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Abstract
The composition and diversity of animal microbiomes is shaped by a variety of factors, many of them interacting, such as
host traits, the environment, and biogeography. Hybrid zones, in which the ranges of two host species meet and hybrids are
found, provide natural experiments for determining the drivers of microbiome communities, but have not been well studied
in marine environments. Here, we analysed the composition of the symbiont community in two deep-sea, Bathymodiolus
mussel species along their known distribution range at hydrothermal vents on the Mid-Atlantic Ridge, with a focus on the
hybrid zone where they interbreed. In-depth metagenomic analyses of the sulphur-oxidising symbionts of 30 mussels from
the hybrid zone, at a resolution of single nucleotide polymorphism analyses of ~2500 orthologous genes, revealed that
parental and hybrid mussels (F2–F4 generation) have genetically indistinguishable symbionts. While host genetics does not
appear to affect symbiont composition in these mussels, redundancy analyses showed that geographic location of the
mussels on the Mid-Atlantic Ridge explained most of the symbiont genetic variability compared to the other factors. We
hypothesise that geographic structuring of the free-living symbiont population plays a major role in driving the composition
of the microbiome in these deep-sea mussels.

Introduction

The community composition of an animal’s microbiome
is the product of multiple interacting factors that include
the environment, geography and host genetics [1–5]. To
which extent host genetics affects microbiome composi-
tion is currently a topic of intense debate, in part as high-
throughput sequencing is revealing the genetic makeup of
host and symbiont populations in ever higher resolution

[6–8]. Animal hybrids are useful for assessing the effects
of host genotype on microbiomes [9]. Studies of lab-
reared animal hybrids, such as wasps [10], fish [11–13],
and mice [14, 15] found that these hosts had different gut
microbiota compositions than their parental species, based
on sequencing of the microbial 16S rRNA gene. These
altered gut microbiomes of hybrids affected the fitness of
some hosts, suggesting that microbiomes play an impor-
tant role in determining species barriers [10]. Studies on
lab-reared hosts cannot, however, fully reflect the envir-
onmental conditions animals experience in their natural
habitat. Hybrid zones, in which parental species inter-
breed and produce hybrid offspring, are excellent natural
experiments for teasing apart the impact of host genotype,
environment and geographic distance on microbiome
composition. Yet surprisingly few studies have investi-
gated the microbiota of hybrids from the wild, and these
have yielded mixed results. For example, in a hybrid zone
of the European house mouse, the composition of gut
microbiota of hybrids differed from that of their parental
species [15]. In contrast, in African baboons, there were
no significant differences between hybrids and their par-
ental species, and gut community composition was best
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explained by the environment [16]. To date, all hybrid
microbiome studies, whether on lab-reared animals or
those from the wild, have been based on the sequencing of
only a few microbial genes, with the vast majority of
analyses based on the 16S rRNA gene, or a variable
region of this gene. These studies were therefore limited
to determining microbial community composition at the
genus level or higher, and could not distinguish closely
related species or strains.

Almost nothing is known about the microbial commu-
nities of hosts from marine hybrid zones, despite the per-
vasiveness of such zones in many regions of the oceans.
Hydrothermal vents on the Mid-Atlantic Ridge (MAR), an
underwater mountain range extending from the Arctic to the
Southern Ocean, provide an ideal setting for investigating
the microbiomes of hosts in natural hybrid zones. Many of
the vents on the MAR are dominated by Bathymodiolus
mussels that live in a nutritional symbiosis with chemo-
synthetic bacteria. Two mussel species colonise the north-
ern MAR, Bathymodiolus azoricus, which is found at vents
from 38° N to 36° N, and Bathymodiolus puteoserpentis,
which inhabits vents further south from 23° N to 13° N. A
hybrid zone between these two relatively young host spe-
cies, with an estimated splitting time of 8.4 Mya [17],
occurs at the Broken Spur vent field at 29° N on the MAR,
where B. puteoserpentis co-occurs with hybrids between B.
azoricus and B. puteoserpentis [18–20]. The sulphur-
oxidising (SOX) symbionts of B. azoricus and B. puteo-
serpentis belong to a gammaproteobacterial clade within the
Thioglobaceae, and co-occur in the mussel gills with
methane-oxidising symbionts, which belong to a gamma-
proteobacterial clade within theMethylomonaceae [21]. The
relative abundance of these two symbionts in these mussels
is assumed to not depend on host genetics, but rather the
availability of the energy sources these symbionts use in
their environment [21, 22].

The symbionts of bathymodiolin mussels are transmitted
horizontally from the environment to juvenile mussels, yet
each mussel species harbours a highly specific symbiont
community [23–25]. This specificity suggests that the
genetics of bathymodiolin mussels plays an important role
in determining symbiont composition. In this study, we took
advantage of the natural hybrid zone of Bathymodiolus
mussels at the Broken Spur vent field to investigate how
host genotype, geographic distance, and the vent environ-
ment affect the composition of their SOX symbionts. The
recent discovery of a high diversity of SOX symbiont
strains in Bathymodiolus from the MAR, with as many as
16 strains co-occurring in single Bathymodiolus mussels
[22, 26, 27], made it critical to resolve genetic differences at
the strain level of the SOX symbiont community (strain is
defined here as suggested by Van Rossum et al. [28], as
subordinate to subspecies, in our study >99% average

nucleotide identity). We achieved this resolution through
multilocus phylogeny, genome-wide gene profiling, and
single nucleotide polymorphism (SNP)-based population
differentiation analyses of 30 Bathymodiolus hybrid and
parental individuals collected in 1997 and 2001 at the
Broken Spur vent field.

Materials and methods

A detailed description of samples (Supplementary Table S1)
and methods is available in the Supplementary Information
and an overview of the analyses of SOX symbionts used in
this study is provided in Supplementary Table S2. Data files
and scripts used for the analyses can be found in the GitHub
repository (https://github.com/muecker/Symbionts_in_a_
mussel_hybrid_zone).

Broken Spur parental mussels (13 B. puteoserpentis) and
hybrids (17 F2–F4 generation hybrids, see Supplement)
were identified as described previously [20, 29] (no parental
B. azoricus were found at Broken Spur). Briefly, mussels
were genotyped based on 18 species-diagnostic markers and
identified as parental or hybrid mussels using bioinformatic
analyses of population structure, admixture and introgres-
sion (Supplementary Table S3). After DNA extraction and
sequencing, we assembled metagenomes per mussel indi-
vidual from Illumina short-read sequences. Metagenome-
assembled genomes (MAGs) of the SOX symbionts from
each mussel individual were binned (for statistics of sym-
biont MAGs, see Supplementary Table S4), representing
the consensus of all SOX symbiont strains in each host
individual.

To evaluate genetic differences between symbionts from
the northern MAR at the level of bacterial subspecies (sensu
Van Rossum et al. [28], here above 97% average nucleotide
identity), we used 171 single-copy, gammaproteobacterial
marker genes for phylogenomic analysis of the SOX sym-
biont MAGs and their closest symbiotic relatives, e.g.,
symbionts of B. azoricus from vents north of Broken Spur
and B. puteoserpentis mussels from vents south of Broken
Spur, and free-living relatives (see Supplementary
Table S5). To understand which factors affect symbiont
composition on the strain level at the northern MAR, we
assessed the influence of geographic distance, host species,
vent type (basaltic versus ultramafic rock) and depth on
SOX symbiont allele frequencies using redundancy analysis
(RDA). We analysed Broken Spur symbiont MAGs at the
genome-wide level by comparing their average nucleotide
identities (ANI) to resolve differences on the subspecies
level. To resolve strain-level differences between SOX
symbionts from Broken Spur, we analysed pairwise FST

values based on SNPs in 2496 orthologous genes from
Broken Spur SOX symbiont MAGs. To identify genes that
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differed between hybrid and parental symbiont populations,
we analysed the presence/absence and differential abun-
dance of these orthologues, and further investigated pair-
wise FST values of all 2496 orthologous genes.

Results and discussion

Phylogenomic analysis of 171 single-copy genes revealed
the presence of two SOX symbiont subspecies, one specific
to B. azoricus from the more northern vents Menez Gwen,
Lucky Strike and Rainbow, and one specific to B. puteo-
serpentis from the vents further south, Logatchev and
Semenov (Fig. 1A, C).

This substantiates previous analyses based on sequencing
of the 16S rRNA gene and internal transcribed spacer that
these two Bathymodiolus species harbour different SOX
symbiont subspecies of the same bacterial species
[21, 25, 30]. Our phylogenomic analyses revealed that all
Bathymodiolus individuals from Broken Spur harboured a
third SOX symbiont subspecies (Fig. 1A, C). This new
subspecies is most closely related to the B. puteoserpentis
SOX symbiont subspecies from mussels collected south of
Broken Spur. These two symbiont subspecies form a sister
group to the SOX symbiont subspecies of B. azoricus col-
lected at vents north of Broken Spur.

To evaluate if the SOX symbionts of Broken Spur
parental and hybrid Bathymodiolus differed, we compared
their ANI and estimated genomic differentiation (FST)
based on ~2500 orthologous genes (for more information
on the host, see Supplementary section 2 and Supple-
mentary Table S3). Symbiont ANI values ranged from
96.7 to 99.9% with a median of 99.7%. We found no
correlation between symbiont differentiation and the
sampling year or genetic differentiation of the mussels
(Mantel test of symbiont ANI and FST versus sampling
year and host pairwise genetic distances based on 18 SNP
markers, Fig. 2). Our analyses of SNPs per individual
gene revealed that not even one of the ~2500 orthologous
genes had significantly differing FST values (Mann-
Whitney U test of FST per gene between versus within
symbionts of hybrids and parental mussels). Similarly,
there was also no significant difference between hybrids
and parental individuals in the abundance of symbiont
genes (based on a general linear model and Kruskal-
Wallace test in ALDEx2 using Benjamini-Hochberg cor-
rected p value < 0.05) or their presence/absence.
These results indicate that the composition and gene
repertoire of SOX symbionts in Broken Spur mussels was
highly similar or identical in hybrids and parental
B. puteoserpentis. A study of SOX symbionts in hybrids
of Bathymodiolus thermophilus and Bathymodiolus ant-
arcticus at 23° S in the eastern Pacific also found that

these could not be distinguished from parental mussels,
based on PCR analyses of seven bacterial marker genes in
five parental and three hybrid individuals [31].

Our results raise the question at what level of genetic
divergence between two host species differences in their
symbiont communities evolve. Bathymodiolus brooksi and
Bathymodiolus heckerae, which regularly co-occur in the
Gulf of Mexico, harbour different symbiont species that are
only distantly related to each other (Fig. 1A, B). These two
mussel species have an estimated splitting time of 15.4 Mya
[17], and are not known to hybridise. More closely related
hosts, such as B. thermophilus and B. antarcticus (estimated
splitting time of 2.5–5.3 Mya [32]), and B. azoricus and B.
puteoserpentis (estimated splitting time of 8.4 Mya [17]),
produce fertile hybrids [19, 33], and have genetically
indistinguishable symbionts in zones where they hybridise.
This suggests that specificity at the symbiont species
level in these horizontally transmitted symbioses evolves
only after extended divergence times of tens of millions of
years, during which these hosts become genetically dis-
similar enough to evolve specific symbiont selection
mechanisms.

While Bathymodiolus mussels on the northern MAR
host the same SOX symbiont species, our phylogenomic
analyses revealed clear genetic differentiation in three
SOX symbiont subspecies: B. azoricus, B. puteoserpentis
and Broken Spur subspecies (Fig. 1). To better understand
the factors that drive this symbiont differentiation, we
tested which influence host species, geographic distance,
vent type (basaltic versus ultramafic rock) and depth have
on symbiont allele frequencies. All variables were highly
collinear. For example, the water depth of the vents stu-
died here increases with geographic distance, from 800 m
at 37.8° N, to 3050 m at 14.7° N (only the southernmost
vent at 13.5° N and 2320 m depth interrupted this pattern).
When the four variables were considered individually,
geographic distance explained 13% of symbiont differ-
entiation, while the three other variables water depth, host
species and vent type each explained 0.2%, 0.0%, and
0.2%, respectively. When interaction effects between the
four variables were considered, geographic distance and
interactions involving this variable explained 45% of
symbiont differentiation, while the three other variables
water depth, host species, vent type and the interactions
with these explained 14%, 12%, and 9%, respectively
(p value < 0.001, Fig. 3).

There are at least three explanations for why geographic
distance has such a large effect on the SOX symbiont
composition of Bathymodiolus mussels from the northern
MAR. The first is that with increasing geographic distance,
environmental differences between vents become larger
and these environmental differences affect symbiont com-
position (genetic isolation by environment versus distance
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[34]). Bathymodiolus mussels acquire their symbionts
horizontally from the environment, presumably when the
larvae settle on the seafloor [25, 35], and it would be
advantageous for the mussels if they selected symbionts
that are best adapted to local environmental conditions. We
tested the effect of vent type based on one of the key
environmental variables at hydrothermal vents, basaltic and

ultramafic rock. These two rock types have major effects on
the biogeochemistry of vent fluids, including the relative
concentrations of the symbiotic energy sources sulphide,
methane and hydrogen [36]. However, vent type alone
explained only 0.2% of symbiont genetic differentiation,
similar to another environmental variable water depth,
which also only explained 0.2% of symbiont
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Fig. 1 Phylogenetic
relationships of Bathymodiolus
SOX symbionts and their
mussel hosts. A Overview tree
based on 171 single-copy
marker genes. The tree was
reconstructed based on a 36,949
bp alignment using the LG+ F
+ R6 amino acid model and
1000 samples for ultrafast
bootstrap with IQ-TREE. The
Bathymodiolus SOX symbionts
from the northern Mid-Atlantic
Ridge (blue, yellow and pink)
form a clade within the
gammaproteobacterial SUP05
clade. Thiomicrospira spp. and
Ca. T. singularis PS1 were used
as outgroups. MAG accessions
are listed in Supplementary
Table S5. B Host phylogeny
based on published
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oxidase subunit I (COI)
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C Zoom in of sequences shown
in box in (A): Phylogeny of
Bathymodiolus SOX symbionts
from vents on the northern Mid-
Atlantic Ridge. Black and white
circles indicate the vent type
(basaltic or ultramafic rock),
colours correspond to vent sites
shown in the map. Hybrid
individuals from Broken Spur
are marked with a black star.
Bathymodiolus SOX symbionts
from the vent sites Clueless (5°
S) and Lilliput (9° S) were used
as outgroups. B. Bathymodiolus,
MAR Mid-Atlantic Ridge, GoM
Gulf of Mexico, EPR East
Pacific Rise, J Japan, NP North
Pacific (colour figure online).

M. Ücker et al.



●●●●●●●●●●●●●●●●●●●●

●●●●●

−2

−1

0

1

2

−3 −2 −1 0 1 2

NMDS1

N
M

D
S

2

Stress = 0.04

●
●
●
●
●
●

Vent field
Menez Gwen
Lucky Strike
Rainbow
Broken Spur
Logatchev
Semenov

Host species
● B. azoricus

Bathymodiolus hybrid
B. puteoserpentis

Vent type***

Water depth*** Host species***

Geographic 
distance***

0.175

 0.170

 13.286

 3.314  0.007

 0.008

 8.032

 6.538

 12.208

 7.737

 0.773

 2.150

Residuals = 51.092 *** p-value < 0.001

A B

−0.006

−0.020

−5.466

Fig. 3 Differentiation of Bathymodiolus SOX symbionts at the
northern Mid-Atlantic Ridge and the influence of geographic
distance, host species and environmental parameters (vent type
and water depth). A NMDS plot of SOX symbiont allele frequencies
show clear separation of the three symbiont subspecies at the northern
MAR: B. azoricus, B. puteoserpentis, and Broken Spur symbiont
subspecies. Symbionts from Broken Spur cluster together regardless of
the species affiliation of their host (hybrid versus B. puteoserpentis).
Colours correspond to vent fields, shapes to host species. B Variation

partitioning of explanatory variables used in the RDA (Supplementary
Fig. S3). Values are shown in percent. The variables vent type, water
depth, host species, and geographic distance and their interaction
effects explained 49% of the total variation, with 13% of the variation
solely explained by geographic distance. Negative adjusted R values
can occur for several reasons, e.g., negative eigenvalues in the model
underlying the varpart function in R. P values are based on permu-
tation tests with 1000 repetitions.

98 99 100

Average nucleotide 
identity [%]

Symbionts of
 

Sampling year
B. puteoserpentis
Bathymodiolus hybrid

 1997
2001

33
86

_A
I

33
86

_A
D

24
24

_N
33

86
_A

K
33

86
_U

33
86

_F
33

86
_A

J
33

86
_Y

33
86

_H
33

86
_C

33
86

_Z
33

86
_G

33
86

_A
L

33
86

_A
B

33
86

_M
33

86
_A

33
86

_D
33

86
_W

24
24

_E
33

86
_A

H
33

86
_O

33
86

_E
33

86
_S

33
86

_A
E

33
86

_J
33

86
_I

33
86

_T
33

86
_N

33
86

_X
33

86
_A

G

3386_AG
3386_X
3386_N
3386_T
3386_I
3386_J
3386_AE
3386_S
3386_E
3386_O
3386_AH
2424_E
3386_W
3386_D
3386_A
3386_M
3386_AB
3386_AL
3386_G
3386_Z
3386_C
3386_H
3386_Y
3386_AJ
3386_F
3386_U
3386_AK
2424_N
3386_AD
3386_AI

0 0.1 0.2 0.3 0.4
FST

A B

97

33
86

_A
D

24
24

_N

33
86

_A
K

33
86

_U

33
86

_F

33
86

_A
J

33
86

_Y

33
86

_H

33
86

_C

33
86

_Z

33
86

_G

33
86

_A
L

33
86

_A
B

33
86

_M

33
86

_A

33
86

_D

33
86

_W

24
24

_E

33
86

_A
H

33
86

_O

33
86

_E

33
86

_S

33
86

_A
E

33
86

_J

33
86

_I

33
86

_T
33

86
_X

33
86

_A
G

24
24

_H
24

24
_D

3386_AD

2424_N

3386_AK

3386_U

3386_F

3386_AJ

3386_Y

3386_H

3386_C

3386_Z

3386_G

3386_AL
3386_AB

3386_M

3386_A

3386_D

3386_W

2424_E

3386_AH

3386_O

3386_E

3386_S

3386_AE

3386_J

3386_I

3386_T
3386_X

3386_AG

2424_H
2424_D

Fig. 2 Genome-wide differentiation of Bathymodiolus SOX sym-
bionts at Broken Spur. A Differentiation based on pairwise average
nucleotide identity. B Differentiation based on pairwise average FST

in 2496 orthologous genes. Colour bars represent host genotypes (red:
B. puteoserpentis, yellow: hybrids) and the sampling year (light grey:
1997, dark grey: 2001). Turquoise indicates a higher differentiation or

more dissimilar genomes. Based on a Mantel test, neither clustering
based on ANI (A), nor FST (B) correlated with host pairwise genetic
distances based on 18 SNP markers (A r= 0.054, p= 0.222, B r=
0.006, p= 0.435) or sampling year (A r=−0.191, p= 0.949, B r=
0.105, p= 0.150) (colour figure online).
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differentiation. It is therefore unlikely that environmental
differences between vents underlie the symbiont population
structures we observed in this study.

The second explanation for why geographic distance has
such a large effect on the SOX symbiont composition of
Bathymodiolus mussels is that genetic differences between
the hosts increased with geographic distance. However,
population genetic analyses of B. azoricus and B. puteo-
serpentis from the same vents as in our study indicated no
genetic structuring within each of these host species [29].
This indicates that host genetics did not play a major role in
structuring the SOX symbiont composition. The third, and
most likely explanation is that the free-living pool of SOX
symbionts is geographically structured. At Broken Spur,
hybrids and B. puteoserpentis host genetically indis-
tinguishable symbionts, and these differed from the sym-
bionts of B. azoricus and B. puteoserpentis from vents to
the north and south of Broken Spur. This indicates that in
these two closely related host species, geographic location
but not host genetics drives the composition of their SOX
symbiont communities. Furthermore, the environment,
based on vent type, cannot explain why the mussels at
Broken Spur had symbionts that are genetically distinct
from other vent sites. Broken Spur is basalt-hosted, while
the vents to the north are both basalt- (Menez Gwen and
Lucky Strike) and ultramafic-hosted (Rainbow). Yet the
symbionts from the vents to the north of Broken Spur are
more closely related to each other than to the symbionts of
Broken Spur mussels (Fig. 1C).

The validity of these three explanations could be tested in
future studies by sampling the free-living microbial popu-
lations at hydrothermal vents on the MAR. This is, how-
ever, not as simple as it sounds because of multiple
challenges including obtaining representative samples from
the immediate environment of Bathymodiolus mussels,
collecting environmental data at scales relevant to the
microbial population, and characterising the free-living
symbiont population at sufficiently high resolution.

Understanding the biogeography of the free-living stages
of microbial symbionts and other as yet uncultured micro-
organisms is currently one of the biggest challenges in
microbial ecology. While there is evidence that ‘everything
is everywhere, but the environment selects’ [37, 38], there is
also increasing data showing that dispersal limitation shapes
the biogeography of marine microorganisms [39, 40].
Almost nothing is known about the biogeography of
uncultivable marine microorganisms at the subspecies or
strain level, as most species are rarely abundant enough to
allow phylogenetic analyses at such high resolution.
Advances in high-throughput short-read, and particularly
long-read sequencing, coupled with bioinformatic methods
for revealing genetic structuring of microbial populations,
are now providing us with the tools for resolving the

intraspecific diversity of environmental microorganisms.
Our study highlights the importance of gaining a better
understanding of the free-living community of microbial
symbionts to disentangle the genetic, environmental, and
geographic factors that contribute to the ecological and
evolutionary success of animal–microbe associations in
which the symbionts are acquired from the environment.

Data availability

Sequence data (metagenomes and symbiont MAGs) are
available in the European Nucleotide Archive (ENA) at
EMBL-EBI under project accession number PRJEB36976.
The data, together with their metadata, were deposited using
the data brokerage service of the German Federation for
Biological Data (GFBio [41]), with the standard informa-
tion on sequence data provided as recommended [42].

Code availability

Additional data files and scripts used in this study are
available in the GitHub repository (https://github.com/
muecker/Symbionts_in_a_mussel_hybrid_zone).
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