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Unconventional superconductivity in magic-angle twisted
trilayer graphene
Ammon Fischer 1, Zachary A. H. Goodwin2, Arash A. Mostofi 2, Johannes Lischner2, Dante M. Kennes 1,3✉ and Lennart Klebl 1✉

Magic-angle twisted trilayer graphene (MATTG) recently emerged as a highly tunable platform for studying correlated phases
of matter, such as correlated insulators and superconductivity. Superconductivity occurs in a range of doping levels that is
bounded by van Hove singularities, which stimulates the debate of the origin and nature of superconductivity in this
material. In this work, we discuss the role of spin-fluctuations arising from atomic-scale correlations in MATTG for the
superconducting state. We show that in a phase diagram as a function of doping (ν) and temperature, nematic
superconducting regions are surrounded by ferromagnetic states and that a superconducting dome with Tc ≈ 2 K appears
between the integer fillings ν=−2 and ν=−3. Applying a perpendicular electric field enhances superconductivity on the
electron-doped side which we relate to changes in the spin-fluctuation spectrum. We show that the nematic unconventional
superconductivity leads to pronounced signatures in the local density of states detectable by scanning tunneling
spectroscopy measurements.
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INTRODUCTION
Since the discovery of superconductivity and correlated insulating
states in magic-angle twisted bilayer graphene (MATBG)1,2, twisted
van der Waals materials have become indispensable for the design
of novel quantum materials at will3. In the quickly developing field
of twistronics4, tremendous theoretical5–26 and experimental27–46

efforts have been undertaken to unravel the nature of strong
correlations47,48 and to access new moiré engineered structures
with twisted double-bilayer graphene49–52, twisted trilayer gra-
phene53–57, transition metal dichalcogenide homobilayers and
heterobilayers58–62 as well as other materials63–65 at the frontier of
condensed matter research3.
These systems are fascinating because of the precise control of

electronic properties and correlations that can be achieved by
tuning twist angle1,2, doping level1,2,27, temperature28,29, pres-
sure30,66, and external screening31–33,67. The appearance of
almost flat bands at so-called “magic angles,” first predicted in
early theoretical works68–71, puts a variety of exotic correlated
phases within experimental reach, including correlated insula-
tors27–32,37,40–46, orbital ferromagnetism27,38,39,72, and magnetic
field induced Chern insulators33–36,73.
Among the findings that have sparked the most interest in the

field of twistronics is the discovery of robust and reproducible
superconductivity in MATBG1,27,30, with preliminary evidence for
possible superconductivity also present in twisted double-bilayer
graphene49–51, ABC trilayer graphene aligned to hexagonal
boron nitride74, and twisted transition metal dichalcogenides58.
Very recently, another graphitic moiré system that features
reproducible, highly tunable superconductivity (as well as
correlated insulators) has been discovered: magic-angle twisted
trilayer graphene (MATTG)53–55, where the twist angle alternates
by +θ and −θ between each graphene layer [see Fig. 1a].
Experiments on MATTG find superconductivity at doping

levels between integer fillings of ν=−2 and ν=−3, where ν
corresponds to the number of electrons per moiré unit cell
relative to charge neutrality53–55. Additionally, refs. 53,55 report
superconductivity between fillings of ν= 2 and ν= 3, which is
much weaker in ref. 54 but can be stabilized upon application of a
perpendicular displacement field. Furthermore, displacement
fields are found to give rise to additional superconducting (SC)
features between fillings of ν= 1 and ν= 2 and between ν=−1
and ν=−253. This demonstrates that (i) superconductivity in
MATTG seems to preferentially appear in between integer fillings
of the flat bands and that (ii) superconductivity in MATTG can be
readily tuned through a perpendicular displacement field, which
makes MATTG a particularly attractive platform for studying
strongly correlated physics.
The coexistence of correlated insulating and SC states in MATTG

has further elicited questions about their intrinsic relationship in
graphene-based moiré materials. In particular, the question of
whether the SC states are of unconventional nature and driven by
electron–electron interaction, or conventional and mediated by
electron–phonon coupling, is still intensely debated at the
moment even for MATBG24,32,48.
The aim of this work is to shed light on this controversial

question by presenting how unconventional superconductivity in
MATTG can arise from spin fluctuation exchange on the atomic
scale. Starting from a fully atomistic tight-binding (TB) description
of the system, we investigate the effect of long-ranged
electron–electron interactions on the phase diagram of MATTG.
To this end, we derive a microscopic pairing interaction Γ̂2 in the
fluctuation–exchange approximation (FLEX) and solve the non-
linear Bogoliubov-de Gennes (BdG) equations as a function of
filling and temperature. Our results indicate that spin-singlet
superconductivity can be driven by magnetic fluctuations in
between integer fillings. At the same time, superconductivity is
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shown to depend sensitively on the value of the carbon pz
Hubbard-U, which is influenced by experimental details such as
environmental screening and the application of fields, and that it
can be moved from one between-integer filling to another. For a
suitably chosen interaction strength and without a displacement
field, we find superconductivity is strongest in between fillings of
ν=−2 and ν=−3 (with critical temperature Tc ≈ 2 K) as well as
around ν=+2+ δ, while being surrounded by ferromagnetic
(FM), semi-metallic or metallic states. We show that, for fixed
interaction strength, a perpendicular electric field weakens the SC
dome on the hole-doped side but enhances superconductivity at
doping levels around ν=+2+ δ. Hereby we demonstrate that
correlated and SC features driven by electronic interactions in
MATTG are highly tunable by a perpendicular electric field which
corroborates recent experimental findings53–55, in particular those
of ref. 54. We then analyze the nature of the SC state further and
show that according to our atomistic calculations MATTG hosts
unconventional, nematic d-wave superconductivity that displays
clear signatures of C3z symmetry breaking in the local density of
states (LDOS).

RESULTS
Atomic, electronic, and magnetic structure
The atomic structure of MATTG is constructed from three stacked
sheets of graphene, where the outer layers (l= 1, 3) are perfectly
aligned and the middle layer (l= 2) is twisted by ±θ relative to the
encapsulating layers, as schematically depicted in Fig. 1a. Different
regions in the moiré unit cell of MATTG can be labeled according
to the stacking sequence of the trilayer. At the center of rotation,
the stacking is of AAA type, where carbon atoms of all layers
reside vertically displaced on top of each other, as shown in the
inset of Fig. 1. In between the AAA regions, the local geometry
successively changes from ABA to domain wall (DW) and BAB
stacking. The atomic structure described is invariant under the
mirror reflection symmetry σh that exchanges the upper and lower
layer (1↔ 3, 2↔ 2) and under threefold rotations around the ẑ
axis described by the point group C3z.
To account for lattice reconstruction effects, which have been

shown to be important in the field of twistronics47, we first relax
the positions of MATTG using classical force fields (see “Methods”).
According to the reflection symmetry σh, we find that the central
layer remains flat, while the atoms of the outer layers undergo

Fig. 1 Unconventional superconductivity in magic-angle twisted trilayer graphene (MATTG). a The atomic structure of MATTG consists of
three superimposed graphene sheets. While the outer graphene sheets are aligned (AA stacked) and untwisted, the inner layer (black) is
twisted at an angle θ (−θ) relative to the lower (upper) sheet. b Band structure of MATTG at θ= 1.61°. Long-range electron–electron
interactions are taken into account through Hartree corrections that lead to a doping-dependent band structure. The flat band dispersion is
strongly affected by the filling factor ν (blue: ν=+3, black: ν= 0, red: ν=−3), whereas the Dirac cone remains unaffected. c Local density of
states (LDOS) in the outer layer of MATTG for ν=−2.5. The left panel clearly shows that the flat bands are mostly localized in the AAA regions.
The right panel shows the spatial distribution of the LDOS in the top layer at energies of the remote valence band (RV1), remote conduction
band (RC1), valence flat band (VFB), and conduction flat band (CFB), reflecting the C3z symmetry of the non-interacting Hamiltonian. d Phase
diagram of MATTG for θ= 1.61° around ν=−2.5. Our numerical calculations reveal a superconducting dome driven by low-energy AFM spin-
fluctuations that range from ν=−2.35 to ν=−2.7 with an upper critical temperature of Tc ≈ 2 K. The average amplitude of the order
parameter jΔj is reduced with increasing temperature and vanishes toward the integer fillings ν=−3 and ν=−2, where ferromagnetic phases
(FM) dominate. At high temperatures, the system remains paramagnetic (PM). e, f Magnetic correlations in MATTG at zero (left) and nonzero
ΔD= ±30meV (right) perpendicular displacement field. The lower panel displays the critical Hubbard interaction strength Uc needed for the
onset of magnetic order as a function of filling. The type of magnetic order is color-coded through an order parameter that continuously
interpolates between AFM and FM order (red: FM, yellow: AFM, for a definition, see Supplemental Methods). The upper panels display a sketch
[which is confirmed quantitatively for filling between ν=−3 and ν=−2 in d] of parameter regions that can host unconventional SC driven by
AFM spin-fluctuations for U ≈ 5 eV (dashed black horizontal line). As magnetic interactions can only provide the pairing glue for
superconductivity as long as the system remains paramagnetic, i.e. U < Uc, this mechanism supports SC at ν=−2− δ and around ν=+2+ δ.
Screening effects caused by the dielectric environment may change the position of the superconducting domes to different fillings (blue to
green SC domes). Applying an electric field to the sample (f) enhances superconducting regions at the electron-doped side at ν=+2+ δ.
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significant out-of-plane displacements, which is in good agree-
ment with other work75,76. In fact, recent results75 indicate that
perfect alignment between the outer layers, as considered in this
study, is energetically favored over a relative shift between the
outer layers, i.e., AAB/BAA stacking, and hence should be the most
relevant stacking configuration that is naturally realized in
experimental samples.
To model the electronic structure of MATTG, we use a

microscopic TB parametrization for the pz orbitals of the carbon
atoms77 combined with ab initio density functional theory (DFT)
simulations (see Supplementary Methods and “Methods”). To
match the dispersion obtained from DFT, we complement the TB
model with an additional onsite potential of −35meV acting on
the middle layer. As a result, the flat bands intersect with the Dirac
cone below the Dirac point, which was also noted in previous
work for MATTG by Lopez-Bezanilla and Lado76. As shown in Fig.
1b, we find that for θ= 1.61°, the low-energy electronic structure
of MATTG consists of a set of flat bands (similar to MATBG), which
are intersected by a Dirac cone with a large Fermi velocity75,76,78

compared to the flat band kinetic energy scales. The twist angle
investigated here is very close to the magic angle of 1.54°, which
exhibits the smallest flat band width79.
In MATBG, long-ranged electron–electron interactions were

found to strongly alter the electronic structure, which has
important consequences for the observation of broken symmetry
phases. MATTG is an ostensibly similar system, and therefore, we
also treat the long-ranged part of the electron interactions using a
self-consistent Hartree theory in the atomistic TB framework (see
Supplementary Methods and “Methods”)5,80. Through the Hartree
potential, the electronic structure of MATTG in the normal state
acquires a filling dependence, which shifts the electronic bands to
higher or lower energies depending on the doping level. We show
in Fig. 1b that the dispersion of the flat bands of MATTG in the
normal state is indeed very sensitive to long-ranged electron
interactions: removing electrons lowers the K-point energies of the
flat bands relative to the Γ-point, which is similar to the doping
dependence of MATBG5,80, and is accompanied by a global shift of
the flat bands relative to the Dirac cone to more negative
energies. In contrast, adding electrons increases the K-point
energies of the flat bands relative to the Γ-point, and shifts the
whole flat band manifold to higher energies relative to the Dirac
cone. The Dirac cone with its large Fermi velocity is insensitive to
long-ranged electron interactions.
The LDOS in the outer layer of MATTG, as shown in Fig. 1c for a

doping level of ν=−2.5, exhibits large peaks in the AAA regions
for energies within the range of the flat bands (the conduction flat
band and valence flat band). This behavior is consistent with the
earlier prediction that the flat-band physics in MATTG is similar to
that of MATBG79. Although the flat bands have their largest
spectral weight in the central layer, significant weight is
distributed on the outer layers such that the van Hove singularities
associated with the flat bands should be observable in scanning
tunneling microscopy (STM) experiments. This is shown in the left
panel of Fig. 1c, where the flat bands give rise to C3z symmetric
signatures in the LDOS. At larger energies (remote conduction
band RC1 and remote valence band RV1), the states become more
delocalized [see right panel of Fig. 1c].
Having captured the effect of long-range electron–electron

interactions in the doping-dependent band structure, we study
the influence of the remaining short-ranged terms, i.e., a
repulsive Hubbard-U, by calculating the atomistic susceptibility
χ̂0 in the magnetic channel. To this end, we employ the random
phase approximation (RPA) in its static, long-wavelength limit8,9

(see “Methods”). As the effect of the Hartree potential on the
band structure of MATTG is very similar to the MATBG case, the
consequence we expect is a broader range of twist angles
showing correlated states driven by short-range interactions8.
For a given filling and temperature (ν, T), the magnetic

susceptibility χ̂0 contains information about (i) the critical
interaction strength Uc, that is the minimal value of U needed
to drive the system from the paramagnetic regime (U < Uc) into
magnetic order (U≥Uc) and (ii) the type of magnetic order
depending on the distribution of magnetic moments in the
moiré unit cell.
In Fig. 1e, we show Uc as a function of filling at T= 1.3 K. The

color maps indicate the type of magnetic ordering [yellow:
antiferromagnetic (AFM) and red: ferromagnetic (FM)]. A precise
definition of the order parameter that continuously interpolates
from FM to AFM order is given in the Supplemental Methods. We
find that small values of Uc are observed at (or close to) the
integer fillings ν= ±3,−2, ±1 driving FM order. Small values of Uc

indicate that the system is very susceptible to this kind of
magnetic order as already a small interaction value U is sufficient
to trigger the magnetic instability. Interestingly, for ν=−3,−2,
±1 these dips in Uc are surrounded by AFM regions exhibiting a
much larger Uc. Such behavior was previously observed in
MATBG7 and indicates that, depending on the value of the
Hubbard-U, these AFM instabilities may not be strong enough to
actually occur, which opens the door for possible spin-fluctuation
mediated superconductivity.
To investigate the influence of an external, perpendicular

electric field, we set the onsite energies of the outer layers to
ΔD= ±30meV, which models the presence of a displacement field
similar in magnitude (see Supplementary Methods) to that applied
in the experiments of ref. 54 to achieve their highest SC transition
temperatures. In Fig. 1f, we show the same RPA analysis for this
additional interlayer potential. In contrast to what was found
without an electric field, we now observe small values of Uc close
to ν=+2 electrons. We observe an increase in the small value of
Uc at ν=+1, and the value at ν=+3 remains relatively
unchanged by the displacement field. Moreover, on the hole-
doped side Uc is increased strongly almost over the whole doping
range, which is where the lowest values of Uc were observed
without a displacement field. Interestingly, now an AFM region
which is surrounded by FM regions emerges around ν=+2.5.
Within this AFM region, Uc is large, which yields a paramagnetic
phase with AFM fluctuations for U < Uc.

Spin-fluctuation-induced superconductivity
To model unconventional superconductivity in MATTG, we
assume that Cooper pairs are formed due to intricate effects
arising from microscopic electron–electron interactions. Hence,
this approach differs from the conventional BCS theory with
electron–phonon coupling as the predominant pairing mechan-
ism. In the vicinity of magnetic (semi-metallic or metallic)
instabilities described above, a spin-polarized electron may travel
through the graphene lattice and polarize the other electrons’ spin
around it such that an attractive interaction arises between the
electrons and they finally form a bound state81. Technically, we
capture this effect of transverse and longitudinal spin-fluctuations
by the microscopic pairing vertex Γ̂2, which we derive using the
FLEX. We then solve the non-linear BdG equations self-consis-
tently, using the full atomistic FLEX pairing vertex to obtain
information about the nature of the SC state (for details see
“Methods” section and Supplementary Methods).
When MATTG is doped near ν=−2.5 in the absence of a

displacement field, our unconventional BCS theory reveals
nematic superconductivity that originates from AFM spin-
fluctuation exchange. As shown in Fig. 1, as a function of filling
and temperature, the system features an SC dome enclosed by FM
instabilities at integer fillings ν=−2 and ν=−3. The transition
temperature of the SC phase is substantially influenced by the
spin-fluctuation spectrum. As AFM tendencies are weakened with
increasing temperature and FM instabilities dominate around
the integer fillings, the SC region is effectively confined between
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ν=−2 and ν=−3 with an upper critical temperature of Tc ≈ 2 K.
For even larger temperatures, the flat bands of the system are no
longer resolved due to temperature broadening and the system
continuously returns to ordering tendencies inherited from the
untwisted system9. This can be clearly recognized by the FM
ordering tendencies disappearing at high T.
The driving force behind this SC phase originates from low-

energy AFM spin-fluctuations81 that can provide an attractive
potential for electrons in MATTG. The non-uniform real-space
profile of the spin-mediated pairing vertex Γ̂2 in the moiré unit cell
(see Supplementary Methods) shows that these attractive
components are strongest on nearest-neighbor bonds in the
single graphene sheets of MATTG, thus suggesting in-plane
Cooper pairs. The low-energy spin-fluctuations are strengthened
in the vicinity of the magnetic instability, i.e., when the value of
the repulsive Hubbard-U is slightly below the critical interaction
strength U≲ Uc. In this parameter regime, the system shows no
magnetic order, but the attractive interactions mediated by the
spin fluctuations can provide the pairing glue for unconventional
spin-singlet superconductivity between the integer fillings. At the
same time, singlet Cooper pairs may not be relevant close to the
FM instabilities as the effective interaction Γ̂2 is purely repulsive in
the singlet channel.
The only free parameter in our approach is the value of the

Hubbard-U, which cannot easily be extracted from first-principles
due to a large number of atoms in the moiré unit cell. Besides,
transport measurements are very sensitive to the dielectric
environment which may screen the interactions more strongly.
This can be achieved by, for example, varying the distance
between the MATTG sample and the metallic gate(s)32,67, using a
dielectric substrate with a larger dielectric constant82 or placing
an AB stacked graphene bilayer in the immediate vicinity of the
sample31. In our study, we adopt U= 5.1 eV, which is a realistic
value for graphene-based materials obtained from first-principles
calculations83,84. Choosing this particular value of the Hubbard
interaction supports spin-fluctuation induced superconductivity
for ν=−2− δ on the hole-doped side and ν=+ 2+ δ on the
electron-doped side, which is schematically visualized by the
blue SC domes in the top panel of Fig. 1e. Based on our
argument, we propose that the SC instabilities can shift to
different fillings if the dielectric screening reduces the Hubbard-
U to smaller values. For example, if the interaction strength is
screened to U= 4.4 eV as visualized by the green dashed line in
Fig. 1e, SC domes shift toward AFM regions in the phase diagram
where U ≲ Uc. As can be seen in the top panel of the same figure,
this results in the formation of two SC domes (green) at fillings
ν=−1− δ on the hole-doped side and at ν=+1− δ on the
electron-doped side.
As recent experiments have demonstrated the displacement

field tunability of the SC phase53,54, we further investigate the
system in the presence of an electric field (ΔD= ±30meV), with
the results shown in Fig. 1f. We observe that the spin-fluctuation
spectrum undergoes major changes such that superconductivity is
enhanced at the electron-doped side and an SC dome spreads
over almost the entire filling range between ν=+ 2 and ν=+ 3,
which is in agreement with recent experimental findings53,54. This
highly tunable filling dependence of the SC domes under the
influence of an electric field is caused by modifications in the low-
energy bandstructure of MATTG76 and hence the spin-fluctuation
spectrum. As depicted in Fig. 1e, f, FM, semi-metallic, or metallic
states move to the electron side at ν=+ 2,+ 3, and the vacated
phase space in between is taken over by SC domes driven by AFM
fluctuations in the paramagnetic phase. We relate these findings
to those of the experimental reports53,54 in more detail in the
“Discussion” section below.

Nematic SC order
Next, we analyze the nature of the SC spin-singlet order parameter
Δ̂ that is obtained from our atomistic BCS theory for unconven-
tional superconductivity (see “Methods” section for details). We
concentrate on U= 5.1 eV, T= 0.2 K and ν=−2.5, firmly placing
the system in an SC state. Here the SC order shows clear nematic
signatures of C3z-symmetry breaking on the atomic (carbon-
carbon) bond scale and the moiré length scale, see Fig. 2a, b.
First, the spatially resolved order parameter amplitude ∣Δ(ri)∣
obtained from averaging the order field Δ̂ ¼ Δij over nearest-
neighbor bonds, and shown in Fig. 2a, depicts clear signatures of
C3z symmetry breaking on the moiré scale. The nematic SC
ground-state is threefold degenerate consisting of three order
parameters with nematic axis C2 varying by rotation around 120°.
All three states are degenerate in free energy, thus breaking
the original C3z symmetry of the Hamiltonian spontaneously.
Furthermore, we find that the order parameter is completely real-
valued and thus restores time-reversal symmetry in contrast to
any chiral dx2�y2 ± idxy SC state. In fact, we find that complex–linear

combinations of the d-wave components Δij ¼ cosðθÞf ijdx2�y2
þ

sinðθÞeiϕf ijdxy are energetically disfavored [see Fig. 2e]. The
amplitude distribution of the order parameter is strongly
enhanced in the AAA regions along the nematic C2 axis in the
middle layer of MATTG and is a factor of ~10 smaller in the outer
two layers as depicted in Fig. 2a. At the same time, the order
parameter vanishes in the ABA and BAB regions as expected due
to the lack of states in the non-interacting Hamiltonian.
In addition, we characterize the SC order parameter on the

atomic scale, where the symmetry is given by the D6h point group
of the single graphene sheets. As the FLEX pairing vertex Γ̂2 is
most attractive on nearest-neighbor bonds, we project the gap
onto the complete basis set fη spanned by the irreducible
representations of D6h, which consists of the extended s-wave
η= s+ and two d-wave components dxy and dx2�y2 , see “Methods.”
Our analysis reveals that the real-valued order parameter shows
nematic d-wave characteristics with vanishing s-wave amplitude,
similar to atomistic calculations in MATBG7,85. To this end, we
define a real-valued two-component vector for each carbon atom

τðriÞ ¼
P

jΔijðf ijdx2�y2
; f ijdxy Þ

T
that captures the spatially varying

orientation in the d-wave components and is displayed as
streamlines in Fig. 2b. There exists a local d-wave nematicity on
the carbon-carbon bond scale that forms a vortex-antivortex
structure close to the AAA and ABA/BAB regions and is aligned to
the C2 nematic axis on the moiré scale. Interestingly, the phase of
τi from the middle to the outer layers of MATTG is shifted by π,
which is a consequence of the interlayer repulsion in the normal-
state Hamiltonian. This π-locked Josephson coupling was pre-
viously also observed between the two graphene sheets in
MATBG and is expected to stabilize the nematic phase7,85.
The averaged amplitude of the nematic SC order parameter

jΔj ¼ hjΔðriÞji is sensitive to the choice of the Hubbard-U with
respect to the critical interaction strength Uc predicted by the RPA
analysis. In Fig. 2d, we show that for ν=−2.5 and T= 0.2 K
nematic superconductivity is only present if U− Uc≲ 0.1 eV in our
approximation. Approaching the magnetic instability U→ Uc, the
overall amplitude of the pairing interaction Γ̂2 increases and the
gap parameter grows exponentially as a function of interaction
strength and density of states ρ(ϵ) on the Fermi surface /
exp �1=ðρðEFÞjΓ̂2jÞ
� �

as expected in a weak-coupling theory. This
also emphasizes the sensitivity of superconductivity to screening
the interactions or to changes in the spin-fluctuation spectrum, as
for example by a displacement field as demonstrated in Fig. 1e, f.
The nematic properties of the SC state lead to clear signatures

of C3z-symmetry breaking in the LDOS. Figure 2c depicts the LDOS
at the AAA region in the outer layer of MATTG. We find that the SC
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state gaps the flat bands in MATTG, while the highly dispersive
Dirac cone remains partially ungapped (within the energy
resolution 0.01 meV of our calculations) as each Dirac cone shows
two nodes on the Fermi surface, see Fig. 3. For low energies
E≲ ∣Δ∣, quasi particle excitations are forbidden in the AAA regions
along the nematic axis C2 due to the large gap amplitude in the SC
condensate as shown in the subpanel (2) of Fig. 2c. For larger
energies [subpanels (1), (3), (4)] the system continuously goes back
to a spectral weight distribution similar to the normal-state
Hamiltonian shown in Fig. 1 with a lower degree of C3z symmetry
breaking. To analyze the behavior of the Dirac cone and the flat
bands in more detail, in Fig. 3a we show the density of states
(DOS) in the SC phase either for the full system (black thick line)
and restricted to the central layer (thin gray line). In the BCS
formalism, condensation of Cooper pairs occurs on the energy
scale of jΔj, whereas electronic excitations are described in
terms of fermionic quasiparticles with energy ± En;k �
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵn;k � μÞ2 þ jΔn;k j2

q
that are shifted relative to the energies

in the normal state ϵn,k by the order parameter amplitude (in
momentum-band space) ∣Δn,k∣, resulting in a particle-hole sym-
metric DOS. In the DOS of all layers, we find separate features of
the Dirac cone (highlighted by the red line) and the flat bands.
While the flat bands are fully-gapped (black line), the Dirac cone
remains partially ungapped and leads to separate linear signatures
~∣E∣ (red line).
First, the flat bands of MATTG are fully gapped on an energy

scale of ~1meV (black line) corresponding to the average gap
amplitude jΔj. Although the gap can reach values of 10 meV in the
AAA regions where it is strongly amplified, the DOS is sensitive
only to the spatially averaged value of the gap. Comparing this to

the density of states of only the middle layer (thin gray line)
illustrates that the Dirac cone has dominant weight on the outer
layers only: the linear contribution to the density of states of all
layers is not present in the central layer and a true gap of ~1meV
opens up. This shows that the dominant contribution to the flat
bands resides in the central layer.
Next, we analyze the band splitting of the Dirac cones by

calculating the quasiparticle spectrum E(k) throughout the
Brillouin zone (BZ) of MATTG, see Fig. 3b. The Dirac cones
located at K and K 0 each show two nodes in the quasiparticle
spectrum that reflect the C3z symmetry breaking of the nematic
SC state in momentum space. In Fig. 3c, these nodes become
visible by the dark blue regions indicating the vanishing gap
amplitude jΔj ! 0 as the quasiparticle energies approach
E(k)→ 0. In Fig. 3d, we sketch the situation close to the Dirac
cone for the chosen filling of ν=−2.5. The chemical potential
(yellow plane) cuts the Dirac cone at energies higher than the
one of the Dirac point such that the tip of the Dirac Cone is
mirrored due to the particle-hole symmetry of the quasiparticle
spectrum and the Fermi surface consists of a ring (black line). In
the SC phase, the particle-hole symmetric quasiparticle
spectrum shows two nodes on this Fermi surface [green arrows
in Fig. 3d]. Away from these nodes, the Dirac cone is slightly
gapped. Collectively, this leads to a linearly increasing DOS
around the Fermi-level, in contrast to the constant contribu-
tions that would be present if the Dirac Cones remained
completely ungapped.
Since the flat bands (Dirac Cone) can be labeled according to

the symmetric (anti-symmetric) irreducible representation of the
mirror reflection symmetry σh, the different contributions to the
DOS suggest that superconductivity in MATTG is mainly driven by

Fig. 2 Properties of the superconducting order parameter in MATTG for ν=−2.5 and T= 0.2 K. a Spatially resolved atomistic gap
jΔðriÞj=maxfjΔðriÞjg in the outer layer of MATTG. Our analysis reveals three degenerate real-valued ground states that break C3z rotational
symmetry on the moiré scale along the nematic axis C2 (black arrow). b Layer-wise representation of the order parameter field. The value
of ∣Δ(ri)∣ is larger by a factor of ~10 in the middle layer compared to the outer layers with most weight being concentrated in the AAA regions.
The phase of the superconducting gap is shifted by π between single layers. Additionally to the nematicity on the moiré scale, we find strong
local atomic-scale nematicity in the orientation of the d-wave components τ(ri) (black streamlines). The moiré nematicity is clearly visible due
to the emergence of a vortex–antivortex pattern near the AAA regions. c Local density of states (LDOS) in the superconducting state Δ̂3 from a
in the AAA region of the outer layer of MATTG. Peaks at selected energies (1)–(4), which correspond to flat bands being gapped by the order
parameter, show clear signatures of C3z symmetry breaking. In subpanel (2), the influence of the C2 nematic axis is visible: for low energies,
quasiparticles are forbidden to occupy the AAA regions along the direction of C2 due to the presence of the superconducting condensate but
accumulate on both sides where the gap amplitude vanishes. This leads to a strong degree of C3z symmetry breaking as visualized by the
color code in the main panel. d Strength of the superconducting order and its projections on the honeycomb d-wave components as a
function of the Hubbard-U. The d-wave order parameter increases exponentially as a function of interaction strength U. The s+ projection has
negligible weight. e Free energy of all complex superpositions of the real-valued irreducible representations dxy and dx2�y2 . The minima in free
energy occur for the real-valued nematic solutions (and their U(1) transformations) only.
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the flat bands, whereas superconductivity in the Dirac Cone is only
induced by proximity to the flat bands. This is also reflected in the
real-space properties of the order parameter Δ̂. Since the Dirac
Cone belongs to the anti-symmetric irreducible representation it
only has spectral weight on the outer layers (l= 1, 3), where
superconductivity is significantly suppressed relative to the middle
layer. Meanwhile, the SC state is fully gapped in the central layer,
which must originate from the flat bands. We hence argue that
quasiparticle excitations in the Dirac Cone are only possible due to
proximity to the flat bands.

DISCUSSION
Our work emphasizes the role of spin-fluctuation exchange in the
formation of SC instabilities in MATTG. By including both long-
ranged (Hartree) and short-ranged (Hubbard-U) electron–electron
interactions in our microscopic theory, we find that without a
displacement field, FM ordering dominates around integer fillings
ν=−3,−2,−1 and 1 even at relatively small interaction strengths
(U ≈ 3–4 eV). In between these integer fillings stabilizing AFM
order requires a larger interaction strength (U ≈ 4–5 eV). Intrigu-
ingly, estimating U from the monolayer graphene case puts the
interaction strength right at the border of these different ordering
tendencies. This allows superconductivity mediated by spin
fluctuations in between integer fillings for values smaller than
the critical interaction required to stabilize AFM order. This
superconductivity is bounded by the above-mentioned stronger
FM order when approaching integer fillings, naturally restricting
the region of superconductivity to dome structures in a ν–T phase
diagram.
At zero electrical field, choosing e.g. U= 5.1 eV, we find the

strongest superconductivity for fillings between ν=−3 and ν=
−2 caused by low-energy AFM spin-fluctuations in the
paramagnetic phase. In this regime, superconductivity occurs
within a characteristic dome shape in the ν–T phase diagram
exhibiting a critical temperature of Tc ≈ 2 K. This is also where
refs. 53,54

find clear signatures of an SC state. A weaker SC
feature is predicted around ν=+ 2, which, however, within our

approach is not surrounded by FM order. In ref. 53 super-
conductivity was reported at a similar filling, while ref. 54 only
finds very weak indications of superconductivity around that
filling without displacement field.
Including a displacement field, FM order is weakened at the

hole side and strengthened at the electron side at least for
integer fillings of ν=+2 and +3, which we attribute to
dramatic changes in the spin-fluctuation spectrum. Super-
conductivity is strengthened in between these fillings in
agreement with ref. 54. The additional SC features, which
appear only in ref. 53 at fillings between ν=+1 and +2 and in
between ν=−1 and −2 deserve further study. At values of U
for which we can robustly argue for superconductivity between
ν= ±2 and ±3, AFM order has already taken over at filling
between ν= ±1 and ±2. This might hint towards an insuffi-
ciency of our mean-field approach, overestimating the strength
of AFM order due to the absence of quantum fluctuations and
neglecting interchannel feedback. From a methodological point
of view, it would be conducive to study MATTG using unbiased
methods like the functional renormalization group or tensor
product states, although this may require a fundamental
advance to numerically treat the large moiré unit cell without
restricting the analysis to the low-energy bands.
As next steps, we suggest the experimental scrutiny of

(i) the filling dependence of the SC phase when tuning the
electronic interactions by screening32 and of (ii) the emergent
nematicity. The latter should yield clear signatures of C3z-
symmetry breaking in the LDOS being accessible within STM
measurements. Since recent experimental work55 suggests that
the SC phase might be of non-spin-singlet type close to the
filling ν=−2.4, this also deserves further theoretical investiga-
tion in our approach as FM spin-fluctuations, which surround
the SC dome in our phase diagram, are known to drive spin-
triplet SC phases86. Revealing the intrinsic interplay between
spin-singlet and spin-triplet phases is an exciting avenue of
future research.

Fig. 3 Quasiparticle density of states (DOS) in the superconducting phase of MATTG for ν=−2.5 and T= 0.2 K. a The density of states in

the superconducting state captures fermionic quasiparticle excitations with energies ± En;k � ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵn;k � μÞ2 þ jΔn;k j2

q
that result in the DOS

being particle-hole (ph) symmetric. In the DOS of all layers (black line), we find clear and separate features of the Dirac cone (highlighted by
the red line) and the flat bands: While the flat bands are fully gapped on an energy scale of ~1 meV (black line), the Dirac cone leads to
separate linear signatures ~∣E∣ (green dashed line) in the DOS. The partial DOS of the middle layer of MATTG (gray line) shows no contribution
from the Dirac cone’s DOS ~∣E∣ but contains contributions of the flat bands only. This is in agreement with the Dirac cone having dominant
spectral weight in the outer layers, whereas the flat bands dominate in the middle layer. b, c Quasiparticle energy landscape E(k) as a function
of momentum in the Brillouin zone of MATTG. In the superconducting phase, the Dirac cones at K and K 0 each show two nodes in the
quasiparticle spectrum reflecting the C3z symmetry breaking nature of the nematic superconducting phase in momentum space. These nodes
become distinguishable by the dark blue regions in c indicating the vanishing gap amplitude ∣Δn,k∣→ 0 as the quasiparticle energies approach
E(k)→ 0. d Schematic sketch of the Dirac cone in the normal state (upper panel) and superconducting phase (lower panel). In the non-
interacting case Δ̂ ¼ 0 and at filling ν=−2.5, the chemical potential (yellow plane) cuts the Dirac cone at energies higher than the Dirac point
such that the tip of the Dirac cone is mirrored by ph-symmetry and the Fermi surface consists of a ring (black line). In the superconducting
phase, the quasiparticle spectrum shows two nodes at this Fermi surface (green arrows) but is gapped away from these points.
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METHODS
Moiré structure
The commensurate moiré unit cell of twisted trilayer graphene (TTG) can
be defined using the same convention as twisted bilayer graphene (TBG)77.
We start from perfectly aligned, AAA stacked trilayer graphene with a
carbon atom of each layer residing at the origin of the x–y plane, and twist
the middle layer anti-clockwise with respect to the encapsulating layers
about the z-axis. This creates a structure with a single moiré pattern
because of the alignment of the encapsulating layers.
For atomistic methods, commensurate moiré unit cells must be

constructed. Following ref. 77, commensurate moiré structures are defined
by two integers n and m, which specify the twist angle, θ, via

cos θ ¼ n2 þ 4nmþm2

2 n2 þ nmþm2ð Þ : (1)

The corresponding triangular moié lattice has a length scale that is
determined through the twist angle via

LðθÞ ¼ a0
2 sinðθ=2Þ ; (2)

where a0 is the lattice constant of graphene. For our simulations, we use n,
m= 20, 21 (θ= 1.61°), which leads to a commensurate unit cell of size
L(θ)= 8.59 nm that contains N= 7566 carbon sites.
We relax the atomic positions of TTG using classical force fields

implemented in LAMMPS87. For the intralayer potential, we use AIREBO-
morse88, and for the interlayer potential, we use Kolmogorov–Crespi
potential89. We take the lattice parameter of graphene to be a0= 2.42Å.

Atomistic modeling and Hartree calculations
In real space, the atomistic TB Hamiltonian takes the form

H0 ¼ P
ij;σσ

H0
ij c

y
iσcjσ ;

H0
ij ¼ tðri � rjÞ:

(3)

The operator cðyÞiσ annihilates (creates) an electron at site ri with spin σ.
The pz electrons are coupled via Slater-Koster hopping parameters77:

tðdÞ ¼ tkðdÞ þ t?ðdÞ

tkðdÞ ¼ V0
ppπ exp � jdj�acc

δ0

� �
1� d�ez

jdj
� �2� �

t?ðdÞ ¼ V0
ppσ exp � jdj�d0

δ0

� �
d�ez
jdj
h i2

:

(4)

Here ez is a unit vector that points perpendicular to the graphene sheets,
d0= 1.362 a0 is the vertical spacing of graphite, δ0= 0.184 a0 is the transfer
integral decay length, and acc ¼ a0=

ffiffiffi
3

p
is the distance between two

nearest neighboring carbon atoms (in pristine graphene). The term Vppσ=
0.48 eV describes the interlayer hopping while Vppπ=−2.7 eV models the
intralayer hopping.
To obtain good agreement with DFT calculations for the electronic

structure at charge neutrality, we add an additional onsite energy term
through

HΔ
ii2 ¼ �35 meV; (5)

where this term only exists on the inner, twisted layer (2), as indicated by
the subscript of the Hamiltonian.
We performed self-consistent Hartree TB calculations following the

method outlined in ref. 80. Full details of the method have been outlined
in the Supplementary Methods for completeness. We utilize a 8 × 8
regular grid in the BZ to calculate the electron density and a 11 × 11 set
of moiré unit cells to converge the Hartree potential in real space. An on-
site interaction of 17 eV is used with a 1/∣r∣ potential with a dielectric
constant of 1 for all other interactions. We work in the limit of zero
temperature and employ a linear mixing scheme to iteratively converge
the set of equations.
The full TB Hamiltonian consists of the following contributions

Ĥ ¼ Ĥ
0 þ Ĥ

H þ Ĥ
Δ þ Ĥ

E
;

H ¼P
ijσ

Hijc
y
iσcjσ :

(6)

The hopping terms are included through Ĥ
0
, Hartree interactions

are included through Ĥ
H
, the additional onsite potential energy is

included through Ĥ
Δ
, and finally an electric field is included through Ĥ

E
.

Further details of the Hartree contributions and the inclusion of the
electric field can be found in the Supplementary Methods.

Density functional theory
DFT calculations were carried out using ONETEP90 on large twist angle
TTG structures, see Supplementary Methods for results. We utilized
the Perdew–Burke–Ernzerhof exchange–correlation functional91 with
projector-augmented-wave pseudopotentials92, a kinetic energy cutoff of
800 eV, and a minimal basis of four non-orthogonal generalized Wannier
functions per carbon atom. Due to the metallic nature of TTG, we use the
ensemble-DFT approach93. Our calculations are converged such that the
total energy change between iterations is <25meV.

Magnetic susceptibility
To account for magnetic fluctuations, we add a Hubbard interaction acting
on the graphene pz orbitals in the Hamiltonian H :

HU ¼ H þ HI; HI ¼
X
iσ

U ni;σni;σ : (7)

To treat the four-fermion term HI , we employ the RPA in the static, long-
wavelength limit q= (q, q0)→ 0 as presented in ref. 9. To this end, we
calculate the atomistic magnetic susceptibility χ̂0:

χ̂0 ¼ χ̂0ðq ¼ q0 ¼ 0Þ ¼ T
Nk

X
k;k0

Ĝðk; k0Þ � Ĝðk; k0ÞT: (8)

The Green’s function Ĝðk; k0Þ ¼ Gijðk; k0Þ as a function of Matsubara
frequency k0, moiré momentum k is given by

Ĝðk; k0Þ ¼ ðik01� ĤðkÞ þ μ1Þ�1
; (9)

with ĤðkÞ the “non-interacting” TB Hamiltonian including the Hartree
corrections and μ is the chemical potential corresponding to the filling
factor used in the Hartree potential.
We find that the critical Hubbard-U needed for the onset of magnetic

ordering is given by Uc=−1/λ0, with λ0 being the lowest eigenvalue of χ̂0.
The magnetic ordering is proportional to the corresponding eigenvector
v!0. For numerical evaluation of the Matsubara sum in Eq. (8), we use the
exact same frequency grid presented in ref. 8 and thus are able to take into
account the effect of low-temperature instabilities. We sample the moiré
BZ with Nk= 24 points for the RPA simulations.

Fluctuation–exchange approximation
To account for pairing instabilities mediated by charge- and spin-
fluctuation exchange, we derive a microscopic pairing interaction Γ̂2 in
the FLEX that incorporates effects of transverse and longitudinal spin-
fluctuations. In terms of the full atomistic RPA susceptibility χ̂0, the
scattering between Cooper pairs in the singlet channel is described by the
pairing vertex81

Γ̂2ðqÞ ¼ U1� U2 χ̂0ðqÞ
1þ Uχ̂0ðqÞ

þ U3 χ̂20ðqÞ
1� U2χ̂20ðqÞ

: (10)

For diagrammatic details on the derivation of the FLEX pairing vertex, the
reader may refer to the Supplementary Methods. In the static, long-
wavelength limit q= (q, q0)→ 0, the spatial profile of the long-ranged
interaction vertex strongly depends on the magnetic fluctuations
predicted by the RPA analysis, see Supplementary Methods. The latter
limit proves to contain the relevant physics when starting with local
repulsive interactions. The RPA susceptibility χ̂0 predicts spin correlations
at length scales intermediate to the carbon–carbon bond scale and moiré
length scale, thus being described by orderings at q= 0. The system hence
shows the same ordering tendencies in all moiré unit cells with variable
correlations present on the carbon-carbon bond scale.

SC state
To analyze the SC properties of the system, we decouple the effective
pairing vertex Γ̂2 in mean-field approximation, allowing only for symmetric
spin-singlet bond order parameters Δij= Δji due to the proximity to AFM
tendencies in between the integer fillings

Δ̂ðkÞ ¼ ΔnmðkÞ ¼ � 1
2N

X
k0σ

Γ2;nmðk � k0; q0 ! 0Þ ´ σhcnσðk0Þcmσð�k0ÞiMF:

(11)
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The resulting mean-field Hamiltonian can be rewritten in the Nambu
spinor basis ψy

k ¼ ð c!k" c
!y

�k#Þ
T
: The full 2N-dimensional Hamiltonian for

the spin-dependent pz orbitals of the carbon atoms is of BdG form

HMF ¼
X
k

ψy
k

ĤðkÞ Δ̂ðkÞ
Δ̂
yðkÞ �Ĥ

�ð�kÞ

 !
ψk þ const. (12)

The BdG bilinear form is diagonalized by a block-structured unitary
transform Ûk

HMF ¼P
k
ψy
k

ĤðkÞΔ̂ðkÞ
Δ̂
yðkÞ � Ĥ

�ð�kÞ

 !
ψk

¼P
k

Ûkψk

	 
y Êk0

0� Êk

 !
Ûkψk

	 


Ûk ¼ ûk � v̂k
v̂�k ûk

� �
and Û

y
kÛk ¼ 1:

(13)

The matrices ûk v̂kð Þ are N × N matrices, which describe the particle (hole)
amplitudes of the fermionic Bogoliubov quasiparticles γk with energies
±Ek. The latter are defined as

γk;"
γy�k;#

 !
¼ ûk" v̂k"

�v̂�k# ûk#

 !
ck;"
cy�k;#

 !
: (14)

Together with Eq. (11), this yields a set of non-linear equations that needs
to be solved self-consistently:

hci"ðkÞcj#ð�kÞ � ci#ðkÞcj"ð�kÞiMF ¼
X
n

uni;k"v�nj;k# þ vnj;k"u�ni;k#
� �

tanh
En;k
2T

� �
:

(15)

To this end, we start with an initial guess Δ initij and iterate until

convergence is achieved using a linear mixing Δ̂
nþ1 ¼ ð1� αÞΔ̂n � αΔ̂

n�1

scheme to avoid bipartite solutions in the fixed point iteration. In all of
our calculations, we set the relative error for convergence of Δ̂ to ϵ=
10−6 and set the mixing parameter to α= 0.2. Here, we only account for
the gap parameter Δ̂ at the Γ-point of the BZ. This approximation may
not change the underlying physics significantly as our microscopic
interaction Γ̂2 in the static, long-wavelength limit (q→ 0) carries no
momentum dependence and the size of the BZ of MATTG is drastically
reduced due to the large real-space unit cell. Still, we checked that our
results do not change qualitatively when taking a dense mesh with up to
24 k-points in the BZ into account. Furthermore, we track the free energy
F of the system for different initial guesses and during each self-
consistency run to ensure proper convergence of the BdG algorithm, see
Supplementary Methods.
To determine the local amplitude of the SC state from the bond-related

order field Δ̂ ¼ Δij , we introduce a three-dimensional vector Δ
!ðriÞ ¼

ðΔi;iþδ1 ;Δi;iþδ2 ;Δi;iþδ3 ÞT that contains the SC bonds to all (three) neighbor-
ing sites of the carbon atom located at ri. The norm of this order parameter
field yields the lattice-resolved amplitude ∣Δ(ri)∣, whereas the overall
amplitude jΔj ¼ hjΔðriÞji follows from averaging this quantity over all sites
in the moiré unit cell. Here, we only take the l= 1, 2, 3 nearest neighbor
carbon-carbon bonds δl into account. This is equivalent to considering all
SC bonds jΔj � jjΔ̂jj as nearest-neighbor sites are strongly favored in terms
of attractive interaction generated by the spin-fluctuations exchange
mechanism, see Supplementary Methods.

Symmetry classification of the gap parameter and LDOS
To characterize the SC order parameter with respect to different pairing
channels on the atomic carbon–carbon bond scale, we project the order
parameter onto the complete basis set formed by the irreducible
representations of the D6h point group

ΔηðnÞ ¼
X
l

f ηðδlÞðcn"cnþδl# � cn#cnþδl"Þ; (16)

where η denotes different spin-singlet pairing channels: the extended
s-wave s+ and two d-wave components dxy and dx2�y2 . The coefficients fη(δl)
are form factors that correspond to the pairing channel and are obtained by
symmetrizing the bond functions δl with the irreducible representations of
the point group D6h of graphene. The form factors are: sþ ¼ ð1; 1; 1Þ= ffiffiffi

3
p

,
dx2�y2 ¼ ð2;�1;�1Þ= ffiffiffi

6
p

and dxy ¼ ð0; 1;�1Þ= ffiffiffi
2

p
. Here, we only take the l

= 1, 2, 3 nearest neighbor carbon-carbon bonds δl into account, as they are

dominant in terms of attractive interaction strength, see Supplementary
Methods. The LDOS in the SC phase is given by

ρiðωÞ ¼
X
k;n

juni;k j2δ ω� En;k
	 
þ jvni;k j2δ ωþ En;k

	 

: (17)

To this end, we assume that the gap does not change significantly
when calculated at different points in the (mini)-BZ such that
Δ̂ðkÞ � Δ̂ðk ¼ 0Þ. Applying this Γ-point approximation, we diagonalize
the Nambu Hamiltonian Eq. (12) for up to 100 × 100 points in the BZ of
MATTG. To speed up the convergence, we use an adaptive momentum
mesh that allows for finer sampling around the K and K 0 points. The δ-
function in Eq. (17) is approximated by a Lorentzian kernel with
broadening η= 0.03 meV. The DOS is obtained from the LDOS by
adding up the contribution of all sites. To capture the degree of C3z
symmetry breaking in the LDOS in the nematic SC phase, we compute
the energy-resolved anisotropy ζC3z ðEÞ by comparing the LDOS at each
site ρ!ðEÞ with its counterpart Rφρi(E) resulting from rotation around
φ ∈ {120°, 240°}:

ζðEÞ ¼ 1
2

X
φ2f2π=3;4π=3g

jjRφ ρ!ðEÞ � ρ!ðEÞjj
jj ρ!ðEÞjj : (18)

Note that the nematic SC order parameter breaks C3z symmetry on the
microscopic (graphene) sub-lattice and moiré scale. Since the latter is
easier to access experimentally, we smear the LDOS in real space with a
Gaussian envelope of width σ= a0 such that ζC3z ðEÞ only captures the
degree of C3z symmetry breaking on the moiré scale.
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