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The energy system is rapidly changing to accommodate the increasing number of renewable gen-
erators and the general transition towards a more sustainable future. Simultaneously, business mod-
els and market designs evolve, affecting power-grid operation and power-grid frequency. Problems
raised by this ongoing transition are increasingly addressed by transdisciplinary research approaches,
ranging from purely mathematical modelling to applied case studies. These approaches require a
stochastic description of consumer behaviour, fluctuations by renewables, market rules, and how they
influence the stability of the power-grid frequency. Here, we introduce an easy-to-use, data-driven,
stochastic model for the power-grid frequency and demonstrate how it reproduces key characteristics
of the observed statistics of the Continental European and British power grids. We offer executable
code and guidelines on how to use the model on any power grid for various mathematical or engi-
neering applications.

I. INTRODUCTION

The energy system is currently undergoing a rapid
transition towards a more sustainable future. Greenhouse
gas emissions are reduced by implementing distributed
renewable-energy sources at ever growing rates in the
world [1]. Simultaneously, new policies, technologies, and
market structures are being implemented in various re-
gions in the energy systems [2]. These new market struc-
tures are not necessarily benefiting the stability of the
power grid: A control power shortage in the German grid
in June 2019 was potentially caused by unknown traders
exploiting the energy market structure [3].

The field of energy research itself is quickly developing
and attracting researchers from various disciplines work-
ing towards new control systems, new market models,
and new technologies every year [4, 5]. Regardless of the
specific aspect of the energy system, one element remains
unchanged: The electrical power system and the stability
of its frequency are critical for a stable operation of our
society [6].

The power-grid (mains) frequency dynamics mirrors
the balance of supply and demand of the power grid: An
excess of generation leads to an increased frequency and
a shortage of generation leads to a reduced frequency
value. The power grid is stabilised by controlling the fre-
quency and maintaining it at a nominal frequency [7].
But the task of maintaining a set frequency across an en-
tire power-grid system is not a simple one: systems vary
in size and structure, energy sources are possibly volatile
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in their output, as for example are wind or photo-voltaic
generators [8, 9], and the dispatch of electrical energy and
market activity have an impact on the overall dynamics.

Understanding the intricacies of the frequency dynam-
ics becomes of great importance, both to control the cur-
rent power grid [7, 10] but also for implementing real-
time pricing schemes [11, 12] or smart grids in the fu-
ture [13]. Solid estimates of fluctuations are essential for
example when dimensioning back-up or control options,
such as determining the capacity of batteries or other
energy storage to balance periods with highly fluctuat-
ing demand or times without renewable generation [14].
Similarly, when establishing new power grid types, such
as smart grids with potentially novel electricity market
structure, the market design should ideally support the
stability of the grid.

While both the power-grid frequency dynamics and the
stochastic nature of the power-grid frequency have been
intensely studied, we require a better understanding of
the interaction of frequency dynamics with both stochas-
tic fluctuations and market behaviour. The dynamics of
the power-grid variables, including frequency, voltage, re-
active power, etc., may be modelled with arbitrary com-
plexity based on various models [7, 10, 15–18]. Simulta-
neously, stochastic modelling of fluctuations within the
power grid [17, 19] still often uses Gaussian noise models
[13, 20, 21], while non-Gaussian statistics [8, 22] as well
as deterministic events caused by trading [23] are rarely
included.

Existing literature often focuses on inverter control [24]
or the power interface between grid layers [25]. Even fore-
casting is mostly done for electricity consumption [26] or
for renewable generation, such as solar generators [27].
In contrast, models that predict or even give stochastic

ar
X

iv
:1

90
9.

08
34

6v
2 

 [
nl

in
.A

O
] 

 2
 O

ct
 2

01
9

mailto:l.rydin.gorjao@fz-juelich.de


2

characteristics of the power-grid frequency are very rare
[28].

Here, we propose an accessible and easy-to-use stochas-
tic model that seeks to describe the dynamics of the
power-grid frequency in a reduced framework combin-
ing stochastic and deterministic factors acting on the
power-grid frequency. We focus on the intermediate time
scale of several seconds to few hours, leaving very short
or very long time scale for future work. Simultaneously,
our modelling approach balances the benefits of realistic
case studies, generally applicable and abstract stochas-
tic models as well as application-oriented data-driven ap-
proaches.

We first review the factors influencing the power-grid
frequency dynamics, based on frequency recordings from
European grids. Next, we introduce a general stochas-
tic model and discuss three particular cases of how the
model may be implemented. For each case we estimate
the system parameters, such as control strength and noise
amplitude using stochastic theory and data-driven ap-
proaches. We compare the frequency statistics of the
models with real-world measurements to showcase how
they reproduce characteristic features. Overall, our mod-
elling approach is very flexible and easily applicable to
many different power grids and could be used for plan-
ning purposes, e.g. when setting security operational lim-
its or designing markets. We provide executable code for
the model in the supplementary material.

II. FACTORS IMPACTING THE POWER-GRID
FREQUENCY

To construct a model describing the intermediate time
scale dynamics and characteristics of the power-grid fre-
quency, we must first recall the nature and the intricate
details of the power-grid frequency dynamics, both deter-
ministic and stochastic, as we observe them in frequency
trajectories [29], see Fig. 1.

The power-grid frequency is not following a simple
Gaussian process but displays heavy tails and regular
correlation peaks, see Fig. 2 and [22, 30, 31] for more
detailed analysis. To get a better understanding of the
different factors impacting the grid frequency, we give an
overview of these: First, we review the innate and hu-
manly devised control systems, continue with the market
and power dispatch design and close the section with a
stochastic description of the noise acting on the power
grid.

A. The fundamental control schemes

The power supply of the grid is designed so that the
frequency of the alternating current is kept steadily at a
fixed nominal value, i.e., 50 Hz in Europe and many parts
of the world, or 60 Hz in the Americas, Southern Japan
and some other regions. All power plants in a given syn-

chronous region, such as the Continental European grid
or the Eastern Interconnection of North America, are de-
signed to operate at this reference frequency. The electri-
cal frequency of e.g. 50 Hz corresponds to large mechan-
ical generators rotating in synchrony at this frequency
(or integer multiples of it) across the entire region. How
is this frequency kept fixed when facing fluctuations or
larger disturbances?

Suppose a large generator disconnects from the grid
while the power demand in the region stays constant. The
missing energy cannot be drawn from the grid itself, as
it cannot store any energy directly [32]. Instead, power is
first provided by inertial energy until primary, secondary,
and potentially tertiary control set in to ensure the pro-
vision of the missing power [32]. In the first moments
after the disturbance, the missing power is drawn from
the kinetic energy of the large rotating machines. Their
kinetic energy is converted into electrical energy and the
generators are slowed down, thereby reducing the over-
all frequency in the grid. This inertial response ensures
the system does not drift off from its designed nominal
frequency too rapidly and smoothens any disturbances.
Nevertheless, the generators continue to slow down. Mo-
ments later, primary control activates: Dedicated power
plants, and recently also battery stacks [33], measure the
deviation of the frequency from the reference and insert
additional power into the grid proportional to the fre-
quency deviation. This power influx prevents a further
decrease of the frequency and stabilises it at a fixed but
lower frequency, which is not desired for operation, as any
further problems might cause the frequency to leave the
stable operational limits [7, 32]. While the primary con-
trol compensates for the missing power, the kinetic en-
ergy of the rotors is still lower than initially and thereby
the frequency is not at the reference value. To restore the
frequency back to the reference frequency an integrative
control, secondary control, is necessary. A few minutes
after the disturbance, this control fully restores the ener-
getic state and the grid is brought back into a new stable
state at its nominal frequency (i.e., 50 Hz or 60 Hz, de-
pending on the grid in question). On even longer time
scales of potentially hours, tertiary control, often oper-
ated manually, sets in [34]. As this tertiary control sets
in, primary and secondary control can be reduced to be-
come available for further control actions.

Here, we focus on the effects of inertia, as well as pri-
mary (proportional) and secondary (integrative) control
in our synthetic model. The time scales of these three
controls are significantly different, and they functionally
react to deviations of different variables of the system:
Where primary control stabilises the grid based on the
frequency deviations of the system, the secondary control
balances the total power to ensure stability based on an
integral of the frequency, i.e., an angle.

As a recent challenge, the replacement of conventional
power generators with renewable generators reduces the
overall system inertia [35] and thereby makes complemen-
tary control mechanisms or virtual inertia increasingly
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important [36].

B. Electricity dispatch and market

While the control schemes keep the frequency close to
the reference for small and unforeseen changes of supply
and demand, an electricity market has been established
to coordinate longer-term power dispatches dealing with
large and predictable variations.

The effective demand acting on the power grid is the
aggregation of millions of consumers throughout the syn-
chronous region. This aggregated demand is continuously
changing over time since consumption during the day
tends to be higher then during the night and industrial
activities during the week lead to higher consumption
than during the weekends [32].

The continuously changing demand has to be met with
sufficient supply of electrical power in the same syn-
chronous grid. Therefore, power plant operators have to
adjust their generation according to the needs of the con-
sumers. While some power plants, such as gas turbines,
can ramp their generation up or down very fast, other
plants, such as coal or nuclear power plants, require more
time and therefore prefer to commit generation for longer
time periods [34, 37]. Demand response schemes, where
consumers shift their demand to periods of higher gener-
ation, bring additional flexibility to the grid [38].

To reach an economic optimum on who is supplying
and when, power-plant operators bid on spot markets
to offer power generation [34]. This includes a day-ahead
market to fulfil the expected power demand, and an intra-
day market acting on time scales of few hours to sev-
eral minutes, to balance short-term mismatches, amongst
other [39]. This bidding on the market takes place in dis-
crete time-slots: Any power provided by one operator is
provided for a fixed interval, e.g. one hour, half an hour,
or 15 minutes, as is often the case, such as in the Euro-
pean Energy Exchange (EEX) [40].

An important consequence of the fixed intervals of gen-
eration is that it does not perfectly fit the smooth de-
mand curve. If we approximate a monotonically increas-
ing demand function (such as during the early morning
hours) with a step function assuming the mean for a given
time interval, we will initially overestimate the demand,
which is still growing. After some time, supply and de-
mand perfectly match but then the demand surpasses the
supply again. This leads to the balance between supply
and demand being approximately a sawtooth function,
see Fig. 3.

Indeed, we also observe the consequences of the inter-
vals when analysing the frequency trajectory [23] or its
autocorrelation in the Continental European grid. The
frequency displays regular surges and sags approximately
every 15 minutes, where the supply updates to the new
demand interval. At full hours these effects are more pro-
nounced since the total dispatch and trading volume is
higher at full hours compared to other 15 minute inter-
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FIG. 1. The frequency dynamics is influenced by both
stochastic and deterministic aspects. The trajectory
of the power-grid frequency is substantially influenced by
stochastic effects, as seen by the erratic motion. In addition,
we observe deterministic behaviour: Every 15 minutes (ver-
tical lines) the frequency abruptly decreases and then slowly
trends upwards for the next 15 minutes. The plot uses the
TransNetBW data [29] from the European Central power grid
CE, from January, 10th 2019, 20:45 to 21:45.

vals [41]. Not only the frequency trajectory displays these
jumps and sags, see Fig. 1, but also the autocorrelation
function of the power-grid frequency c(∆t) reveals dis-
tinct peaks at 15, 30, 45 and 60 minutes, see Fig. 2 and
[22, 30].

We will include the market influence by employing a
deterministic power-mismatch model in our stochastic
model. But more importantly, we can extract vital infor-
mation by observing this phenomenon, as we will high-
light below.

C. Noise

So far, we have introduced the two deterministic ele-
ments of our model: Control in the form of inertia, pri-
mary and secondary control, and electricity trading oc-
curring at fixed times. We are only missing the stochastic
element of the model, i.e., the noise acting on the system.
Noise here is meant as any form of stochastic fluctuation.
Its sources are plentiful, ranging from demand fluctua-
tions [38, 43] to intermittency in the renewable generators
[8, 44], thermal fluctuations, and others, many of which
are typically unknown [22]. However, the precise origin
of the noise is not essential for our modelling approach.
In fact, we only observe the cumulative effect of the noise
in how it influences the power-grid frequency, regardless
whether it originates from local disturbances or system-
wide variations. Aggregating all sources of noise allows
it to be handled as a stochastic process, see also [31] for
more details.

As a first approximation for the noise, we will assume
white Gaussian noise, based on two important observa-
tions. First, Gaussian noise arises naturally in many set-
tings due to the Central Limit Theorem. In its simplest
form it states that the sum of randomly drawn numbers,
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FIG. 2. The power-grid frequency is heavy-tailed and has regular correlation peaks. (a) The frequency histogram
displays heavy tails, which are quantified by a kurtosis κ that is much larger than the Gaussian value of κGaussian = 3.
Consistently, the best-fitting Gaussian distribution (dashed line) does not capture the tails. (b) The autocorrelation function
of the grid frequency decays exponentially within the first minutes, which is a typical behaviour for many stochastic processes
[42]. In addition, the autocorrelation peaks every 15 minutes due to trading activity. The plots use the TransNetBW data from
January 2019 [29].

in our case the aggregation of renewable, demand and any
other form of fluctuation, approximates a Gaussian distri-
bution if sufficiently many contributions are summed up
[42]. Second, we note that non-Gaussian frequency distri-
butions can easily be described by super-imposed Gaus-
sian distributions, following superstatistics [22, 36, 45],
where parameters, such as the standard deviation change
over time. Moreover, the above mentioned trading inter-
vals are known to contribute significantly to these tails
[30].

If so desired, employing another form of noise is left
open in the model, without any fundamental change of
the model itself. There are plenty of non-Gaussian sources
of noise impacting the power grid, such as jump noise
from solar panels [8] or turbulence from wind turbines
[19, 46]. Instead of Gaussian noise, we could include for
example non-Gaussian effects via Lévy-stable distribu-
tions or q-Gaussian distributions [36, 47].

III. DATA-DRIVEN MODEL

Now, we formulate a simple dynamical model for the
frequency dynamics that includes all factors influencing
the power-grid frequency. First, we present the model
and explain how the above-mentioned factors enter the
model. We then discuss special cases of how some param-
eters could be set as constants or as time-dependent. We
close the section by proving the theory to estimate the
parameters of the model.

For simplicity, we do not use the frequency f as the
variable, but the bulk angular velocity ω = 2π (f − fref),
with reference frequency fref = 50 or 60 Hz, i.e., we move
into the rotating reference frame. In this frame, the dy-
namics of the angular velocity ω and the bulk angle θ
may be modelled in an aggregated swing equation [48] as

dθ

dt
= ω,

M
dω

dt
= −c1ω − c2θ + ∆P + εξ.

(1)

The factor M gives the inertial constant of the system
and sets the time scale it reacts to changes. For simplicity,
we absorb it in the remaining constants and setM = 1 in
the following, i.e., c1 → c1/M , c2 → c2/M ,∆P → ∆P/M
and ε→ ε.

The term −c1ω models primary control and general
damping acting on the system [15, 32]. The larger the
deviation from the nominal frequency, i.e., the larger ω,
the larger the damping and control force.

The expression −c2θ models the secondary control
[49, 50]. If the system deviates from the nominal fre-
quency, e.g. because ω > 0 for a long time, then the bulk
angle θ increases more and more and thereby the sec-
ondary control increases and acts as an increasing force
to return the system towards the nominal frequency. We
use the simplest integral control, whereas other secondary
control implementations [49, 51–55] might be considered
in the future. Typically, the magnitude of the primary
control parameter is much larger than the secondary con-
trol parameter c1 � c2 to implement that primary con-
trol acts faster than secondary control.

The power mismatch is given as ∆P . It contains only
the deterministic mismatch between supply and demand.
If generation surpasses consumption, ∆P becomes posi-
tive and vice versa. In our market model, we will employ
a time-dependent ∆P , inspired by empirical power tra-
jectories, see Fig. 3.

Finally, εξ denotes the aggregated noise acting on the
system. As pointed out in the previous section, we assume
ξ to be white Gaussian noise, i.e., its time average is zero
〈ξ(t)〉 = 0 and its correlation is zero for non-identical
times, i.e., it is a delta function 〈ξ(t)ξ(t′)〉 = δ(t − t′)
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FIG. 3. The effective power balance approximates a sawtooth function over time. We schematically depict the
interplay between generation, demand and the resulting power imbalance: (a) While the demand curve is approximately
smooth, the scheduled generation approximates the curve using step functions. (b) The resulting power balance is approximately
a sawtooth function with jumps upwards and ramps downwards if the demand rises and ramps upwards and jumps downwards
if the demand decreases. Here, we display all jumps with the same height for simplicity. In our model, we use different jump
heights of the Heaviside and thereby also of the sawtooth function for hourly, half- or quarter-hourly jumps.

[42]. Extensions using correlated or non-Gaussian noise
are also possible in the same framework.

The model (1) is very general as we have not yet spec-
ified the parameters c1, c2, ε or the function ∆P . Note
again the different roles of primary and secondary con-
trol: Assume ∆P = P0 > 0 for a long time, this will
increase the angular velocity ω and thereby the angle θ.
Without secondary control and noise, i.e., c2 = ε = 0,
the new quasi–steady state becomes ω∗ ≈ P0/c1 > 0.
The full fixed point ω = 0 can only be restored with an
additional (integrative) secondary control.

A. Cases

We consider some special cases of parameter choices
for model (1) here. Theoretically, the model proposed so
far would allow that the three parameters c1, c2, and ε
are chosen as zero or non-zero constants, time-dependent
functions, or to follow their own stochastic process. Sim-
ilarly, the power mismatch ∆P could be any function, as
long as the differential equation is still well-defined. We
review three cases, see also Fig. 4 for an overview.

The distinguishing factor between those cases is the
role of secondary control c2 and power imbalance ∆P :
Any non-zero power imbalance ∆P will be compensated
by secondary control if c2 > 0. This means from a data-
analysis it is virtually impossible to distinguish cases
where ∆P = 0 and no secondary control is active or
∆P 6= 0 and secondary control restored the frequency or
a case where a slowly changing ∆P restored the frequency
on its own without secondary control active. Complemen-
tary, large and rapid changes in the power imbalance are
clearly visible in the frequency trajectory and always have
to be included in the models.
Case A: A simple starting point is to set c1, c2, and

ε all as non-zero constants. By including an active sec-
ondary control, we neglect slow changes in the power im-
balance ∆P and assume that secondary control is the

main restoring force following a sudden jump. Specifi-
cally, we assume that the power mismatch ∆P is given
as a piece-wise constant function, i.e., a Heaviside func-
tion. This model has the advantage that we can easily
estimate all parameters from the trajectory.

Case B: Alternatively, we may neglect the effects of
secondary control, setting c2 = 0. To balance the fre-
quency, we then require a balanced power dispatch on
average, i.e., 〈∆P 〉 = 0. A simple function to realise this,
while maintaining the jumps, which are visible form the
frequency trajectories, is a sawtooth function, i.e., piece-
wise linearly increasing or decreasing over time. Similar
to Case A, we still use constant non-zero c1 and ε.

Case C : We again repeat Case A but instead of esti-
mating the power mismatch ∆P from frequency trajec-
tories, we use historic demand data of Germany, based
on data published by ENTSO-E [56].

B. Estimating parameters

To generate a synthetic trajectory approximating real
data, we need to estimate suitable parameters for our
model. Here, we present the mathematical background
and basics that allow this parameter estimation as well
as illustrations of the procedure in Figs. 5, 6 and 7. We
provide additional guidance and code on how the esti-
mators can be applied in practice in the Supplemental
Material.

We estimate the parameters of the synthetic model as
follows: The primary control c1 and the noise ε are ob-
tained from using the first and second Kramers–Moyal
coefficient respectively. Next, the power mismatch ∆P
and the secondary control c2 are determined from the
trajectory at the trading times.
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FIG. 4. We consider three different cases to model the power-grid frequency based on the model (1). In Case
A, we apply constant primary and secondary control, white Gaussian noise with constant amplitude ε and a Heaviside power
mismatch ∆P . In contrast, Case B uses no secondary control and applies a sawtooth function for the power mismatch ∆P . We
still apply a constant primary control c1 and white Gaussian noise with constant amplitude ε. Finally, Case C uses Case A’s
settings but we extract the jump heights of the Heaviside function from independent historic demand data [56] and not from
the frequency trajectory. As in Fig. 3, we display all jumps with the same height for simplicity.

1. Kramers–Moyal and Fokker–Planck

Let us briefly review some relevant stochastic the-
ory necessary to estimate the parameters. The synthetic
model (1) includes stochastic and deterministic dynam-
ics. Assuming that the deterministic contribution given
by ∆P and the secondary control c2 are either very small
or subtracted from the trajectory, we are left with a
purely stochastic process for ω in the form of a Langevin
equation. Such an equation cannot be solved determin-
istically, but we may formulate the Fokker–Planck equa-
tion of the stochastic system instead [42]:

∂p

∂t
=− ∂

∂ω
(−c1ωp) +

ε2

2

∂2p

∂ω2

− ∂

∂ω
D(1)p+

∂2

∂ω2
D(2)p.

(2)

This Fokker–Planck equation is a partial differential
equation for the probability density function p(ω, t) of
the system. Solving this Fokker–Planck equation thereby
returns the probability p(ω, t) to observe the system in
state ω at time t [42].

Terms subject to first derivatives are known as drift
terms D(1), while terms subject to second derivatives
are called diffusion terms D(2) [42]. Drift terms describe
the deterministic behaviour of the full stochastic sys-
tem, e.g. the movement of a particle within a poten-
tial or in our case the control and damping forces acting
within the power grid, causes a “drift” towards the stable

state. Complementary, the diffusion terms determine the
stochastic part of the trajectory. Random noise makes
state of the grid “diffuse” through the available state
space and typically leads to a broadening of the probabil-
ity distribution p [42]. We can read off the drift and the
diffusion terms of the angular velocity ω as D(1) = −c1ω
and D(2) = ε2

2 respectively. These drift and diffusion
terms of the Fokker–Planck equation are also known as
the Kramers–Moyal coefficients from the Kramers–Moyal
expansion of the fundamental master equation of the
system. Only this approximation allows us to write the
Fokker–Planck equation [57, 58]. From these coefficients
we estimate the mentioned parameters.

2. Estimating the primary control c1

Having set out the theory of Fokker–Planck equations
and Kramers–Moyal coefficients, we now apply them to
determine the primary control c1, by applying a two-step
process: We first subtract the deterministic and slow time
scale components from the trajectory and then determine
the first Kramers–Moyal coefficient.

We first remove the driving deterministic characteris-
tics of the model (1) from any trajectory we analyse. To
do so, we filter the data with a Gaussian kernel filtering,
with a window of 60 seconds, to remove the determinis-
tic trend and any slow process, such as secondary control,
and thus remain solely with the stochastic component of
the process. The procedure is independent of the specific
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FIG. 5. The primary control c1 is computed from fluc-
tuations around the trend. To estimate the primary con-
trol c1, we first detrend the data by applying a Gaussian ker-
nel and then compute the drift coefficient. (a): We display a
snippet of the power-grid frequency trajectory from the CE
data from January 2019, as in Fig. 1, alongside with the 60
seconds window Gaussian kernel detrending, that captures
the deterministic and slowly changing contributions of the
power-grid frequency. (b): We extract the stochastic motion
by subtracting the deterministic trend from the power-grid
frequency. What is left is a stochastic trajectory resembling
approximately an Ornstein–Uhlenbeck process. (c): We com-
pute the first Kramers–Moyal coefficient, known as the drift
coefficient, of the now purely stochastic process. The slope of
the drift coefficient is equal to the primary control −c1.

driving method (cf. Case A and Case B).

The detrending is illustrated in Fig. 5: The same snip-
pet of data from Fig. 1 is shown alongside with the Gaus-
sian kernel detrending. In panel (b) the subtraction of the
detrending on the data yields the purely stochastic pro-
cess governing the power-grid frequency dynamics with-
out deterministic or slow time scale influences. Finally,
we extract the first Kramers–Moyal coefficient in panel

(c):

D(1)(ω) =
1

∆t
〈(ω(t+ ∆t)− ω(t))|ω(t)=ω〉 = −c1ω, (3)

where ∆t is the sampling rate of the process at hand,
which is ∆t = 1 s for our data sets. Furthermore,
〈...|ω(t)=ω〉 denotes the following: A spatial average of
the difference (ω(t + ∆t) − ω(t)) is taken at the point
of evaluation ω(t) = ω, i.e., at a particular frequency ω
all differences (ω(t + ∆t) − ω(t)) are evaluated and the
diffusion D(1) is obtained as a function of ω. Based on
our modelling assumptions, we presume this function to
be linear in ω. And, when we apply this to the real data
in Fig. 5, we notice that the numerically extracted drift
term is indeed well described as a linear function with
slope −c1.

3. Estimating the noise amplitude ε

The noise amplitude ε is unravelled from data by
studying the second Kramers–Moyal coefficient. In our
case, we obtain the second conditional moment as

D(2)(ω) =
1

∆t
〈(ω(t+ ∆t)− ω(t))2|ω(t)=ω〉 =

ε2

2
, (4)

where ∆t is again the sampling rate of the process and
the empirical D(2)(ω) is assumed to approximately con-
stant, based on our model. Computing the second con-
ditional moment D(2) thereby yields the noise amplitude
ε. Empirically, we note that the de-trending is not even
necessary to determine the correct diffusion coefficient.
So we instead compute the diffusion from the original
data directly.

We display the diffusion coefficient, i.e., the second
Kramers–Moyal coefficient, as a function of the frequency
in Fig. 6 for the month of January 2019 for the CE grid.
We determine the diffusion coefficient value at 50 Hz and
by using (4) thus determine the noise amplitude ε.

4. Estimating the market impact ∆P

To determine both ∆P and c2, we have a closer look
at the frequency behaviour following a sudden power
imbalance. Assuming that the power imbalance is large
enough, we can neglect the noise amplitude ε ≈ 0 as the
dynamics close to the power jump are approximately de-
terministic. Before the power imbalance, we assume that
the system is close to the nominal frequency, i.e., ∆P = 0,
θ ≈ 0 and ω ≈ 0. Next, we introduce a power imbalance,
e.g. due to trading by setting ∆P = P0. The equations
of motion then are

dθ

dt
= ω,

dω

dt
= −c1ω − c2θ + P0.

(5)
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FIG. 6. The noise amplitude ε is obtained using the
diffusion coefficient. We display the diffusion coefficient, or
second Kramers–Moyal coefficient around 50 Hz for the CE
grid for the month of January 2019. By taking the value at
50 Hz, indicated on the plot, and by using relation (4), we
obtain the noise ε.

A full solution of this driven, damped harmonic oscillator
is given by

ω(t) =
P0e
− 1

2 t
(√

c21−4c2+c1
)

√
c21 − 4c2

[
et
√
c21−4c2 − 1

]
. (6)

We evaluate the rate of change of frequency (ROCOF)
at the jump time, i.e., at t = 0 to be

dω

dt

∣∣∣∣
t=0

= P0, (7)

and thereby determine the jump height P0, which gives us
the power imbalance ∆P , again assuming θ(0) = ω(0) ≈
0. Recall that we rescaled all variables with the inertia
M so that the ROCOF depends on the change of power
and the inertia as expected.

Note, while the solution (6) explicitly used the Heavi-
side function with secondary control (Case A), the RO-
COF also determines the power jump in the case of a saw-
tooth function (Case B). The reason is that the derivative
at t = 0 is independent of what happens for t > 0 and
also does not depend on c1 or c2.

5. Estimating the secondary control c2

The estimation of c2 is only necessary for models that
include it, such as Case A with its simple Heaviside func-
tion. We know how the trajectory of the angular velocity
ω, given by (6), develops following a jump: Initially, the
value of ω increases and then decays approximately ex-
ponentially back to the reference value.

Since the primary control parameter c1 is typically
much larger than the secondary control parameter c2, we
make use of the following approximation:

√
c21 − 4c2 ≈

c1 − 2c2
c1

. Thus (6) reduces to

ω(t) =
P0e
−t c2c1

c1 − 2c2
c1

[
1− e−t

(
c1− 2c2

c1

)]
. (8)
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FIG. 7. Power imbalance ∆P and secondary control c2
are determined from trading peaks. We investigate the
frequency trajectory at a trading peak: The power imbalance
∆P is obtained from the initial slope, i.e., the rate of change
of frequency (ROCOF) and the secondary control c2 from the
following exponential decay, see (6). The frequency trajectory
is using the CE data from January 10 2019.

For larger times t� 1s, the second term in (8) decays
much faster than the first term. We can therefore further
approximate the angular velocity ω as

ω(t) ∼ exp

(
−c2
c1
t

)
, (9)

which allows an estimate of the secondary control c2,
taken we determined the primary control c1 earlier. We
only need to determine the exponent of the exponential
decay, as depicted in Fig. 7. Note that the exponential
decay constant does not depend on which trading inter-
val we analyse. For more robust analysis, we perform the
fits using the decay following hourly jumps, see also Sup-
plemental Material.

This sequence of parameter estimations allows us to
uncover all underlying parameters of the system directly
from power-grid frequency measurements. In fact, a sin-
gle measurement of 60 minutes of data already entails a
good ground for estimation, but naturally employing as
much data as possible yields more reliable parameter es-
timations, as well as the possibility of error estimation in
an efficient way.

IV. CASE STUDY: CONTINENTAL
EUROPEAN GRID

With the model properly defined, we now show how
it approximates the stochastic behaviour of real fre-
quency trajectories in Europe. The frequency statistics
and also market setting differ substantially between dif-
ferent power grids [22]. So, instead of applying each case
to all potential power grids, we showcase it on one power
grid example where the statistics are well approximated.

Hence, we first apply Case A to data from Continental
Europe, Case B to data from Great Britain and finally
show that we can also import and utilize real dispatch
data to further improve the model predictions in Case C.



9

: 45 :00 :15 :30 :45
t (min)

49.94

49.97

50.0

50.03

50.06
f

(H
z)

CE January 2019 Model Model no market

49.94 49.97 50.0 50.03 50.06
f (Hz)

10−1

101

103

P
ro

b
ab

ili
ty

d
en

si
ty CE January 2019: σ = 0.022, κ = 4.471

Model: σ = 0.022, κ = 5.602

Model no market: σ = 0.008, κ = 3.059

0 15 30 45 60 75
t-lag (min)

0.00

0.25

0.50

0.75

1.00

A
u

to
co

rr
el

at
io

n

CE January 2019

Model

Model no market

(a)

(b)

(c)

FIG. 8. Case A: Heaviside dispatch approximates CE
trajectories. We compare two days of the power-grid fre-
quency of the Central European (CE) power grid in January
2019 with synthetic data generated by our model (1). For this
particular analysis, we utilise Case A that relies on a step func-
tion mimicking the jumps of the power mismatch ∆P . The
four governing parameters: Noise ε, primary c1 and secondary
c2 control, and power mismatch ∆P parameters are given in
Section IVA, further details are given in the Supplemental
Material. (a) We plot a snippet of the power-grid frequency
trajectory from the CE data, the model, and the surrogate
model without power dispatch. The 15 minute trading intrin-
sic to the model and the data is highlighted with grey lines.
(b) We display the probability density function of the CE
data (histogram), the model data (solid line), and the sur-
rogate model data without dispatch (dashed line). Standard
deviation and kurtosis of each process are indicated in the leg-
end. (c) We display the autocorrelation of the processes for
a time window of 75 minutes, noting the initial exponential
decay and regular peaks.

A. Case A: Parameter extraction for January 2019,
Central Europe

We analyse power-grid frequency data for the month of
January 2019, using measurements provided by the trans-

mission system operator TransnetBW GmbH who oper-
ates the German grid in the state Baden-Württemberg
[29]. For this month, we estimate the following parame-
ters:

Central Europe, January, 2019.
ε [s−2] c1 [s−1] c2 [s−2]

0.00105 0.008311 0.000030

For simplicity, we considered the dispatch at the hourly
mark as the reference, as can be seen in Fig. 1 to be the
strongest driver of the system.

Case A: CE P0, January, 2019
at :00 at :30 at :15, :45

P0 [s−2] 0.001641 0.000547 0.000273

Extracting the value, as described, of the ∆P for the
hourly mark, we considered the half-hour and quarter-
hour trading windows to be 1/3 and 1/6 of the hourly
value of ∆P . Notice that there is no limitation in calcu-
lating this from data, but the results can prove unreliable
given the small differences in dispatch. Furthermore, to
mimic the structure of the dispatch [23], we take a naïve
6-hour window where the P0 jumps are positive values,
followed by an equivalent 6-hour window with negative
peaks. This should approximate the daily cycles of hu-
man daily activity: The work schedule begins: demand in-
creases; Work schedule ends: demand decreases; Private
consumption at home begins: demand increases; Night
time begins, demand decreases.

Case A: CE power mismatch pattern
02:−08: 08:−14: 14:−20: 20:−02:

↘ ↗ ↘ ↗

Having these parameters at hand, we can now employ
our model (1) to integrate synthetic power-grid frequency
trajectories. We employ an Euler–Mayurama stochastic
integrator, with a time sampling of 0.001 seconds, for a
total length of two days, and make use on a step function
with changing values every 15 minutes, as formulated in
Case A, to mimic the power dispatch curve.

We compare the data, the synthetic model based on
(1) and surrogate model without the market structure,
i.e., where we set ∆P = 0, in Fig. 8. The introduction of
the model without the market allows us to understand
concisely the influence of the dispatch on the trajectory
of the power-grid frequency, as well as the influence it
has on the statistical behaviour of the system.

Several distinct features of the market effect can be
seen in Fig. 8: While the surrogate only fluctuates ran-
domly close to the reference frequency, both the real and
the synthetic trajectory display surges of the frequency
close to the 15 minute trading windows, see panel (a).
These large surges lead to a non-Gaussian probability dis-
tribution of the power-grid frequency, evidenced in panel
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(b). Both the data and the synthetic model with the mar-
ket display a high kurtosis (κ > 3), while the surrogate
model without any market is essentially Gaussian. This
indicates that the market activity has a considerable im-
pact on the distribution of the frequency, specifically its
tails. With the market, the system reaches critical val-
ues much more often than what would be expected by
a normally distributed process. We finally compare the
autocorrelation functions of the power-grid frequency for
the CE data of January 2019, the modelled data, and
the surrogate model in panel (c). We note that the sys-
tem’s scheduled trading/dispatch windows generate de-
fined peaks at exactly 15, 30, 45, and 60 minutes. By
comparison, a surrogate system without a market struc-
ture displays no correlation peaks at any time lag. More-
over, it is importance to notice that all peaks in the au-
tocorrelation function are positive valued, both for the
synthetic and the real data. This indicates that the sys-
tem’s dispatch is not an uncorrelated random process but
the direction of the frequency change is correlated: Fre-
quency surges are more likely followed by more frequency
surges and vice versa for frequency sags. The modelled
data mimics this with accuracy by implementing an over-
simplistic yet successful heuristic argument based on hu-
man daily cycles, as explained before.

B. Case B: Parameter extraction for January 2019,
Great Britain

Analogously, we analyse data from Great Britain for
the month of January 2019, obtained from the British
transmission system operator National Grid ESO [59].
Applying the discussed methods, we derive the following
parameters

Great Britain, January, 2019
ε [s−2] ∆P [s−2] c1 [s−1] c2 [s−2]

0.00205 0.00204 0.00606 #

where in this case we set the value of the secondary con-
trol c2 to be zero. Here, we apply Case B, for two reasons:
First, we wish to show that it is also capable of capturing
the frequency distributions of a given grid. Second, the
British frequency trajectory does not display any clear
exponential decay following the trading activity. This is
likely caused by a smaller relative trading volume and
a larger relative noise amplitude [22]. Both effects also
contribute to much smaller autocorrelation peaks at the
trading intervals.

We recover the statistics of the British power-grid fre-
quency data with remarkable precision using a sawtooth
function for the power dispatch ∆P , see Fig. 9. The GB
data exhibits low kurtosis values (κ < 3), especially when
compared to the Continental European values. Our em-
ployed model captures the process with high accuracy,
when we apply a sawtooth function for ∆P (Case B).
Notably, for the case of the surrogate model without
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FIG. 9. Case B: Sawtooth dispatch approximates GB
trajectories. We compare two days of the power-grid fre-
quency of the British (GB) power grid in January 2019 with
synthetic data generated by our model (1). Here, a sawtooth
function is used to describe the mismatch in power ∆P , see
Fig. 4, Case B. Noise amplitude ε, primary c1 control, and
power mismatch ∆P are given in Section IVB, see also Sup-
plemental Material for details on parameter estimation. Note
that Case B does not use secondary control. (a)We plot snip-
pet of the power-grid frequency trajectory from the GB data,
the model, and the surrogate model without power dispatch.
(b) We display the probability density function of the GB
data (histogram), the model data (solid line), and the sur-
rogate model data without dispatch (dashed line). Standard
deviation and kurtosis of each process are indicated in the leg-
end. (c) We display the autocorrelation of the processes for
a time window of 75 minutes, noting the initial exponential
decay and regular peaks. Contrary to the Heaviside function
of Case A, the sawtooth function forces a negative correlation
of the system by first driving the system driven to one state
and then inverting this trend at the trading interval.

market activity, the probability distribution again ap-
proximates a Gaussian distribution with kurtosis κ = 3.
Although the autocorrelation function exacerbates the
peaks, it captures the initial decay and the trend of reg-
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FIG. 10. Case C: Realistic dispatch trajectories better approximate the real frequency statistics. (a) We use the
real dispatch trajectories of the demand in Germany [56] to obtain the correct jumps for the Heaviside function (as in Case A)
of the power mismatch ∆P and use our model (1) to generate a synthetic trajectory. (b) The synthetic frequency trajectory
statistically resembles the real trajectory for the two day period depicted here. Noise amplitude ε, primary c1 and secondary c2
control were calculated as described in the Supplemental Material. (c) We display the probability density function of the CE
data (histogram), the model data (solid line), and the surrogate model data without dispatch (dashed line). Standard deviation
and kurtosis of each process are indicated in the legend. (d) We display the autocorrelation of the processes for a time window
of 75 minutes, noting the initial exponential decay and regular peaks. While the autocorrelation and the rough shape of the
histogram of the model data closely match those of the real data set, we note a substantial difference in the computed kurtosis
values. This discrepancy is likely caused by the large variations in the volume of the dispatched power. Here we use data from
the German grid to allow a 15 minute resolution. However, the full power dispatch affecting the Continental European grid is
given as the sum over all participating countries and would likely be smoother and lead to lower kurtosis values.

ular peaks well. The oversized oscillations arise since we
assumed consistent periods of six hours with the same
jump and ramp behaviour. In turn, the negative autocor-
relation arises as the sawtooth function suddenly changes
the sign of the market effect. Both assumptions arepart
of a very simple but thereby easy-to use model of the
British grid, which still captures the probability distri-
bution (histogram) very well.

C. Case C: Using real power dispatch for
Continental Europe

Finally, we use real dispatch data from Germany, pro-
vided by ENTSO-E [56], to determine the power mis-
match ∆P in our model (1) and compare synthetic and
real trajectories in Fig. 10. To this end, we simply set
the power mismatch ∆P as a Heaviside function based
on the real demand for the German grid, i.e., we use the
actual demand and assume it stays constant for a given
15 minute interval. As noted before, we only require the
jump height in ∆P , here as the demand, while the gen-

eration enters as the simplified secondary control term
−c2θ. We chose the German data because its time reso-
lution of ∆P is 15 minutes, compared to 1 hour resolution
for many other countries. Using such real demand data
breaks the symmetrical and regular six hour patterns we
have been using so far in Cases A and B. Thereby, we
also include larger time scales in the synthetic frequency
data since the real demand naturally includes for example
daily and weekly cycles. Aside form ∆P , we use the same
values as in Case A for the other parameters, i.e., noise
ε, primary and secondary control c1 and c2. Compar-
ing the synthetic trajectory and derived measures with
the real frequency trajectory, we not that including the
real demand data improves the approximation further,
see Fig. 10. For example the probability density of the
real frequency is even better approximated by the syn-
thetic data than in Case A.
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V. DISCUSSION

We set out to devise a model to generate realistic syn-
thetic trajectories of the power-grid frequency to be used
in simulations of power and control system dynamics and
to assist planning and operation of today’s and future
power grids. To that end, we first showed that the fre-
quency trajectories show both deterministic and stochas-
tic features, leading to non-standard frequency statistics:
Heavy tails in the probability distributions and regular
autocorrelation peaks pose challenges to properly model
the trajectories.

We proposed a simple model combining the deter-
ministic and stochastic aspects of the trajectories. Us-
ing stochastic theory and data analysis we were able to
extract all essential parameters of the model from real
trajectories. We specifically highlighted how the model
approximates probability distributions and autocorrela-
tion functions of realistic grids. A more detailed analysis
of the mathematical properties of both real trajectories
and the model is presented in [31].

The presented model was designed to be generally ap-
plicable, easily extendible and usable, which inevitably
requires several simplifications: It does not capture the
very short time scale when short-term noise, dynamical
behaviour of the rotation machines or switching delays
play an important role. Similarly, the model does also not
include the long time scale with effects such as synoptic
or even seasonal cycles, long-term trading commitment
etc. Finally, the model is a stochastic model, i.e., it is not
suitable for forecasting of the near future but instead it
reproduces critical statistical properties such as large fre-
quency deviations. Conceptually, our modelling approach
bridges power engineering, stochastic modelling and data
analysis. Power engineering serves as the inspiration to
our model building blocks like primary and secondary
control. The universality of stochastic modelling is used
in formulating the Fokker–Planck equation and deriving
both the diffusion coefficient and primary control. Fi-
nally, more data analysis tools are necessary to estimate
remaining parameters such as the secondary control or
the strength of the dispatch or market actions.

Critically, we unveiled how much the market activity
influences the tails of the probability distribution, i.e.,
the probability to observe large deviations from the ref-
erence. Comparing models with and without market re-
vealed that just by including the market activity most
large events can be explained, consistent with earlier find-
ings [30, 41]. This emphasizes the role the market design
has on the stability of the power grid.

The explicit modelling of the market in the stochas-
tic model is specifically interesting when designing new

market rules or introducing new business models. As we
have seen, the market has a dramatic influence on the
stability-defining large deviations. Our model can easily
predict the effects on the frequency when shifting from
15-minute to 5-minute dispatch actions or when intro-
ducing real-time pricing. New proposals of smart grids,
the impact of demand-side management etc. can all be
captured by appropriately modifying the power dispatch
∆P of our model. Thereby, we provide guidelines how
new concepts and devices can be introduced in the grid
without destabilizing it but ideally providing additional
stability.

Concluding, our research offers a tool that can be
used by natural scientists, mathematicians, engineers,
economists or industry practitioners on various questions
related to the electricity system. It can be used to plan
future grids, such as setting up smart grids and micro-
grids by providing guidelines on how control parameters
should be set to guarantee a certain frequency quality.
Executable computer code and easy-to-read pseudo-code
of the model and the parameter estimation are provided
in the supplementary material.

The model presented here can easily be extended
in multiple directions: We could apply more advanced
stochastic measures to compare the synthetic trajectory
with the real trajectory, as partially done in [31]. Simulta-
neously, the frequency dynamics considered here could be
extended by voltage amplitude dynamics. Finally, while
we only considered constant Gaussian noise, this noise
could easily be extended: Either by including explicit
non-Gaussian noise [22], as it is observed from wind and
solar generators [8] or by making the noise or the con-
trol time-dependent, leading to superstatistical modelling
[45].
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VI. SUPPLEMENTAL MATERIAL

A. Parameter extraction guidelines

Following the mathematical foundations presented in the main text,we present hands-on instructions on how to
extract the parameters for the example of a month-long recording of the power-grid frequency in Germany for the
month of January 2019. As we focus mainly on specific characteristics of the power dynamics, we calculate, strictly
from the data, the noise amplitude ε, the power mismatch at the hourly stamp ∆P , the primary and secondary control
amplitudes c1 and c2. The procedure follows in a simple manner:

• Noise amplitude ε: Utilise the second Kramers–Moyal coefficient, i.e., the diffusion, to extract the noise strength
ε from the timeseries of the data. Use relation (4) to obtain the value, by taking either the value of the diffusion
at f = 50 Hz or averaging in windows around f = 50 Hz.

• Power mismatch ∆P (for the hourly jumps): Take the first 10 seconds of data just after the hour, e.g. from
12:00:00 to 12:00:10. Calculate the slope of the frequency increase or decrease in this window with a linear fit.
Given that the process displays jumps up and down, i.e., excess and lack of power supply, take the absolute
value to obtain the general power mismatch ∆P . Average to obtain the average effect.

• Primary control c1: This is a two-step process: Perform a Gaussian kernel de-trending of the data, with a 60-
seconds window, to remove the effects of the market and dispatch, so to capture the system’s stochastic nature.
The choice of a 60-second window ensures one removes only the deterministic characteristics of the frequency
trajectory: a smaller window will mimic the noise, a larger window will reflect the overall mean of 50 Hz (60 Hz)
of the process. Utilise now the first Kramers–Moyal coefficient, i.e., the drift term, to obtain a negatively tilted
line: linearly fit the line around f = 50 Hz (or 60 Hz) and extract the slope, which is the drift coefficient of the
governing Ornstein–Uhlenbeck process. The slope is the negative primary control −c1.

• Secondary control c2: This is the last parameter to calculate, and it depends on the primary control c1. Take
900 seconds windows at every hourly jump, similarly to the above calculations for the power mismatch ∆P .
Fit (8) to the data snippets (or (6), although strictly mathematically correct, it is harder to fit). Obtain the
exponential decay made explicit in (9), i.e., the last term of (8). Input the previously obtained value for the
primary control c1 (step above) to determine teh secondary control c2.

Having concluded these four steps, we possess all the necessary variables to numerically integrate a synthetic version
of the evaluated power-grid frequency.

The simplest and most straightforward method is to implement an Euler–Mayurama integration scheme. This is a
scheme identical to a regular Euler integration scheme, incorporating a noise function ξ. This is done by generating
a set of normally distributed values with mean µ = 0 and variance σ =

√
τ , with τ the employed time-step of

integration. Stochastic integration requires small time-steps, thus we suggest using at least 0.01 seconds, or better
even 0.001 seconds. From this store only the 1 second recording to accurately compare with available real power-grid
data (if your temporal resolution is different, match it). Other more integrators, such as Runge-Kutta integrators for
stochastic equations, can be used to ensure higher precision of the numerical results.

To extract the Kramers–Moyal coefficients there are open source Python (‘Python KM’) or R (‘Langevin’) packages,
see [60] and [61], respectively.

VII. PSEUDO-CODE

Pseudo-code for extracting the parameters from data, based on the methodology implemented for the Central
European power grid. As Supplemental Material, a minimal python code is attached. This was the code used for
obtaining the parameters from the data.

In the following we compartmentalise the code in four sections, each corresponding to the parameter recovery of
each of the four parameters under analysis: Noise ε, primary control c1, secondary control c2, and dispatch ∆P

For all cases below, the first step is naturally to import the data
Import data

• Load data
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IF data is recorded at 50 hz: data = data − 50

Retrieving the Noise ε

• Load module km to obtain Kramers–Moyal coefficients

• diffusion, space = km(data, coefficient = 2)

• find f=0 in space

• ε =
√
diffusion(space = 0)× 2

Retrieving the primary control c1

• Load module km to obtain Kramers–Moyal coefficients

• Load module filter to obtain the Gaussian kernel filtering

• data_filtered = data − filter(data)

• drift, space = km(data_filtered, coefficient = 1)

• find f=0 in space

• fit line to drift around space = 0

• c1 = −slope of fit

Retrieving the dispatch ∆P

FOR every hour:

– fit line to data[first 10 secs]

– save slope to record

• Take absolute of record

• ∆P = mean(abs(record))

Retrieving the secondary control c2

FOR every hour

– fit curve of (8) to data[900 seconds]

– save exp. decay to record

• c2 = mean(record)×c1
It is advisable to discard the statistical outliers, since fitting an exponential decay to the frequency data is especially
unreliable if the dispatch difference is very small for that period.
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VIII. PYTHON MINIMAL-WORKING CODE

Listing 1. Load libraries and data
1 # Set o f r equ i r ed python l i b r a r i e s
2 import numpy as np
3 from s c ipy . opt imize import curve_f i t
4

5 # Library f o r the gauss ian ke rne l f i l t e r
6 from s c ipy . ndimage . f i l t e r s import gau s s i an_ f i l t e r 1d
7

8 # Library f o r c a l c u l a t i n g Kramers−−Moyal c o e f f i c i e n t s
9 from kramersmoyal import km

10

11

12 # Pre l im ina r i e s
13 # Al lo ca t e the power−g r id f requency data to a numpy array . Make sure the f i r s t
14 # entry corresponds to the zero second o f an hour per iod , e . g . data [ 0 ] i s the
15 # s t a r t o f the data at some HH: 00 : 0 0
16

17 data = np . readtxt ( ’ l o c a t i o n / o f /data . txt ’ )
18

19 # i f the data i s recorded at a r e f e r e n c e ( e . g . 50 Hz) , remove the r e f e r e n c e
20 data = data − 50 .0

Listing 2. Noise ε
1 # Noise e p s i l o n
2 # In order to c a l c u l a t e the no i s e e p s i l o n you need to ex t r a c t the d i f f u s i o n term
3 # of the s t o c h a s t i c p r o c e s s e s . Employ the km func t i on from the kramersmoyal
4 # l i b r a r y
5

6 # Retr i eve the d i f f u s i o n c o e f f i c i e n t
7 d i f f u s i o n , space = km( data , powers = [ 0 , 2 ] , b ins = np . array ( [ 6 0 0 0 ] ) , bw = 0 .05 )
8

9 # f ind the zero f requency
10 zero_frequency = np . argmin ( space [ 0 ] ∗ ∗ 2 )
11

12 # eva luate the d i f f u s i o n at that po int and ex t r a c t e p s i l o n
13 ep s i l o n = np . sq r t ( d i f f u s i o n [ 1 , zero_frequency ]∗2 )

Listing 3. Primary control c1
1 # Primary con t r o l c_1
2 # To c a l c u l a t e the primary con t r o l c_1 we need to emply a two step proce s s .
3 # Fi r s t remove the gene ra l trend by a gauss ian ke rne l f i l t e r i n g , then employ
4 # again the km func t i on from the kramersmoyal l i b r a y r to obta in the d r i f t term
5

6 da t a_ f i l t e r = gau s s i an_ f i l t e r 1d ( data , sigma = 60)
7

8 # Obtain the d r i f t c o e f f i c i e n t
9 d r i f t , space = km( data−data_f i l t e r , powers = [ 0 , 1 ] , b ins = np . array ( [ 6 0 0 0 ] ) , bw = 0 .01 )

10

11 # f ind the zero f requency
12 mid_point = np . argmin ( space [ 0 ] ∗ ∗ 2 )
13

14 # Calcu la te the s l ope o f the d r i f t term , which g i v e s the primary con t r o l c_1 .
15 # The f i t i n g i s to a l i n e o f i n t e r c e p t a and s l ope b . T
16 c_1 = curve_f i t (lambda t , a , b : a − b∗ t , space [ 0 ] [ mid_point − 500 : mid_point + 500 ] ,
17 d r i f t [ 1 , mid_point − 500 : mid_point + 500 ] , p0=(0.0002 , 0 . 005 ) ,
18 maxfev=10000
19 ) [ 0 ] [ 1 ]

Listing 4. ∆P

1 # Delta P / RoCoF
2 # To c a l c u l a t e the d i spatch Delta P eva luate the proce s s at every hour ly jump .
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3 # I f the re i s a d i f f e r e n t d i spatch seems , change the eva lua t i on to that per iod .
4 # In p r i n c i p l e t h i s can be c a l c u l a t ed f o r any i n t e r v a l o f power dispatch , but
5 # to ensure a good f i t , b i gge r jumps = b igge r d i spatch = be t t e r f i t
6

7 # Def ine window o f jumps . In t h i s case , eva luate the Delta P every hour
8 window = 3600 # 3600 seconds = 1 hour
9

10 # Set the t o t a l l ength to eva luate
11 data_range = data . s i z e // window
12

13 # I n i t i a l i s e an array to record the Delta P
14 Delta_P_slopes = np . z e r o s ( data_range )
15

16 # The jumps are to be eva luate at t=0, but s i n c e we have no i s e data , we f i t the
17 # f i r s t 10 seconds to c a l c u l a t e the s l ope
18 for j in range ( data_range ) :
19 Delta_P_slopes [ j ] = curve_f i t (lambda t , a , b : a + b∗ t , np . l i n s p a c e (0 , 9 , 10 ) ,
20 data [3600∗ ( j ) : 3600∗ ( j ) +10] , p0=(0.0 , 0 . 0 ) ,
21 maxfev=10000
22 ) [ 0 ] [ 1 ]
23 # This r e s u l t s i s an array with p o s i t i v e and negat ive s l ope s , s i n c e some
24 # frequency changes are p o s i t i v e ( exce s s energy ) , some are negat ive . Find the
25 # abso lu t e va lue f o r them and take the average as the r e f e r e n c e Delta P.
26

27 # This i s the mean Delta P
28 Delta_P = np . mean(np . abs ( Delta_P_slopes ) )

Listing 5. Secondary control c2
1 # Secondary con t r o l c_2
2 # To c a l c u l a t e the secondary con t r o l c_2 we w i l l need , j u s t as above , sn ippe t s
3 # of the hour ly jumps and the subsequent decay o f the f requency back to the
4 # nominal va lue s . Due to the compl icated f requency behaviour , we w i l l f i t an
5 # en t i r e curve to the 900 seconds but we s h a l l only ex t r a c t the decay ra t e
6

7 # Def ine window o f jumps . In t h i s case , eva luate the secondary con t r o l c_2 every
8 # hour
9 window = 3600 # 3600 seconds = 1 hour

10

11 # Set the t o t a l l ength to eva luate
12 data_range = data . s i z e // window
13

14 # I n i t i a l i s e an array to record the Delta P
15 c_2_decays = np . z e r o s ( data_range )
16

17 # Since we have up and down jumps , we have to s epara te the t r a j e c t o r i e s that
18 # move up and those that move down , but we s t i l l c a l c u l a t e the same decay
19 # behaviour o f both
20 for j in range ( data_range ) :
21 # i f the f requency t r a j e c t o r y moves p o s i t i v e l y
22 i f np .sum( ( np . d i f f ( data [3600∗ ( j ) : 3600∗ ( j ) +10]) ) ) > 0 :
23 c_2_decays [ j ] = curve_f i t (lambda t , a , b , c :
24 a∗np . exp(−b∗ t )∗(1−np . exp(−c∗ t+2∗b∗ t ) ) ,
25 np . l i n s p a c e (0 ,899 ,900) , data [3600∗ ( j ) : 3600∗ ( j ) +900] ,
26 p0=(0.08 , . 0045 , 0 . 035 ) , maxfev=10000
27 ) [ 0 ] [ 1 ]
28 else :
29 c_2_decays [ j ] = curve_f i t (lambda t , a , b , c :
30 −a∗np . exp(−b∗ t )∗(1−np . exp(−c∗ t+2∗b∗ t ) ) ,
31 np . l i n s p a c e (0 ,899 ,900) , data [3600∗ ( j ) : 3600∗ ( j ) +900] ,
32 p0=(0.08 , . 0045 , 0 . 035 ) , maxfev=10000
33 ) [ 0 ] [ 1 ]
34

35 # We have thus s to r ed the decay ra t e b o f every power mismatch in the system .
36 # Due to s t a t i s t i c a l o u t l i e r s , d i s ca rd 20% of the data
37

38 # Sort the array and d i s ca rd 20% of the l a r g e s t va lue s
39 temp_c_2_decays = c_2_decays [ np . a r g s o r t ( c_2_decays ) ] [ : − c_2_decays . s i z e //5 ]
40

41 # Reca l l here that to c a l c u l a t e c_2 you need to know c_1
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42 c_2 = np . mean( temp_c_2_decays ) ∗ c_1

Listing 6. Print results
1

2 # Print out r e s u l t s :
3 print ( r ’ e p s i l o n | c_1 | c_2 | Delta P ’ )
4 print ( r ’−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−− ’ )
5 print ( r ’ { 0 : . 5 f } ’ . format ( ep s i l on , 1 ) + ’ | ’
6 + r ’ { 0 : . 5 f } ’ . format (c_1 , 1 ) + ’ | ’
7 + r ’ { 0 : . 5 f } ’ . format (c_2 , 1 ) + ’ | ’
8 + r ’ { 0 : . 5 f } ’ . format (Delta_P , 1 )
9 )
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