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Teaching solid mechanics to artificial intelligence—a fast
solver for heterogeneous materials
Jaber Rezaei Mianroodi 1✉, Nima H. Siboni 2 and Dierk Raabe 1

We propose a deep neural network (DNN) as a fast surrogate model for local stress calculations in inhomogeneous non-linear
materials. We show that the DNN predicts the local stresses with 3.8% mean absolute percentage error (MAPE) for the case of
heterogeneous elastic media and a mechanical contrast of up to factor of 1.5 among neighboring domains, while performing 103
times faster than spectral solvers. The DNN model proves suited for reproducing the stress distribution in geometries different from
those used for training. In the case of elasto-plastic materials with up to 4 times mechanical contrast in yield stress among adjacent
regions, the trained model simulates the micromechanics with a MAPE of 6.4% in one single forward evaluation of the network,
without any iteration. The results reveal an efficient approach to solve non-linear mechanical problems, with an acceleration up to a
factor of 8300 for elastic-plastic materials compared to typical solvers.
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INTRODUCTION
The mechanical response of materials depends highly on the
microstructure and its heterogeneity, including all defects, phases
and chemical features. An inseparable task in modeling a
corresponding coupled multi-physics material problem that links
mechanical properties to microstructure, consists in solving the
underlying differential equations for mechanical equilibrium. This
task is particularly challenging for the case of non-linear material
response, highly inhomogeneous material properties and com-
plex microstructure topologies. Several methods to numerically
solve such non-linear solid mechanics problems have already
been developed and are in use, such as spectral solvers and the
finite element method. However, ever-increasing sophistication
of material models by including more physics and coupled
problems in multi-scale methods is bringing these numerical
solvers to their limits.
Therefore, a number of attempts were made to speed up

material modeling using artificial intelligence (AI) in general, and
specifically using deep neural networks (DNN). For example,
Aydin et al.1 devised a multi-fidelity computational framework to
train fully connected neural networks and applied it to predict
the deformation of a thin elastic membrane. Although the
method appears promising for elastic scenarios, it might be less
suited for cases with non-linear material behavior, such as
envisaged here. The reason is that for high fidelity simulations of
heterogeneous and high mechanical contrast materials with
inelastic constitutive response, high accuracy is needed to cope
with non-linear effects such as stress and strain localization, shear
banding and onset of yielding.
Cecen et al.2 developed a data-driven approach to efficiently

link three-dimensional microstructures to their homogenized
properties using convolutional neural networks with improved
accuracy in property predictions as well as reduction in the
computation time compared to conventional microstructure
quantification. Fernandez et al.3 employed artificial neural
networks as a surrogate model to transfer atomistic grain
boundary decohesion data to continuum scale modeling of
intergranular fracture in Aluminum. Li et al.4 developed a

hierarchical neural hybrid method to efficiently compute failure
probabilities in high dimensional problems employing the multi-
fidelity approach introduced by Aydin et al.1. They showed that
for achieving an accurate estimate of the rare failure probability, a
traditional Monte Carlo method needs to solve the equations
significantly more frequently than the proposed hierarchical
neural hybrid method. In addition, Monte Carlo models are
generally numerically not very efficient, due to their discrete
event probing and associated generation and comparison of
values against random numbers.
Although numerous works on the use of machine learning (ML)

in materials science have been published, these are often geared
towards predicting an average (homogenized) behavior of the
system, based on large input data sets. In contrast to these mean-
field approaches, a few other publications have recently appeared
with the goal of predicting also some spatially resolved features of
solution fields in complex material systems. For example, Yang
et al.5 employed conditional generative adversarial neural network
(cGAN) to predict stress and strain fields directly from the material
microstructure geometry. Wang et al.6 introduced a genomic flow
network (GFNet) and a mosaic flow predictor to estimate the
solution of Laplace and Navier–Stokes equations in domains of
unseen shapes and boundary conditions. Pandey et al.7 proposed
a machine learning based surrogate model for predicting the
spatially resolved microstructure evolution in materials exposed to
uniaxial tensile loading. Similarly, in this work, we focus on
resolving the local response of the system. More specific, we
devise a general AI-based solver for predicting the local stresses in
heterogeneous solids with high mechanical contrast features and
non-linear material response. This solver can be used to replace or
augment conventional numerical approaches like finite element
methods. In this work, we demonstrate the ability of ML to
calculate mechanical stress field in complex microstructures with
both, elastic and elasto-plastic material behavior. For the sake of
simplicity, isotropic elastic and elastic-perfect-plastic response
(zero hardening) are adopted here. We focus here only on stress,
since it appears explicitly in the partial differential equation for
mechanical equilibrium. In principle, the same framework could be
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used to predict strain as well. Furthermore, when knowing the
constitute behavior of the material, in specific cases, it may be
possible to calculate strain components from the predicted stress
field through post-processing: the elastic strain is through Hooke’s
law always linearly related to the local stress but the plastic strain
is path-dependent and may be more challenging to resolve. In
such cases an equivalent machine learning approach as used here
for stress can also be applied without any loss in generality.
The results and their discussion for all trained scenarios with

different constitutive response and microstructure topologies are
presented in the next section, placing attention on both, the
performance of the network on geometries and mechanical
contrast ranges similar to the trained ones and also on those
beyond the training range. Next, a general discussion and future
opportunities are presented. This is followed by the methods
section with a brief review of the governing equations for
mechanical equilibrium in elasto-plastic solids and an overview of
the machine learning algorithm we use in this study. Finally, the
simulation setup and the generation of the mechanical stress field
data that serve for training and evaluating the machine learning
network are presented.

RESULTS
Isotropic elastic case
Once the network is trained using the training dataset outlined in
“Setup and Training” section below, we evaluate it with sets of
input material property distributions in topological configurations
and parameter combinations which had not been used for
training the network. More specific, the evaluation on the test
dataset is done both (i) for geometries similar to the training data
(i.e., Voronoi tessellations), and (ii) geometries which are
completely different from those that had been used for training.
For the geometries in (ii), we included cases where the surface of
the inclusion (i.e., the internal domain) is curved, as a test for the
model’s capability to generalize beyond Voronoi-based represen-
tative volume elements, where straight, faceted interface shapes
were used. These results are presented in the following sub-
sections.

U-Net predictions for domain topologies similar to the training
data. Von Mises stress (see “Methods” section below for a
summary of the formulations) predictions based on the U-Net
architecture for three Voronoi tessellations from the test data set
are shown in Fig. 1. The figure reveals that the AI-based solution,
obtained by the modified U-Net method, qualitatively and in part
even quantitatively agrees well with the DAMASK8 solution,
although there are regions with a higher relative error of up to
25%. As will be shown in the following, these regions of high
deviation are limited to only a few rare points and for most of the
grid points in the domain the relative error is below 4%. In
particular, the surrogate model is able to adequately reproduce
the sites of stress concentrations and the distribution at the
domain junctions, which are due to local contrast in elastic
constants.
To further investigate the source of the errors reported above,

we re-plot Fig. 1c right, in Fig. 2a, showing only regions with error
values higher than 83 MPa (4% relative error) as black. This
analysis, firstly, suggests that there are localized regions of higher
error between the domain boundaries where the material
properties are discontinuous. This is expected since those regions
are typically also the most challenging ones for conventional
solvers to cope with as well. A possible mitigation strategy for
such zones of high local deviation might be the use of filtering
schemes in the network, quite similar as it is done in spectral
solvers, where the underlying Fourier series can create non-
physical high frequency noise in solutions.
As observed in Fig. 2a, in addition to the domain boundaries,

there are patches of high error values seemingly close to the
boundary of the calculation box. To confirm this, an averaging
operation is performed, by simply adding images similar to the

Fig. 1 Stress distribution in case of elastic material response.
Simulation results obtained by DAMASK in conjunction with a
spectral solver (a) and the corresponding AI predicted (b) von Mises
stress distribution for three Voronoi tessellations of test micro-
structures (not included in the training dataset) using the modified
U-Net approach. The error, calculated as deviation between the two
von Mises stress distributions, δSvM, is shown in (c).

Fig. 2 Error distribution analysis for the case of elastic material response. Distribution of the absolute values of the deviations between the
reference data obtained from the full-field DAMASK based spectral solver simulations and the U-Net predictions (a), showing only regions
with errors above 83 MPa (4% relative error) in black color for one of the test cases. b The local probability of occurrence of errors larger than
83 MPa. The probability is shown by a gray-scale color-code (the white and black colors represent the probability of zero and one,
respectively). This quantity is calculated by averaging the observations similar to (a) over all the test data-sets. In this procedure for each of the
test samples, a value of 1 is assigned to regions with an error above 83 MPa, and 0 otherwise. c Error distribution for all points in all of the 50
cases in the test data-set with 4% relative error indicated as red dashed lines.
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one shown in Fig. 2a of all cases in the test dataset and diving the
sum by the number of cases (50 here). The resulting average error
distribution map is shown in Fig. 2b. It indicates that these patches
are indeed mostly located near the boundaries of the box. We
speculate that this is due to the fact that our convolutional neural
network, unlike the DAMASK solver, does not consider periodic
boundary conditions. More specifically, when the kernel is applied
to points that are located close to the outer borders of the
simulation box, for the pixels beyond these borders their periodic
counterpart values from the opposite borders should be used, like
used in most similar set-ups where classical periodic boundary
conditions are enforced. It is therefore likely that enforcing the
periodicity of the input images in the neural network will help
reducing the boundary effect errors. These aspects refer to work in
progress which will be analyzed in more detail and be reported in
ensuing publications. A positive aspect of this error close to the
borders of the simulation domains, however, is that it seems to be
merely a geometrical effect related to the simulation box and not
a fundamental problem of the U-Net approach to identify
surrogate solutions. Figure 2c shows the error distribution of all
points in all cases of the test dataset. The analysis shows that most
of the points (91% of all points) fall inside the red dashed lines
indicating equal or less than 4% relative error.

Application of the U-Net to geometries far from the training
data. Next, we look into geometries that could not be
represented by Voronoi tessellation. These include classical elastic
problems of circular and square shaped inclusions with larger
Young’s modulus embedded in a softer matrix. The von Mises
stress distributions for such cases predicted by the AI and
calculated by DAMASK are shown in Fig. 3.
Although the topologies of these high-mechanical contrast test

cases are fundamentally different from the Voronoi structures that
were used for training, the AI-based predictions still capture the
correct stress partitioning between the soft and hard phases as
shown in Fig. 3. The error between the reference patterns
obtained by the full-field DAMASK simulations and the AI-
predictions is shown in the third row. The maximum relative error
is about 12%, however, as in the previous cases, the regions of
largest error are limited to the domain boundaries. Otherwise, the
stress distribution around and inside the hard inclusions follows

that observed in the reference pattern. For example, note that for
the four deep blue regions around the circular inclusion at 0, 90,
180 and 270∘, as marked by yellow arrows, the minimum von
Mises stress based on the DAMASK-calculated and AI-predicted
values are 802.5 and 849.4 MPa, respectively.

Effects of depth and kernel size of the U-Net. The Gibbs
phenomenon is a classical numerical issue associated with
solution algorithms of mechanical problems with sharp transition
features in material properties (as shown in many works, e.g.,9,10),
especially when using the fast Fourier transform method as a
solver. This undesired oscillating and overshooting effect is
produced by Fourier solvers applied to piece-wise continuously
differentiable functions at discontinuities (such as here when
crossing interfaces). The oscillations in the solution fields due to
such sharp transitions can be minimized using multiple filtering
schemes9. Therefore, next we study in more detail the predicted
stress profile and look into the effect of the depth of the network
(i.e., the number of down- and upsampling steps) on such
oscillations.
As shown in Fig. 4-right column the deeper network, i.e., the

network with Ns= 8 (see “Setup and Training” section below for
details about the network architecture) is capturing the wake of
the stress field better than the shallower network with Ns= 4,
however, the jump in the stress magnitude at the transition of the
material property is larger. This seems analogous to the full Fourier
approach used in spectral solvers where all frequencies are
included (deep network) compared to the filtered approach
(shallow network). In the spectral method, filtering the high
frequencies is equivalent to approximating the derivatives with
lower order finite differences (such as forward or backward
differences). Since the convolution kernels used in the network
could correspond to taking derivatives of the data, increasing the
depth of the network, at least conceptually, will be analogous to
work with higher order derivatives in conventional solvers,
amplifying the fluctuations. In other words, the kernel weights,
that are learned during the training, have the potential to signify
differences between adjacent points. This is often the case in
feature detection by U-Net where the edges are detected using
larger differences (gradients) in image intensity or color. Here, we
are speculating that since a deeper network has more layers

Fig. 3 Predicted stress distribution for selected geometries beyond the trained topologies. Simulation results (a) for isotropic elastic
material response for topological cases far away from the trained set of Voronoi structures and the corresponding AI predicted (b) von Mises
stress distribution for different hard inclusions in a soft matrix. The error between the AI prediction and the DAMASK solution is shown in (c).
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calculating the differences from the previous layer, this will have
an amplifying effect on oscillations.
Next we focus on the effect of the kernel size on the AI-

predicted results. As seen in Fig. 5, smaller k × k kernels with k=
3 and k= 5 result in completely incorrect stress distributions. In
fact, under the training conditions discussed in “Setup and
Training” section below, it was not possible to reach the loss
values corresponding to networks with larger k values (≃ 0.02).
However, networks with k × k kernels of k= 7 and k= 9 were
trained to the lower loss values and they perform much better.
Note that the results discussed in the sections above were based
on k= 9.

U-Net AI predictions for cases with elasto-plastic material
response
As the next step to create a surrogate AI stress solver, we extend
the U-Net solution to elasto-plastic problems. It is worth
mentioning that in order to obtain the elasto-plastic response in
the full-field DAMASK simulations used here as reference, the load
must be applied incrementally (here we used 100 steps). This
renders the conventional DAMASK simulation procedure compu-
tationally more demanding compared to the elastic problems
where the load is applied instantaneously. In our AI approach, we
can obviously omit the extra computational costs that are caused
by this incremental approach. Again, similar to the elastic case, the
AI-prediction is, once the system is trained, a single step forward
calculation, i.e., one set of inputs, here (Y, ν, Sy), representing
Young’s modulus, Poisson’s ratio and Yield stress distributions,
respectively, are fed to the neural network and the von Mises

stress is directly predicted, without any iterations. As we have in
the current elastic-plastic material case more independent inputs
and also a more complicated relation between the inputs and
outputs, we first need to increase the predictive power of the
neural network. Therefore, we increased the complexity of the
neural network by doubling the number of the channels at each
stage of the U-Net. Based on our observation of the effect of an
increase in the depth of the U-Net, the increase in the number of
channels appeared to be a suited approach for enhancing the
complexity of the U-Net for predicting mechanical response in
heterogeneous media.
Similar as done for the elastic case, we trained the U-Net using

the DAMASK stress predictions to obtain reference values. Due to
the nature of the material’s elasto-plastic behavior, the absolute
value of the overall applied strain is important. For very small
strains, all the domains remain elastic, and for very large strains all
the domains enter the elastic-plastic regime. In the former case,
we are actually solving a purely elastic problem and consequently
the solution depends only on the elastic constants, and for the
latter case the stresses could be estimated fairly well from the
yield stress values and therefore the elastic constants do not play
a significant role. To provide a generic training data-set for the
U-Net, we choose the magnitude of the applied strain in a range
so that some of the domains become plastic while the others
remain elastic. In this regime, the stress is determined by a
complicated interplay between elasticity and plasticity.
A typical example of the stress prediction using the trained

U-Net for the case of elasto-plastic material behavior is depicted in
Fig. 6.

Fig. 5 Effect of kernel size on predicted stress distribution. The predicted von Mises equivalent stress distribution for kernels with size k × k,
k= 3, 5, 7, 9, shown in (a), (b), (c), and (d), respectively, compared to the results obtained from the full-field DAMASK simulations used here as
reference (e). All models were trained under the same conditions.

Fig. 4 Effect of network depth on predicted stress distribution. Von Mises stress distribution around circular (a) and square (b) inclusions
calculated by DAMASK as well as two network architectures with depths of Ns= 4 and Ns= 8. The stress profiles are plotted along the dashed
lines with red, blue and green corresponding to DAMASK, network with Ns= 4 and Ns= 8 based results, respectively.
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Speed-up and efficiency evaluation
In the previous sections, the network training and evaluation were
performed on a machine powered by an Intel Xeon CPU clocked
at 2.30GHz with a NVIDIA Tesla P4 GPU. However to benchmark
the performance of the AI-based solution in comparison with
DAMASK, we restrict here both to use only one core of an AMD
EPYC 7702 64-Core Processor, clocked at 3.34 GHz. Limiting the
overhead of both calculations as much as possible and running
both on the same CPU for a large number of evaluations provides
a good measure of the total number of floating point (FL)
operations necessary to reach the final result. Of course, working
with GPU for AI evaluation could lead to better scalability
compared to parallel processing conducted in the typical spectral
simulations in DAMASK. However, here we restrict the discussion
to only single core comparison to evaluate the methods with
respect to their basic FL operation costs.
Under these conditions, elastic calculations took in average

12.13 s (measured over 100 calculations) while the AI-based
approach only took 0.12 s (measured over 2000 calculations),
revealing a speed-up of about 103 times, roughly corresponding
to the reduction in the number of required FL operations.
The calculation for elastic-plastic constitutive material response

required in DAMASK to reach the applied load in 100 increments
took about 22 min, an average per time increment of 13.2 s, while
the AI-based calculation took only 0.158 s (measured as an
average over 2000 evaluations). This corresponds to a speed-up by
a factor of about 8300 times, corresponding to the same factor in
reduced required total FL operations when using the AI-based
solver for the application of the full load. Note that the simulation
time for the non-linear solver in DAMASK will depend on the step
size and numbers of increments applied. The current selection of
100 increments is not the optimum choice, however, based on the
measurements, even calculation of a single increment for elasto-
plastic material behavior is about 84 times slower than the AI-
based solver for a scenario where the total external load that
brings the material into the elastic-plastic regime is applied
instantaneously. It should be considered, however, that also
conventional solvers for materials with non-linear constitutive
response could further be optimized for the specific problem at
hand to reach converged results faster. This means that the details
of the speed-up will highly depend on the specific problem at
hand. The values reported above represent a typical simulation
with DAMASK and the speed-up may vary between different
solver configurations. The important point to note here is the
conceptual difference in nature of the AI-based solver as opposed
to conventional non-linear solvers, since the former will always
work with a single-step evaluation of the network regardless of

the non-linearity of the task posed while the latter is always
iterative.

DISCUSSION
Advanced materials and the products consisting of them have
become immensely complex in their internal structure and
chemistry as well as in the mechanical loading conditions they
get exposed to, ranging from cell phones to space ships.
Particularly structural materials, i.e., materials that are primarily
meant to carry mechanical loads, nowadays contain multiple
crystals, defects and phases with high mechanical contrast.
Mapping such complex microstructures and parts in the form of
digital twins and subjecting them to mechanical calculations is a
prerequisite to their microstructural design, improved processing,
further development and safe application. Similar aspects apply to
other mechanically heterogeneous media as encountered in such
diverse fields as soil-, structure-, building-, construction-, earth-
quake-, ice-, or colloidal mechanics.
Conducting such mechanical simulations for materials with

large internal phase contrast and complex constitutive response
(e.g., elasto-plastic behavior), together with non-linearities arising
from large deformations, lead to immense computational costs
when using conventional finite-element or spectral solver
methods. The high computational costs are primarily due to the
iterative nature of the solution algorithms used by these solvers.
They limit the range, size and complexity of problems that are
accessible to simulation-based investigations using current
computers.
Therefore, an alternative surrogate machine-learning-based

solver for mechanically heterogeneous and non-linear fields (here
stress distribution) is introduced in this work. The accuracy and
computational costs of this U-Net based solver are compared with
a high-performance spectral solver, both for elastic and elasto-
plastic constitutive scenarios. The proposed DNN can predict the
local stress distribution with 3.8 and 6.4% mean absolute
percentage error (MAPE) for heterogeneous elastic and elasto-
plastic material response, respectively. The performance tests
show a reduction in computation time of about 103 and 8300
times for elastic and elasto-plastic materials, respectively. Besides
the acceptable accuracy and the substantially reduced computa-
tional costs, the trained DNN also shows a great generalization
capability by predicting stress distributions in geometries far
different from those used in the training data-sets.
Although the observed MAPE shows a reasonably accurate

stress prediction by the ML method, the errors are currently
admittedly in some cases larger than those of a typical (e.g., FEM)

Fig. 6 Stress distribution in case of elasto-plastic material response. Comparison for two different topologies obtained by U-Net predictions
(e) of the von Mises stress spatial distribution and the corresponding DAMASK calculations (d) for the shown input material property
distributions of Young’s modulus (a), Poisson ratio (b) and Yield stress (c). The error between U-Net and DAMASK predictions is shown in (f).
The applied strain is chosen such that the von Mises stress depends on both elastic constants and the yield stresses, i.e., the spatial pattern of
the von Mises stress is neither similar to the elastic constant distribution nor to the yield stress distribution.
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solver. How these errors affect and act on further downstream
calculations will depend on the specific type of these calculations.
For example, if the absolute level of stress is in focus, for example
as required for damage growth modeling, the ML solution must
be improved substantially. However, in applications such as shape,
microstructure, loading and topology optimization; augmentation
and efficiency increase of conventional solvers; or the identifica-
tion of regions of high stress and strain concentrations, the current
accuracy is sufficient. A detailed error analysis and network
architecture study reveals several pathways for its further
improvement in the future. Incorporating filtering schemes to
remove the high frequency noise and enforcing periodicity in
kernel operations of the DNN represent specific items along these
lines that are currently in progress. In addition, predicting full
stress and strain tensor components is straightforward based on
the current framework and require no conceptual change.
The huge speed-up in calculation of the stress distribution in

such highly non-linear mechanical systems paves the way for
many important applications, specifically addressing more com-
plicated simulations, materials, loading scenarios and optimization
problems, not previously computationally accessible. Furthermore,
combining the proposed surrogate model with conventional
solution methods can be an approach towards higher accuracy of
conventional solvers at considerably lower computational costs.
This can be for instance achieved by employing the U-Net based
stress prediction as an initial stress guess for conventional iterative
solvers. This could greatly reduce the number of iterations
required, thus substantially saving computation time that is
usually required for convergence. In general, problems with an
inherent instability or solution bifurcation or, in particular, with
severe localized deformation and failure are speculated to be
harder to solve with the AI-based method. Reaching close to
machine precision accuracy in predicting solutions to more
complex and highly heterogeneous fields will probably require
the use of exponentially more training data with diminishing
return in accuracy. Coupling the U-Net with the governing PDEs in
a concept known as physics-informed neural network (PINN)11 will
be helpful in improving the accuracy of predictions as well as
quantifying their quality. This aspect as well as extending the
model to multiple stress / strain components and general
boundary conditions are work in progress and will be reported
in subsequent publications.

METHODS
Short summary of large deformation elasto-plastic mechanics
Here we present a concise summary of large-deformation elasto-plastic
solid mechanics, as implemented in the Düsseldorf Advanced Material
Simulation Kit (DAMASK)8. For a complete description as well as the details
of the different numerical implementation, parameter identification and
solution algorithms, the reader is referred to the original papers8,12.
Assuming large deformations, neglecting inertial and body forces, the
strong form of the mechanical equilibrium in a continuous domain is

Div P ¼ 0 in Ω0

P ¼ PBC on ΓP

u ¼ uBC on Γu

(1)

where P is the first Piola–Kirchhoff (PK) stress tensor and Ω0 is the
volumetric domain. The above partial differential equation (PDE), together
with the boundary conditions (prescribed either as traction or displace-
ment on non-overlapping surfaces ΓP and Γu of Ω0), describe the strong
form of the mechanical equilibrium. Under external or internal loads, the
domain will deform and the material points will move from their reference
positions X to their current positions x through the deformation field χ. In
the context of large-strain solid mechanics, the deformation gradient F ¼
Grad χ is multiplicatively decomposed into elastic (Fe) and plastic (Fp) parts

F ¼ FeFp (2)

with the plastic flow rule

_Fp ¼ LpFp: (3)

In a first approach, we assume that the material undergoes isotropic
plastic deformation when loaded beyond its yielding point. This means
that the inelastic deformation is governed by the second invariant of the
deviatoric stress tensor, referred to as J2. In other words, tensorial
directionality is reduced to a scalar stress value (which is typically
calculated through the von Mises equivalent stress measure) to which the
strength of the material (plastic resistance against inelastic deformation) is
compared. Under the assumption of such an isotropic J2 plastic material
response model, the velocity gradient Lp is formulated as

Lp ¼ _γp
Sdev

jjSdevjj (4)

with Sdev ¼ S� tr S=3 the deviatoric part of the second PK stress (S) and

_γp ¼ _γ0
SvM
Sy

� �n

(5)

the plastic strain rate. _γ0 and Sy in Eq. (5) are the initial strain rate and yield
stress, respectively. n is the plastic yielding exponent that describes the
rate sensitivity and

SvM ¼
ffiffiffi
3
2

r
jjSdevjj (6)

the von Mises stress equivalent measure of S. Once the total deformation is
decomposed into its plastic and elastic parts through an iterative solution
of Eqs. (2)–(5) as explained in8, the stress is calculated by the generalized
Hooke’s law

S ¼ C : E (7)

where

E ¼ 1
2
ðFTeFe � IÞ (8)

is the Green strain tensor and S is the second PK stress, related to P as

P ¼ det FpFeSF�T
p : (9)

The first PK stress introduced above, should satisfy the mechanical
equilibrium in Eq. (1), which is solved numerically in DAMASK with the help
of a spectral solver13,14. The non-linear systems of equations outlined
above are solved in iterations until convergence is achieved. These
solutions serve here as a reference for training as well as for assessing the
quality and the predictive capability of the machine learning method.
In this work, we investigate two constitutive test cases of purely elastic

and elasto-plastic materials with perfect plastic (zero strain hardening)
response. For simplicity, only isotropic elasticity is considered here. These
constitutive assumptions reduce the material properties to two (three)
parameters of Young’s modulus Y, Poisson’s ratio ν (and yield stress Sy) in
case of elastic (elasto-plastic) material, respectively. The mechanical
heterogeneity of the material is then mapped as a topological aggregate
(mimicking a polycrystal) where each domain assumes a set of different
material parameter values in the ranges of [60, 120] GPa, [0.1, 0.4] and [50,
200] MPa for Y, ν and Sy, respectively. Note that although these property
values are not based on any specific material, they roughly correspond to
ductile polycrystalline metals.

A machine learning approach based on U-Net
Using machine learning and specifically deep neural networks has become
ubiquitous in material science (see Refs. 15–26 for a review). Most of the
current ML related innovations in materials science and engineering
successfully aim at accelerated material discovery27–30, efficient intera-
tomic potential development31–34 or feature identification in complex
pattern that have relevance for materials performance35–39. However, we
show here that ML can also help to fundamentally change the way how we
solve (non-linear) partial differential equation systems in conjunction with
advanced constitutive laws that describe complex material microstruc-
tures, much faster than via classical finite element or spectral solvers11,40.
This tenet change has the potential to revolutionize continuum-based
simulations of materials, allowing a substantial enhancement in the
accessibility of materials and topologies of high complexity, size and
speed, to quantitative predictions.
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Introducing a deep learning alternative for a physics-based solution
scheme should be carried out with stringent assessment of the
performance in quality of the solutions (see Refs. 41,42 for a review on
challenges of introducing AI as a tool in material science). The necessity of
a quantitative quality assessment of the predictions, among other factors,
is motivated by a specific common challenge associated with all deep
learning approaches: unlike in conventional solver schemes, where the
solution is directly built upon the fundamental governing equations (e.g.,
Eq. (1)), in deep learning, the network only learns to reproduce the correct
output based the training data. The training data-set has the correct value
of output which are calculated by the physics-based conventional solver
(hence, theory-trained AI40), and this establishes an indirect way for the
network to be exposed to the physics of the problem. In other words, the
neural network learns a mapping between the inputs and their
corresponding outputs which are calculated by a physics-based solver.
Although the network does not directly incorporate the physical laws, it
can mimic the outputs which are based on these physical laws. This means
that deep learning is for such tasks well equipped for digesting and
reproducing pattern features very efficiently and relate patterns to
topologies, but this does not per se include gaining insights into the
underlying physics-related origin of certain features of such patterns
(except for the topological ones). Thus, when using deep learning primarily
as an efficient solver rather than as a physics tool seems to exploit its
biggest strength in the current context. This lack of direct inclusion of the
physical laws (and in general human knowledge) motivated invention of
procedures to shed light on how the neural networks make their
predictions; these methods are commonly referred to as explainable AI
methods (for example see Refs. 43–46). In this article, unlike the common
approaches in explainable AI (e.g., Ref. 47,48), we develop an understanding
about the relationship between the inner structure of the proposed neural
network and its capability in finding an approximate solution surrogate to
the posed boundary value problem by using a number of tests. Utilizing
these findings, we make connections between details of the machine
learning solution to the well defined solution algorithms used for solving
PDE with conventional spectral solvers.
Neural networks vary in their basic neural units, the arrangement of

these units in the layers and their connectivity, the character of the loss
functions (e.g in terms of the quantification of the deviations of the
predicted values relative to the reference values in the training data), and
the “reductionist” spirit of the network design (e.g., see Refs. 49–51). This
diversity in possible architecture details is reflective of the diversity of the
applications. For applications with specific characteristics (and constraints)
one might require to develop a network topology and network workflow
that matches the problem solving at hand more adequately. Examples of
such architectures which have been tailor-made for specific physics- and
materials science applications can be found in Refs. 52,53.
In this article, our goal is to develop and to use a neural network

architecture which is capable of estimating the local stress fields in
heterogeneous media exposed to external loads, using only the local
material properties and the microstructure topology (e.g., the domain,
grain or phase structure) as input information. This requires the network to
be able to (i) capture local features efficiently, and also (ii) have the same
dimensions for inputs and outputs. These are also requirements for many
computer vision problems like segmentation and object detection.
Therefore, as a first step, we implement one of the most common neural
network architectures in computer vision which is known as the “U-Net”50.
U-Net was originally developed for biological image segmentation and has
since been one of the most commonly used architectures in solving
computer vision problems.
Another consideration, which favors using the U-Net architecture, arises

from the main equation to be solved, i.e., Eq. (1). The operator in this
equation is a derivative, which could be captured effectively using the
convolutional layers of the U-Net. With all the above mentioned
considerations, we find adapting this architecture particularly promising
for the application of solving the mechanical equilibrium and local material
response in solid mechanics.

Generating simulation data
We used Voronoi tessellation to create 1000 two-dimensional random
geometries with 20 different domains in each simulation box. Note that
the difference between each domain is not the crystallographic orientation
in our current training set-up, but the elastic and plastic material properties
are different in each domain. For simplicity, an isotropic plasticity model
(and not more advanced models such as crystal plasticity) is employed in

the elasto-plastic case. The size of the simulation box is 256 × 256 × 1 grid
points. Two cases are considered, one with isotropic elasticity and a second
one with elastic-ideal-plastic response (i.e., no strain hardening). The
material properties of each domain are assigned randomly from the sets
listed in Table 1.
A random choice of Young’s modulus Y and Poisson’s ratio ν from Table

1 (elastic column) is assigned to the domains (which mimic grains) in the
1000 different geometries that were generated for conducting the full-field
simulations in DAMASK. The DAMASK simulations then serve as training
data for the U-Net. For the case of elasto-plastic material response, in
addition to Y and ν taken from the elasto-plastic column in Table 1, we
assigned different yield stress values, Sy, to each domain of the simulation
box as well. Furthermore, in case of elasto-plastic material response, n= 20
and _γ0 ¼ 10�3 s−1 are adopted as parameter values in the plastic strain
rate equation, i.e., Eq. (5). These parameters result in a perfect plastic model
(zero strain hardening) with different yield stresses in adjacent domains
(i.e., grains).
Once the geometry and the material properties have been assigned, all

simulation boxes (i.e., the polycrystal aggregates) were loaded to a tensile
strain of Exx= 0.01 or Exx= 0.001 for elastic or elasto-plastic cases,
respectively (see Fig. 7 for coordinates). The elasto-plastic load was set
to a modest value that fell in the middle of the range of the yield strength
values in order to enhance complexity, i.e., to obtain a mixture of domains
in elastic and elasto-plastic regimes. Furthermore, note that the minimum
yield stress in the training data is only 50 MPa, therefore the applied
external load in the elasto-plastic case is lower compared to the purely
elastic case. Stress components in all other normal directions (i.e., yy and
zz) as well as deformation in the off-diagonal components were set to zero.
In case of elastic material behavior, the load was applied instantaneously in
one step, while in the elasto-plastic case, it was applied sequentially over
100 steps. The calculations were performed using the open-source
micromechanical simulation software package DAMASK8. Note that even
in case of the linear elastic model, the PDEs are not linear due to the non-
linear nature of the underlying strain model presented in Eq. (8) that is
capable of modeling both large deformations and rigid rotations. Although
the applied stain is small (1%), the local strains are higher due to stress

Table 1. Sets of the material properties used for generating the
training data.

Elastic Elasto-plastic

Y (GPa) {80, 90, 100, 110, 120} {60, 80, 100, 120}

v {0.1, 0.2, 0.3, 0.4} {0.1, 0.2, 0.3, 0.4}

Sy (MPa) – {50, 100, 150, 200}

Fig. 7 Schematics of the material property-response relationship.
Example of a typical set of maps of an input material property
distribution (left) and corresponding output in terms of von Mises
equivalent stress distribution (right), calculated with the open-
source micromechanical simulation software package DAMASK8.
The uniaxial tensile load is applied in x direction. The full-field
forward simulations serve as training data for the U-Net-based
machine learning solver.
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concentration at the domain junctions and related topological features of
high mechanical contrast. However, here we restrict the investigation to
the domain-to-domain differences in a near-linear heterogeneous system
of an elastic material exposed to small deformations and for the non-linear
case of elasto-plastic behavior.
The inputs to the machine learning algorithm are the distributions of the

material properties (Y, ν in case of elastic and Y, ν, Sy in case of elasto-
plastic response, respectively), represented as color coded images. The
output or respectively target of the ML training lies in the prediction of the
von Mises equivalent values of the second PK stress, SvM as defined in
Eq. (6), which is plotted at the end of each simulation as a color coded
image. Note that each grid point in the simulation is represented by one
pixel in the input/output images (i.e., all images are of size 256 × 256).
Consequently, the simulation domain is restricted to this size. An example
of a set of such input and output images are shown in Fig. 7.
For better visualization for readers, the simulated maps are in this paper

color coded using the viridis or seismic color maps. However, note that the
neural network is trained and working with monochrome images for each
of the scalar fields.

Network architecture
The network architecture used here is an adaption of the U-Net50, see
Fig. 8. The network has two distinct parts, a contracting and an expansive
part. The contracting part consists of Ns= 4 steps where each step is a
repeated stacking of contracting modules where each module consists of a
convolutional layer, a non-linear activation function, and a batch normal-
ization layer, which is followed by a downsampling layer. The convolu-
tional layer increases the number of channels and the downsampling
decreases the number of rows and columns of the data (i.e the width and
height of the image). After these Ns steps conducted in the contracting
part, the expansive part of the network starts, which also consists of
Ns steps. Every step in the expansive part is similar to the contracting part
except that in this case the convolutional layers decrease the number of
channels and the downsampling is replaced by upsampling which
increases the number of rows and columns. Following the U-Net
architecture, in each downsampling step, the width and the height of
the image are reduced by a factor of two. Corresponding to each
downsampling step, an upsampling step is implemented where the scaling
factor is again two. As the number of downsampling steps equals that of
the upsampling steps, the output data have the same dimensions as the
input. This architecture also enables us to pass the information of each
step of the downsampling sequence directly to the corresponding
upsampling part, as it is done in the original version of U-Net as well50.
The last contraction step is followed by a convolutional layer which
reduces the number of channels to 1 and applies a sigmoid function which
maps the values into the range [0, 1]. In spite of its overall similarity to the
original U-Net structure, the variant of the neural network that we use here
deviates from the original design, as explained in the following.

First and foremost, the kernel size of the convolutional layer in our
model (k= 9) is much larger than the kernel size used regularly in U-Net
(i.e., k= 3). Here, a kernel of size k refers to a k × k matrix whose elements
are to be learned during the training of the network. The kernel, i.e.,
specifically its matrix size, is a key feature of convolutional neural networks
that is applied step-wise in the form of a sliding array across pattern data.
This process has the aim to amplify, identify and extract certain features
from an input image. It is usually coded in the form of a simple matrix (of
much lower rank compared to the image size), that is sequentially slid
across the image and multiplied at each sequential position with a subset
of the input array such that the output enhances certain topological
pattern features such as edges, corners, gradients, etc. The rationale
behind our choice for increasing the kernel size from 3 to 9 is that a larger
kernel size can lead to a more accurate derivative estimate. In fact, as
shown in the results section, we observe that for small kernel sizes the
network’s capability to predict the results is significantly reduced. The
analysis shows that the kernel matrix size is indeed an essential parameter
for rendering this approach a viable solver alternative, capable for instance
of picking up local stress peak and stress gradient features. These local
stress features are related to the mechanical contrast variations which are
characteristic of heterogeneous materials.
Another important modification which we implemented in our version

of the U-Net lies in replacing the conventional convolutional layers by
separable convolutional layers. In contrast to the convolutional layer used
in the original U-Net design, where the outputs obtained by applying the
kernel to each channel are summed up for all the channels, in our
approach the outputs are added together with weights that are learned.
Using an unweighted sum is a more suitable choice for segmentation
applications as one could expect high correlation between different
channels of the input, e.g., between the red, green, and blue colors of an
image. For our application, however, we are not expecting such a high
correlation between the different material properties (i.e., between the
Young’s modulus, Poisson’s ratio, and the yield stress). The depth of
the U-Net (i.e., the number of contraction/expansion steps) and also the
number of channels are modified in our implementation. Effects that stem
from an increase in the depth of the U-Net are studied systematically and
discussed in the results section.

The input data: random microstructures
The input data include in the present case the spatial distribution of the
material properties, including the local Young’s modulus Y, the local
Poisson ratio ν, and in the case of the elasto-plastic behavior, the local yield
strength values Sy. We arrange this information by stacking (w, h) arrays of
Y and ν to form a (w, h, 2) array, with w= 256 and h= 256. For the elasto-
plastic problems, an extra channel is added which contains the yield stress
values Sy, as an isotropic measure of the material’s resistance against
inelastic shape change. We also introduce an additional channel for Y/ν.
The choice of this additional feature is motivated by the common form of

Fig. 8 Architecture of the U-Net used in this work. Here, the notation of Tensorflow55 is adopted for naming the layers. The layers consist of
separable convolutional layers (SeparableConv2D) with either a rectified linear unit (ReLu) or sigmoid activation functions to extract the
features and apply the non-linearities, batch normalization (BatchNormalization) to transform the layers’ outputs to a mean value of zero and a
standard deviation of 1, max pooling (MaxPooling2D) for coarse-graining, and up sampling (UpSampling2D) for going from the coarse
grained image to a high resolution one. The skip connections send the images from each contracting step to its expanding counterpart.
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the solutions emerging from elasticity theory, where Y and ν appear in
mixed terms of Y/ν or Y/(1+ ν). The values in the channels are shifted and
scaled such that they all fall into the range [0, 255].

The output data: von Mises stress distribution
Using the input data, i.e., the scaled material properties, we aim to predict the
distribution of the von Mises stress introduced in Eq. (6), again in scaled form.
The von Mises stress value is an equivalent stress measure which reduces a
tensorial form to a scalar surrogate for isotropic cases. In general, we are here
focusing on the von Mises stress measure as it is a first order parameter that
allows to reveal the most important key features of the mechanical
heterogeneity in isotropic media subjected to elastic-plastic loads.
Note that in our AI-approach, we do not calculate the von Mises stress

by separate prediction of the individual stress components, but we
calculate it directly in an end-to-end approach, i.e., using the inputs
mentioned above. We speculate that calculation of the individual stress
tensor components would be more straightforward for the neural network,
but this would require the use of more output channels. For highly
mechanically anisotropic cases it would be however pertinent to calculate
the components of the stress tensor individually (and extract from these
also secondary measures such as equivalent stress values).

Training the network
The neural network is implemented, trained, and tested using Keras54

which is an application programming interface (API) written in Python,
running on top of the machine learning platform TensorFlow55. The
1000 samples are split randomly into the training and test sets of size 950
and 50 samples, respectively. To train the network, the mean absolute error
is used as the loss function (which should be minimized). The minimization
of the loss function is done using the ADAM optimizer which is a stochastic
first-order gradient-based method56. We use random samples in batches of
size 32 for the gradient estimation, and continue training for 400 epochs,
i.e., 400 complete passes through the whole training dataset. We set the
hyperparamters of the ADAM optimizer to β1= 0.9, β2= 0.999, ϵ= 10−7,
and a learning rate within the range [1, 5] × 105. The training is carried out
for 400–800 epochs. During the training the mean absolute error of≃ 0.02
is achieved without any significant sign of over-fitting.
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