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A number of tools have been developed to detect topological phase transitions in strongly corre-
lated quantum systems. They apply under different conditions, but do not cover the full range of
many-body models. It is hence desirable to further expand the toolbox. Here, we propose to use
quasiparticle properties to detect quantum phase transitions. The approach is independent from the
choice of boundary conditions, and it does not assume a particular lattice structure. The probe is
hence suitable for, e.g., fractals and quasicrystals. The method requires that one can reliably create
quasiparticles in the considered systems. In the simplest cases, this can be done by a pinning poten-
tial, while it is less straightforward in more complicated systems. We apply the method to several
rather different examples, including one that cannot be handled by the commonly used probes, and
in all the cases we find that the numerical costs are low. This is so, because a simple property,
such as the charge of the anyons, is sufficient to detect the phase transition point. For some of
the examples, this allows us to study larger systems and/or further parameter values compared to
previous studies.

I. INTRODUCTION

Describing physical systems in terms of phases allows
us to focus on key properties rather than the full set of mi-
croscopic details. Quantum phase transitions take place
at zero temperature, when a control parameter, such as
the magnetic field strength, is varied [1]. In convention-
ally ordered phases, quantum phase transitions can be
characterized by a local order parameter, arising from
the broken symmetry of the system, but this approach
breaks down for the case of topologically ordered systems
[2]. A further complication arises because strongly cor-
related quantum many-body systems are demanding to
study numerically. Density matrix renormalization group
investigations are usually limited to one-dimensional sys-
tems or quasi two-dimensional systems such as ladders
and thin cylinders [3], and many systems that may har-
bor topologically ordered phases cannot be studied with
large-scale quantum Monte Carlo, due to the sign prob-
lem [4].

Different probes have been developed to detect topo-
logical phase transitions, such as ground state degener-
acy [5], many-body Chern number [6–8], spectral flow
[9–11], entanglement spectrum [11–14], topological en-
tanglement entropy [15–17], and fidelity [18]. The first
three assume particular boundary conditions. The en-
tanglement based probes have been tested for regular
structures in two dimensions, but it is not clear how and
whether they can be applied in highly irregular systems.
Fidelity cannot be used if the Hilbert space itself changes
as a function of the parameter. There are hence systems
that cannot be handled currently. In addition, it is desir-
able to find probes that are less costly numerically. There
is hence a strong demand for identifying further probes.
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Here, we show that quasiparticles are an interesting
tool to detect topological quantum phase transitions. It
is well-known that topologically ordered systems can host
anyons, and their properties define the topological phase.
Anyons are quasiparticles that are neither fermions nor
bosons, and this can be seen from the braiding statis-
tics. They can also have fractional charge. Both anyonic
braiding properties and fractional charge have been con-
firmed in numerical studies [19–23]. Here, we propose to
use quasiparticles to detect phase transitions that hap-
pen when a parameter in the Hamiltonian is varied. Our
starting point is to modify the Hamiltonian locally to
generate quasiparticles at well-defined positions in the
ground state. In the simplest case, this can be done by
adding a potential, while in more complicated systems, it
may require some ingenuity [24]. We then study the prop-
erties of the quasiparticles as a function of the parame-
ter. When the two phases do not support the same set of
quasiparticles, a change is seen at the phase transition.
The method can be applied for all types of anyons, as
long as there is an appropriate way to create the anyons,
and it does not require a particular choice of boundary
conditions or a particular lattice structure. The method
therefore also applies to, e.g., disordered systems, frac-
tals, and quasicrystals.

We test the method on concrete examples, namely
phase transitions happening in a lattice Moore-Read
model on a square lattice and on a fractal lattice, in an
interacting Hofstadter model in the presence and in the
absence of disorder, and in Kitaev’s toric code in a mag-
netic field. Among these models, we include cases, for
which the phase transition point is already known, since
this allows us to compare with other methods and check
the reliability of the anyon approach. For all these exam-
ples, we find that it is sufficient to compute a relatively
simple property, such as the charge of the anyons, to de-
termine the phase transition point. The computations
can therefore be done at low numerical costs.
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For the Moore-Read model on a square lattice, e.g.,
a large speed up is found compared to previous com-
putations of the topological entanglement entropy, and
this enables us to determine the transition point much
more accurately. For the interacting Hofstadter model,
we only need two exact diagonalizations for each data
point, which is much less than what is needed to compute
the many-body Chern number. Finally, for the model on
the fractal, we do not know of other methods that could
be used for detecting the phase transition.

II. LATTICE MOORE-READ MODEL

The Moore-Read state is a trial wavefunction to de-
scribe the plateau at filling factor 5/2 in the fractional
quantum Hall effect [25], and it supports non-Abelian
Ising anyons [20]. In this section, we investigate phase
transitions that happen in lattice versions of the Moore-
Read state on two different lattices as a function of the
lattice filling.

A. Moore-Read model on a square lattice

We investigate a model with a particular type of lat-
tice Moore-Read ground state, which was shown in [26],
based on computations of the topological entanglement
entropy γ, to exhibit a phase transition as a function of
the lattice filling with the transition point in the inter-
val [1/8, 1/2]. A more precise value was not determined
because γ is expensive to compute numerically, since it
involves computing several entanglement entropies, and
these are obtained using the replica trick, which means
that one works with a system size that is twice as big as
the physical system. In fact, for many systems, it is only
possible to compute γ for a range of system sizes that are
too small to allow for an extrapolation to the thermody-
namic limit. Here, we show that the transition point can
be found by computing the charge of the anyons. This
quantity can be expressed as a classical mean value and
is much less expensive to compute. As a result, we can
determine the transition point more accurately.

We consider a square lattice with a roughly circular
boundary to mimic a quantum Hall droplet. The N lat-
tice sites are at the positions z1, . . . , zN , and the local
basis on site j is |nj〉, where nj ∈ {0, 1, 2} is the number
of bosons on the site. The lattice Moore-Read state |Ψ0〉
is defined as [26]

|Ψx〉 ∝
∑

n1,....,nN

Ψx(n1, . . . , nN ) |n1, ..., nN 〉, (1)

Ψx(n1, . . . , nN ) = Gxnδn
∏
i<j

(zi − zj)2ninj

∏
i 6=j

(zi − zj)−ηni ,

where G0n = Pf[1/(z′i − z′j)], Pf(. . .) is the Pfaffian, z′i are
the positions of the M singly occupied lattice sites, δn
is a delta function that enforces the number of particles

  

FIG. 1. (a) Excess charges Q1 and Q2 for the Moore-Read
state |Ψa〉 on a square lattice as a function of the flux per
site η. In the topological phase, Q1 and −Q2 are close to
the charge of the positive anyon (horizontal line at 1/4). In
the nontopological phase, Q1 and Q2 may take any value.
The jump away from 1/4 predicts the transition point ηc ∈
[0.44, 0.46]. (b) To test the robustness of the method, we
observe that |Ψb〉 gives the same transition point. The Monte
Carlo errors are of order 10−4.

to be M ≡
∑
i ni = ηN/2, and η is the magnetic flux

per site. Note that we can vary the lattice filling factor
M/N = η/2 by changing η.

We also introduce the states |Ψa〉 and |Ψb〉 with

Gan = 2−
M
2

∏
j

(w2 − zj)−nj

× Pf

[
(z′i − w1)(z′j − w2) + (z′j − w1)(z′i − w2)

(z′i − z′j)

]
, (2)

Gbn = Pf

(
1

z′i − z′j

)∏
j

(w1 − zj)nj

∏
j

(w2 − zj)−nj . (3)

When the system is in the topological phase, the state
|Ψa〉 (|Ψb〉) has an anyon of charge +1/4 (+1/2) at w1

and an anyon of charge −1/4 (−1/2) at w2 [22]. Few-
body parent Hamiltonians for the states can be derived
for a range of η values and arbitrary choices of the lattice
site positions zi [22, 26].

When anyons are present in the system, they mod-
ify the particle density in local regions around each wk.
Let us consider a circular region with radius R. If R is
large enough to enclose the anyon, but small enough to
not enclose other anyons, the number of particles missing
within the region, which is given by the excess charge

Qk = −
N∑
i=1

ρ(zi) θ(R− |zi − wk|), (4)
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equals the charge of the anyon at wk. Here, θ(. . .) is the
Heaviside step function and

ρ(zi) = 〈Ψx|ni|Ψx〉 − 〈Ψ0|ni|Ψ0〉, x ∈ {a, b} (5)

is the density profile of the anyons. In the nontopologi-
cal phase, a more complicated density pattern can arise.
The expectation is hence that Qk is close to the anyon
charge in the topological phase and varies with η in the
nontopological phase, and we use this to detect the tran-
sition.

In Fig. 1, we choose R = |w1 − w2|/2 and M = 40,
and we vary the number of lattice sites from N = 316
to N = 80 to achieve different η values in the range
[1/4, 1]. We observe that the excess charges for |Ψa〉 are
Q1 ≈ −Q2 ≈ 1/4 for η < ηc and fluctuate for η > ηc,
where ηc ∈ [0.44, 0.46]. As a test of the robustness of the
approach, we observe that the same transition point is
predicted using |Ψb〉. We have also checked that the fact
that there is a jump in the excess charges from η ' 0.44
to η ' 0.46 is insensitive to the precise choice of the
distance |w1 − w2|.

B. Moore-Read model on a fractal lattice

We next consider the Moore-Read model on a frac-
tal lattice. The fractal lattice is not periodic, and we can
therefore not apply methods, such as ground state degen-
eracy, spectral flow, or many-body Chern number com-
putations to detect a possible phase transition. Methods
based on entanglement computations do also not apply,
since we do not have a thorough understanding of en-
tanglement properties of topological many-body states
on fractal lattices. Fidelity cannot be used either, since
the Hilbert space changes when the considered param-
eter changes. Quasiparticle properties, on the contrary,
can detect a transition, as we will now show.

Lattice Laughlin fractional quantum Hall models were
recently constructed on fractals [27], and we here consider
a similar construction for the Moore-Read state. Specif-
ically, we define the state |Ψa〉 on a lattice constructed
from the Sierpiński gasket with N = 243 triangles by
placing one lattice site on the center of each triangle.
In Fig. 2, we vary the particle number M ∈ [24, 96] to
have different η ∈ [0.19, 0.79] values and plot the ex-
cess charges as a function of η. The excess charges are
Q1 ≈ −Q2 ≈ 1/4 for η < ηc and fluctuate for η > ηc,
which reveals a phase transition at the transition point
ηc ∈ [0.43, 0.46].

III. DISORDERED INTERACTING
HOFSTADTER MODEL

As another example, we study a Hofstadter model for
hardcore bosons on a square lattice. The clean model is
known to host a topological phase for low enough lattice
filling factor [28, 29], and here we investigate the effect of

  
FIG. 2. Excess charges Q1 and Q2 for the Moore-Read state
|Ψa〉 on a fractal lattice (inset) as a function of the flux per
site η. In the topological phase, Q1 and −Q2 are close to
the charge of the positive anyon (horizontal line at 1/4). In
the nontopological phase, Q1 and Q2 may take any value.
The jump away from 1/4 predicts the transition point ηc ∈
[0.43, 0.46]. The Monte Carlo errors are of order 10−4.

adding a disordered potential. The system sizes that can
be reached with exact diagonalization are too small to
allow for a computation of the topological entanglement
entropy. Instead, we use the anyon charges to show that
the system undergoes a phase transition as a function
of the disorder strength. This gives a large speed up
in computation time compared to the many-body Chern
number computations that were done in [28]. This is
so, because it only takes two exact diagonalizations per
date point to get the anyon charges, while the Chern
number computation involves a large number of exact
diagonalizations per data point, corresponding to a grid
of twist angles in two dimensions.

The Hofstadter model describes particles hopping on a
two-dimensional square lattice in the presence of a mag-
netic field perpendicular to the plane. Hopping is allowed
between nearest neighbor sites, and the magnetic field
is taken into account by making the hopping amplitudes
complex. Whenever a particle hops around a closed loop,
the wavefunction acquires a phase, which is equal to the
Aharonov-Bohm phase for a charged particle encircling
the same amount of magnetic flux.

We take open boundary conditions and add interac-
tions by considering hardcore bosons. For a lattice with
N = Lx × Ly sites, the Hamiltonian takes the form

H0 = −
Lx−1∑
x=1

Ly∑
y=1

(
c†x+1,ycx,ye

−iπαy + H.c.
)

(6)

−
Lx∑
x=1

Ly−1∑
y=1

(
c†x,y+1cx,ye

iπαx + H.c.
)

+

Lx∑
x=1

Ly∑
y=1

hx,ynx,y,

where cx,y is the hardcore boson annihilation operator
and nx,y = c†x,ycx,y is the number operator acting on the
lattice site at the position (x, y) with x ∈ {1, . . . , Lx} and
y ∈ {1, . . . , Ly}. If a particle hops around a plaquette,
the phase acquired is 2πα, so α is the flux through the
plaquette. We here consider the case, where the number
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FIG. 3. Excess chargesQ1 andQ2 as a function of the disorder
strength h for the interacting Hofstadter model with M = 3,
N = 24, and α = 0.25. In the topological phase, Q1 ≈ −Q2 ≈
1/2 (horizontal line), and the observed change away from this
value predicts the transition point hc ' 1.5. We average over
2000 statistically independent disorder realizations for each h
to ensure convergence of the data.

of flux units per particle is two, i.e. Nα/M = 2. The last
term in (6) is the disordered potential, and hx,y ∈ [−h, h]
is drawn from a uniform distribution of width 2h, where
h is the disorder strength.

In the clean model, it is well-known that one can trap
anyons in the ground state by adding a local potential
with a strength that is sufficiently large compared to the
hopping amplitude [30–32]. We here choose

HV = V nx1,y1 − V nx2,y2 , (x1, y1) 6= (x2, y2), (7)

where V � 1. This potential traps one positively (nega-
tively) charged anyon at the site (x1, y1) ((x2, y2)).

We use the excess charge in a region around the sites
(x1, y1) and (x2, y2) to detect the phase transition. We
define the density profile as

ρ(x+ iy) = 〈nx,y〉H0+HV
− 〈nx,y〉H0

, (8)

where 〈nx,y〉H0+HV
is the particle density, when the trap-

ping potential is present, and 〈nx,y〉H0
is the particle den-

sity, when the trapping potential is absent. The excess
charge is then defined as in (4) with w1 = x1 + iy1 and
w2 = x2 + iy2. Here, we choose R such that the circular
region includes all sites up to the second nearest neighbor
sites. The absolute value of the excess charge should be
close to 1/2 in the topological region, while it can take
any value and may vary with h in the nontopological re-
gion.

We choose a point, which is deep in the topological
phase for h = 0, namely M = 3, N = 24, and α =
0.25, and plot the excess charges as a function of the
disorder strength h in Fig. 3. We observe that Q1 and
−Q2 are close to 1/2 up to h ' 1.5, while the excess
charges deviate more from 1/2 for h > 1.5. The data
hence predict the phase transition to happen at hc ' 1.5.

We can also put the disorder strength to h = 0 and
study the clean model as a function of the magnetic flux
α. Specifically, we vary α and the lattice filling M/N ,

0.2 0.3 0.4 0.5

α

0.3

0.4

0.5

0.6

0.7

Q
1
,−
Q

2

Topological

Non-topological

αc

Q1

−Q2

FIG. 4. Excess charges Q1 and Q2 as a function of the mag-
netic flux per plaquette α for the interacting Hofstadter model
without disorder. In the topological phase, Q1 ≈ −Q2 ≈ 1/2,
and the observed change away from this value predicts the
transition point αc ∈ [0.375, 0.389].

M N Lx × Ly α dim(H) Q+ Q−

2 24 6 × 4 0.167 276 0.491 0.507

3 28 7 × 4 0.214 3276 0.476 0.522

3 24 6 × 4 0.250 2024 0.519 0.478

4 28 7 × 4 0.286 20475 0.521 0.475

4 24 6 × 4 0.333 10626 0.475 0.520

5 28 7 × 4 0.357 98280 0.465 0.532

6 32 8 × 4 0.375 906192 0.466 0.533

7 36 6 × 6 0.389 8347680 0.380 0.610

5 25 5 × 5 0.400 53130 0.332 0.666

5 24 6 × 4 0.417 42504 0.348 0.650

6 28 7 × 4 0.429 376740 0.250 0.747

6 25 5 × 5 0.480 177100 0.278 0.719

7 28 7 × 4 0.500 1184040 0.284 0.714

7 25 5 × 5 0.560 480700 0.402 0.595

7 24 6 × 4 0.583 346104 0.440 0.557

TABLE I. We show here the different choices we make for
the number of particles M , the shapes and sizes N = Lx ×
Ly of the lattices, and the fluxes per plaquette α = 2M/N .
The quantity dim(H) is the dimension of the corresponding
Hilbert spaces. We display the data for the absolute values of
the excess charges Q+ and Q−. There is a significant change
in Q+ and Q−, when going from α = 0.375 to α ' 0.389.

while keeping the flux per particle Nα/M fixed. For this
case, it was found in [28] that there is a phase transi-
tion at αc ∈ [0.375, 0.400]. We take values of M and N
(see Tab. I), which are numerically accessible for exact
diagonalization, and for each choice α = 2M/N . Figure
4 shows that Q1 and −Q2 are quite close to 1/2 for α
values up to 0.375, but for higher α they deviate much
more from 1/2. The data hence predict the transition
point αc ∈ [0.375, 0.389], which is consistent with the
result in [28].
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IV. TORIC CODE IN A MAGNETIC FIELD

To test the applicability of the method outside the
family of chiral fractional quantum Hall models, we next
study Kitaev’s toric code [33, 34] on a square lattice with
periodic boundary conditions. This system exhibits a Z2

topologically ordered phase, and it is known that a suffi-
ciently strong, uniform magnetic field drives the system
into a polarized phase [35–39]. Here we show that anyons
inserted into the system are able to detect this phase
transition, and the obtained transition points agree with
earlier results based on perturbative, analytical calcula-
tions and tensor network studies. Our computations rely
on exact diagonalization for a system with 18 spins and
are hence quite fast to do numerically. We find that the
anyons are significantly better at predicting the phase
transition point than the energy gap closing for the same
system size.

The toric code has a spin-1/2 on each of the edges of
the Nx ×Ny square lattice. The Hamiltonian

HTC = −
∑
p

Bp −
∑
v

Av, Bp =
∏
i∈p

σzi , Av =
∏
i∈v

σxi ,

(9)
is expressed in terms of the Pauli operators σxi and σzi ,
which act on the N = 2NxNy spins. The sums are over
all plaquettes p and vertices v of the lattice. Bp acts on
the spins on the four edges surrounding the plaquette p,
and Av acts on the spins on the four edges connecting to
the vertex v.
HTC is exactly solvable, and the four degenerate

ground states are eigenstates of Bp and Av with eigen-
value 1. States containing anyons are obtained by apply-
ing certain string operators to the ground states. The
string operator either changes the eigenvalue of two Av
operators to −1 or the eigenvalue of two Bp operators to
−1. In the former case, two electric excitations ev are
created, and in the latter case two magnetic excitations
mp are created. The wavefunction acquires a minus sign
if one mp is moved around one ev, and the excitations
are hence Abelian anyons.

Here, we instead modify the Hamiltonian, such that
anyons are present in the ground states. The ground
states of the Hamiltonian Hm ≡ HTC+2Bp1 +2Bp2 have
one mp on each of the plaquettes p1 and p2. Similarly,
the ground states of the Hamiltonian He ≡ HTC+2Av1 +
2Av2 have one ev on each of the vertices v1 and v2. We
drive the system through a phase transition by adding
a magnetic field Hk

λ = λ
∑
i σ

k
i in the k-direction with

strength λ. When λ is large enough, it is energetically
favorable to polarize all the spins, and the system is no
longer topological.

Previous investigations, based on perturbative, analyt-
ical calculations and tensor network studies [35–37], have
shown that HTC + Hz

λ has a second order phase transi-
tion at λc ' 0.33, while HTC +Hy

λ has a first order phase
transition at λc = 1. The magnetization per spin com-
puted using exact diagonalization (Fig. 5) gives similar

  

FIG. 5. (a) The toric code with a magnetic field of strength λ
in the z direction undergoes a phase transition at λc ' 0.33.
The transition is seen in 〈Av1〉, which detects the anyons in
the ground states of He+Hz

λ, and in Mz
s = 1

N
〈
∑
i σ

k
i 〉, which

is the magnetization per spin for the ground states of HTC +
Hz
λ. We also show χe = ∂〈Av1〉/∂λ and χzs = −∂Mz

s /∂λ.
(b) When the magnetic field is in the y direction, the phase
transition happens at λc = 1. We plot 〈Av1〉 for He + Hy

λ

and 〈Bp1〉 for Hm +Hy
λ as well as the magnetization per spin

My
s = 1

N
〈
∑
i σ

y
i 〉 for HTC + Hy

λ . The closing of the energy
gap ∆E between the ground state (fourfold degenerate) and
the first excited state of HTC + Hk

λ shown in the insets does
not accurately predict the transition points. We use a 3 × 3
lattice with 18 spins in all cases, and the color gradient from
yellow (topological phase) to green (nontopological phase) is
plotted according to the value of 〈Av1〉.

values for the transition points.

We now use anyons to detect the transition. We study
〈Av1〉 = 〈Av2〉 for the Hamiltonian He+Hk

λ and 〈Bp1〉 =
〈Bp2〉 for the Hamiltonian Hm + Hk

λ . 〈Av1〉 = −1 and
〈Bp1〉 = −1 signify the presence of the anyons. In the
fully polarized phase, both 〈Av1〉 and 〈Bp1〉 vanish when
k = y and 〈Av1〉 vanishes and 〈Bp1〉 → +1 when k = z.

The transition seen in 〈Av1〉 for the ground states of
He +Hz

λ in Fig. 5(a) is consistent with λc ' 0.33. Both
the transition point and the width of the transition re-
gion, which is due to finite size effects, are comparable
to the same quantities obtained from the magnetic or-
der parameter. The anyons predict the transition point
more accurately than the energy gap closing, which, for
the same system size, happens only at λ ' 0.7.

〈Bp1〉 is not suitable for detecting the transition be-
cause Bp1 commutes with all terms in Hm +Hz

λ. All en-
ergy eigenstates are therefore also eigenstates of Bp1 with
eigenvalue ±1. As a result, 〈Bp1〉 only measures whether
the ground states have Bp1 eigenvalue +1 or −1. The
first transition to a ground state with Bp1 eigenvalue +1
happens around λ ' 2.08, but this does not exclude gap
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closings at smaller λ values. These problems do not occur
for 〈Av1〉, since Av1 does not commute with He +Hz

λ.
The transition seen in 〈Av1〉 (〈Bp1〉) in Fig. 5(b) for the

ground states of He +Hy
λ (Hm +Hy

λ) is consistent with
λc = 1, and the transition is sharper than for the mag-
netic order parameter. The anyons also better predict
the transition point than the energy gap closing, which
happens around λ ' 1.2 for the same system size.

V. CONCLUSIONS

We have shown that properties of quasiparticles are
an interesting tool to detect topological quantum phase
transitions. The approach is to trap anyons in the ground
state and study how their properties change, when the
system crosses a phase transition. If we are able to cre-
ate quasiparticles with robust and nontrivial braiding
properties in a system, we know that the system hosts
anyons of the observed type. For several quite differ-
ent examples, we have demonstrated, however, that the
phase transitions can be detected by observing a simple
property, such as the charge of the anyons. This means
that the phase transition points can be computed at low
numerical costs.

The approach suggested here to detect topological
quantum phase transitions is particularly direct, since,
to fully exploit the interesting properties of topologically
ordered systems, one needs to be able to create anyons

in the systems and detect their properties. In the inter-
acting Hofstadter model, the anyons can be created by
adding a local potential, and the charge of the anyons
used to detect the phase transition can be measured by
measuring the expectation value of the number of par-
ticles on each site. Both of these can be done in exper-
iments with ultracold atoms in optical lattices [32, 40].
For the toric code model, the complexity of generating
the Hamiltonians including the terms creating the anyons
is about the same as generating the Hamiltonian without
these terms, and first steps towards realizing the Hamil-
tonian in experiments have been taken [41–43].

The ideas presented in this work can be applied as long
as the two phases support quasiparticles with different
properties and one can find suitable ways to create the
quasiparticles. It is well-suited for detecting phase tran-
sitions between different topologically ordered phases.
In addition, it would be interesting to investigate what
we can learn about transitions between nontopological
phases by studying quasiparticles.
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J. Vidal, Phys. Rev. Lett. 106, 107203 (2011).
[38] M. H. Zarei, Phys. Rev. B 100, 125159 (2019).

[39] E. Greplova, A. Valenti, G. Boschung, F. Schäfer,
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