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Electron-electron interactions are intrinsically long ranged, but many models of strongly interacting electrons
only take short-ranged interactions into account. Here, we present results of atomistic calculations including both

long-ranged and short-ranged electron-electron interactions for the magnetic phase diagram of twisted bilayer
graphene and demonstrate that qualitatively different results are obtained when long-ranged interactions are
neglected. In particular, we use Hartree theory augmented with Hubbard interactions and calculate the interacting
spin susceptibility at a range of doping levels and twist angles near the first magic angle to identify the dominant

magnetic instabilities. At the magic angle, mostly antiferromagnetic order is found, while ferromagnetism
dominates at other twist angles. Moreover, long-ranged interactions significantly increase the twist angle window
in which strong correlation phenomena can be expected. These findings are in good agreement with available

experimental data.

DOLI: 10.1103/PhysRevB.103.195127

I. INTRODUCTION

Since the discovery of superconductivity in proximity to
correlated insulator states at half (electron or hole) filling
of the flat bands [1,2], there has been great interest in the
electronic properties of magic-angle twisted bilayer graphene
(tBLG) [3]. Additional experiments [4—10] discovered corre-
lated insulator phases and superconductivity at other doping
levels of the flat bands and revealed a wide range of inter-
esting phenomena [11,12] including strange metal behavior
[13,14], ferromagnetic order [15,16], superconductivity with-
out correlated insulators [17-19], Chern insulators [20-22],
and nematic order [6,23-25].

These findings demonstrate the importance of electron-
electron interactions for understanding the electronic proper-
ties of tBLG [11,12]. The quintessential model for strongly
interacting electrons is the Hubbard model, in which electrons
only interact when they are on the same “site” (typically
assumed to be an atom). In tBLG near the magic angle, the
moiré pattern results in the emergence of eight flat bands
(including a factor of 2 from spin degeneracy) near the
Fermi energy which are separated from all other bands by
energy gaps [26-34]. Starting from atomistic tight-binding
approaches, Hubbard models for tBLG can be obtained by
constructing Wannier functions of the flat bands [35-37] (note
that this is not possible when a continuum model starting
point is used; in that case additional bands must be included
in the Wannierization procedure [38,39]). The properties of
such models have been studied using mean-field theory, the
functional renormalization group [40,41], and exact diago-
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nalization [10], resulting in many important insights into the
origin of superconductivity and correlated insulator states. In-
stead of using flat-band Wannier functions which are extended
over the whole moiré unit cell as a basis, it is also possible to
construct atomistic Hubbard models using a basis of carbon
p, orbitals [42-44].

Importantly, Hubbard models only capture short-ranged
electron-electron interactions [45]. It is well known, however,
that long-ranged interactions play an important role in tBLG.
Using Hartree theory, several groups [46—50] demonstrated
that long-ranged interactions result in significant changes of
the electronic structure which depend sensitively on doping
and twist angle. In particular, Hartree interactions result in
a flattening of the doped bands (in addition to the band flat-
tening induced by twisting) [26-29]. This interaction-induced
band flattening explains the Fermi level pinning that was
observed in several recent scanning tunneling spectroscopy
measurements [10,23].

Therefore, accurate models of tBLG should capture both
short-ranged and long-ranged electron-electron interactions.
To achieve this, several groups used Hartree-Fock calcula-
tions based on a continuum model of the electronic structure
[51-55]. While these calculations have yielded many use-
ful insights, they do not capture atomic-scale interactions
(such as on-site interactions within carbon p, orbitals) and
often only include a few bands near the Fermi level with
the effect of all other bands being described by an effective
dielectric constant. Few groups have attempted to capture the
interplay of long-ranged and short-ranged interactions using
atomistic calculations: Gonzélez and Stauber [56] studied the
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properties of tBLG in different dielectric environments using
atomistic Hartree-Fock theory, and Sboychakov et al. [57,58]
developed an atomistic Hubbard model with electron-electron
interactions beyond the atomistic Hubbard interactions. These
studies investigated the properties of tBLG at a single twist
angle, and therefore, did not study in detail the doping and
twist-angle dependence of the interplay of long-ranged and
short-ranged interactions.

In this paper, we calculate the magnetic phase diagram
of tBLG as a function of twist angle and doping using an
atomistic Hartree theory with additional Hubbard interactions.
Specifically, we calculate the interacting spin susceptibility
and determine the critical value of the Hubbard U param-
eter that is required to induce a magnetic instability. Our
calculations predict magnetic instabilities over a relatively
large twist angle window ranging from 0.96° to 1.16°.
Near the magic angle, the magnetic ordering is mostly an-
tiferromagnetic, while at other twist angles ferromagnetism
dominates. When Hartree interactions are neglected, a quali-
tatively different phase diagram with a much smaller critical
twist angle window is found. Finally, we compare our
findings with available experimental data and overall find
good agreement.

II. METHODS

We study commensurate unit cells of tBLG with Dj
symmetry [28,29]. The atomic positions are relaxed using
classical force fields [30-34,59]. For this, we use a combina-
tion of the AIREBO-Morse [60] and Kolmogorov-Crespi [61]
potentials as implemented in LAMMPS [62].

To investigate magnetic ordering tendencies of tBLG in-
cluding the effect of long-ranged interactions, we calculate
the interacting static spin susceptibility in the normal state
using a Hartree theory plus U (Hartree+U) approach. In this
approach, Hubbard interactions within the carbon p, orbitals
are captured by adding a Hubbard contribution U ), njyn;,
[with U denoting the Hubbard parameter and n;; (n;)) de-
noting the occupancy of the up-spin (down-spin) p, orbital
on carbon atom i) to the Hartree theory total energy. This
approach assumes that the spatial range of the exchange inter-
action is strongly reduced as a result of electronic screening
induced by the flat bands [63-65]. Moreover, it has been
shown that models with short-ranged Hubbard-type exchange
interactions accurately describe the magnetic phase diagram
of graphene and bilayer graphene [66-68], which can be
viewed as “parent” systems whose ordering tendencies are
inherited by the twisted bilayer graphene [43].

The Hartree Hamiltonian is given by

Hy =) tmi—t)efe,+Y vaee, 1)
ij i

where 7; is the position vector of carbon atom i and the corre-

sponding annihilation (creation) operators are denoted by 65”.

The hopping parameters 7 (r) are determined using the Slater-

Koster rules [28,29,69]. For this, we use the parametrization

from Refs. [29,70]:

1) = 1, % 1D o6 g 4 1 1D Gin2 ) (2)

wheret, = 0.48 eV andt, = —2.7 eV are, respectively, the o
and 7 hopping between carbon p, orbitals, and d = 3.3 A and
a = 1.4 A denote the interlayer separation and carbon-carbon
bond length, respectively. Also, g, = d/(0.184a) and g, =
1/0.184 are decay parameters and ¢ is the inclination angle
of the orbitals.

The second term in Eq. (1) describes long-ranged Hartree
interactions with V (t;) denoting the Hartree potential at posi-
tion ;. The Hartree potential is given by

V() =Y (n; — MW, 3)
j

where n; denotes the occupancy of the p, orbital on atom j
and 7 is the average occupancy [48]. Also, W;; denotes the
screened Coulomb interaction between electrons at 7; and 7;
[49]. In principle, V (t;) must be determined self-consistently,
but it has been shown [46,47,49] that the resulting potential is
accurately described by

V(T) =@ —w)lVy Y cosb,- ), “)

j=1,23

where v is the number of added electrons per moiré unit
cell (relative to charge neutrality) and b; denote the three
shortest reciprocal lattice vectors of the moiré unit cell. We
use Vp =5 meV and vy = 0 [49]. These parameters include
internal screening from tBLG [63,64]. Additional screening
from the substrate or metallic gates [49,50,71] results in a
further reduction of Vj. Note that Eq. (4) assumes that the AA
regions reside in the corners of the rhombus-shaped moiré unit
cell.

Within the Hartree+U approach, the frequency- and wave-
vector-dependent interacting spin susceptibility x;;(q, go)
(with i and j denoting carbon p, orbitals and ¢ and ¢, being a
wave vector and frequency, respectively) is given by [43,72]

2, 90) = 1Y@, 90) (1 + U7V, q)1™". (5

Here, 3 denotes the noninteracting spin-response function

|
X, q0) = N > Gijk. ko)Gjitk + q. ko + qo).  (6)
k. ko

where Gk, ko) = (iko — Hu (k) + w)~! is the Matsubara
Green’s function of the Hartree Hamiltonian for states with
crystal momentum k. Also, i denotes the chemical poten-
tial, Ny is the number of momentum points used to sample
the first Brillouin zone (Ny = 24), and 8 = 1/(kgT) (with
kg and T denoting the Boltzmann constant and temperature,
respectively). The Matsubara (ky) summation is carried out
numerically using an appropriately chosen grid with N, =
500 frequencies [73]; this reduces the computational effort
compared to the analytical evaluation [43]. For comparison,
we also calculate the interacting spin susceptibility without
long-ranged interactions, i.e., setting V(z;) = 0.

We focus on low-temperature static instabilities that main-
tain the translational symmetry of the moiré lattice and
therefore use B = 10* eV~! and ¢ = gy = 0. Magnetic insta-
bilities occur when an eigenvalue of x;; diverges. The critical
interaction strength that is required to induce the ordering is
given by U, = —1/A, where Ay denotes the largest eigenvalue
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FIG. 1. Band structures of tBLG at twist angles of 1.41°, 1.20°, and 1.05° for integer fillings v of the flat bands from tight-binding (denoted
TB, see upper panels) and Hartree theory (denoted Hart.; see lower panels). Fermi levels are indicated by horizontal lines. In contrast to Hartree
theory, the tight-binding band structure does not depend on v. Note that the energy scale on the y axis is different in each panel. The zero of
energy for each plot is taken to be the Dirac point energy from tight binding.

of Xi(;)). This is a generalization of the well-known Stoner cri-

terion of ferromagnetism [74]. The corresponding eigenvector
v; of x;; characterizes the spatial structure of the resulting
magnetic order.

III. RESULTS

Figure 1 shows the band structures from Hartree theory at
three twist angles near the magic angle (6 = 1.41°, 1.20°, and
1.05°) at various doping levels. For comparison, we also show
the corresponding tight-binding results. For the two larger
twist angles, both the Hartree and tight-binding band struc-
tures exhibit Dirac cones at the K and K’ points. While the
noninteracting tight-binding band structure does not depend
on the doping level, long-ranged electron-electron interac-
tions captured by Hartree theory give rise to a significant
doping-dependent distortion of the band structure [46-50].
In particular, Hartree interactions result in a flattening of the
doped bands. For example, at & = 1.20° and v = 3 the two
higher-energy bands are much flatter than the corresponding
tight-binding bands.

The magic angle (defined as the twist angle with the small-
est width of the flat-band manifold from tight binding) is
found to be 1.05°. At this twist angle, the tight-binding band
structure differs qualitatively from the result at larger (and
smaller) twist angles. In particular, the lower-energy bands are
inverted and have a similar shape to the higher-energy bands.
Including long-ranged interactions again results in drastic
changes to the band structure with Hartree theory predicting
an increase of the overall flat-band width when the system
is doped. Also, the overall shape of the flat-band manifold
is flipped when comparing hole-doped and electron-doped
systems.

The strong band deformations which are observed in the
doped tBLG can be understood from an analysis of the elec-

tron wave functions in real space [46,48]. At the center of the
Brillouin zone, near I', the wave functions are localized in
the AB and BA regions of the moiré unit cell. In contrast,
states near M, K and K’ are localized in the AA regions
of the moiré unit cell. When tBLG is doped, states near K
and K’ are first populated by electrons (or holes) resulting
in an inhomogeneous charge density which gives rise to a
strong Hartree potential. The Hartree potential, in turn, in-
teracts strongly with states which are localized in the AA
regions, resulting in an energy shift of states near M, K and K’,
while states near I" are less strongly affected. There are small
relative distortions between the M and K points because they
are localized in a similar manner in the AA regions. For more
detailed discussions of the Hartree-theory band structures, we
refer the interested reader to Refs. [46-50].

Next, we calculate the interacting spin susceptibility from
Hartree4-U theory as a function of doping at a wide range
of twist angles near the magic angle (0.96°, 0.99°, 1.02°,
1.05°, 1.08°, 1.12°, 1.16°, and 1.20°). Figure 2 compares the
critical Hubbard parameter U, without Hartree interactions

Tight-binding

Hartree
T

3 4

096  1.02 1.08 1.16 0.96 1.02 1.08  1.16
0 (deg.) 0 (deg.)

FIG. 2. Critical Hubbard interaction strength U, required for the
onset of magnetic instabilities as a function of flat-band filling v
and twist angle 6. Left: Without Hartree interactions (tight binding).
Right: With Hartree interactions.
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(left panel) and with Hartree interactions (right panel) as a
function of twist angle and doping. To assess if the system
undergoes a phase transition, U, must be compared with the
actual value of U for a carbon p, orbital. In graphene, Wehling
et al. [75] and Schuler et al. [76] found that U =~ 4 eV.
We expect that screening from tBLG does not significantly
alter this value, as the flat bands mainly screen long-ranged
interactions [63,64]. Therefore, we assume a doping- and
twist-angle-independent value of U =~ 4 eV in the following
analysis.

Without Hartree interactions (left panel of Fig. 2), mag-
netic instabilities are found at twist angles ranging from
0.99° to 1.12°. At the magic angle (6 = 1.05°), instabilities
occur at all integer doping levels except v = 2. At twist an-
gles smaller or larger than the magic angle, instabilities are
observed for a smaller set of doping levels. In particular,
for 6 =0.99° and 6 = 1.12°, they only occur at v = —1.
In general, the critical Hubbard parameters are smaller for
hole-doped systems because the lower-energy flat bands are
somewhat flatter than the higher-energy ones in tight bind-
ing. For twist angles larger than 1.2°, we find U, = 5.5 eV,
which is similar to the value predicted for untwisted bilayer
graphene [43].

When Hartree interactions are included (right panel of
Fig. 2), a qualitatively different behavior of U, is observed
near the magic angle. In particular, the lowest values of U,
are now found for electron-doped systems. Very close to the
magic angle, U, is lowest for v = 1. At twist angles somewhat
smaller or larger than the magic angle, the lowest value of
U.is at v =2 and at § = 0.96° or 1.16° the minimum is at
v = 3. These findings can be understood from the Hartree
theory band structures, as seen in Fig. 1, which show that
the doping level which gives rise to the flattest bands de-
pends on the twist angle: at the magic angle the flattest bands
are found at v = +£1, while at & = 1.20° the higher-energy
bands are extremely flat at v = £3. Figure 2 also shows that
magnetic instabilities occur over a larger twist angle range
when long-ranged Hartree interactions are included. Specifi-
cally, the Hartree+U approach predicts such instabilities for a
twist angle window from 6 = 0.96° to & = 1.16°. This larger
critical twist angle window is consistent with experimental
findings: recent transport and tunneling experiments reported
correlated phases in a twist angle range from 1.0° to 1.2°
[6,11].

Next, we analyze the spatial structure of the magnetic
phases: the leading magnetic instabilities are either angstrom-
scale antiferromagnetic with a modulation on the moiré scale
(MAFM), angstrom-scale antiferromagnetic with nodes in the
AB and BA regions (NAFM), or mostly ferromagnetic (FM)
(see Fig. 3). Figure 4 shows the magnetic phase diagram as
function of twist angle and doping near the magic angle. With-
out Hartree interactions, the hole-doped system is typically
FM. Ferromagnetism is found to coincide with small values
of U.. In contrast, the undoped and electron-doped systems
always exhibit MAFM, with NAFM only occurring at v = 0
and v = 1 at the magic angle.

Dramatic qualitative changes in the magnetic phase dia-
gram are observed when Hartree interactions are included
(see right panel of Fig. 3). The region of NAFM order in
v — 0 space is larger, while MAFM is only found for the

FM

AA AB BA AA

FIG. 3. Dominant magnetic orderings in twisted bilayer
graphene near the magic angle. Shown is a line cut of the
magnetic order parameter (spin density) along the diagonal of the
rhombus-shaped moiré unit cell. The line cut is chosen to include the
atoms that are closest to the actual line connecting one AA region
with the next. Thus, at some point, there will always be a switch from
an A sublattice site to yet another A sublattice site which produces
a slip in the ordering. Top: Angstrom-scale antiferromagnetic with
a modulation on the moiré scale (MAFM). Middle: Angstrom-scale
antiferromagnetic with nodes in the AB and BA regions (NAFM).
Bottom: Mostly ferromagnetic (FM) order.

undoped system at § = 1.02° and & = 1.08°. Everywhere else
the ordering is FM. Again, occurrence of ferromagnetism is
correlated with low values of U., which occur because of the
interplay between the enhancement of the density of states
from the long-ranged Hartree interactions upon doping and
the enhancement of the density of states from changing the
twist angle towards the magic angle.

IV. DISCUSSION

In this section, we compare our calculated magnetic
phase diagram to experimental findings. Many experimental
techniques, including transport and tunneling measurements,
probe quasiparticle properties of tBLG. While our approach
does not directly yield such properties, our analysis below

%
0

0.96 1.02 1.08 1.16 0.96 1.02 1.08 1.16

0 (deg.) 0 (deg.)

FIG. 4. Magnetic phase diagram of twisted bilayer graphene
as a function of flat-band filling v and twist angle 6: blue de-
notes ferromagnetic order, while red and orange indicate modulated
antiferromagnetic order and nodal antiferromagnetic order, respec-
tively. Left: Without Hartree interactions (tight binding). Right: With
Hartree interactions. Note that magnetic phases with U, > 4 eV are
experimentally not relevant (hatched regions).
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reveals a strong correlation between the calculated value of the
critical Hubbard parameter U, and the measured quasiparticle
gap in the correlated insulator phases, with small values of
U. corresponding to large gaps associated with pronounced
resistive peaks in transport experiments. We stress that this
correlation cannot be viewed as conclusive evidence that the
experimentally observed correlated insulator states have a
magnetic origin, because the large density of states at the
Fermi level which gives rise to the small values of U, also
promotes other instabilities (such as valley-ordered or nematic
states).

At charge neutrality, our calculations predict small values
of U, near the magic angle with NAFM and/or MAFM order.
Experimentally, the situation is not clear, however, with some
experiments reporting semimetallic behavior near the magic
angle [1,2,4], while others (for very similar twist angles) ob-
serve a strong insulating state [5]. These conflicting results
could arise from different levels of strain in the samples:
Liu et al. [53] demonstrated that a C3 broken-symmetry state
that is stabilized by strain retains its semimetallic charac-
ter because of the topological properties of the flat bands
of tBLG.

Next, we consider the effect of doping. While at v = —1
insulating states are not often observed in experiments, some
signatures of insulating states have been found at v = +1
[4,8,14,20]. This is consistent with our Hartree+U results,
which yield lower values of U, for v = 41 than for v = —1.
Note that the opposite result is obtained when long-ranged
Hartree interactions are neglected.

Experiments typically observe the strongest insulating
states at v = £2 [1,2,4,5]. Without Hartree interactions, our
calculations predict no broken-symmetry states at v = +2. In
contrast, Hartree+U theory predicts magnetic states for both
v =42 and v = —2. In recent experiments [17,19], a thin
dielectric spacer layer that separates the tBLG from metallic
gates was used to enhance the screening of the electron-
electron interactions in tBLG [71]. This results in significant
changes to the electronic phase diagram with correlated in-
sulator states being “screened out” for most twist angles and
doping levels [71]. Interestingly, these experiments often find
the insulating state at v = 42 to be most robust. Naively,
one might expect that this system should be described by
the magnetic phase diagram obtained without long-ranged
Hartree interactions. However, changes in external screening
only result in small changes to the Hartree theory band struc-
ture [47,49] and therefore we expect that the Hartree+U result
should be more relevant to experiments with thin dielectric
spacer layers.

At v = 43, a strong insulating state is observed in ex-
periments, especially when the tBLG is aligned with the
hexagonal boron nitride substrate [15,16]. In contrast, the v =
—3 insulating state is almost never observed [1,4,5,20]. For
insulating phases to emerge at these doping levels both valley
and spin symmetries must be broken; i.e., the insulating state
must be FM [15,16]. This is consistent with the Hartree+U
results which predict FM order at v = +3 at several twist
angles near the magic angle. Ferromagnetic order at v = —3
is only found at 6§ = 0.96°. Without Hartree interactions, our
calculations do not predict FM order at v = +3 and instead
we find relatively strong FM states at v = —3.

Hartree+U theory also predicts that magnetic order at
v = 43 should occur over a relatively large twist angle range,
while those at v = +1 are only found very close to the magic
angle. This finding also appears to be consistent with ex-
periments. For example, Yankowitz et al. [4] observed an
insulating state at v = +3 for a twist angle of 1.14°, but
no insulating state was found at v = 4-1. Interestingly, there
are also clear signatures of this trend from recent scanning
tunneling microscopy experiments of Choi et al. [77]. At
large twist angles, they observe that the v = +3 insulat-
ing state occurs before the v = 41 or v = 42. At slightly
smaller twist angles, an additional insulating state at v = 42
occurs, with even smaller angles very close to the magic an-
gle exhibiting insulating states for all integer electron-doped
systems. This observation is in very good agreement with
our Hartree+U results. However, without Hartree interactions
the opposite trend is observed: the leading instabilities oc-
cur closer to v = —1 for the largest angles away from the
magic angle.

In summary, we observe a strong correlation between the
critical values of the Hubbard interactions obtained from
Hartree4-U calculations and the experimentally measured
quasiparticle gaps of the correlated insulator states. In con-
trast, no such correlation is observed when long-ranged
Hartree interactions are neglected.

As mentioned above, our current linear-response approach
does not yield quasiparticle band structures of the broken-
symmetry phases. In principle, such band structures can be
obtained from self-consistent Hartree+U calculations, but a
qualitative picture can be derived from a symmetry analysis of
the spatial structure of the leading magnetic instabilities. Im-
portantly, neither the explicit mean-field calculations nor the
symmetry analysis fully captures the effect of strong electron
correlations on the quasiparticle band structure. For example,
it is well known that strongly correlated electron systems
can have energy gaps without any symmetry breaking (such
gaps are induced by the frequency dependence of the electron
self-energy which is not captured by mean-field techniques).
With this caveat in mind, we find that both MAFM and
NAFM break the C; symmetry of tBLG, and therefore gap the
flat-band Dirac cone, which means NAFM and MAFM yield
insulating states at charge neutrality [43]. Doping the MAFM
and NAFM states with electrons or holes does not induce addi-
tional gaps and therefore the system is found to be metallic, in
agreement with explicit Hartree-Fock calculations [55]. The
FM instability does not break C, symmetry (because the slight
AFM character of the instability has a node between the AB
and BA regions), but the spin degeneracy can be lifted and the
bands can split to create an insulating state at charge neutral-
ity. If the bands are spin split and doped away from charge
neutrality, the system remains metallic as the C, symmetry is
not broken. Therefore, this analysis only leads to insulating
states at charge neutrality, while the doped magnetic states
are found to be metallic. These results are in agreement with
another atomistic calculation which found that only retaining
Hubbard interactions can only yield insulating states at charge
neutrality [57,58], and also continuum model Hartree-Fock
calculations that break C; symmetry [55]. To overcome the
limitations of the current approach, future research should
investigate longer-ranged exchange interactions [51-56] and
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the influence of ordering tendencies with ¢ # 0 which could
give rise to alternative symmetry-breaking mechanisms such
as valley [9] and rotational [24] symmetry.

Finally, our Hartree+U results for the magnetic phase di-
agram also have important implications for superconductivity
in tBLG. First, band flattening induced by Hartree interactions
enhances the density of states at the Fermi level and therefore
increases the transition temperature irrespective of the nature
of the superconducting glue. In addition, this mechanism also
increases the range of twist angles where superconductivity
can be observed [65,78]. Note that superconductivity is typ-
ically observed in the vicinity of correlated insulator states
at noninteger doping levels. Naively, one would expect that
in this doping regime damped spin fluctuations from the mag-
netic parent state play an important role. However, Fischer and
co-workers [79] recently demonstrated the possibility of pair-
ing by AFM spin fluctuations in the vicinity of a FM phase.
Future work will investigate the predictions of Hartree+U
theory at noninteger doping levels to realize if long-ranged
electron-electron interactions can also facilitate pairing by
AFM spin fluctuations [80].
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