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DEFINITION OF EIGENVECTOR AND EFFECTIVE MASS OF FES PHONON

We evaluated the eigenvector of FES phonon from the difference of the atomic geometries

between the optimized paraeletric and ferroelectric tetragonal structure. In formulas the

eigenvector of the FES mode can be written as:

Ufes
I =

τ ferroI − τ paraI∑
J |τ

ferro
J − τ paraJ |

, (1)

where UI and τI are the eigenvector of the FES mode and the position vector for the atom I

respectively. For the HSE hybrid functional, we used the same eigenvector and mass of the

FES mode evaluated from PBE functional since performing a geometry optimization with

the HSE functional is too computationally expensive. Because LDA functional provides

paraelectric geometry without strain, eigenvector for the LDA functional is evaluated from

DFPT calculation. With this eigenvector, we distorted atomic geometry and evaluated

phonon displacement Qf from the position difference between the Ti atom and one of the

O atom located in the in-plane section of the octahedron: Qf = τ zT i − τ zOin
. The effective

mass of FES mode is defined as follows M eff
f =

∑
I MI

Uz
I

Uz
Ti−U

z
Oin

. With similar definitions,

we evaluated the FES phonon frequency with the LDA functional, which provides parabolic

potential energy surface of FES mode. While the potential energy surface of LDA shows

anharmonic behavior with large Qf , the frequency near the paraelectric equilibrium geometry

evaluated by fitting parameter is 2.6 THz, which value is comparable result with DFPT

calculation (2.4 THz).

SOLVING SCHRÖDINGER EQUATION IN NUMERICAL GRID

To understand the quantum fluctuation and elastic effect in SrTiO3, we solved the 2D

lattice Schrödinger equation with fitted potential energy surface from density functional

theory calculation. The Hamiltonian for 2D lattice is given as follows: ĤFES,c
2D = P̂ 2

f /2Mf +

P̂ 2
c /2Mc + V̂ FES,c

2D . To evaluate the ground and excited states, we exactly diagonalized the

Hamiltonian with numerical grid. The 80×80 numerical grid is employed and its convergence

is checked up to 160×160. The kinetic matrix for the numerical grid basis set is constructed

by discrete variable representation with an uniform grid [1].
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FITTING COEFFICIENTS OF 2D POTENTIAL

In our study, we solved the 2D Schrödinger equation with a 2D FES-lattice potential

energy surface. To evaluate this 2D potential energy surface, we calculate DFT total energy

E2D
DFT [Qf , Qc] by distorting the atomic geometry along the FES mode, parameterized by Qf

and the c-axis, parameterized by Qc. The fitting coefficients of the potential energy surface

(V 2D[Qf , Qc] = E2D
DFT [Qf , Qc] − E2D

DFT [0, 0]) are evaluated up to the 12th order for Qf and

5th order for Qc as follows:

V̂ 2D[Qf , Qc] =
6∑

i=1

kf,iQ̂
2i
f +

5∑
j=2

kc,jQ̂
j
c

+
6∑

i=1

5∑
j=1

kfc,i,jQ̂
2i
f Q̂

j
c

(2)

We found that this high order fitting coefficients reproduces almost identical potential en-

ergy surface comparing with the potential energy surface obtained by DFT calculation.

The evaluated fitting coefficients are summarized in Table S2, S3, S4 and S5 for various

functionals.

LATTICE MASS DEPENDENCY OF FREQUENCY OF FERROELETRIC SOFT

MODE

The definition of lattice mass is not clear and the fictitious lattice mass is suggested for

the dynamics [2]. To understand the dependency of lattice mass on the frequency of FES

mode, we evaluate its frequency with various lattice mass from total cell mass (Mtot) to

near zero value (0.02MW ), when the MW is Wentzcovitch-type fictitious mass, as shown in

Fig S2. This result indicates that the frequency of FES mode is not quite sensitive in the

range between total cell mass (Mtot) and Wentzcovitch-type fictitious mass (MW ).

3



MODIFIED LATTICE PARAMETER BY QUANTUM FLUCTUATION AND ELAS-

TIC EFFECT

The description of quantum fluctuation provides the elongated lattice lattice parameter.

We summarize the lattice parameter of tetragonal SrTiO3 as shown in Table S6. The lattice

c2D in the tetragonal SrTiO3 is increased by quantum fluctuation and nonlinear interaction

with ferroeletric soft mode. It is notable that the HSE06 functional provide the comparable

values with experimental observation.

TEMPERATURE DEPENDENCY OF FREQUENCY OF FES MODE IN CLASSI-

CAL APPROACHES

To verify whether PBE functional provides realistic potential energy surface comparing

with experimetnal observation, we calculated the frequency of FES mode at high tempera-

ture using ab initio molecular dynamics (AIMD). For the AIMD simulation, we evaluated

several independent trajectories with the temperature controlled by a thermostat. To allow

enough degrees of freedom, we employed 2× 2× 2 supercell. For the time propagation, cell

variation is considered for each time step (∆t = 4.8 fs) and 4×4×4 and k-point sampling is

employed. To determine the frequency of FES mode, we selected the frequency correspond-

ing to the peak for each trajectory and evaluated the average and standard derivation. As

shown in main text Fig. 3(a), the AIMD simulation results are consistent with experimental

observations. This result indicates that PBE functional provides realistic potential energy

surface for the FES mode as experiment.

We also investigated the temperature dependence of FES mode frequency by solving New-

ton equation with the same 2D potential energy surface as in the quantum calculations. We

evaluated the average of multi-trajectories (Ntraj = 106) with infinitesimal initial kicking at

t = 0−, whose initial geometries are prepared with a thermostat for a given temperature. To

determine the frequency of FES mode, we calculated a weighted average using the response

function (ω(T ) =
´
ωQf(ω,T )dω´
Qf(ω,T )dω

) which is obtained from the time-profile multi-trajectory re-

sponse (Qf(t, T ) =
∑Ntraj

i Qf,i(t, T )/Ntraj) to the initial kicking. As shown in Fig. S3(a), the

frequency of FES mode in the classical description with 2D potential energy surface provides

comparable values with its quantum description at high temperature (∼ 300 K). Because the
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classical dynamics describes the oscillation inside one of the two wells at low temperature,

the FES mode is much stiffer than the one predicted by the quantum description.

EFFECT OF THERMAL LATTICE ON THE TEMPERATURE DEPENDENCY OF

FREQUENCY OF FES MODE

When the temperature increases, the lattice constants in SrTiO3 change and eventu-

ally a phase transition to a cubic geometry occurs [3]. To include the effect of the lattice

change induced by the temperature in the calculation of the FES mode frequency, we eval-

uated different 2D potential energy surfaces corresponding to lattice geometries at different

temperatures. The temperature dependent lattice parameters used are extracted from the

experimental results shown in Fig. S1(b) and rescaled in order to have the same lattice

parameter predicted by PBE at T = 0 K [3]. In addition, up to 105 K, we decreased AFD

angle linearly with the temperature. With the 2D potential energy surface generated by

such thermal lattice, we evaluated frequency of FES mode by solving 2D Schrödinger equa-

tion. As shown in Fig. S1(c), the FES mode is stiffened as compared to the unchanged

lattice results and the stiffening is more significant above 100 K. Even though a stiffening is

observed the overall improvement over the results for fixed lattice are minimal, indicating

that most of the physics is captured in the T = 0 K geometry. The discrepancy with the

experimental results for both methods are then attributed to the coupling of the missing

phonon modes, rather than the lattice change and quenching of the AFD mode induced by

the temperature.
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TABLE S1. Eigenvector of FES mode and effective mass in atomic Ry unit

LDA PBEsol PBE
Sr 0.03 0.08 0.05
Ti 0.3 0.27 0.26

Oout -0.26 -0.24 -0.26
Oin -0.21 -0.24 -0.21

Meff
f 96532 95821 96958
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TABLE S2. Coefficients of 2D potential energy surface with LDA functional

Ry/Ån Q12
f Q10

f Q8
f Q6

f Q4
f Q2

f Q0
f

Q0
c 9.5× 103 −4.5× 103 −9.3× 102 −1.1× 102 2.4× 101 1.7× 10−1

Q1
c −1.1× 104 4.4× 103 −7.8× 102 9.4× 101 −2.1× 101 −3.4× 100

Q2
c 3.2× 104 −8.7× 103 8.4× 102 −4.7× 101 7.8× 100 2.5× 10−1 3.4× 10−1

Q3
c −2.7× 105 1.0× 105 −1.7× 104 1.3× 103 4.8× 101 −2.0× 10−1 −3.8× 10−1

Q4
c 1.9× 105 −1.7× 105 −4.9× 104 −6.0× 103 2.8× 102 −4.2× 100 1.4× 100

Q5
c 7.0× 105 −4.2× 104 −4.8× 104 8.6× 103 −4.5× 102 7.0× 100 −2.3× 100
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TABLE S3. Coefficients of 2D potential energy surface with PBEsol functional

Ry/Ån Q12
f Q10

f Q8
f Q6

f Q4
f Q2

f Q0
f

Q0
c 3.8× 103 −2.1× 103 5.1× 102 −7.2× 101 1.7× 101 −2.4× 10−2

Q1
c −1.0× 104 4.6× 103 −8.8× 102 1.0× 102 −1.7× 101 −2.6× 100

Q2
c 1.4× 104 −5.2× 103 7.8× 102 −6.9× 101 8.0× 100 2.0× 100 3.3× 10−1

Q3
c −1.4× 104 4.2× 103 −4.0× 102 3.3× 100 1.2× 100 −8.9× 10−1 −4.3× 10−1

Q4
c −2.7× 103 2.3× 103 −4.3× 102 2.4× 101 5.5× 10−1 6.4× 10−2 −3.4× 10−1

Q5
c 4.8× 104 −1.9× 104 2.5× 103 −9.7× 101 −4.1× 100 3.8× 10−1 3.7× 100
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TABLE S4. Coefficients of 2D potential energy surface with PBE functional

Ry/Ån Q12
f Q10

f Q8
f Q6

f Q4
f Q2

f Q0
f

Q0
c 6.3× 103 −3.1× 103 6.8× 102 −8.6× 101 2.1× 101 −2.4× 10−1

Q1
c −1.7× 104 7.0× 103 −1.2× 103 1.3× 102 −2.1× 101 −2.7× 100

Q2
c 1.8× 104 −6.0× 103 8.8× 102 −8.6× 101 1.1× 101 2.1× 100 3.0× 10−1

Q3
c −2.9× 103 −1.1× 103 3.9× 102 −4.5× 101 2.2× 100 −9.8× 10−1 −3.9× 10−1

Q4
c 1.4× 105 −4.9× 104 6.4× 103 −3.6× 102 8.2× 100 9.1× 10−2 −3.0× 10−1

Q5
c −4.3× 105 1.6× 105 −2.1× 104 1.3× 103 −3.9× 101 6.8× 10−1 3.2× 100
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TABLE S5. Coefficients of 2D potential energy surface with HSE06 functional

Ry/Ån Q12
f Q10

f Q8
f Q6

f Q4
f Q2

f Q0
f

Q0
c 4.9× 103 −2.5× 103 5.5× 102 −7.4× 101 2.1× 101 −2.1× 10−1

Q1
c −1.2× 104 5.5× 103 −1.1× 103 1.3× 102 −2.3× 101 −2.8× 100

Q2
c 2.0× 105 −6.6× 104 8.5× 103 −5.4× 102 2.4× 101 2.1× 100 3.0× 10−1

Q3
c −7.3× 105 2.11× 105 −2.3× 104 1.1× 103 −2.4× 101 −8.1× 10−1 −1.5× 10−2

Q4
c −1.1× 106 4.3× 105 −6.1× 104 4.0× 103 −1.2× 102 1.7× 100 3.0× 10−2

Q5
c 5.0× 106 −1.6× 106 1.9× 105 −1.0× 104 2.6× 102 −2.5× 100 −1.6× 100
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TABLE S6. The lattice parameter and frequency of ferroeletric soft mode in the tetragonal SrTiO3

with and without quantum fluctuation and elastic effect.

LDA PBEsol PBE HSE06

a (Å) 3.843 3.882 3.929 3.908
c/a 1.008 1.007 1.005 1.004

δc2D (Å) 0.0041 0.0055 0.018 0.011
c2D/a 1.0091 1.0084 1.0095 1.0068

DFPT (THz) 2.4 -1.5 -3.9 -2.2 [4]
2DSE (THz) 4.1 2.4 0.44 0.83
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FIG. S1. (a) Temperature dependence of FES mode under classical and quantum description

with 2D potential energy surface. (b) Lattice parameter for given temperature evaluated from

interpolation of experimental value. (c) Temperature dependence of frequency of FES mode with

and without thermal lattice.
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FIG. S2. Variation of frequency of ferroeletric soft mode with respect to lattice mass with PBE

functional. The vertical lines indicate the Wentzcovitch-type lattice mass (MW ) and total lattice

mass (Mtot).
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