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In the Ion Cyclotron Range of Frequencies (ICRF), electromagnetic surface waves are
physically relevant for wave-filament interactions, parasitic edge losses, and sheath-
plasma waves. They are also important numerically, where nonphysical surface waves may
occur as side effects of slab-geometry approximations. We give new, completely general,
mathematical techniques to construct dispersion relations for electromagnetic surface
waves between any two media, isotropic or anisotropic, and first-order corrections for
when the material interface is steep but continuous. We discuss numerical issues (localized
non-convergence, undesired power generation) that arise in numerical calculations due
to the presence of surface waves.

1. Introduction
Electromagnetic surface waves are electromagnetic waves that propagate along an

interface (surface) between different media. Their defining feature is that they are
localized near the interface because they are evanescent in both directions normal to the
interface. They were initially studied in isotropic media, where Epstein (1954) concluded
they can only exist if the electric permittivity changes sign at the material interface.
Since this is common wherever an unmagnetized plasma is in contact with a dielectric
solid, surface waves have long been known to be relevant to plasma physics, see for
example Kaw & McBride (1970); Aliev et al. (1995, 2000); Lee & J Lee (2010); Girka
et al. (2016); Lee et al. (2019); Maquet & Messiaen (2020); Girka et al. (2020). If the
plasma in question is the electron plasma in a solid conductor, the surface waves are
“surface plasmons” (Ritchie & Marusak (1966); Gangaraj & Monticone (2019)).

Physically, in the context of electromagnetic waves in magnetized plasmas in the
Ion Cyclotron Range of Frequencies (ICRF), surface waves may cause parasitic heating
(Messiaen & Maquet (2020)), play a role in interactions between electromagnetic waves
and filaments in the edge plasma (Tierens et al. (2020b,a); Lau et al. (2020)), or occur as
“sheath-plasma waves” (Myra & D’Ippolito (2009); Myra et al. (1991)) on the “interface”
formed by the sudden and steep plasma density decrease in the plasma sheath.

In numerical ICRF calculations, nonphysical surface waves often arise when an artificial
discontinuity is introduced in the plasma density profile. A common reason to introduce
this density jump is the desire to avoid numerical issues associated with the numerical
resolution of the Lower Hybrid resonance, such as those described by Nicolopoulos
et al. (2019). In such calculations, much of edge plasma density gradient is replaced
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by a single density jump, on which numerical surface waves often occur. This is not
without exception: Brambilla & Bilato (2021) report that in TORIC, an ICRF code
which includes the full toroidal tokamak geometry, surface waves and related phenomena
such as waveguide modes, are rarely observed.

More generally, numerical surface waves may occur whenever a wave problem with
material parameters that rapidly change in one spatial direction, is approximated by
a wave problem in a “slab geometry” where rapidly changing material parameters are
replaced by piecewise constant material parameters (Messiaen & Weynants (2011)). We
will discuss how introducing such density jumps can have numerical side effects caused
by the presence of surface waves at the interface. For example, fields at the interface may
not converge, and Perfectly Matched Layers, a type of absorbing boundary layer, may
locally generate rather than absorb power.

In this paper we derive dispersion relations for surface waves in slab geometry in
isotropic and anisotropic media, i.e. we derive a functional relation between the wave
frequency and the wavevector tangent to the interface, via the dielectric tensors at
both sides of the interface. After a brief description of the kind of waves we look for
in section 2, we give two equivalent mathematical procedures for deriving the surface
wave dispersion relation in sections 3 and 4. We also derive low-order corrections to
these dispersion relations when the material interface is steep but not discontinuous, in
section 4.2. Examples and convenient approximate expressions for the dispersion relation
of surface waves on an interface between vacuum and magnetized plasma are in section
5. Sections 6 and 7 contain a discussion of undesirable numerical side effects of surface
waves. The conclusion is in section 8.

2. Surface waves on an interface between two media
In this work, we look for solutions of the one-dimensional electromagnetic wave equa-

tion. In Cartesian coordinates, we consider a planar material interface in the x = 0
plane, so x is the normal direction and y and z the tangential directions. In the case
of a magnetized plasma, we will take the external magnetic field direction along z. We
consider solutions with given tangential wavenumbers ky, kz in the y and z directions
and exp(−iωt) for the time dependence. The electric field e(x) exp(ikyy + ikzz) obeys
the wave equation

∇×∇× (e(x) exp(ikyy + ikzz))

exp(ikyy + ikzz)
− ω2

c2
ε(x)e(x) = 0 (2.1)

ε(x) may be either scalar or a 3× 3 matrix. We initially consider the discontinuous case,
with a “Left” material and a “Right” material:

ε(x) =

{
εL x < 0
εR x > 0

(2.2)

Later, we also consider steep continuous material parameter changes. Note that in the
absence of surface currents the boundary conditions of Maxwell’s equations demand that
ey, ez, (∇× e)y and (∇× e)z are continuous at x = 0.

In this context, we seek solutions of the wave equation that are “surface waves”, localized
near the surface x = 0, evanescent in both directions

lim
x→±∞

e(x) = 0 (2.3)

We will use a slightly stronger notion of evanescence: a wave is evanescent in the
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positive x direction if it is locally integrable on [0,∞[ and
∫∞
0
e(x)dx converges. A

wave is evanescent in the negative x direction if it is locally integrable on ] −∞, 0] and∫ 0

−∞ e(x)dx converges. These notions of evanescence are global, not local, properties of
e(x). According to (2.3), a surface wave exists in the absence of incident waves (otherwise,
the boundary condition at ±∞ would have a nonzero amplitude of an incident wave).
Since they do not receive energy, they cannot radiate energy; in this simplified description
the wave cannot become propagative (i.e. radiating) some distance away from the surface,
and a global notion of evanescence is required to guarantee this.

3. Spectral surface impedance matrices
Let us consider the four degrees of freedom ey, ez, (∇ × e)y, (∇ × e)z that must be

continuous across x = 0. Instead of ∇ × e, we may use b ≡ 1
iω∇ × e, and demand the

continuity of ey, ez, by, bz.
Brambilla (1995) defines a surface impedance matrix Z such that[

ey
ez

]
= Z

[
cbz
−cby

]
(S.I. units) (3.1)

The matrix Z is a convenient way to impose 2 conditions between the 4 possible waves
in the left or right material. This could be used to eliminate two of the modes, but other
constraints are possible. For the right material (x > 0), Z is fully defined once:
• The x-dependent variations of the dielectric tensor are prescribed.
• Boundary conditions are enforced at some place x > 0.

Here, as in Brambilla (1995), we take (3.1) to encode the condition that the solution is
causal, i.e. with incident waves only from x = −∞, and radiation boundary conditions at
x = +∞. (3.1) holds for both the Left and the Right material, with surface impedance
matrices ZL and ZR, respectively. The reflection at the interface between the two
materials is, according to eq. (14) in Brambilla (1995),

(ZL + ZR)

 amplitudes of
2 reflected modes

to x = −∞

 = (ZR − ZL)

 amplitudes of
2 incident modes
from x = −∞

 (3.2)

Equation (3.2) uses the following result: in the left material, the matrix ZL with right-
going waves only is the opposite of the matrix ZL with left-going waves only (radiation
BCs at minus infinity). For homogeneous cold magnetized plasmas, this relation only
holds if the confining magnetic field is parallel to the interface.

Surface waves exist only if (3.2) has nontrivial solutions in the absence of incident
waves, i.e. when det(ZL + ZR) = 0. Throughout this work, we use vertical lines for the
determinant, so |ZL + ZR| = 0.

The polarization of the surface wave at x = 0 is the nullspace (kernel) of ZL + ZR[
cbz
−cby

]
∈ ker (ZL + ZR) (3.3)

3.1. Example: surface waves on a discontinuous interface between isotropic media
For an isotropic dielectric with relative dielectric constant ε and radiative boundary

conditions at x→ +∞, the surface impedance matrix is

Z =
1

εnx

[
ε− n2y −nynz
−nynz ε− n2z

]
(3.4)
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where n = ck/ω. nx is real for propagating waves, and purely imaginary for evanescent
waves. The existence condition for surface waves, |ZL + ZR| = 0, becomes∣∣∣∣ 1

εLnx,L

[
εL − n2y −nynz
−nynz εL − n2z

]
+

1

εRnx,R

[
εR − n2y −nynz
−nynz εR − n2z

]∣∣∣∣ = 0 (3.5)

with nx,L = −i
√
n2y + n2z − εL and nx,R = i

√
n2y + n2z − εR. This yields the surface wave

dispersion relation

nx,LεL
(
n2y + n2z − εR

)
+ nx,RεR

(
n2y + n2z − εL

)
= 0 (3.6)

Solving for n2y + n2z gives

n2y + n2z =
εLεR
εL + εR

(3.7)

which we will revisit in section 4.1, after (4.15).

4. Laplace representation
Another way to derive the dispersion relation for surface waves is based on the Laplace

transform of the wave equation in the Right domain (assuming, for now, that εR is
spatially constant). Using E(s) for the Laplace-transformed electric field components,
and e(x) for the untransformed electric field components:

E(s) ≡
∫ ∞
0

e(x) exp(−sx)dx (4.1)

where we assume e(x) is locally integrable on [0,∞[, and we use the strong notion of
evanescence from section 2: e(x) is evanescent if

∫∞
0
e(x)dx converges, that is, if (4.1)

converges for all <(s) > 0, that is, if E(s) has no poles with <(s) > 0.
The Laplace transform of the wave equation (2.1) is[

k2y+k
2
z ikys ikzs

ikys k2z−s
2 −kykz

ikzs −kykz k2y−s
2

]
E(s) +

[
0 −iky −ikz 0 0
−iky s 0 1 0
−ikz 0 s 0 1

]
ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

− ω2

c2
εRE(s) = 0 (4.2)

where e′(x) is the first derivative ∂e
∂x . The condition of no contributions from non-

evanescent waves, is that the Laplace-transformed electric fields must have no poles in
the right half-plane (i.e. with positive real part). From (4.2) we easily see that poles can
only exist where

|M0(εR, s)| = 0 (4.3)

with

M0(εR, s) =

[
k2y+k

2
z ikys ikzs

ikys k2z−s
2 −kykz

ikzs −kykz k2y−s
2

]
− ω2

c2
εR (4.4)

which is precisely the dispersion relation of the waves in the εR material, up to substi-
tution s→ ikx. For brevity, let us also define

K (s) =

[
0 −iky −ikz 0 0
−iky s 0 1 0
−ikz 0 s 0 1

]
(4.5)

The reasoning that follows is generally valid for both isotropic and anisotropic media,
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but certain details are different, which will be discussed in section 4.3. For the moment,
in addition to the assumption that εR is spatially constant, let us also assume that the
material is isotropic, so (4.3) has two distinct double roots (as opposed to four distinct
single roots in the anisotropic case), one root with <(s) < 0 and one with <(s) > 0.
Let s = s0 be the root with <(s) > 0. At s = s0, the matrix M0(εR, s0) has rank 1, the
dimension of the column space is 1, all columns are linearly dependent. Thus, there is a
nonzero 2× 3 matrix Ns0 of rank two such that

Ns0M0(εR, s0) = 0 (4.6)

Equivalently, the rows of Ns0 span the nullspace of M0(εR, s0)
T .

Left-multiplying (4.2) at s = s0 by Ns0 then yields

Ns0K (s0)


ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

 = 0 (4.7)

The condition (4.7) is a necessary condition for there to be no contribution from the
non-evanescent mode.
ex(0) is not an independent degree of freedom: the x component of the 1D wave

equation (2.1) is an algebraic equation, not a differential equation, in ex, and can be
solved directly:

ex(0) =
ω2

c2 (ey(0)εR,12 + ez(0)εR,13)− i
(
kye
′
y(0) + kze

′
z(0)

)(
k2y + k2z

)
− ω2

c2 εR,11
(4.8)

(4.8) is valid in general, for any dielectric tensor including anisotropic ones, whose
components we write as εR,ij . Thus, we can construct a 5× 4 matrix T (εR) such that

ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

 = T (εR)

 ey(0)
ez(0)

−e′z(0)+ikzex(0)
e′y(0)−ikyex(0)


︸ ︷︷ ︸
continuous at x = 0

(4.9)

Then, (4.7) becomes

Ns0K (s0)T (εR)︸ ︷︷ ︸
2×4

 ey(0)
ez(0)

−e′z(0)+ikzex(0)
e′y(0)−ikyex(0)

 = 0 (4.10)

This 2 × 4 matrix enforces that there is no contribution of non-evanescent modes in
the Right material. We analogously construct such a 2 × 4 matrix in the Left material,
yielding a total of four linear homogeneous constraints in four unknowns. Setting the
determinant to zero then gives the surface wave dispersion relation.

4.1. Example: surface waves on a discontinuous interface between isotropic media

In this subsection we re-derive the result of section 3.1, this time using the Laplace
formalism, in order to illustrate the equivalence of these approaches. For scalar εR, (4.3)

gives us possible poles at s0 = ±
√
k2y + k2z − ω2

c2 εR. The one with positive real part is
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s0 =
√
k2y + k2z − ω2

c2 εR. Then [
−ikz 0 s0
−iky s0 0

]
︸ ︷︷ ︸

Ns0

M0(εR, s0) = 0 (4.11)

which gives us Ns0 according to (4.6). The matrix T (εR) obeying (4.9) is given by (4.34).
Finally, the two rows encoding the condition that there are no poles with positive real
part / no non-evanescent contributions in the Right material are

Ns0K (s0)T (εR) =
[
−kykz s20−k

2
z −s0 0

s20−k
2
y −kykz 0 s0

]
(4.12)

For the Left material we follow the same line reasoning once again. Instead of using a
nonstandard “Laplace transform” along the negative real axis, it is more convenient to
mirror the Left material, so that the mirrored Left material exists at x > 0 just like the
Right material. Then, we can follow the reasoning of section 4 without modifications.
When we get the 2 × 4 matrix analogous to (4.12), we merely need to “mirror” it back,
an operation under which the tangential magnetic field, being a pseudovector, changes
sign, accordingly [

−kykz s20,L−k
2
z −s0,L 0

s20,L−k
2
y −kykz 0 s0,L

] [ 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
(4.13)

Putting the rows from the Left and Right material together yields the surface wave
dispersion relation ∣∣∣∣∣∣∣

−kykz s20,R−k
2
z −s0,R 0

s20,R−k
2
y −kykz 0 s0,R

−kykz s20,L−k
2
z s0,L 0

s20,L−k
2
y −kykz 0 −s0,L

∣∣∣∣∣∣∣ = 0 (4.14)

which becomes

k2y + k2z = s0,Ls0,R (4.15)

To see that (4.15) is equivalent to (3.7), first note s0,R = −ikx,R and s0,L = ikx,L
(s0,L and s0,R both have positive real part, kx,L resp. kx,R are wavenumbers for waves
evanescent towards negative resp. positive x, hence the different sign).With kx,L =

−i
√
k2y + k2z − εLω2

c2 , kx,R = i
√
k2y + k2z − εRω2

c2 ,

ω2εLεR
c2(εL + εR)

= k2y + k2z (4.16)

which is indeed (3.7). Continuing,

ω2εR
c2
−
(
k2y + k2z

)(εR
εL

+ 1

)
= 0 (4.17)

−
k2y + k2z

k2y + k2z − ω2εR
c2

=
εL
εR

(4.18)

Recall that the denominator k2y + k2z − εRω
2

c2 is positive, so (4.18) tells us that εL
εR

must
be negative, i.e. that εL and εR must have opposite sign. This is a classical result in the
study of electromagnetic surface waves in isotropic media, going back to Epstein (1954).
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4.2. Generalisation to steep continuous material interfaces
Let us now consider εR = εR,1 + εR,2 exp(−αx), with α > 0, and ε2,11

ε1,11
> −1, such

that ε11(x) = ε1,11+ε2,11 exp(−αx) has no roots with x > 0. The steepness parameter α
has units of 1/m. Large α correspond to a steep gradient, and we expect to retrieve the
discontinuous case in the α→∞ limit. In plasma, this will allow us to consider surface
waves on smooth density gradients such as (5.18), provided they do not cross the Lower
Hybrid resonance.

The Laplace-transformed wave equation now becomes

M0(εR,1, s)E(s) + K (s)


ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

− ω2

c2
εR,2E(s+ α) = 0 (4.19)

Again, we wish to ensure that the Laplace representations of the fields in the Right
domain have no poles with positive real part, which would correspond to contributions
of non-evanescent modes. We can always consider the pole with largest real part first, so
we consider the possibility that some component of E(s) diverges at some s = s0, but
E(s0 + α) remains finite. Clearly this can only occur where

|M0(εR,1, s0)| = 0 (4.20)

which is the asymptotic (large x) dispersion relation, up to substitution s→ ikx. Again
assuming an isotropic medium (for the anisotropic case see section 4.3), (4.20) has two
double roots, and we pick the root s = s0 with positive real part. We can again find a
nonzero 2× 3 matrix Ns0 of rank 2 such that

Ns0M0(εR,1, s0) = 0 (4.21)

Left-multiplying (4.19) at s = s0 by Ns0 then yields

Ns0K (s0)


ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

− Ns0
ω2

c2
εR,2

[
Ex(s0+α)
Ey(s0+α)
Ez(s0+α)

]
= 0 (4.22)

At this point, we must assume α is large (the interface is steep), so we can insert
asymptotic expressions for E(s0 + α). In Appendix A we show

Ex(s0 + α) =
ex(0)− φ

(
1−

(
1 +

ε1,11
ε2,11

)
log
(
1 +

ε2,11
ε1,11

))
s0 + α

+O

(
1

α2

)
(4.23)

Ey(s0 + α) =
ey(0)

s0 + α
+O

(
1

α2

)
(4.24)

Ez(s0 + α) =
ez(0)

s0 + α
+O

(
1

α2

)
(4.25)

where the condition ε2,11
ε1,11

> −1 is necessary for the convergence of (4.23), and

φ =
[
1

ε2,12
ε2,11

ε2,13
ε2,11

]
e(0) (4.26)

For brevity, let us write

Ψ =

(
1 +

ε1,11
ε2,11

)
log

(
1 +

ε2,11
ε1,11

)
(4.27)



8 W. Tierens, L. Colas

then

Ex(s0 + α) =
ex(0)− φ (1− Ψ)

s0 + α
+O

(
1

α2

)
(4.28)

=

[
Ψ

ε2,12
ε2,11

(Ψ − 1)
ε2,13
ε2,11

(Ψ − 1)
]

s0 + α
e(0) +O

(
1

α2

)
For further brevity, define[

κ1 κ2 κ3
]
=
[
Ψ

ε2,12
ε2,11

(Ψ − 1)
ε2,13
ε2,11

(Ψ − 1)
]

(4.29)

then

Ex(s0 + α) =

[
κ1 κ2 κ3

]
s0 + α

e(0) +O

(
1

α2

)
(4.30)

Finally, inserting (4.30), (4.24) and (4.25) in (4.22) gives

Ns0

(
K (s0)−

ω2εR,2
c2(s0 + α)

[
κ1 κ2 κ3 0 0
0 1 0 0 0
0 0 1 0 0

])
ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

 = 0 (4.31)

Comparing (4.31) with (4.7), we see that a correction term, accounting for finite interface
steepness, has appeared. Recalling (4.9) we finally get

Ns0

(
K (s0)−

ω2εR,2
c2(s0 + α)

[
κ1 κ2 κ3 0 0
0 1 0 0 0
0 0 1 0 0

])
T (εR,1 + εR,2) = 0 (4.32)

(4.32) is a 2 × 4 matrix, representing two rows of the 4 × 4 matrix whose determinant
must be zero for surface waves to exist. The other two rows are obtained by constructing
the equivalent of (4.32) in the Left domain.

For finite-steepness effects to be negligible, the correction term in (4.31) has to be
negligible w.r.t. the first term. Let ‖ · ‖ denote a matrix norm:

s0 + α� ω2

c2

∥∥∥εR,2 [ κ1 κ2 κ3
0 1 0
0 0 1

]∥∥∥∥∥∥∥[ 0 −iky −ikz
−iky s0 0
−ikz 0 s0

]∥∥∥∥ (4.33)

Let us briefly discuss the condition ε2,11
ε1,11

> −1, which we imposed in this section.
ε2,11
ε1,11

> −1 is necessary for (4.23) to exist. ε11(0) 6= 0, that is, ε2,11ε1,11
6= −1, is necessary

for T to exist. Thus, we can use the reasoning of this section only for material interfaces
where ε11 does not change sign, and we cannot use it for density gradients that cross the
Lower Hybrid resonance.

4.3. Anisotropic case
The Laplace-domain constructions of the previous subsections do not crucially depend

on having an isotropic medium. In the isotropic case, the dispersion relation (4.3)
resp. (4.20) had one double root with positive real part. The Laplace-transformed wave
equation at this point could be left-multiplied by a 2× 3 matrix Ns0 obeying (4.6) resp.
(4.21), reducing it to two scalar equations, two rows of the 4×4matrix whose determinant
must be zero for surface waves to exist.

In the anisotropic case, there are two distinct single roots of the dispersion relation
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with positive real part. At each one, the Laplace-transformed wave equation can be left-
multiplied by a nonzero 1 × 3 matrix Ns0 obeying (4.6) resp. (4.21), reducing it to one
scalar equation for each root, so two in total, still two rows of the 4 × 4 matrix whose
determinant must be zero for surface waves to exist.

4.4. Explicit expressions for Ns0 and T
Define

Tx(ε) =
1(

k2y + k2z
)
− ω2

c2 ε11

[
ω2

c2
ε12

ω2

c2
ε13 −iky −ikz

]
TC(ε) =

[
1 0 0 0
0 1 0 0

ikzTx,11 ikzTx,12 ikzTx,13 ikzTx,14−1
−ikyTx,11 −ikyTx,12 1−ikyTx,13 −ikyTx,14

]

T5(ε) =

[ Tx,11 Tx,12 Tx,13 Tx,14

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
such that

ex(0) = Tx(ε)

 ey(0)ez(0)

e′y(0)

e′z(0)

 (see (4.8))

 ey(0)
ez(0)

−e′z(0)+ikzex(0)
e′y(0)−ikyex(0)

 = TC(ε)

 ey(0)ez(0)

e′y(0)

e′z(0)



ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

 = T5

 ey(0)ez(0)

e′y(0)

e′z(0)



ex(0)
ey(0)
ez(0)

e′y(0)

e′z(0)

 = T5(ε)TC(ε)−1

 ey(0)
ez(0)

−e′z(0)+ikzex(0)
e′y(0)−ikyex(0)


Then

T (ε) = T5(ε)T−1C (ε) (4.34)

Vacuum is isotropic, so Ns0 is a 2 × 3 matrix. The wave modes are evanescent if k2y +
k2z − ω2

c2 > 0, then,

s0 =

√
k2y + k2z −

ω2

c2
(4.35)

Ns0 =

[
−ikz 0 s0
−iky s0 0

]
(4.36)

T (1) =


0 0 − ic

2kz
ω2

ic2ky
ω2

1 0 0 0
0 1 0 0

0 0
c2kykz
ω2 1− c2k2y

ω2

0 0
c2k2z
ω2 − 1 − c

2kykz
ω2

 (4.37)
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Stix (1992) gives the dielectric tensor in cold magnetized plasma,

ε =

 ε⊥ −iε× 0
iε× ε⊥ 0
0 0 ε‖

 =

 S −iD 0
iD S 0
0 0 P

 (in Stix’ notation) (4.38)

With this dielectric tensor, the equation defining s0, (4.20), is biquadratic. In anisotropic
magnetized plasma, we have two 1×3 matrices Ns0 , one for each of the two s0 roots with
positive real part, provided two evanescent wave modes do indeed exist.

Ns0 =

[
−iky(k2y+k

2
z−s

2
0)s0c

4+i(ε×k2y+s0ε‖ky−s
2
0ε×)ω

2c2−iε×ε‖ω4

k2y(k
2
y+k

2
z−s

2
0)c

4−((ε‖+ε⊥)k2y+k
2
zε‖−s

2
0ε⊥)ω

2c2+ε‖ε⊥ω
4

kykz(k2y+k
2
z−s

2
0)c

4+kz(s0ε×−kyε⊥)ω2c2

]T
(4.39)

T (ε) =



iε×
ε⊥

0 − ic
2kz

ε⊥ω2

ic2ky
ε⊥ω2

1 0 0 0
0 1 0 0

−kyε×ε⊥ 0
c2kykz
ε⊥ω2 1− c2k2y

ε⊥ω2

−kzε×ε⊥ 0
c2k2z
ε⊥ω2 − 1 − c

2kykz
ε⊥ω2

 (4.40)

5. Examples
5.1. Surface waves on a vacuum-plasma interface in the ICRF regime

5.1.1. Approximate dispersion relation for Fast Wave surface waves on a
plasma-vacuum interface, in the limit of infinite parallel conductivity

The surface impedance matrix for an infinite vacuum layer at x < 0 is, according to
eq. (13) in Brambilla (1995),

Zv,∞ =
1

nx,v

[
1− n2y −nynz
−nynz 1− n2z

]
(5.1)

Brambilla & Bilato (2021) also give the surface impedance matrix for a vacuum layer of
finite thickness d which ends on a perfectly conducting wall,

Zv,d = tanh
(
|nx,v|d

ω

c

)
Zv,∞ (5.2)

The cold plasma dielectric tensor is again (4.38). We consider the infinite parallel
conductivity limit ε‖ → ∞. According to Messiaen & Weynants (2011), the surface
impedance matrix for cold plasma is in that limit,

Zp =
[
Zp,11 0
0 0

]
(5.3)

where

Zp,11 =
nx,F +

inyε×
ε⊥−n2

z

n2⊥,F
(5.4)

n2⊥,F = ε⊥ − n2z −
ε2×

ε⊥ − n2z
(5.5)

n2x,F = n2⊥,F − n2y (5.6)
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and the subscript F is for the Fast Wave, the only wave mode that exists in this limit.
The surface wave dispersion relation becomes

|Zp + Zv,d| = 0 (5.7)

Zp,11
(
1− n2z
nx,v

)
= − tanh

(
|nx,v|d

ω

c

)
(5.8)

(
1− n2z

)(
nx,F +

iε×ny
ε⊥ − n2z

)
= −nx,vn2⊥,F tanh

(
|nx,v|d

ω

c

)
(5.9)

This defines the dispersion relation of surface waves as a functional relation between ny
and nz. For an infinite vacuum layer (d → ∞), explicit approximate formulas for ny as
a function of nz can be obtained in the asymptotic limit of large poloidal wavenumbers
(high ny). In this approximation, a Taylor expansion in the small parameter

√
1− n2z

resp. n⊥,F gives

|ny| � |
√
1− n2z| =⇒ nx ≈ i

(
|ny| −

1− n2z
2|ny|

)
(5.10)

|ny| � |n⊥,F | =⇒ nx,F ≈ i

(
|ny| −

n2⊥,F
2|ny|

)
(5.11)

which leads to the approximate surface wave dispersion relation

n2y ≈


(1−n2

z)((ε⊥+ε×)−n
2
z)

1+ε⊥+ε×−2n2
z

ny < 0
(1−n2

z)((ε⊥−ε×)−n
2
z)

1+ε⊥−ε×−2n2
z

ny > 0
(5.12)

Only positive values of n2y are physically relevant. Infinite ny, i.e. vertical asymptotes
to the dispersion relation, are obtained for parallel refractive indices such that the
denominator of the fractions vanishes. As ω|ny| gets of the order of the electron plasma

frequency ωe =
√

nq2

meε0
, where n is the density, q the electron charge, and me the electron

mass, the approximation of infinite ε‖ gets questionable and the fast wave might couple
with the slow mode.

An example of this surface wave dispersion relation is shown in figure 1, under
conditions typical in ASDEX Upgrade, with core hydrogen minority heating in deuterium
plasma, a confining magnetic field strength of B0 ≈ 2T in the edge plasma near the
antenna, and an ICRF antenna frequency of f = 36.5MHz. The dispersion relation is not
symmetric in ky: there is a preferred vertical propagation direction for such surface waves,
in this case downward (negative ky). This is a common feature of surface waves (Gangaraj
& Monticone (2019)), and is consistent with what we sometimes see in Finite Element
simulations, such as in figure 2. We also show the case of finite vacuum layer thickness
d. At short poloidal wavelengths, which is not unrealistic especially when considering
spurious/numerical excitation of surface modes, where the poloidal spectrum of the
surface waves often differs appreciably from that of the bulk waves, d can be larger than
the decay length of the wave in vacuum, and the description of such waves as surface
waves is appropriate. When the decay length of the wave in vacuum is comparable to d
or larger, the wave mode is better described as a waveguide mode, a point also made in
Brambilla & Bilato (2021).

The negative ny branch of the approximate surface wave dispersion relation (5.12)
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attains a minimum possible n2y + n2z at the point where n2x,F = 0:

n2y + n2z > ε⊥ +
ε×

(
ε× +

√
ε×(4− 4ε⊥ + 5ε×)

)
2(1− ε⊥ + ε×)

(5.13)

and, correspondingly, it has a maximum possible vacuum evanescence length

1

ω
c

∣∣∣√n2y + n2z − 1
∣∣∣ < 1

ω
c

∣∣∣∣∣
√
ε⊥ +

ε×
(
ε×+
√
ε×(4−4ε⊥+5ε×)

)
2(1−ε⊥+ε×) − 1

∣∣∣∣∣
(5.14)

In this approximation, the surface waves exist only for a finite range of parallel
wavenumbers kz, which suggests ways to avoid exciting them. Physically, tailoring
the kz spectrum such as to avoid low kz, consistent with Messiaen & Maquet (2020);
Maquet & Messiaen (2020), can prevent surface wave excitation at least in this ε‖ →∞
approximation. Numerically, there is some design freedom in where to put the plasma-
vacuum interface: it must be beyond the Lower Hybrid resonance, but before the point
where the Fast Wave launched by the antenna becomes propagative (which depends on
ky; the Fast Wave launched by the antenna typically has much larger poloidal wavelength
than the surface waves), such that the Fast Wave evanescence layer, a crucial ingredient
in ICRF power coupling calculations, is modeled as correctly as possible. Given a kz
spectrum that avoids low kz, choosing the density jump small enough could reduce surface
wave excitation.

5.1.2. The full surface wave dispersion relation on a plasma-vacuum interface
Using section 4, we can construct the full dispersion relation for surface waves on

a plasma-vacuum interface. The simplifying assumption ε‖ → ∞ is not necessary.
Effectively, we use (4.36), (4.37), (4.39) and (4.40) to construct three copies of (4.10),
one in vacuum (a 2× 4 matrix), and two in plasma (two 1× 4 matrices). Putting them
together gives us a 4×4 matrix, let us call it L(ky, kz, ω), the zeros of whose determinant
give us the surface wave dispersion relation:

|L(ky, kz, ω)| = 0 (5.15)

The resulting expressions are cumbersome, and we resort to evaluating them numeri-
cally. An example of this surface wave dispersion relation is shown in figure 1, compared
with the approximate dispersion relations from section 5.1.1.

The surface wave phase velocity is

vph(ky, kz) = ω(ky, kz)
[ky, kz]

k2y + k2z
(5.16)

with ω(ky, kz) defined by the dispersion relation, and the group velocity is

vg = [∂kyω(ky, kz), ∂kzω(ky, kz)] (5.17)

A wave is usually called “forward” if vph · vg > 0 and “backward” if vph · vg < 0.
Bécache et al. (2017) generalize this notion: a wave is forward resp. backward in the
direction d based on the sign of (vph · d)(vg · d). Equivalently (see Appendix B), a wave

is backward in either the y or z direction when ∂k2y
∂k2z

> 0. In figure 3 we see that the
poloidal (y) component of the group velocity changes sign depending on ky, but the
poloidal component of the phase velocity is negative. Thus, these surface waves can be
either forward or backward in the poloidal direction, depending on ky. Kousaka & Ono
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Figure 1. Dispersion relations of a surface wave on a discontinuous interface between vacuum
and magnetized plasma, for various plasma densities, assumed spatially constant. Gray dashed:
above this curve, the Fast Wave propagates. Solid red: approximate dispersion relation from
section 5.1.1 in the ε‖ →∞ limit, with an infinite vacuum layer. Solid orange: the same, with a
finite vacuum layer thickness of d = 5cm. Solid black: full dispersion relation with finite ε‖, with
an infinite vacuum layer. Parameters are B0 = 2T in the z direction, f = 36.5MHz, deuterium
plasma.

Figure 2. Surface waves are sometimes seen on the plasma-vacuum interface in the Finite
Element “RAPLICASOL” code, an ICRF modeling code described e.g. in Tierens et al. (2019);
López et al. (2019). It cannot be seen on this single image, but the surface waves are indeed
moving downward, consistent with the negative ky seen in figure 1. The poloidal component
of the Poynting vector is, on average, upward along the plasma-vacuum interface, indicating a
mainly backward wave.

(2003) also report the numerical observation of both backward and forward surface waves.
The approximate dispersion relation (5.12), valid in the ε‖ →∞ limit, is always forward
in the poloidal direction. With finite vacuum layer thickness (orange curves in figure
1), even the ε‖ → ∞ limit exhibits this behaviour. This has implications regarding the
performance of “Perfectly Matched Layers” (PMLs), artificial absorbing boundary layers
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Figure 3. Full surface wave dispersion relation on a plasma-vacuum interface with n = 1017m−3.
Other parameters are as in figure 1. The dispersion relation is shown at frequencies ranging
from f = 33MHz (blue) to f = 40MHz (red). The black line is where the Surface Wave changes
from “forward” to “backward” in the y direction (poloidal). Above it, ω = 2πf decreases with
increasing ky (so ∂kyω < 0), while ky is negative, thus, these surface waves are forward in the
y direction. Below it, ω increases with increasing ky (so ∂kyω > 0), while ky is negative, thus,
these surface waves are backward in the y direction. As in figure 1, the Fast Wave propagates
above the gray dashed curves.

often used to terminate the simulation domain in Finite Element ICRF codes, which will
be further discussed in section 6.

In the full surface wave dispersion relation, surface waves exist at wider ranges of
kz than in the approximation of section 5.1.1. Surface waves can still be suppressed
by introducing losses near the plasma-vacuum interface. A more extreme option is to
artificially increase ε‖ near the plasma-vacuum interface. This has undetermined effects
on the wave fields near the interface, but it reduces the kz range in which surface waves
can exist, and, by making the surface waves more forward, may even avoid the PML
issues.

5.1.3. Surface waves on a plasma-vacuum interface where ε⊥ does not change sign
All surface wave dispersion relations shown in figure 1 involve a surface between vacuum

(ε = 1) and a plasma that is dense enough that ε⊥ < 0, that is, ε⊥ changes sign at the
interface. We may consider the case where the plasma is less dense, such that ε⊥ > 0.
The approximate dispersion relations from section 5.1.1 still predict surface waves in this
case, with both positive and negative ky. In figure 4, we find corresponding roots in the
full dispersion relation of section 5.1.2, only for positive ky.

5.1.4. Applicability of the slab geometry model for surface waves on plasma-vacuum
interfaces

If any physical phenomenon is approximately described by the results shown in section
5.1, it is that of surface waves on the steep edge density gradient in tokamaks (Messiaen &
Maquet (2020)). The physics of these surface waves is inextricably linked with that of the
Lower Hybrid resonance, which leaves open questions about the validity of cold plasma
descriptions. In any case, the theory of this paper does not include the LH resonance:
discontinuous descriptions skip it entirely (numerically, this is often precisely the point of
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Figure 4. Dispersion relations of a surface wave on a discontinuous interface between vacuum
and magnetized plasma, analogous with figure 1 but now with plasma density low enough that
ε⊥ remains positive in the plasma. Parameters are the same as in figure 1 except n = 1016m−3.
Solid red: approximate dispersion relation from section 5.1.1 in the ε‖ → ∞ limit. Solid black:
full dispersion relation with finite ε‖. The vacuum wave is evanescent outside of the orange lines,
the (approximate) Fast Wave in the plasma is evanescent outside of the green lines, and the Slow
Wave is evanescent outside of the gray lines. For low positive ky, the approximate dispersion
relation (red) approximates the full dispersion relation (black). For negative ky, the approximate
dispersion relation (red) has no corresponding root in the full solution. The full solution is not
shown, although it likely does exist, in the region between the purple lines, where k2x is complex
for the plasma waves.

introducing a discontinuity), and the finite-steepness correction diverges in the presence
of this resonance. Additionally, the curvature and density gradients on the plasma side
are not taken into account.

Numerically, on the other hand, these results provide a near-perfect description of
spurious surface waves excited on nonphysical discontinuous density jumps from vacuum
to plasma, which will be discussed further in sections 6 and 7.

5.2. Surface waves on plasma-plasma interfaces
Surface waves on plasma-plasma interfaces, with different density on both sides of the

interface but without sign changes in ε⊥, are of physical interest since they may occur on
the steep density gradients at the edge of the density filaments which naturally occur in
tokamak edge plasmas (see e.g. Tierens et al. (2020b,a); Lau et al. (2020); Birkenmeier
et al. (2015); Garcia (2009); Häcker et al. (2018); Killer et al. (2020)). Messiaen &
Weynants (2011) show that they are also of numerical interest, since they may occur
in slab-geometry approximations.

The Laplace approach lets us determine the surface wave dispersion relation in this
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Figure 5. Left figure: Black: Surface wave dispersion relation on a sudden density change from
1017m−3 to 1018m−3 at x = 0. Other parameters are the same as in figure 1. The Fast Wave is
propagative inside the gray dashed curve. Other dashed lines: finite steepness corrections, with
α = 50m−1 (blue), α = 75m−1 (purple), and α = 200m−1 (red). Right figure: corresponding
density profiles.

situation, too. In figure 5, a surface wave dispersion relation on a sudden density change
from 1017m−3 to 1018m−3 is shown. It is qualitatively similar to the surface waves on
plasma-vacuum interfaces.

5.2.1. Surface waves on steep continuous density changes in plasma
Figure 5 furthermore shows dispersion relations for surface waves on steeply changing

density profiles of the form

n(x) =

{
nL +

(
nL+nR

2 − nL
)
exp(αx) x 6 0

nR +
(
nL+nR

2 − nR
)
exp(−αx) x > 0

(5.18)

derived as in section 4.2. Naturally, for high steepness α, the dispersion relations reduce
to the one derived for the discontinuous case.

The dispersion relation with finite steepness has an additional root, already partially
visible in the top right of figure 5, where it displays a variety of forward and backward
behaviour, and fully shown in figure 6. This new root has rapidly decreasing poloidal
wavelength with increasing interface steepness, which may provide a qualitative expla-
nation for a phenomenon that is observed numerically when modeling wave-filament
interactions: surface waves on the steep density gradient at the filament have a poloidal
wavelength that decreases with increasing steepness. In figure 6, the new root is forward
(∂k

2
y

∂k2z
< 0).

5.2.2. Applicability of the slab geometry model for surface waves on plasma-plasma
interfaces

ICRF surface waves on “plasma-plasma interfaces” may occur on steep the density
gradients on filaments (Tierens et al. (2020b,a); Lau et al. (2020)). Here, there is no ε⊥
sign change, no role of the LH resonance, and no reason to expect warm plasma effects to
come into play. Still, our slab geometry model ignores curvature, which is questionable
on these filaments of centimeter-scale radius, much more so than for the tokamak edge
plasma itself, whose radius of curvature is on the order of meters. We take our results as
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Figure 6. Dispersion relation for surface waves on a plasma-plasma interface under
NSTX-relevant High Harmonic Fast Wave conditions, nL = 5·1016m−3, nR = 15·1016m−3, local
confining magnetic field B0 = 0.55T, frequency 30MHz. Due to the finite steepness correction,
there is a new root whose ky increases with increasing steepness, which may provide a qualitative
explanation for numerical observations under similar conditions such as those reported in Tierens
et al. (2020a), where surface waves on filaments have azimuthal wavelengths that decrease with
increasing steepness, as shown in the right figures for a filament with a radius of 1cm.

confirming that a strong steepness-dependence should exist in the physics of such surface
waves, but draw no quantitative conclusions beyond that.

6. Backward surface waves as a limiting factor on the performance of
Perfectly Matched Layers across plasma-vacuum interfaces

In numerical calculations of the radiofrequency electric field near ICRF antennas, it is
common to choose the simulation domain much smaller than the whole tokamak. This is
done to reduce computational requirements. Under the not always valid assumption of
strong single-pass wave absorption, the core plasma and the poloidal and toroidal sides of
the simulation region are replaced by absorbing boundaries, including Perfectly Matched
Layers (PMLs, used in RAPLICASOL, see Colas et al. (2019); Tierens et al. (2019)),
Mur boundary conditions (used in ERMES, see Otin et al. (2020)), Forward boundary
conditions (used in FELICE/TOPICA, see Tierens et al. (2019)), or simply plasma with
unrealistically high collisionality (used in PETRA-M when coupling to TORIC is not
used, see Shiraiwa et al. (2017)). Here, we will discuss the effect surface waves have on
PMLs.

Let us consider the interface at x = 0 as a 2D space on its own. In this space, we have
four scalar fields ey, ez, (∇× e)y, (∇× e)z, which obey a 2D wave equation

L
(
1

i
∂y,

1

i
∂z,

1

i
∂t

)[ ey
ez

(∇×e)y
(∇×e)z

]
= 0 (6.1)

as can be seen from (5.15). (6.1) is amenable to standard Fourier analysis, its solutions
are plane waves, or “line waves” with 1D wavefronts in the 2D space of the interface.
Following Bécache et al. (2003), we introduce a poloidal PML by coordinate stretching
y → y+ 1

iω

∫ y
0
ζdξ. In the 3D space, for a properly tuned PML, the poloidal y coordinate

is stretched the same way on both sides of the interface, so we have a single well-defined
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Figure 7. Left: Full surface wave dispersion relation on a plasma-vacuum interface, like in figure
3. Plus and minus signs indicate the effect of PML stretching: they are the sign of =

(
∂ω
∂ζ

)
at

ζ = 0. As expected, =
(
∂ω
∂ζ

)
changes sign where the wave switches from forward to backward.

stretching on the 2D interface as well. We assume constant stretching ζ to facilitate
analysis (i.e. ζ does not depend on y), and the dispersion relation becomes∣∣∣∣L(( iω

ζ + iω

)
ky, kz, ω

)∣∣∣∣ = 0 (6.2)

For a PML to be stable, introducing small nonzero ζ must move ω to the half-plane
corresponding to decaying modes, i.e. the imaginary part of ω, denoted =(ω), must be
negative. Thus, we are interested in what (6.2) tells us about the sign of =

(
∂ω
∂ζ

)
at given

real ky, kz. A numerical calculation of this quantity is shown in figure 7. We see that,
as expected from Bécache et al. (2003, 2017), the sign of =

(
∂ω
∂ζ

)
changes as the wave

switches from forward to backward. Thus, there is no choice of coordinate stretching ζ
which can move all wave modes into the half-plane corresponding to decaying modes: if
the forward waves are absorbed, the backward waves are amplified, and vice versa.

We cannot exclude the possibility that, by some lucky coincidence, this back-
ward/forward behaviour is purely due to the discontinuous density jump, and physical
surface waves on the smooth tokamak edge density gradient might all be forward.
Nonetheless, we interpret this result as telling us to be skeptical of the ability of
PML-terminated ICRF codes to correctly model such surface waves.

7. Invertibility and convergence in Finite Element calculations with
surface waves

Looking back at (3.2) and the condition |ZL+ZR| = 0, we see that the incident ampli-
tudes do not determine the surface wave amplitude. The surface wave is in the nullspace
of ZL + ZR. This has implications for frequency-domain Finite Element calculations: in
such calculations, we seek to determine the fields in the simulation domain in function
of the incident fields, a problem we should expect to not have a unique solution in the
presence of surface waves. In Finite Elements, the physics is encoded as a linear system
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of equations

M

Unknown field values
at mesh points in
simulation domain

 =
[
known source term

]
(7.1)

If the simulation domain contains a plasma-vacuum interface, on which surface waves
exist, we should expect that M is (close to) non-invertible, surface wave modes exist in
the nullspace of M , and the system (7.1) is under-constrained. Instead of having a single
unique solution, it has a space of solutions, parametrized by an unconstrained surface
wave amplitude β:

M
([
desired solution

]
+ β

[
surface wave

])
=
[
source term

]
(7.2)

The solver used to solve (7.1) may correctly detect that M is singular or near-singular and
give an error, or it may be robust and give some solution anyway, with some contribution
β of surface waves. Worse, since surface waves of arbitrarily short wavelength exist
on plasma-vacuum interfaces, meshing the surface more densely does not help. It just
increases the dimension of the nullspace of M , and gives the solver a larger choice of
shorter-wavelength surface waves it could insert in (7.2). With a coarse mesh on the
surface, one might not be aware of the surface waves. With a finer mesh, surface waves
appear. Refine further, and ever-shorter-wavelength surface waves keep appearing. Thus,
the Finite Element description does not converge. All of this is observed numerically,
one example is shown in figure 8. We expect this type of non-convergence to occur in
all ICRF codes which make use of discontinuous density jumps; we have observed it in
three such codes: RAPLICASOL (figure 8, see also figure 13 in Usoltceva et al. (2019)),
FELICE (figure 5 in Brambilla & Bilato (2021)), and Petra-M.

This non-convergence is not seen on 1D interfaces in 2D calculations, such as those
shown in figure 6: at fixed kz, surface waves of arbitrarily short wavelength do not exist.

Although concerning, this lack of convergence is not as big a problem as it might appear
at first sight. After all, despite being non converged, these codes have made quantitatively
correct predictions of ICRF physics (López et al. (2020); Tierens et al. (2019)). Since
the surface waves decay in both directions away from the interface, and the shorter-
wavelength ones decay faster, quantities of interest evaluated far enough away from the
interface are likely to have negligible contributions from the surface waves. Usually, we
are interested mainly in

(i) On the vacuum side, the electric fields in or very near the antenna, for near-field
modeling, sheath physics, and suppression of impurity production (Tierens et al. (2017)).
The aperture is typically several centimeters away from the plasma-vacuum interface.
Figure 9 shows that the fields at the aperture in AUG antenna calculations are not
appreciably affected by the surface waves.
(ii) On the plasma side, the power the antenna is able to couple to the plasma. From

the Finite Element code’s point of view, this is the power absorbed in the PMLs, but it is
typically calculated via the S-matrix, a quantity that depends solely on the fields in the
ports, much further away from the plasma-vacuum interface than the aperture, and thus
much less affected by the surface waves. Thus, if we believe the fields at the aperture
to be converged, we should also expect the S-matrix, and thus the coupled power, to be
converged.

The upper bound for the vacuum decay length of the surface waves (5.14) provides
a safe estimate for how far from the plasma-vacuum interface we must evaluate field
quantities to be confident that they are not polluted by non-converged surface waves,
but it overestimates the radial length scales of the surface waves actually observed in
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Figure 8. Poloidal tangential electric field component along the plasma-vacuum interface in a
RAPLICASOL calculation of the ASDEX Upgrade 2-strap antenna, with the interface meshed
with a typical mesh size of 5cm (left), 3cm (middle), 1cm (right). The main toroidal asymmetry
is due to the dipole phasing of the antenna. Convergence cannot be reached: the denser we mesh
the interface, the shorter-wavelength surface wave modes become available in the near-nullspace
of the nearly singular Finite Element matrix.

calculations. For example, (5.14) predicts a decay length of at most 0.6m for a vacuum-
plasma density jump of 1017m−3 under typical AUG conditions, even though we see from
figure 9 that a few centimetres is in practice sufficient. If surface waves are excited at
all, a lower bound for the vacuum decay length occurs at the shortest resolvable poloidal
wavelength, ky = −π/∆y, given by the poloidal mesh size ∆y. Using the asymptotes of
(5.12) at large negative ky, the shortest possible vacuum decay length is approximately

√
2

ω
c

∣∣∣√1− 2π2c2

∆2
yω

2 − ε⊥ − ε×
∣∣∣ (7.3)

which gives respectively 1.6cm, 1cm, and 3mm, for the cases of figures 8 and 9. Heuris-
tically, one should evaluate field quantities ideally at least the maximum length scale
(5.14) away from the plasma-vacuum interface, which is actually realistic for the fields
in the ports and the S-matrix, but failing that, one should ensure to be at least several
times the minimum length scale (7.3) away.

Physically, surface wave amplitudes are always limited by loss mechanisms, which
include the inherent collisionality of the edge plasma, the eventual coupling of the surface
wave’s constituent evanescent wave modes to propagating waves (i.e. the wave modes are
locally evanescent near the interface, but not globally evanescent as in section 2), or edge
loss mechanisms like sheath rectification. Such loss mechanisms limit the surface wave
amplitude, but also broaden the “resonance” peaks: where in the lossless case, we have
unconstrained amplitudes only on specific 1D curves in (ky, kz) space, in the lossy case,
the amplitudes remain finite, but also points near the resonant curve in (ky, kz) space
are affected.

8. Conclusion
In this work we derived both exact and approximate dispersion relations for surface

waves on discontinuous interfaces between anisotropic media, in particular between
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Figure 9. Poloidal tangential electric field component along the antenna aperture, for the cases
from figure 8. The antenna aperture is on the vacuum side of the plasma-vacuum interface, about
3cm away from the interface. Despite the non-convergence of the fields on the plasma-vacuum
interface in figure 8, the fields on the aperture show no signs of non-convergence. The main
toroidal asymmetry is due to the dipole phasing of the antenna, the main poloidal pattern is
due to the nearby Faraday Screen bars, which are about 5cm away from the plasma-vacuum
interface.

vacuum and magnetized plasma. Due to the anisotropic nature of the magnetized plasma,
surface waves exist even where they would not be expected classically, in particular, a
sign change of ε11 is not necessary.

We focused on the case of steep density gradients, which is the case most relevant for
ICRF, but the techniques developed in this work are not limited to that case. Surface
waves at any material parameter discontinuity, including sudden changes in the direction
of anisotropy, such as those predicted by Dyakonov (1988) in uniaxial crystals, can be
described using these techniques.

In numerical ICRF calculations, it is common to use discontinuous plasma-vacuum
interfaces as a simple way of avoiding issues associated with the Lower Hybrid resonance.
This common trick is not without its side effects: nonphysical surface waves form, which
cannot be absorbed by PMLs (section 6) and prevent convergence (section 7). It is
certainly possible to suppress such surface wave excitation by introducing losses. The
effects of such interventions, and whether a PML variant can be formulated that absorbs
all the surface waves and all the bulk waves, remain open questions.

We derived first-order corrections to these dispersion relations for physical surface
waves on steep but continuous material interfaces, which provides a qualitative expla-
nation of steepness-dependent surface wave behaviour that has been observed in Finite
Element calculations.
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Appendix A. Asymptotics for the Laplace-transformed electric field
in a medium with exponentially varying permittivity

Theorem 1. Let e(x) be a solution on x ∈ [0,∞[ of the wave equation with given
ky, kz:

∇×∇× (e(x) exp(ikyy + ikzz))

exp(ikyy + ikzz)
− ω2

c2
ε(x)e(x) = 0 (A 1)

where ε(x) = ε1 + ε2 exp(−αx), with ε1, ε2 either constant scalars or constant 3 × 3
matrices, and α > 0. The four boundary conditions for e(x) are specified values for
ey(0), e

′
y(0), ez(0), e

′
z(0) which do not depend on α.

Then
(i) The nth derivative e(n)x (0) is an nth-degree polynomial in α.
(ii) The (n+1)th derivatives e(n+1)

y (0) and e(n+1)
z (0) are nth-degree polynomials in α.

Proof. By induction. At n = 0, it is clearly the case that e(0+1)
y (0) and e(0+1)

z (0) are
0-th order polynomials, i.e. constants, since these are two of the boundary conditions
which by assumption do not depend on α. It is also the case that e(0)x (0) is constant, its
value is given by (4.8).

For the induction step: suppose e(k)x (0), e(k+1)
y (0), and e(k+1)

z (0) are indeed kth order
polynomials in α, for all k up to k = n. Take the (n+1)st derivative of the x component,
and the nth derivative of the y and z components, of the wave equation: dn+1

dxn+1 0 0

0 dn

dxn 0

0 0 dn

dxn

(∇×∇× (e(x) exp(ikyy + ikzz))

exp(ikyy + ikzz)
− ω2

c2
ε(x)e(x)

)
= 0 (A 2)

Explicitly,  e
(n+1)
x (0)

(
k2y + k2z

)
+ ikye

(n+2)
y (0) + ikze

(n+2)
z (0)

ikye
(n+1)
x (0)− e(n+2)

y (0) + e
(n)
y (0)k2z − e

(n)
z (0)kykz

ikze
(n+1)
x (0)− e(n)y (0)kykz − e(n+2)

z (0) + e
(n)
z (0)k2y


=
ω2

c2

[1 0 0
]∑n+1

k=0

(
n+1
k

)
ε(n+1−k)(0)e(k)(0)[

0 1 0
0 0 1

]∑n
k=0

(
n
k

)
ε(n−k)(0)e(k)(0)

 (A 3)

 e
(n+1)
x (0)

(
k2y + k2z

)
+ ikye

(n+2)
y (0) + ikze

(n+2)
z (0)

ikye
(n+1)
x (0)− e(n+2)

y (0) + e
(n)
y (0)k2z − e

(n)
z (0)kykz

ikze
(n+1)
x (0)− e(n)y (0)kykz − e(n+2)

z (0) + e
(n)
z (0)k2y


−ω

2

c2

[1 0 0
]
(ε1 + ε2)e

(n+1)(0)[
0 1 0
0 0 1

]
(ε1 + ε2)e

(n)(0)


=
ω2

c2

[1 0 0
]
ε2
∑n
k=0

(
n+1
k

)
(−α)n+1−ke(k)(0)[

0 1 0
0 0 1

]
ε2
∑n−1
k=0

(
n
k

)
(−α)n−ke(k)(0)

 (A 4)

Note that, by the induction hypothesis, the rhs. has a (n + 1)th degree polynomial
in α on the first row, and an nth degree polynomial in α on the second and third
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rows. The second term in the lhs. is a polynomial in α of at most nth degree. Thus,
e
(n+1)
x (0), e

(n+2)
y (0), e

(n+2)
z (0) must be polynomials in α of degree n+ 1.

Theorem 2. Let e(x) be defined as in theorem 1. Let Cnα(P ) be the coefficient of αn

in the polynomial P . Then for all n > 0, Cnα
(
e
(n)
x (0)

)
obeys the recurrence relation

0 = ε1,11C
n
α

(
e(n)x (0)

)
+ ε2,11

n∑
k=0

(
n

k

)
(−1)n−kCkα

(
e(k)x (0)

)

+ (−1)n
[
1 0 0

]
ε2

 0
ey(0)
ez(0)

 (A 5)

with boundary condition

C0
α

(
e(0)x (0)

)
= ex(0) (A 6)

given by (4.8).

Proof. Consider the second and third row of (A 3). There are only two terms in αn+1

in each row. In the second row, there is one due to e(n+1)
x (0) and one due to e(n+2)

y (0).
In the third row, there is one due to e(n+1)

x (0) and one due to e(n+2)
z (0). The second and

third rows in the rhs. are of degree at most n in α. Thus,

Cn+1
α

(
ikye

(n+1)
x (0)

)
= Cn+1

α

(
e(n+2)
y (0)

)
(A 7)

Cn+1
α

(
ikze

(n+1)
x (0)

)
= Cn+1

α

(
e(n+2)
z (0)

)
(A 8)

Consider now the first row of (A 3):

Cn+1
α

(
e(n+1)
x (0)

(
k2y + k2z

)
+ ikye

(n+2)
y (0) + ikze

(n+2)
z (0)

)
=

ω2

c2
Cn+1
α

([
1 0 0

] n+1∑
k=0

(
n+ 1

k

)
ε(n+1−k)(0)e(k)(0)

)
(A 9)

Using (A 7) and (A 8),

Cn+1
α

(
e(n+1)
x (0)

(
k2y + k2z

)
− k2ye(n+1)

x (0)− k2ze(n+1)
x (0)

)
=

ω2

c2
Cn+1
α

([
1 0 0

] n+1∑
k=0

(
n+ 1

k

)
ε(n+1−k)(0)e(k)(0)

)
(A 10)
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the lhs. is clearly 0, so

0 = Cn+1
α

([
1 0 0

] n+1∑
k=0

(
n+ 1

k

)
ε(n+1−k)(0)e(k)(0)

)

= Cn+1
α

([
1 0 0

](
(ε1 + ε2)e

(n+1)(0) + ε2

n∑
k=0

(
n+ 1

k

)
(−α)n+1−ke(k)(0)

))
=
[
1 0 0

] (
(ε1 + ε2)C

n+1
α

(
e(n+1)(0)

)
+ε2(−1)n+1C0

α (e(0)) + ε2

n∑
k=1

(
n+ 1

k

)
(−1)n+1−kCkα

(
e(k)(0)

))
(A 11)

By theorem 1, only Cn+1
α

(
e
(n+1)
x (0)

)
can be nonzero, Cn+1

α

(
e
(n+1)
y (0)

)
and

Cn+1
α

(
e
(n+1)
z (0)

)
must both be zero, so

0 = (ε1,11 + ε2,11)C
n+1
α

(
e(n+1)
x (0)

)
+ ε2,11

n∑
k=1

(
n+ 1

k

)
(−1)n+1−kCkα

(
e(k)x (0)

)
+
[
1 0 0

]
ε2(−1)n+1C0

α (e(0)) (A 12)

To simplify, replace n by n−1, and move the ε2,11Cnα
(
e
(n)
x (0)

)
and ε2,11ex(0) terms into

the sum

0 = ε1,11C
n
α

(
e(n)x (0)

)
+ ε2,11

n∑
k=0

(
n

k

)
(−1)n−kCkα

(
e(k)x (0)

)

+ (−1)n
[
1 0 0

]
ε2

 0
ey(0)
ez(0)

 (A 13)

which is (A 5).

Theorem 3. For isotropic media, the last term in (A 5) disappears. The solutions of
the resulting homogeneous recursion relation

0 = ε1,11C
n
α

(
e(n)x (0)

)
+ ε2,11

n∑
k=0

(
n

k

)
(−1)n−kCkα

(
e(k)x (0)

)
(A 14)

are

Cnα

(
e(n)x (0)

)
∝
(
1 +

ε1,11
ε2,11

)−n
An

(
−ε1,11
ε2,11

)
(A 15)

where An is the so-called Eulerian polynomial of nth degree (see Hirzebruch (2008) for
details), which can be defined by

A0(t) = 1 (A 16)

An(t) =

n−1∑
k=0

(
n

k

)
Ak(t)(t− 1)n−1−k (A 17)
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Proof. Let us start from (A17). Multiplying both sides by (t− 1)−n

(
An(t)(t− 1)−n

)
= (t− 1)−1

n−1∑
k=0

(
n

k

)(
Ak(t)(t− 1)−k

)
(A 18)

adding and subtracting the k = n term in the rhs.

(
An(t)(t− 1)−n

)
= (t− 1)−1

n∑
k=0

(
n

k

)(
Ak(t)(t− 1)−k

)
− (t− 1)−1

(
An(t)(t− 1)−n

)
(A 19)(

An(t)(t− 1)−n
)
=

(t− 1)−1

(1 + (t− 1)−1)

n∑
k=0

(
n

k

)(
Ak(t)(t− 1)−k

)
(A 20)

(
An(t)(t− 1)−n

)
=

1

t

n∑
k=0

(
n

k

)(
Ak(t)(t− 1)−k

)
(A 21)

Multiplying both sides by (−1)n

(
An(t)(t− 1)−n(−1)n

)
=

1

t

n∑
k=0

(
n

k

)(
Ak(t)(t− 1)−k(−1)k

)
(−1)n−k (A 22)

Let 1
t = −

ε2,11
ε1,11

and Cnα
(
e
(n)
x (0)

)
= An(t)(1− t)−n, then (A 22) is (A 14).

Theorem 4. The solution of the full inhomogeneous recurrence relation (A 5) with
boundary condition (A 6) is explicitly

Cnα

(
e(n)x (0)

)
=

{
ex(0) n = 0

φ
(
1 +

ε1,11
ε2,11

)−n
An

(
− ε1,11ε2,11

)
n > 0

(A 23)

with

φ =
[
1

ε2,12
ε2,11

ε2,13
ε2,11

]
e(0) (A 24)

Proof. Using theorem 3, (A 23) clearly obeys

0 = ε1,11C
n
α

(
e(n)x (0)

)
+ ε2,11(−1)n

(
C0
α

(
e(0)x (0)

)
− ex(0) + φ

)
+ ε2,11

n∑
k=1

(
n

k

)
(−1)n−kCkα

(
e(k)x (0)

)
(A 25)

Thus

0 = ε1,11C
n
α

(
e(n)x (0)

)
+ ε2,11(−1)n (φ− ex(0))

+ ε2,11

n∑
k=0

(
n

k

)
(−1)n−kCkα

(
e(k)x (0)

)
(A 26)
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which is (A 5) if

ε2,11(−1)n (φ− ex(0)) = (−1)n
[
1 0 0

]
ε2

 0
ey(0)
ez(0)

 (A 27)

which is (A 24).

Theorem 5. Let e(x) be defined as in theorem 1, and let ε2,11
ε1,11

> −1, such that
ε11(x) = ε1,11 + ε2,11 exp(−αx) has no roots at positive x. Then the Laplace-transformed
electric field,

E(s) ≡
∫ ∞
0

e(x) exp(−sx)dx (A 28)

is asymptotically, at high α,

Ex(s0 + α) =
ex(0)− φ

(
1−

(
1 +

ε1,11
ε2,11

)
log
(
1 +

ε2,11
ε1,11

))
s0 + α

+O

(
1

α2

)
(A 29)

Ey(s0 + α) =
ey(0)

s0 + α
+O

(
1

α2

)
(A 30)

Ez(s0 + α) =
ez(0)

s0 + α
+O

(
1

α2

)
(A 31)

for any constant s0, and φ defined as in (A 24).

Proof. Both e(x) and E(s) depend, in general, on α. Let us make this dependence
explicit:

E(s, α) =

∫ ∞
0

e(x, α) exp(−sx)dx (A 32)

Suppose e(x, α) can be expressed in a Taylor series in x near the origin:

E(s, α) =

∫ ∞
0

( ∞∑
n=0

e(n)(0, α)

n!
xn

)
exp(−sx)dx (A 33)

sE(s, α) =

∫ ∞
0

( ∞∑
n=0

e(n)(0, α)

n!

(x
s

)n)
exp(−x)dx (A 34)

E(s0 + α, α) =
1

s0 + α

∫ ∞
0

( ∞∑
n=0

e(n)(0, α)

n!

(
x

s0 + α

)n)
exp(−x)dx (A 35)

Suppose that in the high-α limit, the integral is some constant K,

lim
α→∞

∫ ∞
0

( ∞∑
n=0

e(n)(0, α)

n!

(
x

s0 + α

)n)
exp(−x)dx = K (A 36)

Then

E(s0 + α, α) =
K

s0 + α
+O

(
1

α2

)
(A 37)

for ey and ez, we know from theorem 1 that e(n)y or z(0, α) grows at most as fast as αn−1
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(with the n = 0 and n = 1 term both constant), so only the n = 0 term remains in the
limit

lim
α→∞

∫ ∞
0

( ∞∑
n=0

e
(n)
y or z(0, α)

n!

(
x

s0 + α

)n)
exp(−x)dx

=

∫ ∞
0

ey or z(0, α) exp(−x)dx (A 38)

= ey or z(0) (A 39)

(it does not depend on α, since ey(0) and ez(0) are boundary conditions). Thus,

Ey(s0 + α, α) =
ey(0)

s0 + α
+O

(
1

α2

)
(A 40)

Ez(s0 + α, α) =
ez(0)

s0 + α
+O

(
1

α2

)
(A 41)

The situation is more complicated for Ex, where the higher terms do not disappear in
the high-α limit. Instead,

lim
α→∞

∫ ∞
0

( ∞∑
n=0

e
(n)
x (0, α)

n!

(
x

s0 + α

)n)
exp(−x)dx

=

∫ ∞
0

( ∞∑
n=0

Cnα

(
e(n)x (0, α)

) xn
n!

)
exp(−x)dx (A 42)

We know the terms Cnα
(
e
(n)
x (0, α)

)
from theorem 4,∫ ∞

0

( ∞∑
n=0

φ

(
1 +

ε1,11
ε2,11

)−n
An

(
−ε1,11
ε2,11

)
xn

n!

)
exp(−x)dx

+(ex(0)− φ)
∫ ∞
0

exp(−x)dx (A 43)

Hirzebruch (2008) shows the Eulerian polynomials An(t) have the exponential generating
function

∞∑
n=0

An(t)
xn

n!
≡ t− 1

t− exp((t− 1)x)
(A 44)

which lets us work out (A 42) explicitly

ex(0)− φ+ φ

∫ ∞
0

 ∞∑
n=0

An

(
−ε1,11
ε2,11

) ( x
ε1,11
ε2,11

+1

)n
n!

 exp(−x)dx

= ex(0)− φ+ φ

∫ ∞
0

− ε1,11ε2,11
− 1

− ε1,11ε2,11
− exp(−x)

exp(−x)dx (A 45)

= ex(0)− φ+ φ

(
1 +

ε1,11
ε2,11

)
log

(
1 +

ε2,11
ε1,11

)
(A 46)

= ex(0)− φ
(
1−

(
1 +

ε1,11
ε2,11

)
log

(
1 +

ε2,11
ε1,11

))
(A 47)
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Figure 10. Solid lines: numerical calculation of E(s0 + α) (the Laplace-transformed electric
field in a medium with ε = ε1 + ε2 exp(−αx)), compared with the asymptotic expressions
from theorem 5, which are the dashed lines. The left figure is an isotropic case, the right
figure is an anisotropic case. Parameters for the left figure are ω

c
= 1m−1, ε1 = 1, ε2 = 2,

ky = 1m−1, kz = 2m−1, s0 = 9m−1. Parameters for the right figure are ω
c

= 1m−1,

ε1 =

[
1 −i/2 0
i/2 1 0
0 0 10

]
, ε2 =

[
1/4 −2i 0
2i 1/4 0
0 0 3

]
, ky = 1m−1, kz = 2m−1, s0 = 9m−1. For both figures,

the boundary conditions are ey(0) = 1V/m, ez(0) = 0.5V/m, e′y(0) = 0V/m2, e′z(0) = 0V/m2.

which gives us (A 29).

Note that the integral (A 45) diverges when ε2,11
ε1,11

< −1, that is, when ε11(x) =

ε1,11 + ε2,11 exp(−αx) = 0 at some x > 0, when a resonance might occur. The function(
1 +

ε1,11
ε2,11

)
log
(
1 +

ε2,11
ε1,11

)
is well-behaved in ε2,11

ε1,11
∈ [−1,∞[, with the ε2,11 → 0 limit

being

lim
ε2,11→0

(
1 +

ε1,11
ε2,11

)
log

(
1 +

ε2,11
ε1,11

)
= 1 (A 48)

The correctness of (A 29) is further supported by numerical results in figure 10. To
obtain this figure, we solved the wave equation (A 1) numerically using Runge-Kutta
methods over a finite range x ∈ [0, xmax] with xmax � 1/α, such that x > xmax =⇒
ε(x) ≈ ε1. Knowing that in ]xmax,∞[ the dielectric tensor is approximately constant,
and the solution of the wave equation thus analytically known, we extend the solution
analytically in ]xmax,∞[, starting from the numerically determined values at xmax. We
then calculate the Laplace transform via numerical integration in [0, xmax], and analytic
integration in ]xmax,∞[.

Appendix B. Assessing “wave forwardness” graphically from the
shape of the dispersion curves at constant ω in k space

The dispersion relation is

|L (k, ω)| = 0 (B 1)

The group velocity is

vg =

(
∂ω

∂k

)
|L(k,ω)|=0

= −

(
∂|L(k,ω)|

∂k

)
constant ω(

∂|L(k,ω)|
∂ω

)
constant k

(B 2)
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From the gradient in the numerator of (B 2), we see that the group velocity is everywhere
perpendicular to the dispersion relation in (kx, ky) space.

The “wave forwardness” in the y and z directions then depends on the sign of

ω

ky

(
∂|L(k,ω)|
∂ky

)
constant ω,kz(

∂|L(k,ω)|
∂ω

)
constant k

(B 3)

respectively

ω

kz

(
∂|L(k,ω)|
∂kz

)
constant ω,ky(

∂|L(k,ω)|
∂ω

)
constant k

(B 4)

The wave is forward in one of the two directions and backward in the other if the signs
of (B 3) and (B 4) are opposite, i.e.

ky
kz

(
∂|L(k,ω)|
∂kz

)
constant ω,ky(

∂|L(k,ω)|
∂ky

)
constant ω,kz

< 0 (B 5)

Now (
∂|L(k,ω)|
∂kz

)
constant ω,ky(

∂|L(k,ω)|
∂ky

)
constant ω,kz

= −
(
∂ky
∂kz

)
|L(k,ω)|=0, constant ω

(B 6)

Thus, a problem of wave backwardness arises in either direction when

ky
kz

(
∂ky
∂kz

)
|L(k,ω)|=0, constant ω

> 0 (B 7)(
∂k2y
∂k2z

)
|L(k,ω)|=0, constant ω

> 0 (B 8)

This property may be easily assessed graphically from the shapes of the dispersion curves.
Considering dispersion curves at different frequencies is only necessary to know in which
of the two directions, y or z, the wave is backward.
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