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I. CONSTRUCTING XC POTENTIALS FROM
XC KERNELS

The time-dependent density can always be written as

n(r, t) = ngs(r) + δn(r, t) , (1)

i.e., as the sum of the ground-state density ngs(r) and
the density response δn(r, t); the latter is not necessarily
small compared to ngs. Likewise, one can write the time-
dependent xc potential without restriction as

vxc[n](r, t) = vgs
xc[ngs](r) + vdyn

xc [n](r, t) , (2)

where vgs
xc is the ground-state xc potential (a functional

of ngs only), and the dynamical part vdyn
xc (a functional

of the total n) is not necessarily small compared to vgs
xc.

The time-dependent xc potential can be formally rep-
resented as a Taylor expansion around ngs(r):

vxc[n](r, t) = vgs
xc[ngs](r)

+

∫
dt′
∫
dr′fxc[ngs](r, t, r

′, t′)δn(r′, t′) + . . . (3)

where the xc kernel is defined as

fxc[ngs](r, t, r
′, t′) =

δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
ngs

. (4)

The definition (4) tells us how to construct fxc(r, t, r′, t′)
from a given vxc(r, t) via a functional derivative.

But suppose we start from a certain model expression
fmodel

xc for the xc kernel and ask whether one can write
this as a functional derivative of a model xc potential,
i.e.,

fmodel
xc [ngs](r, t, r

′, t′)
?
=
δvmodel

xc [n](r, t)

δn(r′, t′)

∣∣∣∣
ngs

. (5)

The answer, in general, is no: there is no guarantee that a
model xc kernel can be written as a functional derivative
[1]. In other words, a matching vmodel

xc [n](r, t) may not
exist. In that case, the best we can do is to construct an
approximation for the dynamical part of the xc potential:

vdyn,model
xc (r, t) ≈

∫
dt′
∫
dr′fmodel

xc (r, t, r′, t′)δn(r′, t′) ,

(6)

which is valid in the weakly perturbed limit where
|δn(r, t)| � ngs(r). Beyond that limit, Eq. (6) becomes
in general an uncontrolled approximation.

A special case is the LRC xc kernel

fLRC
xc (r, t, r′, t′) = − α

4π

δ(t− t′)
|r− r′|

, (7)

which is nothing but the Hartree kernel multiplied by the
constant −α/4π. Treating α as a fixed parameter, it is
straightforward to express the LRC kernel as a functional
derivative, namely,

fLRC,fixed
xc (r, t, r′, t′) =

δvLRC,fixed
xc (r, t)

δn(r′, t′)

∣∣∣∣
ngs

(8)

where

vLRC,fixed
xc (r, t) = − α

4π

∫
dr′

n(r′, t)

|r− r′|
. (9)

Notice that here the Taylor expansion (3) terminates rig-
orously after the linear term.

However, in reality the parameter α is not fixed but
material-dependent, which makes it formally an implicit
(unknown) functional of the density. Expression (9)
is only valid under the assumption that the functional
derivative δα/δn is zero. Thus, again, the best we can
do is to restrict ourselves to the dynamical part of the xc
potential using the approximation (6). The result is

vdyn,LRC
xc (r, t) = − α

4π

∫
dr′

δn(r′, t)

|r− r′|
, (10)

which is what we use in the main paper.
To summarize: we can approximately reconstruct an

xc potential from any xc kernel, but this is formally lim-
ited to the weakly perturbed regime, and we only obtain
an expression for the dynamical part vdyn

xc (r, t). The cor-
responding vgs

xc(r) remains undetermined.
It is tempting to use the approximate vdyn

xc (r, t) be-
yond the realm for which it is designed to be valid, i.e., if
δn(r, t) is no longer small. Extending approximations in
this way has a long tradition in (TD)DFT [a prime exam-
ple is the (A)LDA], but, as always, one should proceed
with some caution.
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II. REMARKS ABOUT LRC AND LRC+

A. Implementation of the scaled ALDA

In the main paper, we define three types of exchange-
correlation (xc) kernels: adiabatic LDA (fALDA

xc ), long-
range corrected (LRC) (fLRC

xc ), and the combined ker-

nel f
LRC+
xc = fLRC

xc + βfALDA
xc . Within linear-response

(LR)-TDDFT, the implementation of these xc kernels is
straightforward in the Yambo code [2]. However, in real-
time (RT)-TDDFT using Qb@ll [3–5], the implementa-
tion of the β-scaled ALDA needs to be done with care,
to ensure that the LR and RT formalisms are consistent.

The default implementation of the ALDA in Qb@ll in-
volves the full xc potential vALDA

xc [n](t), but the β-scaling
only affects the response part associated with δn(t) [in
the main paper, we define n(r, t) = ngs(r) + δn(r, t),
where the density response δn(r, t) is not necessarily
small compared to the lattice-periodic ngs(r)]. Let us
consider the fundamental relationship fALDA

xc (r, r′) =
δvLDA

xc [n](r)/δn(r′)
∣∣
ngs(r)

. Multiplying β on both sides,

we have

βfALDA
xc (r, r′) =

βδvLDA
xc [n](r)

δn(r′)

∣∣∣∣
ngs(r)

. (11)

This suggests the algorithm for RT-TDDFT with the β-
scaled ALDA xc potential, vALDA

xc,β , described in the fol-

lowing pseudocode, where Ψ(t) denotes the Kohn-Sham
wave function:

Algorithm 1 β-scaled ALDA xc potential

Require: ground state vLDA
xc , Ψ(0) = Ψgs

for istep = 1→ nsteps do

generate n(t) from Ψ(t)

update vALDA
xc [n](t) with n(t)

βδvALDA
xc (t) = β[vALDA

xc [n](t)− vLDA
xc ]

vALDA
xc,β (t) = vLDA

xc + βδvALDA
xc (t)

propagate Ψ(t)→ Ψ(t+ ∆t) with vALDA
xc,β (t)

t = t+ ∆t

end for

Notice that the parameter β can be set to zero, in

which case f
LRC+
xc reduces to the pure LRC kernel fLRC

xc =
−α/k2, and there are no dynamical corrections to the
ground-state LDA xc potential; this is used for the H2

chain in the main paper.

B. Choice of α and β

The scaling factors α and β are introduced here as em-
pirical parameters. The parameter α could, in principle,

1.06 Å 1.32 Å

FIG. 1. Geometry of the molecular H2 chain, with lattice
constant 2.38 Å.

be determined from first principles, since the LRC kernel
(7) is designed to mimick the exact long-range behav-
ior of the xc kernel, fxc,G=0,G′=0(k → 0, ω) → κ00/k
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where, formally, κ00 is frequency-dependent and a func-
tional of the density. α could also be determined using
the semiempirical scaling approach of Ref. [6], or even
by fitting of experimental or BSE spectra. Likewise, β
could conceivably be optimized via fitting.

In practice, we always started with β = 1 (i.e., pure
ALDA), and then determined α via LR-TDDFT, com-
paring with experimental or BSE optical spectra. In the
case of Si and LiF, we had some guidance through ear-
lier work [6], for H2 and CsGeCl3 a bit of trial and error
was involved. We then used the so determined α in RT-
TDDFT. If instabilities in the current oscillations were
detected, we gradually reduced α and increased β until
the time propagation was sufficiently stable.

III. COMPUTATIONAL DETAILS

A. Real-time propagation with Qb@ll

1. Geometries and implementation

Since it is more convenient to adopt an orthogonal unit
cell in Qb@ll, we used a conventional cubic cell containing
8 Si atoms for Si and 4 Li and 4 F atoms for LiF, respec-
tively, with the experimental lattice parameters. The H2

chain is set up to have a lattice constant of 2.38 Å along
the periodic direction (see Fig. 1). For CsGeCl3, we
adopted the cubic Pm3̄m phase. The lattice constant is
optimized (using the Quantum Espresso package [7], see
below) to be 5.46 Å, which is in agreement with results
quoted in the literature [8].

With the geometries as defined above, we first cal-
culate the Kohn-Sham ground state for all systems. A
plane wave basis implementation (the default in Qb@ll)
is employed, with cutoff energies of 20 Hartree for Si and
40 Hartree for the other three systems. Together with
optimized norm-conserving Vanderbilt pseudopotentials
[9, 10], we used the LDA functional for Si, H2 chain
and LiF, and the PBE [11] functional for CsGeCl3. We
used regular Monkhorst-Pack (M-P) meshes of 64×1×1,
6× 6× 6 and 8× 8× 8 for H2 chain, LiF and CsGeCl3,
respectively. The k-point meshes adopted for Si will be
discussed in more detail in Section IV below.
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2. Excitation mechanism and observables

Starting from the ground state, the systems are excited
in two different ways for the linear response and short-
pulse response simulations, respectively. In the velocity
gauge, see Eq. (4) in the main paper, a uniform external
electric field E′ gives rise to a vector potential A′(t),

A′(t) = −
∫ t

E′(t′)dt′ , (12)

and the single-particle Bloch functions acquire a phase
factor when going from the length to the velocity gauge:

ϕj(r, t) = e−iA
′·rϕ̃j(r, t) . (13)

For our calculations in the weakly perturbed regime (to
obtain optical spectra for comparison with LR-TDDFT),
we adopted a delta-kick by a constant and uniform elec-
tric field E′ along the z-direction. This means that a
constant A′ along the z-direction is turned on at the be-
ginning of the propagation, i.e. A′(t) = const. (t ≥ 0).
We chose small values of A′ of 5 × 10−3 a.u. for Si, H2

chain and CsGeCl3, and 5×10−4 a.u. for LiF (which cor-
responds to electric field spikes of strength 2.6 and 0.26
V/nm, respectively). Our specific choice of pulse shapes
for the short-pulse response simulations is discussed in
the main paper.

With the accumulated macroscopic total current den-
sity j0 of every step, the dielectric response ε(ω) is cal-
culated via [12]

ε(ω) = 1 +
4πiσ(ω)

ω
, (14)

where the frequency-dependent conductivity is given by

σ(ω) = − 1

A′

∫ T

eiωtf(t)j0(t)dt, (15)

and f(t) is a suitably chosen window function (here, we
use a third-order polynomial). In order to compare with
experimental or BSE results, the dielectric functions are
corrected by rigid blue shifts of 0.6 eV, 3.05 eV, 5.4 eV
and 1.6 eV for Si, H2 chain, LiF and CsGeCl3, respec-
tively.

For the nonlinear short-pulse response in Si, see Fig.
2 in the main paper, we used the same k-grid as before.
Instead of calculating the dielectric function and apply-
ing the scissors operator, we follow Ref. [13] and consider
the dipole power spectrum (in the so-called acceleration
form), following from the time-dependent induced cur-
rent:

|P (ω)|2 =

∣∣∣∣FT ∫
Ω

dr
∂

∂t
j(r, t)

∣∣∣∣2 (16)

where FT stands for Fourier Transform. The dipole
power spectrum has been widely used to study harmonic
generation in atoms, molecules and, more recently, solids.
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FIG. 2. Macroscopic induced current Jz(t) of LiF, calculated
with Qb@ll using different time steps dt = 0.05 a.u. (1.21 as),
dt = 0.025 a.u. (0.605 as), and dt = 0.01 a.u. (0.242 as). The
method used is LRC+ with α = 7 and β = 1.

3. Numerical time propagation

For the time propagation we use a fourth-order Runge-
Kutta algorithm [14]. A time step of 1.93 attoseconds
(as) is employed for Si, a time step of 1.21 as for the H2

chain and for CsGeCl3, and a time step of 0.605 as for
LiF. A time propagation of at least 20 fs is performed for
all the systems unless the simulation diverges.

In materials with strongly bound excitons, instabili-
ties may occur due to the violation of the zero-force the-
orem, as discussed in the main paper. These instabili-
ties manifest through current oscillations with increasing
amplitude (without any external driving forces). How-
ever, the numerical details of the time propagation can
play a significant role, as illustrated in Fig. 2. Clearly,
the instabilities for LiF are worse for longer time steps;
for smaller time steps, the instabilities build up more
slowly, but eventually the current oscillations blow up
as well. In practice, we chose the time step dt = 0.025
a.u. (0.605 as) for LiF as the best compromise between
stability and overall computational cost (except for the
stable case with α = 10−4 and β = 6.4, where we can use
dt = 1.21 as).

B. Optical response with Yambo

We used the Yambo code [2] to perform LR-TDDFT
and BSE calculations for optical excitations. The Kohn-
Sham ground-state wave functions, used as input to
Yambo, are calculated using the Quantum Espresso pack-
age [7]. Except for the k-point mesh, we apply the same
cubic cells and computational parameters, as well as the
scissors operator, to remain consistent with Qb@ll. For
the ground state and LR-TDDFT, we used Γ-centered
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FIG. 3. RPA dielectric function Im(ε) of Si calculated using
different k-point meshes with Quantum Espresso. A scissors
shift of 0.6 eV is applied.

meshes of 64 × 1 × 1, 8 × 8 × 8 and 12 × 12 × 12 for H2

chain, LiF and CsGeCl3, respectively.

The RPA dielectric functions were calculated with at
least 100 conduction bands and 123 G-vectors for Si. The
corresponding numbers for the other materials are: 19
conduction bands and 1005 G-vectors for the H2 chain,
160 conduction bands and 200 G-vectors for LiF, and 160
conduction bands and 300 G-vectors for CsGeCl3. For
our LR-TDDFT calculations, these parameters are kept
the same as for the RPA calculations for each material,
except we only use 1 conduction band for the H2 chain.

To build the BSE kernels, we used 4 valence and 4
conduction bands for Si. The corresponding numbers
of valence and conduction bands for the other materials
are: (1,1) for the H2 chain and (13,7) for CsGeCl3. We
used Haydock iteration [15, 16] to solve the BSE-type
equations, instead of directly diagonalizing the huge BSE
matrix.

Due to the absence of experimental data for the elec-
tronic band gap of H2 chain and cubic CsGeCl3, we used
the G0W0 method to correct the quasiparticle energy.
With the RPA dielectric function obtained above, we in-
cluded 32 and 160 conduction bands for H2 chain and
CsGeCl3, respectively. The band gap correction for the
H2 chain is 3.05 eV, which is applied as the magnitude
of scissors shift in BSE. The BSE optical spectrum is in
agreement with Ref. [17]. Thus we further applied this
scissors shift for LR-TDDFT. The electronic band gap
of cubic CsGeCl3 is corrected to be 2.96 eV, which is
in agreement with previous work [8]. Thus a correction
of 1.6 eV is then applied as a scissors shift for all opti-
cal spectra of CsGeCl3 with BSE and LR-TDDFT. Note
here that the scissors shift is different from the rigid shift
applied in RT-TDDFT [18, 19], though we adopted the
same value for each material.

For the H2 chain, we encountered some numerical diffi-

culties with Yambo when we tried to combine LRC with
a β-scaled ALDA (i.e., LRC+). These difficulties point
to an enhanced sensitivity of the ALDA kernel in quasi-
1D. Therefore, we used the pure LRC kernel only for the
H2 chain (see also [20]).

C. Computational cost

For the materials considered here, the computational
cost to obtain optical spectra was lower using LR-
TDDFT (Yambo) compared to RT-TDDFT (Qb@ll), but
these two codes have very different numerical implemen-
tations, so a direct comparison of the cost of LR- and RT-
TDDFT is not very meaningful. Qb@ll’s main strength
is for systems with very large unit cells (or supercells),
and less so for the relatively simple systems with small
unit cells considered here. In general, RT-TDDFT scales
favorably with system size compared to LR-TDDFT, and
it parallelizes more easily. Another important factor are
the memory requirements: again, RT calculations will
have the advantage over LR for large systems, since it is
not necessary to include unoccupied states.

IV. MORE ON k-POINT SAMPLING

A. k-point sampling for TDDFT

We carefully tested the k-point sampling for calculat-
ing the dielectric function Im(ε) of Si (with an 8-atom
unit cell). The calculations were performed with the
Quantum Espresso package by using pw.x and epsilon.x,
where the RPA level was constructed using Kohn-Sham
ground-state wave functions. As shown in Fig. 3, we
tested M-P k-point meshes [21] from 83 up to 423. It can
be seen that Im(ε) is not well converged until the k-point
mesh of 283 for the lower energy part below 4 eV. How-
ever, the higher energy part beyond 5.5 eV is still not
converged even when the number of k-points increases
from 363 to 423.

It has been reported in the literature that RT-TDDFT
simulations can be sensitive to k-point sampling [12].
In order to reduce the computational cost and keep
the k-point sampling still adequate, we applied an ad-
ditional shift based on the 83 M-P mesh. This ran-
dom shift breaks the symmetries that are inherent to
the otherwise regular k-point grid, since Qb@ll does
not employ symmetry reduction of the supplied grid.
Hence, it is ideal if a grid of a given size has as few
symmetry-equivalent k-points in it as possible, and we
approximate this with a random shift of the entire mesh.
The additional small shift by the reciprocal-space vec-
tor v = (0.028526, 0.041304, 0.107901) is randomly gen-
erated. Then we applied the same random shift vector
to every k-point of the 83 M-P mesh. With the shifted
83 mesh, we obtained a curve of Im(ε) (black solid line)
similarly smooth as that with the 283 mesh (blue dotted



5

3 4 5 6
Photon Energy (eV)

0

15

30

45

60
Im

(
)

RT randomly shifted 83

RT M-P 83

LR M-P 283

FIG. 4. Dielectric function Im(ε) of Si calculated by RT
ALDA with different 83 k-meshes, as well as LR ALDA with
83 M-P mesh. A scissors shift of 0.6 eV is applied.

line). Therefore, in the main paper we use this shifted 83

mesh for all the RT simulations of Si with Qb@ll.
However, randomly shifted meshes are unavailable in

the Yambo code, where we have to use a Γ-centered or
M-P mesh. Based on the results above, we choose an M-
P mesh of 283 for the LR-TDDFT calculations in Yambo.
We compare Im(ε) of Si calculated with different meshes
in Fig. 4. For RT-TDDFT, the ALDA spectrum with
the randomly shifted mesh is much improved compared
to that calculated with a regular M-P mesh, especially
for eliminating the artificial peak around 4.6 eV. In fact,
RT-TDDFT with the randomly shifted mesh is similar
to LR-TDDFT with the 283 mesh, which confirms our
conclusions from the test above with Quantum Espresso.

The slight differences between the LR- and RT-
TDDFT optical spectra of Si in Figs. 1 in the main
paper can be mainly attributed to the use of different k-
meshes. Even though we obtained almost identical RPA
results for the randomly shifted 83 mesh and the 283 M-P
mesh, there is no guarantee that these two meshes work
similarly for different TDDFT approaches. This is par-
ticularly evident in the LRC+ optical spectra of Si, where
LR- and RT-TDDFT give overall similar results, but the
E1 and E2 peaks are not quite aligned.

B. k-point sampling for BSE

The M-P mesh of 283 gives well converged spectra,
but we cannot use it for BSE calculations because of the
huge cost for a unit cell containing 8 Si atoms. It is well
known that a large number of k-points, even much more
than 283, are required to obtain converged BSE spectra
[22, 23]. We adopted the random integration method
and inversion solver in Yambo [2, 24]. In this scheme,
the BSE spectrum of Si is calculated with a double k-
grid, which includes a 24 × 24 × 24 Γ-centered uniform
k-point mesh and 30000 random interpolated k-points.
In addition, we chose to use a primitive cell with 2 Si
atoms for BSE calculations.
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FIG. 5. Real-time current densities Jz calculated by RT-
TDDFT for the linear dielectric response of (a) Si, (b) H2

chain, (c) LiF and (d) CsGeCl3.

In Fig. 1 in the main paper, it is found that the BSE
spectrum differs from the experiment by a lower E1 peak.
At this stage, increasing the number of k-points would be
unlikely to improve the result. Other factors should be
taken into account, for example dynamical effects in the
screened electron-hole interaction, as discussed in detail
in Ref. [25].

For CsGeCl3, we also applied the double k-grid tech-
nique, using a Γ-centered 83 uniform k-mesh and 10000
random interpolated k-points. For the H2 chain, we used
the same k-mesh of 64×1×1 as in LR-TDDFT (see Sec.
III.B).

V. REAL-TIME CURRENT DENSITIES FOR Si,
H2 CHAIN AND LiF

In this section, we present the real-time total current
densities (Jz) of Si, H2 chain, LiF, and CsGeCl3, which
are not shown in the main paper (Si, CsGeCl3) or only
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shown for a shorter time (H2, LiF). All results here are
for weak excitation by a delta-kicked electric field, see
Sec. III.A.2 above (for Si, the currents induced by fem-
tosecond laser pulses are shown in Fig. 2a in the main
paper).

In Fig. 5a, we compare the macroscopic Jz of Si gen-
erated by ALDA and LRC+ in the main paper. It can
be seen that the oscillations of both current densities be-
come much smaller after a time propagation of 20 fs.
This is due to the fact that the exciton in Si is close to
the conduction band continuum, which leads to a rather
rapid dephasing of the induced current oscillations.

By contrast, in Fig. 5b for the H2 chain, the Jz gen-
erated by LRC with α = 8.0 exhibits a much stronger
oscillation than Jz by ALDA, even no trend of decay.
In the one-dimensional hydrogen chain, the exciton is
strongly bound and has a large oscillator strength, which

is reflected by the prominent oscillations in the current
density.

In LiF, the frequencies of the current oscillations by
LRC+ with (α = 2.5, β = 5.5) and (α = 10−4, β = 6.4)
are almost the same, which gives us the excitonic peaks
so close to each other in energy (see Fig. 3c in the main
paper). However, the oscillations of Jz for (α = 2.5, β =
5.5) remain strong after 5 fs, which leads to a much higher
peak in the optical spectrum. In addition, one can also
observe an instability of the induced currents for (α =
2.5, β = 5.5).

For CsGeCl3, the induced current densities are quite
similar to those for Si discussed above, which is related to
the fact that both systems have weakly bound excitons,
close to or even partially embedded into the absorption
continuum.
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