change QB(xϕ ) in one-dimensional single-channel
continuum insulator models. We have found a rigorous proof
of the linear dependence of QB on the phase xϕ of the peri-
odic potential modulation. In continuum models, this result
appears in an undisguised form. All nonuniversal 2π

Za -periodic
contributions previously found in the lattice model consid-
erations [25] are suppressed in the continuum limit Z → ∞
(where Z is a number of sites in a unit cell, and a is a lattice
spacing).

The total boundary charge consists of both band contribu-
tions and potentially edge states residing in the band gaps. We
have extended the earlier findings [21,25] for both the indi-
vidual band contributions QB,α and the total boundary charge
to the class of continuum models studied here. In particular,
in the first case the slope of the linear dependence is given by
the first Chern index C1,α of band α, which acquires the same
value C1,α = 1 for each band. This value is in tune with the
difference between the numbers M (∓)

α of the touching points,
at which the edge state dispersions (evolved in xϕ) leave and
enter the band. We have shown that over one pumping cycle
xϕ → xϕ + L (i.e., pushing the periodic potential towards the
boundary over one period), in continuum models, there are
exactly α edge states which leave the band α from its top side
and α − 1 edge states which enter the band from its bottom
side. At the corresponding touching points, QB,α acquires
discontinuous jump contributions ±1 in such a way that the
periodicity QB,α (xϕ + L) = QB,α (xϕ ) is maintained. Thus the
equality C1,α = M (−)

α − M (+)
α is not only a manifestation of

the bulk-boundary correspondence but also an expression for
charge conservation.

An analogous result has been obtained for the total bound-
ary charge Q(ν)

B in a system with ν fully occupied bands.
The slope ν (with respect to xϕ

L ) of the linear dependence
is compensated by the occurrence of exactly ν edges states
removing a single-electron charge during one pumping cycle.
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Studying the boundary charge fluctuations, we have confirmed
the earlier stated surface fluctuation theorem [26,27], which
expresses the universal low-energy 1/Eg scaling of these fluc-
tuations with the gap size Eg.

The other interesting facet of the excess charges studied in
the present work is the interface charge QI and its universal
properties. Bringing two semi-infinite systems with differ-
ent phases xϕ �= xϕ′ of the periodic potential modulation into
contact and introducing an additional delta-potential barrier
between them, we have revealed similar universal dependen-
cies of QI on xϕ at fixed xϕ′ , i.e., a slope 1 for the single-band
contribution and a slope ν for the total interface charge (in
a system with ν occupied bands). To restore the periodicity
QI (xϕ ) = QI (xϕ + L), the linear growth is accompanied by
discontinuous jumps ±1 at the points where the interface
localized state enters/leaves the band. Thereby the required
charge conservation is respected. However, in interface mod-
els there is no analog of the bulk-boundary correspondence,
since the spectral flow of the interface localized states is in
accord with changes in winding numbers of a novel function
called d̃kα and not with those of the phases of the Bloch states.
The function d̃kα which we introduced not only represents
a specific combination of the Bloch states in the bulk of
both right and left subsystems but also contains information
about their interface. It connects to the denominator of the
scattering matrix and thus inherits the analytic features of the
reflection coefficient. We have elucidated the tremendous role
of the function d̃kα in describing the universal properties of
the interface charge, in particular, the contribution from its
winding number to QI and the equation d̃kα = 0 to determine
interface localized states. The integer-valued changes of QI

analyzed in our study, which are associated with the wind-
ing number changes and an emergence/cease of localized
states, serve as a manifestation of the nearsightedness princi-
ple [29]. A perspective extension of the present work consists
in studying a multichannel generalization of the continuum
one-dimensional insulator models and revealing similar de-
pendencies for both boundary and interface charges [40].
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APPENDIX A: PROPERTIES OF THE HILL EQUATION

To prove the validity of (18), we notice that both the left-
and right-hand sides of this relation satisfy (1) and have the
same initial conditions at x = L:

ψ1(L) ψ2(L) − ψ1(L) ψ2(L) = 0 = −ψ2(0), (A1)

ψ ′
1(L) ψ2(L) − ψ1(L) ψ ′

2(L) = −1 = −ψ ′
2(0). (A2)

Here the second identity holds on the basis of (4). Since for
given initial conditions a solution of a differential equations
is unique, the functions on both sides of (18) appear to be
identical.

Analogously we prove the relations

ψ1(x − L) = ψ2(x) ψ ′
1(−L) + ψ1(x) ψ1(−L), (A3)

ψ1(x + L) = ψ2(x) ψ ′
1(L) + ψ1(x) ψ1(L), (A4)

ψ2(x + L) = ψ2(x) ψ ′
2(L) + ψ1(x) ψ2(L), (A5)

and remark that together with (18) they imply the following
consequences:

ψ2(−L) = −ψ2(L), (A6)

ψ ′
2(−L) = ψ1(L), (A7)

ψ1(−L) = ψ ′
2(L), (A8)

ψ ′
1(−L) = −ψ ′

1(L). (A9)

To prove (54), we consider the following equations:

− 1

2m

∂ψ ′′
2 (x)

∂E
+ [V (x) − E ]

∂ψ2(x)

∂E
= ψ2(x), (A10)

− 1

2m

∂ψ ′′
2 (x − L)

∂E
+ [V (x) − E ]

∂ψ2(x − L)

∂E
= ψ2(x − L).

(A11)

Multiplying the first equation with ∂ψ2(x−L)
∂E , the second equa-

tion with ∂ψ2(x)
∂E , and subtracting the obtained results from each

other, we find

−2m F (x) = ∂ψ2(x − L)

∂E

∂ψ ′′
2 (x)

∂E
− ∂ψ2(x)

∂E

∂ψ ′′
2 (x − L)

∂E
.

(A12)

Integrating both sides over x from 0 to L and applying the
integration by parts, we obtain

−2m
∫ L

0
dx F (x) =

[
∂ψ2(x − L)

∂E

∂ψ ′
2(x)

∂E

− ∂ψ2(x)

∂E

∂ψ ′
2(x − L)

∂E

]L

0

. (A13)

But the right-hand side equals zero, since

∂ψ2(0)

∂E
= ∂ψ ′

2(0)

∂E
= 0 (A14)

(we recall that ψ2(0) = 0 and ψ ′
2(0) = 1 are constants). This

proves the identity (54).
Below we list further properties of the Hill’s equation.

Multiplying (A10) with ψ2(x − L) and integrating over x from
0 to L (also using the integration by parts), we obtain

1

2m
ψ ′

2(x − L)
∂ψ2(x)

∂E

∣∣∣∣
L

0

− 1

2m
ψ2(x − L)

∂ψ ′
2(x)

∂E

∣∣∣∣
L

0

=
∫ L

0
dx ψ2(x − L) ψ2(x). (A15)

It follows that

1

2m

∂ψ2(L)

∂E
=

∫ L

0
dx ψ2(x − L) ψ2(x). (A16)
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In an analogous manner we derive

1

2m

[
ψ ′

2(x)
∂ψ2(x)

∂E
− ψ2(x)

∂ψ ′
2(x)

∂E

]L

0

=
∫ L

0
dx ψ2

2 (x)

(A17)

and

1

2m

[
ψ ′

2(x − L)
∂ψ2(x − L)

∂E
− ψ2(x − L)

∂ψ ′
2(x − L)

∂E

]L

0

=
∫ L

0
dx ψ2

2 (x − L), (A18)

giving

1

2m

[
ψ ′

2(L)
∂ψ2(L)

∂E
− ψ2(L)

∂ψ ′
2(L)

∂E

]
=

∫ L

0
dx ψ2

2 (x)

(A19)

and

1

2m

[
ψ1(L)

∂ψ2(L)

∂E
− ψ2(L)

∂ψ1(L)

∂E

]
=

∫ L

0
dx ψ2

2 (x − L),

(A20)

respectively.
Summing up (A19) and (A20), we obtain

1

m

[
D(E )

∂ψ2(L)

∂E
− ψ2(L)

∂D(E )

∂E

]

=
∫ L

0
dx ψ2

2 (x) +
∫ L

0
dx ψ2

2 (x − L). (A21)

On the basis of (A16) and (A21) we state the Schwarz
inequality:

D(E )
∂ψ2(L)

∂E
− ψ2(L)

∂D(E )

∂E
�

∣∣∣∣∂ψ2(L)

∂E

∣∣∣∣. (A22)

Note that from this inequality it follows that strictly inside a
band, i.e., for −1 < D(E ) < 1, the function D(E ) may not
have extrema, that is ∂D(E )

∂E �= 0, since otherwise we get the
contradiction∣∣∣∣∂ψ2(L)

∂E

∣∣∣∣ > D(E )
∂ψ2(L)

∂E
�

∣∣∣∣∂ψ2(L)

∂E

∣∣∣∣. (A23)

Similar relations can be derived for the function ψ1:

− 1

2m

∂ψ ′
1(L)

∂E
=

∫ L

0
dx ψ1(x − L) ψ1(x), (A24)

1

2m

[
ψ ′

1(L)
∂ψ1(L)

∂E
− ψ1(L)

∂ψ ′
1(L)

∂E

]
=

∫ L

0
dx ψ2

1 (x),

(A25)

1

2m

[
ψ ′

1(L)
∂ψ ′

2(L)

∂E
− ψ ′

2(L)
∂ψ ′

1(L)

∂E

]
=

∫ L

0
dx ψ2

1 (x − L).

(A26)

Summing up (A25) and (A26) we obtain

1

m

[
ψ ′

1(L)
∂D(E )

∂E
− D(E )

∂ψ ′
1(L)

∂E

]

=
∫ L

0
dx ψ2

1 (x) +
∫ L

0
dx ψ2

1 (x − L). (A27)

Analogously to (A22), we state the other Schwarz inequal-
ity:

ψ ′
1(L)

∂D(E )

∂E
− D(E )

∂ψ ′
1(L)

∂E
�

∣∣∣∣∂ψ ′
1(L)

∂E

∣∣∣∣. (A28)

APPENDIX B: SOME PROPERTIES OF
THE BLOCH STATES

Differentiating (1) for ψkα (x) with respect to k, then multi-
plying it with ψ∗

kα (x), and integrating over x from 0 to L (also
using the integration by parts), we get

2m
dεkα

dk
= −ψ∗

kα (L)
dψ ′

kα (L)

dk
+ ψ∗

kα (0)
dψ ′

kα (0)

dk

+ ψ ′ ∗
kα (L)

dψkα (L)

dk
− ψ ′ ∗

kα (0)
dψkα (0)

dk

= 2L Im [ψ∗
kα (0) ψ ′

kα (0)], (B1)

where the last equality follows from (6) and (7).
Expressing from (19)

ψkα (0) = ψ2(L)√
Nkα

, (B2)

ψ ′
kα (0) = 1√

Nkα

[eikL − ψ1(L)], (B3)

we establish

dεkα

dk
= L

m

ψ2(L)

Nkα

sin kL. (B4)

Differentiating (12) with respect to k,

−L sin kL = ∂D(E )

∂E

dεkα

dk
, (B5)

we also get an alternative form of (B4):

Nkα = −ψ2(L)

m

∂D(E )

∂E
= −ψ2(L)

2m

(
∂ψ1(L)

∂E
+ ∂ψ ′

2(L)

∂E

)
.

(B6)

Comparing it with (13), we conclude that within the band α

the following sign,

sgn [ψ2(L, εkα )] = −(−1)α, (B7)

is constant and solely determined by the band index α.

APPENDIX C: EVALUATION OF THE CHERN INDEX

To evaluate (69), we represent∫ L

0
dx Im

dψ
(ϕ) ∗
kα

(x)

dk

dψ
(ϕ)
kα

(x)

dxϕ

=
∫ L

0
dx Im

dψ∗
kα (x + xϕ )

dk
ψ ′

kα (x + xϕ ) (C1)

−d�kα (xϕ )

dxϕ

1

2

d

dk

∫ L

0
dx |ψkα (x + xϕ )|2 (C2)

+d�kα (xϕ )

dk

1

2

∫ L

0
dx

d

dx
|ψkα (x + xϕ )|2, (C3)
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where we used (59) and the periodicity of |ψkα (x)|2 =
|ukα (x)|2 in x. Apparently, the contributions (C2) and (C3)
identically vanish.

Transforming the contribution (C1)∫ L

0
dx Im

dψ∗
kα (x + xϕ )

dk
ψ ′

kα (x + xϕ )

= d

dk

∫ L

0
dx Im ψ∗

kα (x + xϕ ) ψ ′
kα (x + xϕ )

−
∫ L

0
dx Im ψ∗

kα (x + xϕ )
dψ ′

kα (x + xϕ )

dk
(C4)

= d

dk

∫ L

0
dx Im ψ∗

kα (x + xϕ ) ψ ′
kα (x + xϕ )

−
[

Im ψ∗
kα (x + xϕ )

dψkα (x + xϕ )

dk

]L

0

+
∫ L

0
dx Im ψ ′ ∗

kα (x + xϕ )
dψkα (x + xϕ )

dk
, (C5)

we establish∫ L

0
dx Im

dψ∗
kα (x + xϕ )

dk
ψ ′

kα (x + xϕ )

= 1

2

d

dk

∫ L

0
dx Im ψ∗

kα (x + xϕ ) ψ ′
kα (x + xϕ ) (C6)

− L

2
|ukα (xϕ )|2. (C7)

Since ψkα (x) is periodic in k, the term (C6) drops out under
the k integration, and we get

C1,α =L
∫ L

0
dxϕ

∫ π/L

−π/L

dk

2π
|ukα (xϕ )|2 = 1. (C8)

APPENDIX D: ONE EDGE STATE PER GAP

Consider odd gap α, that is, E ∈ [ε π
L ,α, ε π

L ,α+1], character-
ized by D(E ) � −1. According to (B7), the function ψ2(L, E )
must change its sign across this gap from a positive to negative
value, and this guarantees the existence of at least one edge
state per gap.

Let us show that it is impossible to have more than one
edge state per gap. Suppose that we have multiple roots of
ψ2(L, E ) on the indicated above interval, see Fig. 11. Because
of the sign-changing property, their number must be odd,
degenerate roots [that is, with ψ2(L, E ) = ∂

∂E ψ2(L, E ) = 0]
being excluded on the basis of (A21). This entails that at
every even root we should have ∂

∂E ψ2(L, E ) > 0. But this
contradicts to (A21), since its left-hand side appears to be
negative at even roots. Therefore even roots are impossible,
and thus we have only a single edge state per gap.

Analogously, we prove the same property for even gaps.

APPENDIX E: ZEROS OF (ANTI)PERIODIC
SOLUTIONS OF (1)

Consider a family of Hamiltonians

Hξ = − 1

2m

d2

dx2
+ ζ V (x), V (x) = V (x + L), (E1)

FIG. 11. Illustration of the impossibility to have multiple roots
of ψ2(L, E ) within gaps. Assume an odd gap index α (D(E ) �
−1) which hosts an odd number of roots of ψ2(L, E ). If the latter
number is greater than 1, there must necessarily be one root that
satisfies both ψ2(L, E ) = 0 and ∂

∂E ψ2(L, E ) > 0. Since this implies
sgn[D(E ) ∂

∂E ψ2(L, E )] < 0, we obtain a contradiction to (A21). A
similar argumentation holds for even gap index α.

where ζ is continuously varied on the interval (0,1]. Equip-
ping the eigenvalue problem (E1) with the periodic boundary
conditions, we obtain periodic eigenfunctions ψ

(p)
l;ζ (x) =

ψ
(p)
l;ζ (x + L) labeled by l = 0, 1, 2, . . ., which are continuous

in ζ . The corresponding eigenenergies are denoted by ε
(p)
l;ζ .

In addition, we consider the antiperiodic boundary conditions
leading to the solutions ψ

(a)
l;ζ (x) = −ψ

(a)
l;ζ (x + L) of (E1) with

eigenenergies ε
(a)
l;ζ , labeled by l = 1, 2, . . ..

The energies ε
(p)
l;ζ and ε

(a)
l;ζ are identified with the band edges

of the eigenvalue problem (1):

εk=0,α;ζ = ε
(p)
α−1;ζ , (E2)

εk= π
L ,α;ζ = ε

(a)
α;ξ , (E3)

where the band index α � 1. Analogously, we identify the
corresponding eigenfunctions:

ψk=0,α;ζ (x) = ψ
(p)
α−1;ζ (x), (E4)

ψk= π
L ,α;ζ (x) = ψ

(a)
α;ζ (x). (E5)

The main observation is that a number of zeros of either
ψ

(p)
l;ζ (x) or ψ

(a)
l;ζ (x) on the interval x ∈ [0, L) does not depend

on the value of ζ . Indeed, to change a number of zeros of
a continuous eigenfunction we would need to make its two
nearby roots coalesce at some value ζ ∗ and point x∗. Thereby
we get a second-order root with ψ

(p,a)
l;ζ ∗ (x∗) = ψ

(p,a) ′
l;ζ ∗ (x∗) = 0.

But this implies that ψ
(p,a)
l;ζ ∗ (x) ≡ 0. This is impossible, since

there must be a nontrivial solution corresponding to the energy
ε

(p,a)
l;ζ ∗ .

Let us find numbers of zeros of the periodic functions
ψ

(p)
α;ζ (x) and ψ

(a)
α;ζ (x) for infinitesimal ζ � 1. In this limit, the

eigenstates ψ
(p)
α−1;ζ (x) and ψ

(p)
α;ζ (x) with even α become nearly

degenerate with the energy ε (0)
α = α2π2

2mL2 . Using 1√
L

e±i πα
L x as a

basis in this two-dimensional degenerate subspace, we find
in the first-order degenerate perturbation theory ε

(p)
α = ε (0)

α +
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ζ |Ṽα| and ε
(p)
α−1 = ε (0)

α − ζ |Ṽα| with the corresponding eigen-
states:

ψ
(p)
α;ζ�1(x) ≈

√
2

L
cos

(
πα

L
x + ϕα

2

)
, (E6)

ψ
(p)
α−1;ζ�1(x) ≈

√
2

L
sin

(
πα

L
x + ϕα

2

)
, (E7)

where Ṽα = |Ṽα|eiϕα = 1
L

∫ L
0 dx V (x) e−i 2πα

L x is the αth Fourier
component of the periodic potential. Both functions (E6) and
(E7) have α zeros on the interval x ∈ [0, L). An exception in
this consideration is α = 0: the eigenfunction ψ

(p)
α=0;ζ�1(x) ≈

1√
L

remains nondegenerate. It has no zeros.

Analogously, we consider ψ
(a)
α+1;ζ (x) and ψ

(a)
α;ζ (x) with odd

α, and find them to be of the form (E6) and (E7), respectively.
This implies that they also have α zeros on the interval x ∈
[0, L).

Thus, by virtue of (E4) and (E5), the functions ψk=0,α+1(x)
and ψk=0,α (x) with even α have α zeros, as well as the func-
tions ψk= π

L ,α+1(x) and ψk= π
L ,α (x) with odd α, have α zeros.

These properties ensure the relation (117).

APPENDIX F: UNIVERSAL SCALING OF THE
BOUNDARY CHARGE FLUCTUATIONS

The geometric tensor appearing in (120) is defined by

(Qk )αβ =
〈

dukα

dk

∣∣∣∣dukβ

dk

〉
δαβ −

∣∣∣∣
〈
ukα

∣∣∣∣dukβ

dk

〉∣∣∣∣
2

. (F1)

Here we employ the shorthand notation 〈F |G〉 =∫ L
0 dx F ∗(x)G(x). Using the completeness relation∑

β |ukβ〉〈ukβ | = 1̂, we alternatively express

ν∑
α,β=1

(Qk )αβ =
ν∑

α=1

∞∑
β=ν+1

∣∣∣∣
〈
ukα

∣∣∣∣dukβ

dk

〉∣∣∣∣
2

. (F2)

In the obtained double sum the index α runs through the
valence bands, while the index β runs through the conduction
bands.

For α �= β we establish

−i 〈ψkα

∣∣∣∣dψkβ

dk

〉
= −i 〈ukα

∣∣∣∣dukβ

dk

〉
+ 〈ukα| x |ukβ〉 (F3)

= L

2m(εkα − εkβ )

[
ψ∗

kα (0) ψ ′
kβ (0)

−ψ∗ ′
kα (0) ψkβ (0)

]
(F4)

= 1

2m(εkα − εkβ )

∫ L

0
dx [ψ∗

kα (x) ψ ′
kβ (x)

−ψ∗ ′
kα (x) ψkβ (x)] + 〈ukα| x |ukβ〉. (F5)

To obtain (F4) from (F3), we consider the equation

− 1

2m

dψ ′′
kβ (x)

dk
+ [V (x) − εkβ]

dψkβ (x)

dk
= dεkβ

dk
ψkβ (x)

(F6)

and project it onto the state 〈ψkα| with α �= β, such that
〈ψkα|ψkβ〉 = 0. It follows that

1

2m

∫ L

0
dx

[
ψ∗

kα (x)
dψ ′′

kβ (x)

dk
− ψ∗ ′′

kα (x)
dψkβ (x)

dk

]
(F7)

= (εkα − εkβ ) 〈ψkα

∣∣∣∣dψkβ

dk

〉
. (F8)

Integrating (F7) by parts, we obtain (F4).
To derive (F5) from (F4), we multiply the Schrödinger

equation for |ψkβ〉 with x and then project the result onto the
state 〈ψkα|. This gives

1

2m

∫ L

0
dx

[
x ψ∗

kα (x) ψ ′′
kβ (x) − x ψ∗ ′′

kα (x)ψkβ (x)
]

(F9)

= (εkα − εkβ ) 〈ψkα| x |ψkβ〉. (F10)

Integrating (F9) by parts and using 〈ψkα|x|ψkβ〉 = 〈ukα|x|ukβ〉
as well as ψkα (L) = eikLψkα (0), ψ ′

kα (L) = eikLψ ′
kα (0), we ob-

tain (F5).
To further simplify (F5) we notice that∫ L

0
dx [ψ∗

kα (x) ψ ′
kβ (x) − ψ∗ ′

kα (x) ψkβ (x)]

= 2

εkα − εkβ

∫ L

0
dx V (x)

d

dx
[ψ∗

kα (x) ψkβ (x)]. (F11)

Thus we get

− i

〈
ukα

∣∣∣∣dukβ

dk

〉

= 1

m(εkα − εkβ )2

∫ L

0
dx V (x)

d

dx

[
ψ∗

kα (x) ψkβ (x)
]
.

(F12)

The validity of (F11) follows from the two equations

− 1

2m

∫ L

0
dx ψ∗ ′

kα (x) ψ ′′
kβ (x) +

∫ L

0
dx ψ∗ ′

kα (x) [V (x)

− εkβ] ψkβ (x) = 0, (F13)

− 1

2m

∫ L

0
dx ψ∗ ′′

kα (x) ψ ′
kβ (x)

+
∫ L

0
dx ψ∗

kα (x) [V (x) − εkα] ψ ′
kβ (x) = 0. (F14)

Adding them up, we establish∫ L

0
dx V (x)

d

dx
[ψ∗

kα (x) ψkβ (x)]

= εkα

∫ L

0
dx ψ∗

kα (x) ψ ′
kβ (x) + εkβ

∫ L

0
dx ψ∗ ′

kα (x) ψkβ (x)

= εkα − εkβ

2

∫ L

0
dx [ψ∗

kα (x) ψ ′
kβ (x) − ψ∗ ′

kα (x) ψkβ (x)]

+ εkα + εkβ

2

∫ L

0
dx

d

dx
[ψ∗

kα (x) ψkβ (x)]. (F15)

Due to the periodicity of [ψ∗
kα (x) ψkβ (x)], the last term van-

ishes and we obtain (F11).
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In the narrow-gap limit we find the low-energy approx-
imation for (120) (cf. [27] and Appendix E). The leading
contribution is received from the valence band εkν ≈ ε (0)

ν −√
(vF,νk)2 + |Ṽν |2 and the conduction band εk,ν+1 ≈ ε (0)

ν +√
(vF,νk)2 + |Ṽν |2, which are adjacent to the chemical poten-

tial μν = ε (0)
ν = ν2π2

2mL2 (assuming even ν and performing the
expansion near k = 0; for odd ν one first has to shift k →
k − π/L). Here vF,ν =

√
2mμν

m = νπ
mL is the Fermi velocity, and

the νth Fourier component Ṽν = 1
L

∫ L
0 dx V (x) e−i 2πν

L x of the
potential V (x) determines the νth gap’s size Eg,ν = 2|Ṽν |. To
approximate (F12) we use (E4), (E5) as well as (E6), (E7),
and obtain∫ L

0
dx V (x)

d

dx
[ψ∗

kα (x) ψkβ (x)]

≈
∫ L

0
dx V (x)

d

dx

1

L
sin

(
2πν

L
x + ϕν

)
(F16)

= 2πν

L
|Ṽν | = 2mvF,ν |Ṽν |. (F17)

Combining all approximations made together, we establish

X2
(
�Q(ν)

B

)2 ≈ 1

2π

∫ ∞

−∞
dk

∣∣∣∣
〈
ukν

∣∣∣∣duk,ν+1

dk

〉∣∣∣∣
2

≈ 1

8π

∫ ∞

−∞
dk

v2
F,ν |Ṽν |2

[(vF,νk)2 + |Ṽν |2]2
= vF,ν

16|Ṽν |
,

(F18)

which is equivalent to (122).

APPENDIX G: UNITARITY OF THE SCATTERING
MATRIX (141)

To check the unitarity of (141), we first observe that by
virtue of the identity

ψ
(ϕ)
2 (L)

N (ϕ)
kα

= ψ
(ϕ′ )
2 (L)

N (ϕ′ )
kα

= − m
∂D(E )

∂E

, (G1)

following from (B6), it holds that

tkα = t ′
kα = − m

∂D(E )
∂E

2i sin kL

dkα

√
N (ϕ)

kα
N (ϕ′ )

kα
. (G2)

Next we establish that

|rkα|2 = 1 − 4 sin kL ψ
(ϕ)
2 (L)

|dkα|2 Im dkα

+ 4 sin2 kL
[
ψ

(ϕ)
2 (L)

]2

|dkα|2 , (G3)

|r′
kα|2 = 1 − 4 sin kL ψ

(ϕ′ )
2 (L)

|dkα|2 Im dkα

+ 4 sin2 kL [ψ (ϕ′ )
2 (L)]2

|dkα|2 . (G4)

Since

Im dkα = [
ψ

(ϕ)
2 (L) + ψ

(ϕ′ )
2 (L)

]
sin kL, (G5)

we get

|rkα|2 = |r′
kα|2 = 1 − 4 sin2 kL ψ

(ϕ)
2 (L) ψ

(ϕ′ )
2 (L)

|dkα|2 . (G6)

To demonstrate the validity of (142) and (143), it suffices to
notice that

[
m

∂D(E )
∂E

]2

N (ϕ)
kα

N (ϕ′ )
kα

= ψ
(ϕ)
2 (L) ψ

(ϕ′ )
2 (L), (G7)

which holds true by virtue of (G1). The relation (144) requires

1

d∗
kα

[
1 − 2i sin kL ψ

(ϕ′ )
2 (L)

dkα

]

− 1

dkα

[
1 + 2i sin kL ψ

(ϕ)
2 (L)

d∗
kα

]
= 0, (G8)

which indeed follows from (G5). Thus the unitarity of (141)
is verified.

APPENDIX H: ADDITIONAL ILLUSTRATIONS

This section contains additional figures, Figs. 12 and 13,
to highlight the previously discussed properties of the energy
spectrum of the interface eigenvalue problem. The chosen
parameters λ = ±0.1 serve to illustrate the limit of the ab-
sent impurity potential λ → 0±, which is most nontrivially
achieved close to the translationally invariant point xϕ =
xϕ′ = 0.

APPENDIX I: DERIVATION OF (163)

Let us consider

d

dk
dkα = dψ

(ϕ)
2 (L)

dk

[
ψ

(ϕ′ )
1 (L) − e−ikL

] − [
ψ

(ϕ)
1 (L) − eikL + 2mλ ψ

(ϕ)
2 (L)

] dψ
(ϕ′ )
2 (L)

dk
+ ψ

(ϕ)
2 (L)

dψ
(ϕ′ )
1 (L)

dk

−
[

dψ
(ϕ)
1 (L)

dk
+ 2mλ

dψ
(ϕ)
2 (L)

dk

]
ψ

(ϕ′ )
2 (L) + iL

{
ψ

(ϕ)
2 (L) e−ikL + ψ

(ϕ′ )
2 (L) eikL

}
(I1)
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FIG. 12. Same as in Fig. 7 (besides a separate first gap closeup) for λ = 0.1.

and compare it with

Pkα = L
∫ L

0
dx ψ

(ϕ′ )
2 (L) ψ

(ϕ) 2
kα

(x) e−ikL + L
∫ L

0
dx ψ

(ϕ)
2 (L) ψ

(ϕ′ ) 2
−k,α

(x) eikL, (I2)

FIG. 13. Same as in Fig. 7 (besides a separate first gap closeup) for λ = −0.1.
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which appears in (162), that is,

Q̄I,α = −Re
∫ π/L

−π/L

dk

2π

Pkα

dkα

. (I3)

With the help of (A16), (A19), and (B4) we evaluate∫ L

0
dx ψ

(ϕ) 2
kα

(x) = 1 +
∫ L

0
dx ψ

(ϕ)
kα

(x)
[
ψ

(ϕ)
kα

(x) − ψ
(ϕ)
−k,α

(x)
]

= 1 − i

L

d ln ψ
(ϕ)
2 (L)

dk
+ i

L

[
ψ

(ϕ) ′
2 (L)

d ln ψ
(ϕ)
2 (L)

dk
− dψ

(ϕ) ′
2 (L)

dk

]
eikL. (I4)

Thus

Pkα = L
{
ψ

(ϕ)
2 (L) eikL + ψ

(ϕ′ )
2 (L) e−ikL

} − i e−ikL ψ
(ϕ′ )
2 (L)

d ln ψ
(ϕ)
2 (L)

dk
+ i ψ (ϕ′ )

2 (L)

[
ψ

(ϕ) ′
2 (L)

d ln ψ
(ϕ)
2 (L)

dk
− dψ

(ϕ) ′
2 (L)

dk

]

+i ψ (ϕ)
2 (L)

d ln ψ
(ϕ′ )
2 (L)

dk
eikL − i ψ (ϕ)

2 (L)

[
ψ

(ϕ′ ) ′
2 (L)

d ln ψ
(ϕ′ )
2 (L)

dk
− dψ

(ϕ′ ) ′
2 (L)

dk

]

= L
{
ψ

(ϕ)
2 (L) e−ikL + ψ

(ϕ′ )
2 (L) eikL

} − i e−ikL ψ
(ϕ′ )
2 (L)

d ln ψ
(ϕ)
2 (L)

dk
+ i ψ (ϕ′ )

2 (L)

[
ψ

(ϕ) ′
2 (L)

d ln ψ
(ϕ)
2 (L)

dk
+ dψ

(ϕ)
1 (L)

dk

]

+ i ψ (ϕ)
2 (L)

d ln ψ
(ϕ′ )
2 (L)

dk
eikL − i ψ (ϕ)

2 (L)

[
ψ

(ϕ′ ) ′
2 (L)

d ln ψ
(ϕ′ )
2 (L)

dk
+ dψ

(ϕ′ )
1 (L)

dk

]
. (I5)

Replacing in (I1) [ψ (ϕ′ )
1 (L) − e−ikL] by

dkα + [ψ (ϕ)
1 (L) − eikL + 2mλ ψ

(ϕ)
2 (L)] ψ

(ϕ′ )
2 (L)

ψ
(ϕ)
2 (L)

(I6)

and [ψ (ϕ)
1 (L) − eikL + 2mλ ψ

(ϕ)
2 (L)] by

[ψ (ϕ′ )
1 (L) − e−ikL] ψ

(ϕ)
2 (L) − dkα

ψ
(ϕ′ )
2 (L)

, (I7)

we evaluate
d

dk
dkα − i Pkα = dkα

d

dk
ln[ψ (ϕ)

2 (L) ψ
(ϕ′ )
2 (L)], (I8)

and

Im
∫ π/L

−π/L

dk

2π

1

dkα

d

dk
dkα − Re

∫ π/L

−π/L

dk

2π

Pkα

dkα

= 0. (I9)

Hence

Q̄I,α = −Im
∫ π/L

−π/L

dk

2π

1

dkα

d

dk
dkα, (I10)

which is equivalent to (163).
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