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We show that homogeneous lattice gauge theories can realize nonequilibrium quantum phases
with long-range spatiotemporal order protected by gauge invariance instead of disorder. We study
a kicked Z2-Higgs gauge theory and find that it breaks the discrete temporal symmetry by a period
doubling. In a limit solvable by Jordan-Wigner analysis we extensively study the time-crystal
properties for large systems and further find that the spatiotemporal order is robust under the
addition of a solvability-breaking perturbation preserving the Z2 gauge symmetry. The protecting
mechanism for the nonequilibrium order relies on the Hilbert space structure of lattice gauge theories,
so that our results can be directly extended to other models with discrete gauge symmetries.

Introduction.— Isolated quantum matter can feature
phases with long-range order in highly excited states that
cannot be captured by thermodynamic ensembles [1, 2].
This crucially relies on ergodicity breaking and a failure
of the Eigenstate Thermalization Hypothesis (ETH) [3].
One robust mechanism for achieving such nonergodic be-
havior is to impose strong disorder giving rise to the
many-body localized (MBL) phase [2, 4–8], which can
host long-range ordered phases such as the MBL-spin
glass [1, 9] or Floquet time crystals [10–15]. Recently,
it has been realized that lattice gauge theories (LGTs)
entail another robust mechanism for nonergodic dynam-
ics in short-ranged systems protected by gauge invariance
instead of disorder [6–8] due to the specific structure of
their Hilbert spaces, which are built up of disconnected
superselection sectors [7]. However, it has remained an
open question to which extent they can also accommo-
date nonequilibrium phases with long-range order and
therefore to which extent they can contribute to the open
quest of realizing robust nonequilibrium ordered phases
of homogeneous quantum many-body systems.

In this work we introduce a phase of quantum matter
unique to LGTs that exhibits both spatial and tempo-
ral order thereby constituting a genuine nonequilibrium
phenomenon. In particular, we show that homogeneous
LGTs can feature robust time-crystalline phases in short-
range systems protected by gauge invariance as opposed
to previously studied cases that were relying on the pres-
ence of strong disorder. In order to realize such a ’gauge
time crystal’, we introduce a periodically kicked Z2 LGT
which, as we find, displays a sub-harmonic response to
the external drive associated with a period doubling, see
Fig. 1. We identify two necessary properties essential
to realize a Floquet time crystal within the considered
scheme: i) in a given superselection sector the LGT has to
realize bond instead of field disorder in contrast to previ-
ously studied models of disorder-free localization [6–8]; ii)

the gauge symmetry has to be discrete and different from
many previously studied nonergodic U(1) LGTs [6, 7].
We solve the considered kicked Z2 LGT exactly by a
mapping onto a free fermionic theory using a Jordan-
Wigner (J-W) transformation, which allows us to explore
the phase diagram for large system sizes. We observe that
the Floquet states appear in pairs with a quasienergy
difference of π, so that our system shares many of the
features of the π-spin glass in a periodically kicked Ising
chain with quenched disorder [10]. Importantly, we find
that this gauge time crystal represents a robust phase
which does not require fine tuning and persists over a
wide range of parameters. In particular, we also study
the influence of perturbations breaking the exact solv-
ability and preserving the Z2 gauge symmetry, where we
find numerical evidence for stability by means of exact
diagonalization. We discuss how to extend our analy-
sis to a ZN -symmetric LGT along the lines of [16]. The
mechanism behind this time-crystalline phase relies on
gauge invariance and can therefore be directly extended
to other LGTs with discrete gauge symmetries. Impor-
tantly, our observation of a robust time-crystalline phase
in a homogeneous short-ranged system goes beyond re-
cent approaches which lead to prethermal spatiotemporal
order [17–21], and dissipative dynamics [22–28].

The model.— We consider a Z2 Higgs-LGT in one
spatial dimension. The theory describes the dynamics

of Higgs fields - defined by Pauli-matrix operators ξ̂αj
at vertex j on the lattice - coupled to Z2 gauge fields
- defined by Z2 parallel transporters τ̂xj,j+1 at the bond
(j, j + 1) as illustrated in Fig. 1(a). The system Hamil-
tonian reads [29, 30]

Ĥ0 =
m

2

L∑
j=1

ξ̂zj + J

L−1∑
j=2

τ̂xj−1, j τ̂
x
j, j+1 + h

L−1∑
j=1

ξ̂xj τ̂
z
j, j+1ξ̂

x
j+1 .

(1)
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FIG. 1. (a) Schematic illustration of the Z2 Higgs-LGT, with
matter fields on the lattice sites l, represented by Pauli op-
erators ξ̂αj , and gauge degrees of freedom by τ̂αj,j+1 on the
links. The local gauge symmetry imposes a locally con-
served quantity given by the eigenvalues qi of the operator
Ĝi = −τ̂xi−1,iξ̂

z
i τ̂
x
i,i+1, which are included for a simple exam-

ple, where ↑↓ represents the eigenvalues of ξzj and ± of τxj,j+1,
respectively. (b) Stroboscopic dynamics of the magnetization
mx(t) of the gauge degrees of freedom in the kicked Z2 LGTs
displaying period-doubling oscillations. (c) The decay time
t∗ of the period-doubling oscillations increases exponentially
with system size L marking the presence of a time-crystal be-
havior. We have taken a Z2-symmetry breaking initial state
with f = 0.8 [see discussion after Eq. (7)]. Numerical parame-
ters: φ = 1.02π, h/J = 0.2, m/J = 0.5, JT = 1.0, Nreal = 48,
and K/J = 0.1 in (b).

The Higgs-field operators can also be interpreted as hard-

core bosons b̂j with ξ̂xj = b̂†j + b̂j . The first two terms
denote mass and gauge interactions, while the third de-
scribes the coupling between the Higgs and gauge fields.
We drive the Z2 Higgs-LGT out of equilibrium by period-
ically kicking the strength of the Higgs-gauge coupling,
leading to the following time-dependent Hamiltonian

Ĥ(t) = Ĥ0 +
φ

2

+∞∑
n=−∞

δ(t− nT )

L−1∑
j=1

ξ̂xj τ̂
z
j, j+1ξ̂

x
j+1 (2)

This system exhibits a local symmetry: Ĥ(t) commutes

with the operators Ĝj = −τ̂xj−1, j τ̂
x
j, j+1ξ̂

z
j (which can

be understood as the complex exponentials of the lo-
cal Gauss’ operators). Thus, the Hilbert space of size
22L−1 is partitioned in N = 2L superselection sectors,
where all the states |Ψ{ qα}〉 in a given sector are identi-

fied by the same set of local static charges qj = ±1 via

Ĝj |Ψ{ qα}〉 = qj |Ψ{ qα}〉.
In the following we consider initial product states of

the form |Ψ〉 = |ϕ〉H ⊗|ψ〉gwhere |ϕ〉H is a product state

which satisfies H〈ϕ|ξ̂zj |ϕ〉H = 0 for all j = 1, . . . , N and
|ψ〉g is the initial condition for the gauge degrees of free-
dom, that we will specify later in the text. Such initial
conditions, which represent superpositions over many su-
perselection sectors, can yield robust nonergodic behav-
ior for LGTs and disorder-free localization [6–8, 31]. Con-
cretely, for our Z2 LGT the dynamics in a given superse-
lection sector specified by the charges {qα} is determined
by an effective Hamiltonian

Ĥ{qα}(t) =

L−1∑
j=2

Jj τ̂
x
j−1, j τ̂

x
j, j+1 + h(t)

L−1∑
j=1

τ̂zj, j+1 , (3)

with h(t) = h + (φ/2)
∑+∞
n=−∞ δ(t − nT ), Jj = [1 −

qjm/(2J)] and the τ̂αj, j+1 operators redefined with re-
spect to Eqs. (1) and (2) (see Appendix A for details).
This integration is related to the duality between Ising
models and Ising LGTs [32, 33]. As a result the Hamil-
tonian becomes a kicked transverse-field Ising chain with
binary bond disorder due to qj = ±1, which can be
solved exactly via a J-W transformation for large sys-
tems. We emphasize that, due to the presence of de-
generacies in the unperturbed Floquet spectrum, it is
a priori less clear whether bond disorder - with respect
to one with a continuous distribution - is able to in-
duce MBL in order to get a time crystal. We will
also study the influence of a perturbation of the form

ĤK = 4K
∑L−1
j=2 ξ̂

x
j−1τ̂

z
j−1,j τ̂

z
j,j+1ξ̂

x
j+1 breaking the J-W

solvability. After the integration it adds a transverse in-
teraction term for the gauge fields

ĤK
{qα}(t) = Ĥ{qα}(t) + 4K

L−1∑
j=2

τ̂zj−1, j τ̂
z
j,j+1 . (4)

We solve the dynamics of the LGT in a set of Nreal ran-
domly chosen superselection sectors and finally perform
an average when computing observables. In the shown
data we include error bars resulting from the finiteness of
Nreal. But let us emphasize again that the overall prob-
lem is homogeneous both in the initial condition and in
the Hamiltonian.
Initial conditions and observables.— In order to reveal

both the temporal and spatial order we use two comple-
mentary setups.

On the one hand, we take initial conditions which ex-
plicitly break the Z2 symmetry of the model yielding a
nonzero magnetization mx for the gauge degrees of free-
dom which we then monitor in the subsequent evolution:

mx(t) =
1

L− 1

L−1∑
j=1

〈τ̂xj, j+1〉t , (5)

where we have defined 〈· · · 〉t ≡ g 〈ψ(t)| · · · |ψ(t)〉g and
the overline marks the average over the Nreal pseudo-
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disorder realizations [34]. In this way we obtain direct
access to the time-crystalline period-doubling dynamics.
In Fig. 1(b) we show results for mx(t) in the fully inter-
acting case K 6= 0 obtained through exact diagonaliza-
tion. We see the existence of period-doubling oscillations
which are persistent for an infinite time in the thermo-
dynamic limit. We show this fundamental property of
persistence [11] in Fig. 1(c), where we see that the decay
time t∗ of the period doubling oscillations exponentially
scales to infinity with the system size. We determine t∗ as
the time after which (−1)t/Tmx(t) changes sign [16, 35]
averaged over disorder.

On the other hand we can choose initial conditions
which are Z2-symmetric with a vanishing magnetization
mx(t), which allows us to address the spatial long-range
ordering in the system. For that purpose we study the
correlation parameter

Sxxt =
1

(L− 1)(L− 2)

L−1∑
i,j=1,(i 6=j)

〈τ̂xj, j+1τ̂
x
i, i+1〉t , (6)

with 〈· · · 〉t defined as above. Whenever Sxxt > 0 while at
the same time mx(t) = 0, the system exhibits long-range
spatial order.

Exactly solvable case.— Let us first focus on the
case with K = 0, where the model can be mapped
onto a system of non-interacting fermions by means of
a J-W transformation. In each superselection sector
{qα} we initialize the dynamics with the same initial
state |ψ〉g chosen as the ground state of the Hamiltonian

Ĥ0 =
∑L−1
j=2 τ̂

x
j−1, j τ̂

x
j, j+1 + h0

∑L−1
j=1 τ̂

z
j, j+1. This state

has a non-vanishing correlation parameter if h0 < 1 and
is symmetric under Z2 which allows us to address the
long-range spatial ordering in the system; for a study of
the temporal order we perform a spectral analysis, as we
are going to detail below. In the J-W framework it is
well known how to numerically study the dynamics and
how to evaluate the correlation parameter as a Pfaffian
(see [36–40]). Here it is enough to say that the dynam-
ics is induced by an effective 2(L − 1) × 2(L − 1) time-
periodic single-particle Hamiltonian. This is important
to mention because we can compute the 2(L− 1) single-
particle Floquet states and the 2(L − 1) single-particle
quasi-energies εα (see for instance [41]). These quanti-
ties will play an important role in what follows.

We find that the correlation order parameter reaches
an asymptotic value Sxxasy after a transient (see the discus-
sion below Eq. (7)). We plot the long-time value of Sxxt
as a function of kicking strength φ for different values of
L in the main panel of Fig. 2. We observe three regimes
whose separating phase boundaries we indicate by the
colored zones. In the regimes i) and iii) Sxxasy converges
to a nonzero value as L → ∞, while in regime ii) Sxxasy

vanishes as the L is increased (see also the inset of Fig. 2).
Both regions i) and iii) mark the existence of an eigen-
state phase [1, 2], where eigenstates exhibit long range
spatial order (as in [9], for instance). This eigenstate or-
der is protected by disorder and MBL since in a clean
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short-range one-dimensional spin interacting thermaliz-
ing system with Z2 symmetry such order is impossible
(this result is easily shown for clean Z2 one-dimensional
spin chains [42], where long-range order is possible only
in the ground state).

Although the behaviour of Sxxasy is qualitatively simi-
lar in both i) and iii), these two regions mark different
phases since i) in addition also supports temporal order.
An example of this property for φ = 1.02π can be seen
in Fig. 1(c) (curve with K = 0): The system is initial-
ized in a state explicitly breaking the Z2 symmetry and
the decay time t∗ exponentially increases with the sys-
tem size. This fact can be understood by an analysis
of the Floquet spectrum [10]. The presence of a tempo-
ral time-crystal ordering corresponds to spectral pairing,
where each Floquet state has a partner with quasienergy
shifted by π. This situation is realized if there is a single-
particle quasienergy exactly at π with a marked gap sep-
arating it from the rest of the spectrum. In this way it
does not hybridize with the bulk, and each many-body
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Floquet state has a π-shifted partner obtained by adding
the quasiparticle with quasienergy π. We evaluate this

gap as δπ = 1
Nreal

∑Nreal

q=1

[
ε
(q)
2L−2 − ε

(q)
2L−3

]
[43] and plot

it in Fig. 3. We see that it is non-vanishing in all the
regime i). Moreover, as we show in Appendix B, in this
regime ε2L−2 averaged over the disorder is exactly equal
to π. In Appendix B we show also that the single-particle
bulk Floquet states are always Anderson localized. This
is very important, because without localization it is pos-
sible to have a gap in the Floquet spectrum at π and still
observe no time crystal (see for instance [41]): In the
absence of localization, local operators expand in time
obeying the Lieb-Robinson bound and no time-periodic
behaviour whatsoever is possible [44]. Of course, the
transition to localization and the one to glassy order of
the excited eigenstates are independent [9], and this is the
reason why the transition from regime i) and ii) occurs
at a value of φ different from the one where δπ vanishes.
In Fig. 2 we have initialized with a specific value of h0,
but we have checked that the presented phenomenology
doesn’t depend on this choice.

General case.— At this point we break J-W solvabil-
ity by considering the term of Eq. (4), with K 6= 0. We
consider a value of φ for which we see this phenomenon at
K = 0; then we take K 6= 0 and we study the properties
of the asymptotic correlation parameter. An interval of
K where this quantity does not scale with the size would
mark the persistence of the time crystal. We now per-
form a conventional exact-diagonalization simulation of
the system, up to size L = 13. To evaluate the asymp-
totic correlation parameter, we can resort to the FLoquet
diagonal ensemble and we get

Sxxasy =

L−1∑
i,j=1,(i6=j)

N∑
β=1

|Rβ |2g〈φβ |τ̂xj, j+1τ̂
x
i, i+1 |φβ〉g

(L− 1)(L− 2)
, (7)

where |φβ〉g are the many-body Floquet states, N is the

dimension of the Hilbert space and Rβ ≡ g 〈ψ(0) |φβ〉g
denotes the overlap with the initial state. We remark
that we can use Eq. (7) even if the many-body Flo-
quet quasienergies µβ appear in degenerate pairs, due
to the Z2 symmetry. The point is that the operators
τ̂xj, j+1τ̂

x
i, i+1 commute with the same Z2 symmetry and

hence have no matrix elements between states with dif-
ferent parity (the detailed demonstration along the lines
of [45] is in Appendix C). We plot the dependence of
Sxxasy versus K for different L in Fig. 4. We take two dif-
ferent initial conditions, in the upper panel we take the
state with all the spins pointing down along the x axis
(|ψ〉g = |sx1,2 = −1 . . . sxj,j+1 = −1 . . . sxL−1,L = −1〉

g
),

in the lower panel we take the uniform superposition of
all the eigenstates of τ̂xj, j+1 ∀ j obeying the condition∑L−1
j=1 s

x
j,j+1 ≤ −(L− 1)f with f = 0.8. We see that for

K . 0.2 there is no decrease with L, marking the persis-
tence of the time-crystal behaviour. This persistence can
be seen also in Fig. 1(c) where the t∗ introduced above
exponentially increases with L.
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Time crystallinity in Abelian lattice gauge theories.—
We now investigate more generally if time crystallinity

can appear in disorder-free Abelian LGTs in (1+1)-d. We
consider the generic Hamiltonian coupling Higgs fields to
Abelian gauge fields [46]:

Ĥ = m

L∑
j=1

(−1)j n̂j +

L−1∑
j=1

(ϕ̂†jÛj,j+1ϕ̂j+1 + h.c.)

+
g2

2

L−1∑
j=1

Ê2
j,j+1 + Ĥ(t) . (8)

where n̂j = ϕ̂†jϕ̂j is the Higgs occupation on site j and

Êj,j+1, Ûj,j+1 are respectively the electric field and the

parallel transporter, and Ĥ(t) is defined analogously to
the Z2 case above. The electric-field interaction energy
is local in these theories, differently from the Z2 term
involving at least two neighboring sites. For a ZN LGT
(i.e. a theory where now Ûj,j+1 and Êj,j+1 are not Pauli
matrices but the more general clock operators), we can
use a similar approach as the one used in the Z2 LGT.
We consider an initial state where matter is in an equal-
weight superposition of all possible eigenvalues of the
Higgs number operator, and the gauge fields are in a
generic state. The evolution of such states can be mapped
exactly into the one of ZN clock models under the effect
of quasi-random local fields: since the latter class of mod-
els has been shown to display time-crystal behavior for
small values of N and random disorder [16], it is natural
to expect that the mechanism discussed above holds true
also for N > 2. This mechanism does not work for con-
tinuous U(1) LGTs (see Appendix D for details), which,
however, doesn’t exclude other ones for the generation of
time crystals in such theories.
Concluding discussion.— In this work we have demon-

strated that homogeneous LGTs can realize time-crystal
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phases, where the protecting nonergodicity is enforced
by the local constraints imposed by gauge invariance.
In more general terms, our results show that homoge-
neous LGTs can realize eigenstate order, which naturally
leads to the question to which extent also other eigenstate
phases can occur in homogeneous LGTs, e.g., analogues
of the MBL-spin glass [1, 9] or topological order at ele-
vated energy densities [47]. Our results are of immediate
relevance to experiments realizing lattice gauge theory
dynamics [48–50] in both trapped ions [51] and cold atom
systems [52, 53]. In particular, scalable proposals have
been formulated [54, 55], and several experiments have
already demonstrated the building blocks [56–59] for dis-
crete lattice gauge theories of relevance to gauge time
crystals.

Further, our results can be directly extended to ZN
LGTs which opens up the possibility, in principle, of
generating period N -tupling time-crystals. While our
approach cannot be immediately applied to LGTs with
continuous groups, it would be intriguing to see whether

discrete non-Abelian symmetries can also support the
formation of defect-free time crystals.
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Appendix A: Derivation of the effective Hamiltonian
Ĥ{qα}(t)

The derivation of the effective Hamiltonian Ĥ{qα}(t)

from Ĥ(t), defined respectively in Eqs. (3) and (2) of the
main paper, needs two steps. In the first, we restrict
ourselves to one of the superselection sectors defined by
a set of static charges {qα}. To do so, for a generic state
|Ψ〉, we consider its component |Ψ{qα}〉 on the chosen
sector, defined as

|Ψ{qα}〉 =
P{qα}|Ψ〉∥∥P{qα}|Ψ〉∥∥ (A1)

where P{qα} =
∏
j Pj(qj) is the projector on the

chosen superselection sector and Pj(qj) = (1 −
qj τ̂

x
j−1, j τ̂

x
j, j+1ξ̂

z
j )/2 projects on the sector with static

charge qj on site j. It follows that for each state |Ψ{qα}〉
in the chosen sector we have

− τ̂xj−1, j τ̂
x
j, j+1ξ̂

z
j |Ψ{qα}〉 = qj |Ψ{qα}〉 ∀j. (A2)

In the second step, we exploit the above relation in order

to cancel the matter field operators ξ̂αj from the Hamilto-

nian Ĥ(t). The derivation is now straightforward. First
we have

m

2
ξ̂zj + J

L−1∑
j=2

τ̂xj−1, j τ̂
x
j, j+1 (A3)

= − qj
m

2
τ̂xj−1, j τ̂

x
j, j+1 + Jτ̂xj−1, j τ̂

x
j, j+1

= J(1− qj
m

2J
)τ̂xj−1, j τ̂

x
j, j+1 ∀j .

Then, we redefine the operators τ̂αj, j+1 in order to cancel

the matter field from the second part of Ĥ(t)

τ ′
x
j, j+1 = τxj, j+1

τ ′
y
j, j+1 = ξxj τ

y
j, j+1ξ

x
j+1 ≡ τ

y
j, j+1 (A4)

τ ′
z
j, j+1 = ξxj τ

z
j, j+1ξ

x
j+1 ≡ τzj, j+1 .

Note that the proper commutation relations are

still satisfied, in particular
(
τ ′
z
j, j+1

)2
= 1 and

[τ ′
z
j, j+1, τ

′z
k, k+1] = 0 ∀ k, j. By applying this substi-

tution to the Hamiltonian Ĥ(t) we have that

h(t)ξ̂xj τ̂
z
j, j+1ξ̂

x
j+1 = h(t)τ ′

z
j, j+1 ∀j , (A5)

where the prime will be henceforth omitted. The same
substitution allows to cancel out the matter field in the
term ĤK , which is introduced in Eq. (4) of the main
paper as a function of the gauge field only. We thus
obtain the effective Hamiltonian (Eq. (3) of the main
text) for the superselection sector defined by the static
charges {qα}. Gauge invariant observables can now be
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computed by summing over the sectors

〈Ψ|Ô(t)|Ψ〉 =
∑
{qα}

p{qα}〈Ψ{qα}|Ô(t)|Ψ{qα}〉∑
{qα}

p{qα}〈ψ(t){qα}|Ô
′
{qα}|ψ(t){qα}〉 (A6)

where p{qα} = ||P{qα}|Ψ〉||2 gives the projective proba-

bility of the initial state |Ψ〉 on the sector {qα}, Ô′{qα}
is the operator obtained from Ô after integration of the
matter field, and |ψ(t){qα}〉 is the state of the gauge field

evolved with the Hamiltonian Ĥ{qα}(t). As stated in the
main text, we can now treat the originally translation-
invariant model by computing averages of an effective
model with a quenched disorder characterized by a prob-
ability distribution p{qα}. For simplicity (although not
necessary), we choose a class of initial states with the
property that p{qα} = 1/N , i.e. with uniform weights
over all the sectors. We now prove that with the choice
of initial states reported in the main text this property
is indeed satisfied.

The state for the Higgs field is a product state of spins,
each one living on the equator of the Bloch sphere (〈ξzj 〉 =
0 for every j). For each j we can find the unit vector
n̂j = cos θj x̂ + sin θj ŷ giving its position on the Bloch
sphere, such that

~ξj · n̂j |ϕ〉H = |ϕ〉H . (A7)

We now consider a generic sector {qα} and we see that
for every site i we have

(~ξi·n̂i)

∏
j

Pj(qj)

 |Ψ〉 =

∏
j 6=i

Pj(qj)

Pi(−qi)(~ξi·n̂i)|Ψ〉

=
∏
j 6=i

Pj(qj)Pi(−qi)|Ψ〉 (A8)

where we used the fact that {(~ξi · n̂i), ξ̂zi } = 0. From the

unitarity of (~ξi · n̂i) we derive the relation between the
norms∥∥∥∥∥∥

∏
j

Pj(qj)

 |Ψ〉
∥∥∥∥∥∥ =

∥∥∥∥∥∥(~ξi · n̂i)

∏
j

Pj(qj)

 |Ψ〉
∥∥∥∥∥∥

=

∥∥∥∥∥∥
∏
j 6=i

Pj(qj)

Pi(−qi)|Ψ〉

∥∥∥∥∥∥ , (A9)

which implies that the projections on sectors which only
differ for one local charge have equal norms. Since the
last relation holds for every set of {qα} and for every i,
we find that all the probabilities p{qα} have to be equal,
with p{qα} = 1/N .

Appendix B: Single-particle Floquet spectrum

Fig. 5 shows the average over Nreal pseudo-disorder
realizations of ε2(L−2). We can see that it stays at π in an

interval of φ larger than the one where δπ is nonvanishing
(see Fig. 3 of the main paper).

Fig. 6 shows the bulk-averaged single-particle Floquet
inverse participation ratio defined as

IPRbulk =
1

2L− 4

∑
α∈bulk

IPRα with

IPRα =

L−1∑
j=1

(
|uj α(0)|4 + |vj α(0)|4

)
, (B1)

where we define · · · as the average over the
Nreal realizations of pseudo-disorder, wα =(
u1, α · · · uL,α | v1, α · · · vL,α

)
are the single-

particle Floquet states (see for instance [41] for more
details) and α runs over the 2(L − 2) values corre-
sponding to the bulk single-particle Floquet states (the
ones with εα 6= ±π). For all the considered values
of φ we can clearly see that 〈IPR〉bulk does not scale
with the system size and the same occurs for the error
bars (evaluated as the r. m. s. fluctuation over the
pseudo-disorder realizations). This marks the fact that
all the single-particle Floquet states are localized and
therefore the model shows Anderson localization for all
the considered values of φ.

Appendix C: Convergence to the Floquet diagonal
ensemble

In the text we have claimed that the correlation order
parameter converges for long times towards the Floquet
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ε 2
(L
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FIG. 5. ε2(L−2) averaged over pseudo-disorder versus φ for
different values of the system size L. Numerical parameters:
K = 0, J = 1.0, h/J = 0.2, m/J = 0.5, T = 1.0, Nreal ≥ 104,
open boundary conditions, initial state with h0 = 0.5 (see
main text).
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diagonal ensemble value given by Eq. 6 of the main text.
We have numerically verified this point; we show an ex-
ample of this convergence in Fig. 7. We would like also
to better discuss this point from the theoretical point of
view. Let us expand Sxxt in the Floquet basis, we find

Sxxt =

L−1∑
i,j=1,(i6=j)

∑
β, γ
σ, σ′

Rσβ
∗Rσ′

γ g〈φσβ | τxj, j+1τ
x
i, i+1 |φσ

′
γ 〉g e

−i(µσ
γ−µσ′

β
)t

(L− 1)(L− 2)
.

(C1)

The indexes σ and σ′ can take values + and − and
mark the Z2 symmetry sector. The system is symmet-
ric under the Z2 symmetry, so the Floquet states are
doubly degenerate µ+

β = µ−β ∀β. Moreover, also the
operators τxj, j+1τ

x
i, i+1 are symmetric under this sym-

metry and we have therefore g 〈φ+
β | τxj, j+1τ

x
i, i+1 |φ

+
β 〉g =

g 〈φ−β | τxj, j+1τ
x
i, i+1 |φ

−
β 〉g. We can therefore rewrite

Eq. (C1) as

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1  1.2  1.4  1.6  1.8  2
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bu
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φ/π
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FIG. 6. Bulk-averaged single-particle Floquet inverse partic-
ipation ratio [see Eq. (B1)]. Numerical parameters: K = 0,
J = 1.0, h/J = 0.2, m/J = 0.5, T = 1.0, Nreal ≥ 104, open
boundary conditions, initial state with h0 = 0.5 (see main
text).

Sxxt =

L−1∑
i,j=1,(i6=j)

∑
β,σ

|Rσβ |2g〈φσβ | τxj, j+1τ
x
i, i+1 |φσβ〉g

(L− 1)(L− 2)︸ ︷︷ ︸
block-diagonal term

+

L−1∑
i,j=1,(i 6=j)

∑
β, γ 6= β
σ, σ′ 6= σ

Rσβ
∗Rσ′

γ g〈φσβ | τxj, j+1τ
x
i, i+1 |φσ

′
γ 〉g e−i(µ

σ
γ−µσ′

β )t

(L− 1)(L− 2)

︸ ︷︷ ︸
off-diagonal term

.

(C2)

The off-diagonal term vanishes in the long time after
the disorder average, due to the destructive interference
between the oscillating phase factors. Only the block-
diagonal term survives. Thanks to the degeneracy of the
expectations with respect to the index σ, we can com-
pute this term directly using the Floquet states given by
the numerical diagonalization (which, for each β, are in
general superpositions of σ = + and σ = −). Moreover,
|R+
β |2 +|R−β |2 takes the same value whichever basis in the

degenerate Floquet subspace is considered. That’s why
in the main text we do not write the index σ.

Appendix D: No time crystal for continuous gauge
symmetry

Here we briefly discuss the case of a continuous gauge
symmetry. In order to show that the time-crystal ques-
tion in this case is very delicate (and most probably a dis-
crete time-crystal behaviour in this form is impossible)
let us consider the lattice Schwinger model in the Wil-
son formulation as an example. As discussed in Ref. [60],
this model displays an extremely slow dynamics, which is
qualitatively less ergodic than conventional MBL - in par-
ticular, with entanglement entropy growing as ln(ln(t)).

However, due to the absence of any periodicity in the
gauge field Hilbert space, it is not possible to identify a
clear time-dependent Hamiltonian whose dynamics could
lead to a time crystal: for instance, applying the same
recipe as above would lead to an infinite period. This
case immediately illustrates that the absence of ergodic
dynamics – typical of gauge theories due to superselection
sectors – is by far not enough for engineering translation-
invariant time crystals: Identifying the proper gauge
symmetry is absolutely key and, in the present context,
doable thanks to rather direct analogies with inhomo-
geneous clock models emerging from a specific class of
initial states.
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FIG. 7. Example of convergence in time of Sxxt to the Floquet
diagonal ensemble value Sxxasy. Numerical parameters: J =
1.0, φ = 1.02π, h/J = 0.2, m/J = 0.5, T = 1.0, Nreal = 48,
open boundary conditions, initial state with f = 0.8.
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