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Abstract: Methanogenic archaea operate an ancient, if not primordial, metabolic pathway that
releases methane as an end-product. This last step is orchestrated by the methyl-coenzyme M
reductase (MCR), which uses a nickel-containing F430-cofactor as the catalyst. MCR astounds the
scientific world by its unique reaction chemistry, its numerous post-translational modifications, and
its importance in biotechnology not only for production but also for capturing the greenhouse gas
methane. In this report, we investigated MCR natively isolated from Methermicoccus shengliensis.
This methanogen was isolated from a high-temperature oil reservoir and has recently been shown
to convert lignin and coal derivatives into methane through a process called methoxydotrophic
methanogenesis. A methoxydotrophic culture was obtained by growing M. shengliensis with 3,4,5-
trimethoxybenzoate as the main carbon and energy source. Under these conditions, MCR represents
more than 12% of the total protein content. The native MCR structure refined at a resolution of 1.6-A
precisely depicts the organization of a dimer of heterotrimers. Despite subtle surface remodeling
and complete conservation of its active site with other homologues, MCR from the thermophile M.
shengliensis contains the most limited number of post-translational modifications reported so far,
questioning their physiological relevance in other relatives.

Keywords: methyl-coenzyme M reductase; post-translational modifications; methoxydotrophic
methanogenesis; X-ray crystallography; F43p-cofactor; thermophilic archaeon

1. Introduction

Methanogenesis is a primitive energy metabolic pathway found only in the archaeal
domain that evolved more than 3.46 Gyr ago [1,2]. During evolution, different types
of methanogenesis arose, all of them sharing the common trait of releasing methane.
Hydrogenotrophic methanogenesis reduces CO, by using Hj or alternatively formate;
aceticlastic methanogenesis disproportionates acetate in CO, and CHy and finally, methy-
lotrophic methanogenesis uses methylated molecules such as methanol, methylamine(s),
or methylsulfides [3,4]. In 2016, Mayumi and co-workers discovered a new methylotrophic
pathway named methoxydotrophic methanogenesis in which the substrates are methoxy-
lated aromatic compounds derived from lignin, oil, and coal [5]. The organism exhibiting
this novel pathway is Methermicoccus shengliensis, a thermophilic archaeon that has been
isolated from oil production water (75-80 °C) [6]. Methoxydotrophic methanogens such
as M. shengliensis might play an important role in the carbon cycle of coal- and lignin-rich
subsurface sediments as well as of oil reservoirs. These specialized methoxydotrophic
methanogens are able to metabolize methoxy compounds intracellularly and transfer
the methyl group on a carrier by a so far unknown mechanism (Figure 1A). As for all
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other methanogenic pathways, the methyl group must be transferred onto coenzyme M
(HS-CoM) to be released as methane [4] by the Methyl-coenzyme M reductase (MCR).

MCR is a three-subunit complex harboring the cofactor Fy39, a nickel-containing
corrinoid that gives its yellow color to the enzyme [7]. The chemical reaction catalyzed
by the cofactor is a thiyl-radical mechanism in which the Ni(I)-active state will attack the
thiol group of the methyl-S5-CoM forcing the generation of methane and the formation
of the heterodisulfide made of the HS-CoM and Coenzyme B (CoB-SH) [8]. Structural
studies [9-17] revealed how MCR precisely coordinates the cofactor and coenzymes, and
they also depicted a gallery of post-translational modifications that vary depending on the
species [18]. Recent studies based on genetic manipulation of Methanosarcina acetivorans
confirmed that thioglycine, S-methylcysteine and 5(S)-methylarginine are not required for
catalysis [17,19,20] while the role of Nt -methylhistidine is yet unknown [21]. Nevertheless,
combinatorial interactions between modified residues were shown to alter the thermal
stability of MCR as well as the growth fitness on different carbon sources [17]. It is
assumed that these modifications might have a tuning-up function to improve the enzyme’s
robustness under stress conditions and stimulate its turn-over [15,16]. Unfortunately,
because of the high instability of the active Ni(I) state, enzymatic studies which characterize
the impact of the loss of each modification are still a challenging task.

The overall reaction of methane generation by MCR is highly exergonic with a AG? =
—30 kJ/mol of methane formed [7]. Surprisingly, despite its thermodynamic difficulty,
anaerobic methane oxidizers are using the reverse reaction to capture methane [14,22,23].
The methane activation by MCR-homologues highlights biotechnological potentials to
mitigate the concentration of atmospheric methane [24], of which 50% worldwide is re-
leased by methanogens [1,25]. By domesticating the enzyme, it would be possible to trap
and transform methane [26] or alternatively to block the methane release by inhibiting the
enzyme [27]. Characterization of MCR from various methanogens is yielding an overview
of the enzyme’s variability and provides templates for targeted mutagenesis.

The MCR from M. shengliensis (abbreviated as MsMCR) is offering a new variation
of the enzyme that might contain typical adaptations for methoxydotrophic growth in a
high-temperature ecological niche. The structural features of MsMCR presented in this
report highlight a conserved active site with the lowest post-translational modification
content reported so far.
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Figure 1. MCR metabolic function, purification, and phylogeny. (A) During methoxydotrophic growth, 3,4,5-
trimethoxybenzoate (TMB) methyl-groups are transferred by an unknown mechanism to the central carbon metabolism of
the methanogen. The methyl-group will be transferred onto HS-CoM and MCR will branch methyl-S-CoM to CoB-SH by a
thiyl-radical based reaction catalyzed by its F430 cofactor. The end products of the reaction are methane and the heterodisul-
fide made of HS-CoM and CoB-SH. (B) Purification profile on SDS-PAGE of MCR «, 3 and y subunits from TMB-grown cells.
(C) Phylogenetic tree of concatenated MCR generated with MegaX using the Maximum Likelihood method and JTT matrix-
based model (see Materials and Methods). Orange and red backgrounds indicate thermophiles and hyperthermophiles,
respectively. Structural information exists for the species with asterisks. Post-translational modifications (PTM) observed in
the structures are shown: mH, N -methylhistidine; mR, 5(S)-methylarginine; mQ, 2(S)-methylglutamine; sG, thioglycine;
mC, S-methylcysteine; dD, didehydroaspartate; hW, 6-hydroxytryptophan in M. formicicus and 7-hydroxytryptophan
in ANME-1; oM, oxidized methionine. Growth substrates are also indicated (Ac, acetate; F, formate; MC, methylated
compounds; Ar-O-CHj, methoxylated compounds).

2. Materials and Methods
2.1. Phylogenetic Analyses

Protein sequences used for phylogenetic analyses are, organized by organism (c,3,v):
Methermicoccus — shengliensis DSM 18856 (WP_084174107.1, WP_042686194.1,
WP_042686201.1), Methanosarcina barkeri Fusaro (WP_011305916.1, WP_011305920.1,
WP_011305917.1), Methanosarcina mazei Gol (WP_011033189.1, WP_011033193.1,
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WP_048045871.1), Methanothrix thermoacetophila PT (WP_011695757.1, WP_011695760.1,
WP_011695758.1), Candidatus Methanoperedens nitroreducens ANME-2d (WP_048089615.1,
WP_048089608.1, WP_048089613.1), Methanolobus profundi Mob M (WP_091936029.1,
WP_091936035.1, WP_091936030.1), Methanomethylovorans hollandica DSM 15978
(WP_015325028.1, WP_015325024.1, WP_015325027.1), Methanimicrococcus blatticola DSM
13328 (WP_133517056.1, WP_133517053.1, WP_133517055.1), Methanotorris formicicus
Mc-S-70 (WP_007043982.1, WP_007043986.1, WP_007043983.1), Methanothermococcus ther-
molithotrophicus DSM 2095 (WP_018153522.1, WP_018153526.1, WP_018153523.1), Methan-
othermobacter marburgensis strain Marburg type 1 (WP_013296337.1, WP_013296341.1,
WP_013296338.1), Methanopyrus kandleri AV19 (WP_011019025.1, WP_011019021.1,
WP_011019024.1), Methanothermobacter wolfeii isolate SIV6 (SCM58307.1, SCM58314.1,
SCM58308.1), Methanosphaerula palustris E1-9c (WP_012618913.1, WP_012618909.1,
WP_012618912.1),  Methanoculleus  horonobensis JCM 15517 (WP_067078350.1,
WP_067078343.1, WP_067078348.1), Methanoplanus limicola DSM 2279 (WP_004079635.1,
WP_004079639.1, WP_004079636.1), Methanocella conradii isolate 1 (WP_174590719.1,
WP_174590722.1, WP_014405505.1), Methanococcus maripaludis C7 (WP_011977191.1,
WP_011977187.1, WP_011977190.1), Methanocaldococcus vulcanius M7 (WP_012819563.1,
WP_012819559.1, WP_012819562.1), Methanobrevibacter smithii DSM 2375 (WP_019262578.1,
WP_004035807.1, WP_004035804.1), ANME-1 from Black Sea mats, Uncultured archaeon
ANME-1 (D1JBK4, D1JBK2, D1JBK3). The sequences were aligned by using the Clustal
W tool in MegaX [28] followed by the evolutionary analyses conducted with the same
software. The evolutionary history was inferred using the Maximum Likelihood method
and JTT matrix-based model [29]. The tree with the highest log likelihood (—27,171.46)
is shown. Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioN]J algorithms to a matrix of pairwise distances estimated using the
JTT model, and then selecting the topology with superior log likelihood value. The tree
is drawn to scale, with branch lengths measured in the number of substitutions per site.
This analysis involved 21 amino acid sequences. There were a total of 1328 positions in the
final dataset.

The references regarding the substrate utilization for each methanogen and MCR
post-translational modifications, presented in the phylogenetic tree, can be found in the
supplemental information.

2.2. Cultivation of Methermicoccus Shengliensis

Methermicoccus shengliensis ZC-1 (DSM 18856) [6] was obtained from the DSMZ (Braun-
schweig, Germany) and cultivated in modified DSM medium 1084. Sludge fluid was re-
placed by trace element solution (100 X trace element solution: 1.5 g/L nitrilotriacetic acid,
3 g/LMgSO,-7 HyO, 0.45 g/L MnSO4-2 Hy,O, 1 g/L NaCl, 0.1 g/L FeSO4-7 H,O, 0.18 g/L
CoS04-6 Hy0, 0.1 g/L CaCly-2 Hy0, 0.18 g/L ZnSO4-7 H,O, 0.01 g/L CuSO4-5 HyO, 0.02
g/L KAI(SO4)2'12 HZO, 0.01 g/L H3BO3, 0.01 g/L Na2WO4-2 HQO, 0.01 g/l Na2M004-2
H,O, 0.025 g/L NiCly-6 HyO, 0.01 g/L NaySeO3) and vitamin solution (1000 x vitamin
solution: 20 mg/L biotin, 20 mg/L folic acid, 100 mg/L pyridoxine-HCl, 50 mg/L thiamin-
HCl-2 HyO, 50 mg/L riboflavin, 50 mg/L nicotinic acid, 50 mg/L D-Ca-pantothenate,
2 mg/L vitamin By, 50 mg/L p-aminobenzoic acid, 50 mg/L lipoic acid). The amount
of supplied coenzyme M was reduced 20-fold (0.13 g/L) and 2.5 g/L NaHCO3 instead of
1 g/L NapyCO3 was used. The medium was sparged with N»:CO; in an 80:20 ratio before
autoclaving. 10 mM 3,4,5-trimethoxybenzoate was used (0.5 M stock solution was prepared
by adjusting the pH to 8). Methanol-grown cultures were provided with 100 mM methanol
instead of TMB. The cultures were incubated at 65 °C. M. shengliensis cells were harvested
anaerobically (10,000 g, 25 min and 4 °C) after reaching the late exponential phase and
cells were frozen anaerobically at —80 °C.
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2.3. Native Purification of MsMCR

About 6 g of cells were defrosted while gassing for 10 min with N, gas. Afterwards,
cells were resuspended in 15 mL anaerobic IEC buffer (50 mM Tris/HCI pH 8, 2 mM
dithiothreitol (DTT)), sonicated (6 x 75% amplitude for 10 s with 20 s break, Bandelin
sonopuls, Berlin, Germany), centrifuged (16,250 g, 30 min at room temperature) and
the supernatant was collected. The pellets were resuspended in 15 mL anaerobic IEC
buffer, sonicated (5 x 75% amplitude for 10 s with 20 s break), centrifuged (16,250x g,
30 min) and the supernatant was combined with the supernatant from the previous step.
The supernatant was then diluted 5-fold with IEC buffer, filtered through a 0.2 um filter
(Sartorius, Gottingen, Germany) and loaded on a 15 mL DEAE column (GE healthcare,
Chicago, IL, USA). Proteins were eluted by applying a 0 to 0.45 M NaCl gradient, over
120 min with a flow rate of 2 mL/min. Under these conditions, MCR eluted between 0.28
and 0.33 M NaCl. The fractions containing MCR were pooled, diluted with 4 volumes of
HIC buffer (25 mM Tris/HCl pH 7.6, 2 mM DTT, 2 M (NH4),503), filtered through a 0.2 pm
filter and loaded on a 5 mL phenyl sepharose column (GE healthcare). Proteins were eluted
by applying a 1.7 to 0 M gradient of (NH4),5O4 over 60 min with a flow rate of 1 mL/min.
MCR was eluting between 1.25 and 1 M of (NH4),SO4. Pooled MCR fractions were diluted
with 4 volumes of HIC buffer, filtered through a 0.2 um filter and loaded on a Source15Phe
4.6/100 PE column (GE healthcare). Proteins were eluted by applying a gradient of 1.6 to
0 M (NH4),SO4, over 60 min with a flow rate of 1 mL/min. Fractions of apparently pure
MCR were eluting between 1.45 and 1.2 M (NH4),504. Pooled fractions were concentrated
with 15 mL Millipore Ultra-10 centrifugal filter units (Merck, Darmstadt, Germany) and
the buffer was exchanged for storage buffer (25 mM Tris pH 7.6, 10% v/v glycerol, 2 mM
DTT). MCR was concentrated to 47 g/L and immediately used for crystallization and
spectrophotometry. Protein concentration was evaluated by the Bradford method according
to manufacturer (Bio-Rad, Hercules, CA, USA) recommendations. MCR from methanol-
grown cells was purified following a similar protocol consisting of DEAE and Phenyl
sepharose.

To compare the Stokes radius of MsMCR purified from methanol and TMB-grown
cells, both proteins (0.55 mg of purified MsMCR) were injected on a Superdex 200 10/300
Increase GL (GE Healthcare) at a flow rate of 0.4 mL/min at 20 °C. Both MsMCRs showed
an elution volume of 10.55 mL.

2.4. High-Resolution Clear Native (hrCN) Polyacrylamide Gel Electrophoresis (PAGE)

The hrCN-PAGE protocol was adapted from Lemaire et al. [30]. Glycerol (20% v/v final)
was added to samples and 0.001% w/v Ponceau S was used as a protein migration marker.
The electrophoresis cathode buffer contained a buffer mixture of 50 mM Tricine; 150 mM
Bis-Tris pH 7 supplemented with 0.05% w/v sodium deoxycholate; 0.01% w/v dodecyl
maltoside. The anode buffer contained 150 mM Bis-Tris buffer, pH 7. The NativeMark™
unstained protein standard from Thermo Fisher Scientific (Darmstadt, Germany) was used
as a ladder. hrCN-PAGE were carried out using an 8 to 15% linear polyacrylamide gradient,
gels were run with a constant 20 mA current using a PowerPac™ Basic Power Supply (Bio-
Rad). After electrophoresis, the protein bands were stained with Instant Blue™ (Expedeon,
Heidelberg, Germany).

2.5. Mass Spectrometry

MCR a-subunit was identified with help of matrix assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) by the following protocol. Protein
bands were cut into small pieces (about 3 x 3 mm) and destained by adding the following
solvents/buffers successively: 20 pL acetonitrile (ACN), 20 uL. 50 mM ammonium bicar-
bonate (ABC) buffer, 50% v/v ACN in ABC buffer and 20 ul. ACN. After each addition,
samples were swirled and incubated for 10 min at room temperature (RT) followed by
removing the liquid from the sample. Those steps were repeated until the gel pieces were
destained. For reduction and alkylation, samples were incubated in 20 uL. 10 mM DTT



Microorganisms 2021, 9, 837

6 of 13

at 56 °C for 30 min, the liquid removed, and the following solvents/buffers successively
added: 20 uL. ACN, 20 uL 50 mM 2-chloroacetamide in 50 mM ABC buffer, 20 uL. ACN,
20 uL ABC buffer, 20 uL ACN, and 20 pL ABC buffer. After each addition, samples were
incubated for 10 min at RT followed by removing the liquid from the sample. For trypsin
digestion, 10 uL of 5 ng/uL trypsin (V5518, Promega, Madison, WI, USA) in 50 mM ABC
buffer were added to the gel pieces followed by 30 min incubation at RT. Afterwards
20 uL ABC buffer were added and the samples were incubated overnight at 37 °C. The
samples were sonicated for 20 s in a sonication bath (Branson 2510, Brookfield, CT, USA)
and 20 uL 0.1% v/v trifluoroacetic acid were added. The samples were incubated for 20 min
at RT before the extract liquid was transferred to a new tube. 20 uL. ACN were added to
the remaining trypsin digests, the samples were incubated for 30 min at RT before the
extract liquid was combined with the extract liquid from before. The samples were then
dried in a Sanvant IS5110 speedVac (Thermo Scientific, Waltham, MA, USA) until ~5 puL
remained. Then, 0.5 pL of the extracted peptides was pipetted on a MALDI-TOF sample
plate and directly mixed with an equal volume of matrix solution containing 10 mg/mL
a-cyano-4-hydroxy-oa-cyanocinnamic acid in 50% v/v ACN/0.05% v/v trifluoroacetic acid.
After drying of the sample this process was repeated once more. A spectrum in the range
of 600 to 4000 m/z was recorded using a Microflex LRF MALDI-TOF (Bruker). The Biotools
software (Bruker Life Sciences) was used to perform a MASCOT search (Matrix Science
Ltd., London, UK) by using the M. shengliensis protein database (GenBank accession num-
ber NZ_JONQO00000000.1). Search parameters allowed a mass deviation of 0.3 Da, one
miscleavage, a variable modification of oxidized methionines and a fixed modification of
carbamidomethylated cysteines. The N'-methylhistidine275 containing peptide (1452.9 Da
vs predicted mass of 1452.7 Da) and the GIn418 containing peptide (3468.8 Da vs predicted
mass of 3468.6 Da) were detected (see Supplemental Figure S1A). The mass of the 5(S)-
methylarginine289, containing peptide is below the 600 m/z threshold and was therefore
not detected. The alkylated peptide containing the thioglycine463, aspartate468 and cys-
teine470 (LGFFGYDLQDQCGAANVFSYQSDEGLPLELR) was observable (3524.7 Da vs
predicted mass of 3525.6 Da; Supplemental Figure S1A,B) at a signal over noise threshold
of 1.9 and the mass fits in the 1 Dalton range.

2.6. Crystallization

MCR crystals were obtained aerobically by initial screening at 18 °C using the sitting
drop method on 96-Well MRC 2-Drop Crystallization Plates in polystyrene (SWISSCI).
The crystallization reservoir contained 90 pL of the following crystallization condition:
25% w/v polyethylene glycol 3350, 100 mM Bis-Tris pH 5.5, and 200 mM lithium sulfate.
The crystallization drop contained a mixture of 0.6 pL. MsMCR at a concentration of
47 mg/mL and 0.6 pL of the crystallization condition. Thick yellow brick-shaped crystals
appeared within two weeks.

2.7. X-ray Data Collection and Model Refinement/Validation

All X-ray crystallographic data and refinement statistics are presented in Table 1.
MCR crystals were soaked in the crystallization solution supplemented with 20% v/v
glycerol for 6 s before being transferred to liquid nitrogen. All diffraction experiments
were performed at 100 K on Proxima-1 beamline, SOLEIL synchrotron, Saclay, France. The
data were processed with xdsme and scaled with SCALA from the CCP4 package [31].
MsMCR structure was solved by molecular replacement with Phenix [32] using MCR from
Methanosarcina barkeri (PDB 1E6Y [13]) as a template. The model was manually built via
Coot [33] and refined with BUSTER [34] by using the non-crystallographic symmetry and
translational-liberation screw (TLS). The last refinement steps were performed with hydro-
gens in riding position. The model was ultimately validated by the MolProbity server [35]
(http:/ /molprobity.biochem.duke.edu, accessed on 15 of February 2021). Hydrogens were
omitted in the final deposited model (PDB code 7NKG). All figures were generated and
rendered with PyMOL (V. 1.8, Schrédinger, LLC).
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Table 1. X-ray crystallographic data and refinement statistics.

MCR from M. shengliensis

Data collection

Wavelength (A) 0.97856
Space group P21212
Resolution (A) 49.41-1.60 (1.69-1.60)
Cell dimensions: a, b, ¢ (A) 132.62 148.18 235.41
Rmerge (%) @ 9.1 (121.6)
Rpim (%) 2 5.1 (66.1)
CCypp? 0.997 (0.356)
I/o;® 8.3 (1.0)
Completeness @ 99.7 (99.3)
Redundancy ? 4.2 (4.3)
Number of unique reflections ? 602614 (87124)
Refinement
Resolution (A) 48.36-1.60
Number of reflections 602,442
Ryork/Reree © (%) 0.1725/0.1904
Number of atoms
Protein 38,087
Ligands/ions 405
Solvent 4298
Mean B-value (A2) 35.0
Molprobity clash score, all atoms 0.67
Ramachandran plot
Favored regions (%) 97.71
Outlier regions (%) 0.16
Rmsd € bond lengths (A) 0.007
Rmsd € bond angles (°) 0.95
PDB ID code 7NKG

2 Values relative to the highest resolution shell are within parentheses. b Reree was calculated as the Ryyop for 5% of the reflections that were
not included in the refinement. Refined model contained hydrogens. ¢ rmsd, root mean square deviation.

3. Results

3.1. Purification and Crystallization of MsMCR Obtained under
Methoxydotrophic Methanogenesis

The cell extracts of M. shengliensis grown with 3,4,5-trimethoxybenzoate or methanol
as the main carbon and energy source, were first compared and showed a similar profile
for the three subunits constituting MCR (Supplemental Figure S2A). McrA identification
was confirmed by MALDI-TOF MS with a molecular weight search (MOWSE) score of
97 and an amino acid sequence coverage of 43%. MCR was anaerobically purified to
homogeneity by anionic exchange and hydrophobic interaction chromatography (Figure 1B
and Supplemental Figure 52B,C), yielding 43.6 mg of purified protein (see Materials and
Methods) that corresponds to 12% of the total protein extract. It is generally assumed that
MCR is catalyzing the rate-limiting step of methanogenesis and methanogens maintain
their high-flux metabolism by expressing enormous amounts of the enzyme [7].

The purified MCR, containing an equal stoichiometry of the three subunits, has a
characteristic yellow color coming from its F43p-cofactor. The UV /Visible spectra (Sup-
plemental Figure S2D) is typical of the Ni(Il) red1-silent state with an absorption peak
at 424 nm [36]. O,-incubation for one hour did not modify the spectra and therefore the
sample was crystallized aerobically.

3.2. A Conserved Ouverall Structure and Active Site

X-ray diffraction measurements were performed on MsMCR crystals and revealed
a primitive orthorhombic crystalline form. The structure of MCR from Methanosarcina
barkeri (MbMCR) was used for molecular replacement based on a phylogenetic analysis
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(Figure 1C) and the MsMCR structure was refined to 1.6-A resolution. The asymmetric unit
contains two dimers with the typical (xf3y), organization (Figure 2A). Interestingly, while
the first dimer shows an excellent it in the electron density (average B-factor = 22.6 A2), the
second dimer has a very high average B-factor (51.3 A?), which made its accurate modelling
challenging. All following analyses were therefore performed on the first stable dimer.
The model was compared with three homologues: the terrestrial mesophile M. barkeri
(optimal growth temperature of 35 °C, PDB code 1E6Y), the terrestrial thermophile Methan-
othermobacter marburgensis (optimal growth temperature of 65 °C, MmMCR type I PDB
code 5A0Y), and the marine thermophile Methanothermococcus thermolithotrophicus (optimal
growth temperature of 65 °C, MtMCR PDB code 5N1Q). It is worth noting that M. marbur-
gensis and M. thermolithotrophicus are hydrogenotrophic methanogens growing at the same
temperature as M. shengliensis. MsMCR and its structural homologues aligned very well
with a root mean square deviations below 1-A for the three different chains (Supplemental
Table S1). This is not surprising considering the high sequence identity between the four
MCRs (Supplemental Table S1). The extended loop following the N-terminal helix of the
a-subunit found in MbMCR (residues 18-29) is also conserved in MsMCR (residues 19-33)
and might have a stabilizing role. Only one discrepancy was noticeable, the loop 53-66
of the B-subunit is shifted in one of the monomers (Supplemental Figure S3A,B). Since
the loop is on the surface, distant from the active site and involved in a crystallographic
contact, this shift was most probably due to a packing artefact rather than a typical trait
for this family. An inspection of the electrostatic charge profile on the proteins surface
reflects the classic positively charged entrance of the CoB-SH channel. The electrostatic
charge repartition of MsMCR fits very well with the one from MbMCR rather than the two
other thermophiles (Supplemental Figure S3C-F) showing that thermophilic and high salt
adaptations of M. shengliensis have not drastically modified the enzyme surface.

The active site is identical compared to the three other structural homologues with
the same coordination of the coenzymes and Fy3p-cofactor (Figure 2B). Both coenzymes are
bound at very high occupancy with a distance of 6.2 A separating their sulphur groups as
previously seen in other Ni(II) red1-silent structures [10,11,13,15,16], the density between
the thiol groups was interpreted as a water molecule. The well-defined electron density for
the Fy30 perfectly fits the classic cofactor observed in structural homologues (Figure 2B).
The HS-CoM has an average B-value of 21.6 A? that is 4.1 A2 higher than CoB-SH in the
most defined MsMCR dimer This could come from a higher vibration or slightly lower
occupancy of the HS-CoM already seen in MCR structures [15].
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5(S)-Methylarginine 289 N1-Methylhistidine 275

Glutamine 418 Glycine 463

2(S)-Methylglutamine 418 Thioglycine 463

Aspartate 468

T

Cysteine 470

Didehydroaspartate 468 MsMCRa MbMCRa S-Methylcysteine 470

Figure 2. MsMCR structure and its post-translational modifications. (A) MsMCR («f3y), organization with each chain
colored differently. F439, HS-CoM and CoB-SH are in balls and sticks and colored in yellow, pink, and light blue, respectively.
(B) Close up of the active site. 2F,-F electron density map for the F439 and coenzymes is contoured at 2-o. (C) Superposition
of MsMCR (same color code as panel A) on MDMCR (&, 3, vy in blue, dark green and red respectively). The ligands and
modified residues are in balls and sticks with the modifications as spheres. Each panel presents the 2F,-F. map contoured
at 2-o (black mesh) and the F,-F. map contoured at 4-c (green, positive, and red, negative) after refinement for a classic
(left) or modified (right) residue. Final modelled residue is highlighted in bold.

3.3. The Smallest Post-Translational Modification Gallery Observed in Methanogens

The high quality of the obtained electron density map confirmed the presence of three
modified residues: N'-methylhistidine275, 5(S)-methylarginine289, and the thioglycine463.
The calculation of an omit map for the three modifications unambiguously confirmed this
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result (Figure 2C). Surprisingly, the S-methylcysteine and didehydroaspartate found in
the close relatives M. barkeri [13,18] and Methanosarcina acetivorans [17] are not detected in
M. shengliensis. After forcing the modelling of a didehydroaspartate at position 468 and
S-methylcysteine 470 in M. shengliensis the resulting 2F,-F. and F,-F. maps post-refinement
confirmed the absence of both modifications (Figure 2C). With help of MALDI-TOF MS
analysis we were able to detect the additional methylation in the peptide containing
the His275 (1452.9 Da vs predicted mass of 1452.7 Da). We also observed the peptide
containing the thioglycine463, however with a low signal/noise ratio of 1.9 (see Materials
and Methods). The tryptic digestion and MALDI-TOF MS analysis could not detect the
peptide containing the methylated Arg289 due to its small size.

Asp468 and Cys470 in MsMCR present a similar position and coordination compared
to the modified versions in MbMCR and MmMCR and no mutation in the direct surround-
ing appeared to counterbalance the absence of modifications (Supplemental Figure S4A).
Rather subtle readjustments take place, such as shorter hydrogen bond distances, which
might ultimately affect the loops coordinating the coenzymes as previously hypothesized
for MmMCR and MCR from Methanothermobacter wolfeii [15,16].

Methanobacteriales, Methanococcales, Methanopyrus kandleri, and Methanoculleus ther-
mophilus [18] contain a 2(S)-methylglutamine close to the Fy39. This modification is not
present in MbMCR and in M. acetivorans and the presented structural data shows a clas-
sic glutamine at this position in MsMCR (Figure 2C). A water molecule “fills” the ab-
sence of the methylation that might indirectly stabilize the F43p position via the oTyr350
(Supplemental Figure 54B). The peptide containing a classic GIn418 in MsMCR was also
detected by mass spectrometry (see Materials and Methods).

Surprisingly, these results reveal that despite the high similarity in sequence and
structure, MsMCR operates with a reduced gallery of post-translational modifications
compared to M. barkeri or M. acetivorans.

4. Discussion

Anaerobic archaea have already been thriving on earth for billions of years and devel-
oped a variety of metabolic pathways to utilize a broad range of substrates. Methanogens
living in deeper sediment layers managed to utilize coal, oil, and lignin derivatives as
methyl donors, which provide methanogens with an abundant source of carbon and energy.
This process could be an inspiration to transform methoxy-compounds to methane and
use it as biofuel. M. shengliensis represents an excellent model organism to study this
new pathway in depth, as its enzymes, involved in the methoxydotrophic metabolism
are accessible for biochemical characterization. In this work, we isolated and structurally
characterized the enzyme involved in the methane release, one of the last reactions of
methoxydrotrophy. Under methoxydotrophic growth conditions, M. shengliensis contains
a tremendous amount of MCR as also found in methanol-grown cultures (Supplemental
Figure S2A).

M. shengliensis contains the different required machineries to feed on a broad variety
of substrates such as methanol, methylamine(s), and different methoxylated aromatic com-
pounds [5,6]. It was suggested that the post-translational modifications of the MCR from
M. acetivorans might affect its growth robustness when grown on different substrates [17].
The systematic or complete deletion of the three genes involved in the arginine and cysteine
methylation, as well as thioglycine formation, have indeed some impact on the growth
when the methanogen uses different carbon sources [17]. Based on these results, it can be
assumed that the acquisition of the methoxydotrophic pathway will favor the apparition of
additional modifications or adaptive traits. However, instead of harboring new modified
residues, MsMCR shows a reduced set of modifications, which was unexpected. Only the
core modifications methyl-histidine, methyl-arginine, and thioglycine are present.

The absence of S-methylcysteine in MsMCR is explained by the fact that the gene
coding for the methyl-transferase responsible of its installation (MA_RS23695 in M. ace-
tivorans) is absent in the current genome of M. shengliensis strain DSM 18856 (Assembly
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number GCA_000711905.1). No conclusions can be drawn for the didehydroaspartate and
methylglutamine since the biosynthetic machineries are still unknown. However, the genes
coding for the enzyme responsible of the thioamidation (YcaO coding gene: BP07_RS07665
and TfuA coding gene: BP07_RS07670) of «Gly463 and methylation of the «Arg289 (coding
gene: mmpl0) are present in the M. shengliensis genome, which allow the installation of
these modifications as observed in the MsMCR structure.

Despite their different ecological niches, MsMCR and MbMCR share a remarkably
similar organization and electrostatic surface, illustrating the close relationship between
the two organisms in accordance with the phylogenetic studies (Figure 1C). The active
site is identical to already described MCRs. Such perfect conservation, even the one from
anaerobic methane oxidizers, such as marine ANME-1 clade archaea [14], depicts how
challenging the chemical mechanism of methane generation/capture is. As always, in the
absence of an active structure of MCR Ni(]) state, it is difficult to derive final conclusions
on the possible structural roles of modifications during the catalysis.

Although the active site of different MCRs is quite conserved, the overall amino acid
sequence of MCR enzymes from various archaea differs (Figure 1C) and notable differences
exist between the structurally characterized MCRs and MsMCR. Interestingly, MsMCR
is closely related to MCR from Candidatus Methanoperedens nitroreducens, which is an
anaerobic methane oxidizer of the ANME-2d clade. This indicates that the MCR enzymes
of some methane producing, and methane consuming, archaea might not only be very
similar regarding their active site, but most likely also regarding overall structural features.
The structural information we gained on MsMCR might therefore be useful to understand
MCR enzymes from ANME-2 archaea better.

To conclude, accumulating structural information from metabolically and ecologically
diverse MCRs is broadening our scope on their natural diversity, as well as their post-
translational modification repertoire. The latter is not following phylogenetic relationships
or consistency regarding the growth conditions (e.g., temperature, and salt concentration)
and it is still a mystery why such energy-extremophiles sacrifice cellular energy to install
MCR post-translational modifications. The synergistic effort of genetic modification by
using M. acetivorans as chassis and the exploration of the broad natural MCR landscape
will hopefully provide more clues to further investigate the function of the modifications
and could ultimately improve the robustness of the biotechnological application of MCRs.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/microorganisms9040837/s1, Figure S1: Mass spectrometry data obtained on MCRa peptides,
Figure S2: Native PAGE and UV /visible spectra profile of purified MsMCR, Figure S3: Structural
and electrostatic charge differences between MsMCR and its homologues, Figure S4: Close up of
the environment at the expected modified residues didehydroaspartate, S-methylcysteine and 2(S)-
methylglutamine in MsMCR, Table S1: Sequence identity between the subunits of different MCRs
and root mean square deviation (r.m.s.d.) of structurally characterized MCRs.
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