## Methane Selective Oxidation on Metal Oxide Catalysts at Low Temperatures with O<sub>2</sub> Using an NO/NO<sub>2</sub> Oxygen Atom Shuttle

I. Tyrone Ghampson<sup>b,c</sup>, Sean-Thomas B. Lundin<sup>b</sup>, Vibin Vargheese<sup>b</sup>, Yasukazu Kobayashi<sup>d</sup>, Gregory S. Huff<sup>e</sup>, Robert Schlögl<sup>e,f</sup>, Annette Trunschke<sup>e</sup>, S. Ted Oyama<sup>a,b,g\*</sup>

<sup>a</sup>School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China

<sup>b</sup>Department of Applied Chemistry for Environment, Graduate School of Urban Environmental

Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

<sup>c</sup>Department of Chemical Systems Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

<sup>d</sup>Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced

Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565,

## Japan

 <sup>e</sup>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
 <sup>f</sup>Department of Heterogeneous Reactions, Max-Planck-Institut f
ür Chemische Energiekonversion, Stiftstraße 34-36, 45470 M
ülheim a. d. Ruhr, Germany

<sup>g</sup>Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States

\* Corresponding author.

E-mail address: oyama@vt.edu (S. Ted Oyama).

## Catalyst synthesis and characterization

Table S1 gives the amounts and sources of the metal precursors used in the catalyst preparation. Fig. S1 shows the X-ray diffraction patterns of the synthesized catalysts after calcination. The lack of oxide peaks indicate that the supported oxides are well dispersed.

| Catalyst                           | SiO <sub>2</sub> | Metal source                                                                       | Amount |
|------------------------------------|------------------|------------------------------------------------------------------------------------|--------|
|                                    | / g              |                                                                                    | / mmol |
| VO <sub>x</sub> /SiO <sub>2</sub>  | 10               | $NH_4VO_3^a$                                                                       | 1.1    |
| CrO <sub>x</sub> /SiO <sub>2</sub> | 10               | Cr(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O                               | 1.1    |
| MnO <sub>x</sub> /SiO <sub>2</sub> | 10               | Mn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O                               | 1.1    |
| NbO <sub>x</sub> /SiO <sub>2</sub> | 10               | Nb(HC <sub>2</sub> O <sub>4</sub> ) <sub>5</sub> ·xH <sub>2</sub> O                | 1.1    |
| MoO <sub>x</sub> /SiO <sub>2</sub> | 10               | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> ·4H <sub>2</sub> O | 0.15   |
| WO <sub>x</sub> /SiO <sub>2</sub>  | 10               | (NH₄) <sub>6</sub> W <sub>12</sub> O <sub>3</sub> ·9H <sub>2</sub> O               | 0.088  |

Table S1. Quantities of materials used in sample preparation.

<sup>a</sup>Oxalic acid (C<sub>2</sub>H<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O, 2.11 mmol) was added to prepare the precursor solution



Fig. S1. X-ray diffraction patterns of supported metal oxides.



Fig. S2. Oxygen and NO conversion during methane oxidation using NO+O<sub>2</sub> mixture as the oxidant on (a)  $CrO_x/SiO_2$ , (b)  $NbO_x/SiO_2$ , (c)  $MoO_x/SiO_2$ , and (d)  $WO_x/SiO_2$ . Conditions: 0.5 g of catalyst,  $CH_4$ :NO:O<sub>2</sub>:inert = 20:1:1:78, 0.1 MPa, 6000 L kg<sup>-1</sup> h<sup>-1</sup> space velocity.

Fig. S1 shows the conversion of the oxygen-containing species  $O_2$  and NO during CH<sub>4</sub> oxidation as a function of temperature for various oxides. The trends are similar. The NO conversion is close to 100% while the  $O_2$  conversion is close to 50% as expected for almost quantitative reaction of the NO and the 1:1 ratio of NO to  $O_2$ . A small amount of  $O_2$  is utilized for the conversion of CH<sub>4</sub>. There is no  $N_2$  formation, indicating that the source of oxygen in methane oxidation is ultimately  $O_2$ . Table S2. Summary of catalytic methane partial oxidation at low temperatures ( $\leq 400 \text{ °C}$ )

 $^a$  SV = Space velocity L kgcat  $^{-1}h^{-1}$  ,  $^b$  X= Conversion,  $^c$  S\_o = Oxygenate selectivity,  $^d$  TOF = Turnover frequency

Turnover frequency was calculated by:

$$TOF(mol/mol_{surf} s) = \frac{Productivity(\mu mol/g_{cat} s)}{Surface site concentration(\mu mol/g_{cat})}$$
(1)

| Catalyst                           | т   | р        | CILiOvidanti                                          | <b>CV</b> a / <b>h</b> -1 | X <sub>cu</sub> b | C c    | Productivity                                   | TOF <sup>d</sup>                  |      |
|------------------------------------|-----|----------|-------------------------------------------------------|---------------------------|-------------------|--------|------------------------------------------------|-----------------------------------|------|
|                                    |     | r<br>otm | Un4.Oxidant.                                          | $5 v^{-1} h^{-1}$         | ACH <sub>4</sub>  | 0/2    | μmol                                           | mol                               | Ref  |
|                                    | C   | aun      | 1120.men                                              | LKg II                    | %0                | /0     | g <sub>cat</sub> <sup>-1</sup> h <sup>-1</sup> | mol <sup>-1</sup> s <sup>-1</sup> |      |
| Fe-ZSM-5                           | 300 | 1        | 1:0.1(N <sub>2</sub> O):0:3.9                         | 3600                      | 0.2               | 14     | 19                                             | 1.5×10 <sup>-5</sup>              | 1    |
|                                    |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
|                                    |     |          |                                                       |                           |                   | 4.6    | 7                                              | 5.4×10 <sup>-6</sup>              |      |
|                                    |     |          |                                                       |                           |                   | (DME)  | (DME)                                          | (DME)                             |      |
| Fe-ZSM-5                           | 300 | 1        | 1:0.1(N <sub>2</sub> O):0:3.9                         | 5000                      | 3.6               | 1.9    | 19                                             | 5.6×10 <sup>-5</sup>              | 2    |
|                                    |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
|                                    |     |          |                                                       |                           |                   |        |                                                |                                   |      |
| H-Cu-SSZ-13                        | 300 | 1        | 1:1(N <sub>2</sub> O):0.1:1.2                         | 24000                     | 0.75              | 2.3    | 55                                             | 3.1×10 <sup>-5</sup>              | 3    |
|                                    |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
|                                    |     |          |                                                       |                           |                   | 0.1    | 1.1                                            | 6.1×10 <sup>-7</sup>              |      |
|                                    |     |          |                                                       |                           |                   | (HCHO) | (HCHO)                                         | (HCHO)                            |      |
| FePO <sub>4</sub>                  | 400 | 1        | 1:1(N <sub>2</sub> O):0:1                             | 7200                      | 0.87              | 35     | 300                                            | $1.7 \times 10^{-3}$              | 4    |
|                                    |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
|                                    |     |          |                                                       |                           |                   | 23     | 200                                            | 1.1×10 <sup>-3</sup>              |      |
|                                    |     |          |                                                       |                           |                   | (HCHO) | (HCHO)                                         | (HCHO)                            |      |
|                                    |     |          |                                                       |                           |                   | 34     | 300                                            | $1.7 \times 10^{-3}$              |      |
|                                    |     |          |                                                       |                           |                   | (DME)  | (DME)                                          | (DME)                             |      |
| FePO <sub>4</sub>                  | 400 | 1        | 1:1:0:0                                               | 3600                      | 10.7              | 15.7   | 2200                                           | 5.3×10 <sup>-3</sup>              | 5    |
|                                    |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
| FeO <sub>4</sub>                   | 400 | 1        | 1:1(N <sub>2</sub> O):0:0                             | 3600                      | 6.9               | 41.5   | 3800                                           | 1.2×10 <sup>-2</sup>              | 5    |
|                                    |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
| FePO <sub>4</sub> /MCM-            | 400 | 1        | 1:1(N <sub>2</sub> O):0:1                             | 18000                     | 0.98              | 24     | 570                                            | 3.1×10 <sup>-5</sup>              | 4    |
| 41                                 |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
|                                    |     |          |                                                       |                           |                   | 48     | 1200                                           | 2.4×10 <sup>-5</sup>              |      |
|                                    |     |          |                                                       |                           |                   | (HCHO) | (HCHO)                                         | (HCHO)                            |      |
|                                    |     |          |                                                       |                           |                   | 25     | 600                                            | 3.2×10 <sup>-5</sup>              |      |
|                                    |     |          |                                                       |                           |                   | (DME)  | (DME)                                          | (DME)                             |      |
| Fe                                 | 280 | 1        | 1:0.4(N <sub>2</sub> O):0:0.07                        | 12000                     | 0.93              | 20     | 610                                            | 2.9×10 <sup>-5</sup>              | 6    |
| /Ferrierite                        |     |          |                                                       |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
|                                    |     |          |                                                       |                           |                   | 28     | 870                                            | 4.1×10 <sup>-5</sup>              |      |
|                                    |     |          |                                                       |                           |                   | (DME)  | (DME)                                          | (DME)                             |      |
| FeCu/ZSM-5                         | 50  | 20       | 1:0.025(H <sub>2</sub> O <sub>2</sub> /H <sub>2</sub> | 410                       | 0.5               | 92     | 76                                             | 3.9×10 <sup>-6</sup>              | 7    |
|                                    |     |          | O)                                                    |                           |                   | (MeOH) | (MeOH)                                         | (MeOH)                            |      |
| Li/MgO                             | 377 | 1        | 1:0.5(O <sub>2</sub> ):0.009(O                        | 360000                    | 4.0               | 90     | 60000                                          | 0.3                               | 8    |
|                                    |     |          | 3):8.4                                                |                           |                   | (HCHO) | (HCHO)                                         |                                   |      |
| Pt/Y <sub>2</sub> O <sub>3</sub>   | 350 | 1        | 1:0.05(O <sub>2</sub> ):0.05(N                        | 6000                      | 0.54              | 11     | 110                                            | 1.1×10 <sup>-4</sup>              | 9    |
|                                    |     |          | O):3.9                                                |                           |                   | (DME)  | (DME)                                          | (DME)                             |      |
| VO <sub>x</sub> /SiO <sub>2</sub>  | 400 | 1        | 1:0.15:0.05:3.9                                       | 6000                      | 0.28              | 33     | 91 (HCHO)                                      | 3.8 ×10 <sup>-4</sup>             | This |
|                                    |     |          |                                                       |                           |                   | (HCHO) |                                                | (HCHO)                            | work |
| MoO <sub>x</sub> /SiO <sub>2</sub> | 400 | 1        | 1:0.15:0.05:3.9                                       | 6000                      | 0.10              | 86     | 38 (HCHO)                                      | 1.1 ×10 <sup>-4</sup>             | This |
|                                    |     |          |                                                       |                           |                   | (HCHO) |                                                | (HCHO)                            | work |
| WO <sub>x</sub> /SiO <sub>2</sub>  | 400 | 1        | 1:0.15:0.05:3.9                                       | 6000                      | 0.10              | 72     | 31 (HCHO)                                      | 9.5 ×10 <sup>-5</sup>             | This |
|                                    |     |          |                                                       |                           |                   | (HCHO) |                                                | (HCHO)                            | work |

Rescaled figure showing infrared results for NO + O<sub>2</sub> adsorption and reaction with CH<sub>4</sub>.



Fig. S3. In situ FTIR spectroscopy results for the reaction of adsorbed NO<sub>x</sub> species on (a)  $VO_x/SiO_2$  and (b)  $MnO_x/SiO_2$  with CH<sub>4</sub> at 400 °C at an extended scale. Conditions: (1) under He after flow of NO:O<sub>2</sub>:He = 1:1:98 (68 µmol s<sup>-1</sup>), (2) under flow of 10% CH<sub>4</sub> in He (34 µmol s<sup>-1</sup>) for 30 min, (3) under He after flow of CH<sub>4</sub>, (4) under flow of CH<sub>4</sub>:NO:O<sub>2</sub>:He = 10:1:1:88 (68 µmol s<sup>-1</sup>) for 30 min, and (5) under He after the CH<sub>4</sub>+NO+O<sub>2</sub>+He reaction.

Figure showing deconvolution of the doublet bands due to adsorbed NO<sub>2</sub>.



Fig. S4 Deconvolution of the doublet for the monodentate nitrate for the conditions of Fig. S2. The peaks were fitted between 1200 and 1600 cm<sup>-1</sup>.

| Spectra No. | VO <sub>X</sub> /SiO <sub>2</sub> (Area) |                       | $MnO_x/SiO_2$ (Area)  |                       |  |
|-------------|------------------------------------------|-----------------------|-----------------------|-----------------------|--|
|             | 1389 cm <sup>-1</sup>                    | 1363 cm <sup>-1</sup> | 1399 cm <sup>-1</sup> | 1356 cm <sup>-1</sup> |  |
| 5           | 57.6± 1.1                                | $40.4\pm1.0$          | $45.8\pm0.9$          | $40.1\pm0.8$          |  |
| 4           | $67.9 \pm 1.1$                           | $42.7\pm1.0$          | $56.8\pm0.9$          | $41.7\pm0.8$          |  |
| 3           | $48.4\pm1.2$                             | $33.7 \pm 1.1$        | $7.1 \pm 0.5$         | $28.6 \pm 1.1$        |  |
| 2           | $47.5\pm1.2$                             | $34.1 \pm 1.1$        | $7.5 \pm 0.5$         | $31.0\pm0.7$          |  |
| 1           | $55.2 \pm 1.1$                           | $39.3 \pm 1.0$        | $44.4 \pm 1.0$        | $38.4 \pm 0.9$        |  |

Table S3. Areas of deconvoluted spectra

The deconvoluted spectra show that for the  $MnO_2/SiO_2$  catalyst for the 1399 cm<sup>-1</sup> high wavenumber peak there is a substantial decrease in the integrated area in going from NO<sub>x</sub> in He (Area = 44.4) to NO<sub>x</sub> in CH<sub>4</sub> (Area = 7.5), indicating that the NO<sub>2</sub> is reacting with CH<sub>4</sub>. The decrease in area for the peak is 83% while that for the 1356 cm<sup>-1</sup> low wavenumber peak is 20%. For the VO<sub>x</sub>/SiO<sub>2</sub> catalyst the corresponding decreases in area of the high and low wavenumber peaks are 14% and 13%, so there appears to be no preferential use of either NO<sub>2</sub> species in partial oxidation.

The differences are more clearly visualized in Fig. S4, which shows areas of deconvoluted peaks of the monodentate nitrates. The deconvolution results are shown in Fig. S3 and Table S2. The reaction of monodentate nitrate species on the metal oxides with CH<sub>4</sub> is evident from the appreciable decrease of the areas (closed symbols) upon the introduction of CH<sub>4</sub> (order No. 1 vs. order Nos. 1 and 2). The decrease was more pronounced on MnO<sub>x</sub>/SiO<sub>2</sub>, consistent with the higher reactivity of methane discussed earlier. The areas were restored after reintroduction of the NO+O<sub>2</sub> mixture and purging with He (order No. 5), confirming the consumption of the nitrates during the CH<sub>4</sub> exposure. However, there was an increase in the areas of the nitrates during the flow of 10% CH<sub>4</sub>, 1% NO and 1% O<sub>2</sub> in He (order No. 4), likely due to contributions from weakly adsorbed species.



Fig. S5. Deconvoluted areas of monodentate nitrate species at 1389 cm<sup>-1</sup> and 1363 cm<sup>-1</sup> on VO<sub>x</sub>/SiO<sub>2</sub> (a) and at1399 cm<sup>-1</sup> and 1356 cm<sup>-1</sup> on MnO<sub>x</sub>/SiO<sub>2</sub> (a) for the conditions of Fig. 10. Order of measurement: (1) under He after flow of NO:O<sub>2</sub>:He = 1:1:98 (68  $\mu$ mol s<sup>-1</sup>), (2) under flow of 10% CH<sub>4</sub> in He (34  $\mu$ mol s<sup>-1</sup>) for 30 min, (3) under He after flow of CH<sub>4</sub>, (4) under flow of CH<sub>4</sub>:NO:O<sub>2</sub>:He = 10:1:1:88 (68  $\mu$ mol s<sup>-1</sup>) for 30 min, and (5) under He after the CH<sub>4</sub>+NO+O<sub>2</sub>+He reaction.

Y.K. Chow, N.F. Dummer, J.H. Carter, C. Williams, G. Shaw, D.J. Willock, S.H. Taylor,
 S. Yacob, R.J. Meyer, M.M. Bhasin, G.J. Hutchings, Investigating the influence of acid

sites in continuous methane oxidation with  $N_2O$  over Fe/MFI zeolites, Catal. Sci. Technol. 8 (2018) 154-163.

- [2] M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite, J. Catal. 318 (2014) 14-21.
- B. Ipek, R.F. Lobo, Catalytic conversion of methane to methanol on Cu-SSZ-13 using N<sub>2</sub>O as oxidant, Chem. Commun. 52 (2016) 13401-13404.
- [4] X. Wang, Y. Wang, Q. Tang, Q. Guo, Q. Zhang, H. Wan, MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide, J. Catal. 217 (2003) 457-467.
- [5] V.D.B.C. Dasireddy, D. Hanzel, K. Bharuth-Ram, B. Likozar, The effect of oxidant species on direct, non-syngas conversion of methane to methanol over an FePO<sub>4</sub> catalyst material, RSC Adv. 9 (2019) 30989-31003.
- [6] K.S. Park, J.H. Kim, S.H. Park, D.J. Moon, H.-S. Roh, C.-H. Chung, S.H. Um, J.-H. Choi, J.W. Bae, Direct activation of CH<sub>4</sub> to oxygenates and unsaturated hydrocarbons using N<sub>2</sub>O on Fe-modified zeolites, J. Mol. Catal. A: Chem. 426 (2017) 130-140.
- J. Xu, R.D. Armstrong, G. Shaw, N.F. Dummer, S.J. Freakley, S.H. Taylor, G.J.
   Hutchings, Continuous selective oxidation of methane to methanol over Cu- and Femodified ZSM-5 catalysts in a flow reactor, Catal. Today 270 (2016) 93-100.
- [8] W. Li, S.T. Oyama, Catalytic methane oxidation at low temperatures using ozone, in:
   B.K. Warren, S.T. Oyama (Eds.) Heterogeneous Hydrocarbon Oxidation ACS Symp.
   Series 638, Washington DC, 1996, pp 364-373.
- [9] V. Vargheese, Y. Kobayashi, S.T. Oyama, The direct partial oxidation of methane to dimethyl ether over Pt/Y<sub>2</sub>O<sub>3</sub> catalysts using an NO/O<sub>2</sub> Shuttle, Angew. Chem. Int. Ed. Engl. 59 (2020) 16644-16650.