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Fig. 1. We present a model that reckons with the effects of shape and illumination for predicting material appearance attributes that correlate with human

judgments and show that it can be leveraged for several applications. Left: Our predictor can be used to sort material datasets according to desired properties
such as perceived glossiness and lightness for target illuminations or shapes, assisting scene design. Right: We demonstrate the capabilities of our predictor
for gloss reproduction in 3D printing. While applying the same varnish under different illuminations and shapes would yield different gloss perception, our
predictor allows us to find optimal varnish mixtures (insets) for reproducing the desired equivalent gloss under different illuminations and geometries.

Material appearance hinges on material reflectance properties but also sur-
face geometry and illumination. The unlimited number of potential combi-
nations between these factors makes understanding and predicting material
appearance a very challenging task. In this work, we collect a large-scale
dataset of perceptual ratings of appearance attributes with more than 215,680
responses for 42,120 distinct combinations of material, shape, and illumina-
tion. The goal of this dataset is twofold. First, we analyze for the first time
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the effects of illumination and geometry in material perception across such
a large collection of varied appearances. We connect our findings to those
of the literature, discussing how previous knowledge generalizes across
very diverse materials, shapes, and illuminations. Second, we use the col-
lected dataset to train a deep learning architecture for predicting perceptual
attributes that correlate with human judgments. We demonstrate the consis-
tent and robust behavior of our predictor in various challenging scenarios,
which, for the first time, enables estimating perceived material attributes
from general 2D images. Since our predictor relies on the final appearance in
an image, it can compare appearance properties across different geometries
and illumination conditions. Finally, we demonstrate several applications
that use our predictor, including appearance reproduction using 3D print-
ing, BRDF editing by integrating our predictor in a differentiable renderer,
illumination design, or material recommendations for scene design.

CCS Concepts: « Computing methodologies — Appearance and texture
representations; Perception.

Additional Key Words and Phrases: Material appearance, perception
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1 INTRODUCTION

Material appearance is determined not only by material reflectance,
but also by surface geometry and illumination. The same mate-
rial may have a different appearance for different combinations of
lightings and shapes, or conversely, different materials may appear
similar for specific illumination and shape choices [Ramanarayanan
et al. 2007; Zhang et al. 2020a]. In the context of images such effects
can be even more pronounced due to inherent ambiguities in the
reflected radiance that depends on those factors.

Understanding the interactions of geometry and illumination in
material appearance is a long-standing problem and the underlying
perceptual processes that facilitate appearance perception are still
not fully understood [Anderson 2011; Fleming 2014]. Despite a large
body of work devoted to investigating the perceptual properties
of materials [Anderson 2011; Fleming 2017; Fleming et al. 2015;
Marlow et al. 2012], most of them focus on a single aspect of appear-
ance, such as gloss [Chadwick and Kentridge 2015; Pellacini et al.
2000] or translucency [Fleming and Biilthoff 2005; Gkioulekas et al.
2015]. The impact of geometry and illumination is typically studied
under a limited variety of appearances, geometries, and illumina-
tions [Adams et al. 2018; Marlow and Anderson 2013; Motoyoshi
et al. 2007; Olkkonen and Brainard 2010; Pont and te Pas 2006; Van-
gorp et al. 2007]. Further, these works often specialize in different
subsets of these factors, making it difficult to compare them and
generalize their insights. Some recent works study a wider variety of
appearances but do not take into account the effect of illumination
and geometry [Hu et al. 2020; Serrano et al. 2016]. While studying
small subsets under rigidly controlled setups is a necessary and
valuable step for understanding individual phenomena governing
perception, we argue that analyzing a large-scale collection of very
diverse appearances is crucial for generalizing existing knowledge
and bringing derived insights closer to real applications.

In this work, we generate a diverse collection of 42,120 images
with distinct combinations of isotropic and anisotropic materials,
shapes, and illuminations, which covers a wide variety of appear-
ances. Using a web-based online study, we crowdsource ratings for
different reflectance attributes of these images, namely glossiness,
sharpness of reflections, contrast of reflections, lightness, metal-
licness, and anisotropy. This constitutes the largest collection of
subjective material ratings to date. We use this dataset for two
main purposes. First, we perform an in-depth statistical analysis
on the effects of illumination and geometry on perceived appear-
ance. Using cumulative mixed models, we isolate and estimate the
impact of each attribute. We then connect our insights to previ-
ous literature and provide an extensive discussion on how existing
findings generalize for complex interactions of diverse shapes and
illuminations. Second, inspired by recent work that shows a good
correlation between deep features and complex encodings of the
visual input explaining material perception [Delanoy et al. 2020;
Fleming and Storrs 2019], we train a deep learning architecture
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for predicting perceptual material properties from image features.
For the first time, this prediction allows estimating perceived mate-
rial attributes from general 2D images, which brings our insights
closer to real applications. We thoroughly evaluate our model and
demonstrate that its behavior is predictable and consistent with
perceptual judgments under challenging scenarios, including real
pictures, changes in illumination and geometry, and various tone
mapping algorithms. Finally, we show different applications that
directly benefit from our predictor, such as appearance reproduc-
tion using 3D printing, BRDF editing by integrating our predictor
in a differentiable renderer, illumination design, and material rec-
ommendations for scene design. Our dataset (including renderings
and perceptual data), data collection platform, trained predictor and
code is available at https://mig.mpi-inf.mpg.de/.

2 RELATED WORK

The aim of this work is to understand and model the effect of ge-
ometry and illumination on perceived reflectance properties. Since
surface reflectance is dominated by gloss [Chadwick and Kentridge
2015; Fleming 2017], we firstly focus our discussion on this prop-
erty and its perceptual dimensions [Pellacini et al. 2000] as well as
lightness, which is another critical property determining appear-
ance [Toscani et al. 2020] (Sec. 2.1). Additionally, since our model
estimates appearance properties, we also discuss previous work
on perceptual embeddings of material appearance (Sec. 2.2), and
image-based solutions for their estimation (Sec. 2.3).

2.1 The impact of geometry and illumination

Gloss. Previous work has shown that gloss perception depends on
anumber of factors in a very complex manner. It has been suggested
that both the structure of bright highlights [Beck and Prazdny 1981;
Berzhanskaya et al. 2005] and lowlights [Kim et al. 2012] play a
strong role in gloss perception. Apparent gloss also increases with
the brightness of highlights, their contrast, sharpness (distinctness)
and coverage [Marlow and Anderson 2013; Marlow et al. 2012]. Like-
wise, those factors can be affected by the structure of environment
maps and the orientation of dominant light sources [Marlow et al.
2012]. Surfaces appear more matte under slowly changing lighting,
and glossiness increases under more directional, higher contrast
lighting [Adams et al. 2018; Dror et al. 2004; Motoyoshi and Matoba
2012; Pont and te Pas 2006; Zhang et al. 2020a,b]. In general, gloss
judgments are more consistent under natural illuminations [Fleming
et al. 2003], and this consistency can improve further in the presence
of additional cues such as color, motion, and disparity [Wendt et al.
2010]. Complex interactions between shape and illumination also
play a role in the perception of gloss. Surfaces with strong curva-
tures lead to the spatial compression of highlights or lowlights, so
that their intensity respectively increases or decreases [Kim et al.
2012]. Bumpier surfaces appear glossier, but this relation might be
non-monotonic, as for higher bump magnitudes perceived gloss
might decrease [Landy et al. 2008; Marlow et al. 2012]. Faul [2019]
concludes that surface curvatures are also relevant for the case of
gloss perceived from Fresnel effects. It has also been shown that
the discrimination of subtle gloss changes is poor for tessellated
surfaces, and might be lower for simple surfaces like a sphere than
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for surfaces with more complex curvatures such as blobs [Vangorp
et al. 2007]. Therefore, observers’ ability to match glossy properties
might be altered given different surface geometries [Havran et al.
2016; Nishida and Shinya 1998; Vangorp et al. 2007], but also under
different lighting conditions [Doerschner et al. 2010; Leloup et al.
2010; Olkkonen and Brainard 2010; Pont and te Pas 2006].

Lightness. Matte materials typically maintain relatively constant
lightness (albedo) perception [Olkkonen and Brainard 2010; Zhang
et al. 2020a]; however, a positive correlation between lightness
and the standard deviation (akin to contrast) of environment map
luminance has been observed [Motoyoshi et al. 2007]. Addition-
ally, lightness perception seems to be positively correlated to the
highest percentiles of luminance values present in the environ-
ment [Toscani et al. 2017]. Geometry also plays a role in lightness
perception [Toscani and Valsecchi 2019]: perceived lightness may
increase when a visible surface region is directly exposed and per-
pendicularly oriented to dominant light sources. This increases the
maximum brightness in the image that anchors the perception of
lightness for less exposed regions [Gilchrist et al. 1999]. Lightness
perception for glossy objects is far more complex [Toscani et al.
2017]. There is some evidence that lightness and gloss interact, so
that darker surfaces are perceived as more glossy, and conversely
glossy surfaces are perceived as darker [Chadwick and Kentridge
2015; Hunter and Harold 1987; Motoyoshi and Matoba 2012; Pel-
lacini et al. 2000]. However, in other studies, only a weak impact of
specularity has been found due to the apparent ability of the human
visual system (HVS) to discount specular highlights [Olkkonen and
Brainard 2010; Todd et al. 2004; Toscani et al. 2017].

These works are usually targeted to carefully test a particular ef-
fect, and therefore the experimental stimuli are reduced to a few con-
trolled materials, typically rendered with basic analytic reflectance
models. Further, different works often use different subsets of stim-
uli, making it difficult to compare them and extrapolate their insights
to general scenarios. As discussed in recent works [Hansmann-Roth
and Mamassian 2017; Landy et al. 2008], experiments on simultane-
ous interactions between multiple factors are relatively sparse. In
this work, we perform a large-scale crowdsourced study, in which
we include a wide variety of materials (520), as well as a carefully
selected set of illuminations (9) and geometries (9). We measure
different properties of perceived reflectance, perform an in-depth
analysis of our collected data, and discuss the effects of illumination
and geometry on perceived appearance with respect to existing
works, providing a unified view of such effects.

2.2 Perceptual material embeddings

A step forward in understanding perceived appearance is to ana-
lyze the relationships between different materials and derive low-
dimensional perceptual embeddings useful for many applications,
such as BRDF editing or similarity metrics for BRDF compression,
fitting, and gamut mapping. A majority of existing works focus on
gloss perception.

Pellacini et al. [2000] employ a multi-dimensional scaling anal-
ysis and show that gloss appearance can be explained by two per-
ceptual dimensions that roughly correspond to contrast gloss and
distinctness-of-image gloss [Hunter 1937; Hunter and Harold 1987].

They correlate these dimensions with the parameters of the Ward
reflectance model [1992] to make them perceptually uniform. In
the same spirit, Wills et al. [2009] propose another 2D embedding
for measured BRDFs [Matusik et al. 2003] and correlate the per-
ceptual dimensions with parameters of multiple reflectance models.
Recently, Vangorp et al. [2017] focused on analyzing BRDF materials
with two specular components and showed the importance of the
haze gloss dimension [Hunter 1937]. Further, Toscani et al. [2020]
suggests that there are three main perceptual dimensions repre-
sentative of reflectance: gloss, lightness, and metallicness. Going
beyond gloss-related parameters, Serrano et al. [2016] proposed an
intuitive control space for material appearance, which was later
employed for material gamut mapping [Sun et al. 2017]. In a similar
spirit, Hu et al. [2020] proposed to use deep representations for
manipulating measured materials.

The above works are limited to a fixed geometry (sphere [Pel-
lacini et al. 2000; Serrano et al. 2016], bunny [Wills et al. 2009], and
blob [Vangorp et al. 2017]) and few lighting scenarios. Therefore, it
is unclear how the proposed perceptual embedings generalize for
departures from perceived gloss constancy as discussed in Sec. 2.1.

2.3 Image-based perception modeling

Classic methods. Initial efforts suggested that simple image statis-
tics derived from luminance histograms such as the standard devia-
tion, kurtosis, skewness [Motoyoshi et al. 2007; Sharan et al. 2008], or
image sub-band histograms [Motoyoshi and Matoba 2012] correlate
well with surface glossiness and lightness. More complex heuristics
combining multiple cues such as highlight coverage, sharpness, and
contrast have been also proposed to explain perceived gloss [Mar-
low and Anderson 2013]. However, follow-up work [Anderson and
Kim 2009; Chadwick and Kentridge 2015; Fleming 2014; Olkkonen
and Brainard 2010] has shown that these methods do not generalize
across existing perceptual data. Recent research suggests that the
HVS cannot perform inverse optics computations that would revert
the complex image formation process so that surface reflectance
properties are disentangled [Anderson 2011]. Therefore, highly non-
linear encodings of the visual input may be the key to explain
material perception processes [Fleming 2014].

Deep features. Fleming [2014] advocated for data-driven solutions
for appearance modeling instead of computing physical parame-
ters. It has been recently argued that complex representations of
the visual input might be needed for explaining perceptual pro-
cesses [Delanoy et al. 2020; Fleming and Storrs 2019; Lagunas et al.
2021]. Deep learning offers a framework for computationally model-
ing such processes. In a concurrent work, Storrs and Fleming [2020]
use rendered images of a flat surface with variable bump structures,
illuminated by different environment maps for unsupervised train-
ing of a variable autoencoder (PixelVAE). Although the network is
not trained with perceptual data, its latent vectors correlate well
with human gloss ratings when observing such images. Schwartz
and Nishino [Schwartz and Nishino 2019] also make use of deep
features to discover a set of representative material traits by training
material classifiers. The closest work to ours is that of Lagunas et
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al. [2019]: They trained a deep architecture (ResNet) that can effec-
tively estimate appearance similarity distances between different
materials in images.

Following this trend, we leverage deep features by training a deep
architecture with our extensive set of perceptual data. We show that
this model can effectively predict perceptual reflectance attributes,
and demonstrate that its behavior is robust in challenging scenarios.
We believe our work is complementary to that of Lagunas et al.
While their work focuses on similarity as a whole, we focus on
particular material properties that may drive this similarity. Further,
in their work they only collect subjective data for a single geometry
and illumination, hence our data is better suited for analyzing the
interactions between these two factors. We discuss how our two
perceptual spaces relate in Sec. 5.4.

3 CROWDSOURCING PERCEPTUAL DATA

Our goal is to characterize the perceived appearance of a wide
variety of materials under different geometries and illuminations, for
which we have rendered 42,120 different images covering different
materials, illuminations, and geometries. We summarize in this
section our stimuli and procedure for crowdsourcing perceptual
data, please refer to the supplementary material for more details.

3.1 Stimuli

Materials. We include 520 measured BRDFs, focusing on isotropic
appearances (389 BRDFs). We also include (131) anisotropic materi-
als for further analysis in Sec. 4.2. We use isotropic materials from
the MERL [Matusik 2003] and RGL [Dupuy and Jakob 2018] datasets,
and complement our selection with edits over MERL BRDFs [Sun
et al. 2018]. Anisotropic materials are obtained from the UTIA [Filip
and Véavra 2014] and RGL datasets. From the UTIA dataset, we se-
lect 50 materials with high anisotropy effects and compute their
isotropic equivalents [Filip 2015], in order to allow for comparisons
between perceived attributes with and without anisotropy (Sec. 4.2).

Hluminations. We focus on real-world natural illuminations [Flem-
ing et al. 2003] and include nine illumination maps selected to
produce different appearances. We compute the high-frequency
content [Brossier et al. 2004] of a set of 412 high-quality HDR
environment maps! and select nine of them, aiming for variety,
since this feature has been suggested to have an effect on mate-
rial recognition [Dror et al. 2004; Lagunas et al. 2021] and appear-
ance [Zhang et al. 2020a]. In this selection, we also ensure a variety
of indoor/outdoor environments, and different types of light sources.
We normalize the exposure of the environment maps such that the
integral of the luminance is the same for all illuminations [Fleming
et al. 2003]. Fig. 2, first row shows the selected environment maps.

Geometries. We select nine geometries with varied features. We
include geometries widely used in the graphics community (bunny,
buddha, cylinder, teapot) and in material perception research. The
blob shape is reported as one of the best shapes for material dis-
crimination [Vangorp et al. 2007], and the ghost shape is optimized
for single image material comparison [Havran et al. 2016]. We add

!https://hdrihaven.com/

ACM Trans. Graph., Vol. 40, No. 4, Article 125. Publication date: August 2021.

the dragon and the statuette as geometries with steep gradients and
higher complexity. Fig. 2, third row shows the selected geometries.

3.2 Methods

Attributes. The work of Toscani et al. [2020] suggests that three
main perceptual dimensions are representative of diffuse and specu-
lar reflection: gloss, lightness, and metallicness. These three dimen-
sions are also present in the work of Serrano et al. [2016]. Conse-
quently, we chose them as our main attributes. For gloss in partic-
ular, previous works [Pellacini et al. 2000; Wills et al. 2009] have
suggested that the two main dimensions of perceived gloss are
related to distinctness-of-image gloss (or sharpness) and contrast
gloss [Hunter 1937; Hunter and Harold 1987], so we also consider
these two attributes. Finally, since we are including anisotropic ma-
terials in our dataset, we add this attribute to our list. Our final list
consists of six attributes: glossiness, sharpness of reflections, contrast
of reflections, metallicness, lightness, and anisotropy.

Participants. A total of 3,217 participants (37% female, average
age 38.1, 0 = 11.96 years old) participated in our perceptual survey.
From these participants, 19% claimed above intermediate experience
in computer graphics, 17% claimed to have experience with design
or modeling software, and 16% claimed artistic knowledge. The
study was mostly carried on computer displays (92.5%), although a
few users used other devices (such as tablets).

Procedure. We implemented a web interface for performing our
perceptual survey (refer to the supplementary material for more
details). We perform our study in a crowdsourcing platform (Ama-
zon Mechanical Turks), which has been proven an effective tool
for studies involving graphical perception experiments [Heer and
Bostock 2010], and material perception studies [Bousseau et al. 2013;
Lavoué et al. 2021; Serrano et al. 2016]. We then follow a rigorous
procedure to deal with noise and improve robustness of the data,
including a tutorial, training with examples [Doroudi et al. 2016],
and control images for anchoring scales and discarding unreliable
users [Cunningham and Wallraven 2011]. Before starting the survey,
the task and different attributes were explained to the participants
(detailed explanations and examples, highlighting relevant areas in
the images). To allow them to familiarize themselves with the inter-
face and to minimize worker unreliability [Welinder et al. 2010] a
short training session with obvious examples (not part of our tested
stimuli) was presented. Participants were asked to rate each of the
six attributes for each given image, focusing on the main object
rather than on the background. Similar to previous works [Serrano
et al. 2016; Zhang et al. 2020a] we chose a Likert rating task, which
offers a good trade-off between the amount of trials and difficulty
of the task. We chose to use a seven-point Likert scale since it of-
fers a good balance between granularity and complexity [Nunnally
1994]. The extremes of the scales were labeled as “not at all” (low
rating) and “a lot” (high rating). Each perceptual survey consisted
of 20 images selected randomly from our pool and 3 control images
to detect inattentive or malicious participants. We rejected 11% of
the participants, and finally obtained 215,680 valid responses, from
which we ensure that each image has at least 5 views.
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4 DATA ANALYSIS

In this section we first perform a statistical analysis on the effects
of illumination and geometry on perceived reflectance properties
(glossiness, lightness, contrast of reflections, sharpness of reflec-
tions, and metallicness). Then, based on our observations, we select
a subset of geometries and illuminations to analyze their pairwise
interactions. Later, in Sec. 4.2 we analyze anisotropy effects focusing
on the subset of materials included for this purpose (anisotropic-
isotropic pairs). Additionally, in the supplementary material we
provide an analysis of image statistics computed over the final im-
ages and show that they can not fully predict all observed variations
in our perceptual attributes. During our analysis, we focus on con-
necting our insights to previous knowledge in the literature (usually
scattered and limited to different subsets of materials, illuminations,
and shapes), and discussing how existing findings generalize for
complex interactions of diverse shapes and illuminations.

4.1 Statistical analysis

We investigate whether geometry and illumination have a signifi-
cant impact on users’ ratings. Our dependent variables (attributes)
are 7-point Likert items and the collected observations are not nor-
mally distributed (p < 0.05 for the Kolmogorov-Smirnov test). There-
fore in order to analyze our data we use a cumulative link mixed
model (CLMM) for ordinal-scale observations [Agresti 2003; Chris-
tensen 2018; McCullagh 1980]. Cumulative link models are tailored
to handle the ordered nature of Likert items, which avoids treating
these variables as quantitative. In these models, for each level of
the ordinal response, the cumulative probability of being in such
level or lower is modeled in the form of cut-off points that separate
the levels of the ordinal response. We include in the supplementary
material the parameters of the fitted models for each attribute as
well as the predicted rating probabilities by geometry and illumi-
nation. For post-hoc analysis we use Estimated Marginal Means
with Bonferroni correction for multiple comparisons. We include
the illumination and geometry as fixed factors, and the user and
material as mixed effects. This allows us to effectively account for
residual differences due to user diversity and variations in exper-
imental setup (e.g., different displays for visualization). In all our
tests, we fix the significance level « to 0.05. Fig. 2 summarizes the
estimated effects for geometry and illumination.

4.1.1  Effect of illumination. There is a significant effect of the envi-
ronment maps in the perceived attributes (p < 0.001), Fig. 2 shows
this effect in the mean response for each attribute, adjusted by other
variables in the model. Note that the estimated marginal mean ef-
fects show relative changes with respect to the average model: they
account for the estimated effects of illumination in isolation, across
all variety of geometries and materials. Based on the categorization
we used for selecting our environment maps, we can see that for the
selected illuminations, in general increasing the high frequency con-
tent of the environment map increases the perceived attributes. This
is the case for all gloss-related attributes (glossiness, contrast gloss,
sharpness of reflections, and metallicness). Interestingly, for most
illuminations, different features still lead to similar gloss percep-
tion: environment maps from (A) to (F) contain different frequency
content and dynamic range, indoors and outdoors environments, or

presence and absence of point-like light sources, yet the changes
in perceived glossiness only differ in 0.5 points in the scale, which
translates to 6% of gloss variation. Interestingly, metallicness is less
affected by lighting variations. For perceived lightness, the environ-
ment maps (A, B, C, F), and (G) lead to very similar ratings: these
environments, in general, have very large area illuminations, and
very few point-like lights, if any. High lightness seems to be associ-
ated very strong localized light sources (H, I), while low lightness
ratings seem related to back-lighting (environment map D).

4.1.2  Effect of geometry. There is a clear effect in the perceived
attributes for changes in geometry (p < 0.01). Geometry plays a
key role in how a surface reflects the incoming light and, there-
fore, it has a strong impact on the final appearance of the material.
Fig. 2 shows the effect of geometry in the mean response for each
attribute, adjusted by other variables in the model. The trend is simi-
lar for all attributes. In general, the dragon produces lower ratings of
gloss-related attributes, followed by a cluster composed of statuette,
cylinder, buddha, bunny and teapot, followed by sphere, then blob,
and then ghost. These results suggest that smooth surfaces tend to
produce higher ratings, while very complex geometries with steep
gradients tend to produce lower ratings for reflectance-related at-
tributes. For perceived lightness and metallicness, a similar trend can
be observed, although the influence of geometry is less pronounced.
An interesting effect that we observe is that the confidence intervals
are larger for glossiness than for lightness. A potential explanation
for this is that the perception of lightness is based primarily on dif-
fusely reflected light [Todd et al. 2004], leading to relatively stable
lightness judgmenets [Zhang et al. 2020a].

4.1.3  Interactions of geometry and illumination. For exploring the
interaction of geometry and illumination, computing all possible
pairwise post-hoc tests would yield 81 combinations (9 illuminations
X 9 geometries), hindering the convergence of our CLMM statistical
model. Therefore, we work with a subset of our data and show our re-
sults in Fig. 4. To support our discussion, we show in Fig. 3 different
statistics computed for the illumination and the geometry against
the glossiness, lightness, and metallicness estimated marginal ef-
fects. For environment maps, we compute the following statistics:
standard deviation (Ig;4), skewness (Isesy), kurtosis (Ixy,¢), light-
source coverage (Igreq, where small values correspond to point-like
light sources), contrast between light-sources and the rest of the
image (Irange), and high-frequency content (Ir.) [Brossier et al.
2004]. For geometries, since users only could see the shape from the
rendered point of view, we compute the following statistics over the
normal maps (relative to the rendered viewpoint): sum of gradients
(Ggraa), size of the largest smooth area (Garea), and high-frequency
content (G ). Since gloss-related attributes share similar behav-
iors, we focus on glossiness and lightness, which are arguably the
most prominent attributes discussed in the literature [Chadwick
and Kentridge 2015; Fleming 2017].

Glossiness. The pattern of gloss perception purely due to light-
ing changes for a fixed geometry is quite similar across different
geometries (Fig. 4, bottom left). Two exceptions can be noticed: (1)
for the combination of highly directional lighting (I) and the blob
a smaller glossiness boost is observed for this particular lighting
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Fig. 2. Top: Examples of our nine illuminations (first and second row) and geometries (third row) with the material blue-metallic-paint2 from the MERL dataset.
Bottom: Effect of geometry (fourth row) and illumination (fifth row) in perceived attributes. Estimated Marginal Means approximate the mean response for
each factor, adjusted by other variables in the model. The orange points mark the mean value, while blue bars indicate a 95% confidence interval. We mark
with gray lines clusters of factors that do not yield statistically significant differences.

when compared to other geometries, and (2) for the combination
of area lighting (G) and the ghost an inverse trend holds. Our data
confirms literature findings showing that for any geometry gloss
perception is reduced for slowly changing lighting (low Ij, ), and
it becomes stronger for more directional and higher intensity light
sources (low Igreq) [Dror et al. 2004; Pont and te Pas 2006; Zhang
et al. 2020a,b, 2015].

The perceived glossiness in Fig. 4, top left shows a strong impact of
the surface geometry, where the highest gloss is always perceived for
the ghost which is a combination of a smooth spherical shape (high
Gareq) With a wavy region roughly perpendicular to the viewpoint
and strongest illuminants. This results in a large highlight coverage:
The spherical shape reproduces highlight sharpness, while the wavy
part strongly contributes to the highlight contrast. The blob also
features a smooth surface, but the highlight coverage and its contrast
is reduced, decreasing the overall perceived gloss. Gloss is further
reduced for less smooth geometry featuring small surface details
as in the case of buddha. The dragon is the least glossy due to its
tessellated-like surface that is poor in reproducing the discussed
highlight features. This is in agreement with observations made by

ACM Trans. Graph., Vol. 40, No. 4, Article 125. Publication date: August 2021.

Vangorp et al. [2008; 2007] who reported reduced glossy material
discrimination for tessellated surfaces.

Lightness. A pattern of lightness rating (Fig. 4, bottom right) can
be seen across different environment maps that roughly repeats
across all objects. Environment map (I) that features a high-intensity
light source (high I ange) of small spatial extents (low Igreq) results
in the highest lightness. This is in agreement with observations
made by Toscani et al. [2017] who claimed that lightness perception
is strongly correlated to the highest percentiles of luminance val-
ues in environment maps. This environment map also features the
highest contrast, which has been also reported to impact perceived
lightness [Motoyoshi et al. 2007]. The spatial extents of key illumi-
nants (Igreq) gradually increase in (G), (E) and then in (A), which
results in reduced lightness [Toscani et al. 2017].

The lightness ratings in Fig. 4, top right make a clear pattern
across different geometries that roughly repeats for all environment
maps. The blob shape, due to its slowly changing curvature, and the
ghost shape, due to its perpendicular positioning with respect to
the view direction, are likely to be directly exposed to the highest
intensity regions in the environment maps. This in turn results in
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Fig. 4. Estimated Marginal Means effects of glossiness and lightness for the
interaction of illumination and geometry in a subset of our data.

bright coherent regions in the image, which are the most infor-
mative for lightness perception [Gilchrist et al. 1999; Toscani and
Valsecchi 2019; Toscani et al. 2017]. The availability of such regions
and their brightness might be reduced for the dragon and the buddha
due self-shadowing, and sparser, more fragmented regions that are
perpendicularly exposed to the highest intensity regions in environ-
ment maps [Toscani and Valsecchi 2019]. This results in the overall
lower lightness for such geometries.

4.2 Anisotropy

Due to the limited amount of measured anisotropic materials in
existing datasets, our dataset is biased towards isotropic materials.
Therefore, in order to analyze anisotropy, we select 50 anisotropic
materials from the UTIA dataset, and their isotropic counterparts.
First, we want to analyze the effect of illumination and geometry
in the perception of anisotropy. Second, we want to analyze if the
presence of anisotropy affects the perception of gloss, lightness,
and metallicness. Similarly to the previous section, we make use of
cumulative link mixed models. In this case, we additionally include
as a fixed factor a binary variable that encodes whether each im-
age contains an anisotropic material, and the interactions of this
variable with illumination and geometry. For the materials tested,
we found that anisotropy ratings are only significantly different for
isotropic-anisotropic pairs for the sphere (p < 0.001), and for the
illuminations (H) (p = 0.0012) and (I) (p = 0.0039). Our results are
consistent with those of Filip et al. [2015]: sensitivity to anisotropy
decreases for complex shapes and illuminations. Interestingly, we
found that some environment maps (H and I), even though complex,
allow for consistently identifying anisotropy. These two environ-
ment maps correspond to the lowest Igreq, and the highest Irange
(Fig. 3), i.e., they contain point-like light sources: We show that these
two statistics are highly correlated to the perception of anisotropy.
We did not find significant differences in glossiness, metallicness,
and lightness under the presence of anisotropy.

After these results, we consider the anisotropy attribute only for
the presented analysis and we do not include it for prediction in
the following section. Unfortunately, current datasets of measured
materials do not contain enough variety of anisotropic materials,
and therefore, our data is biased towards isotropic materials. Addi-
tionally, most of these anisotropic materials show very subtle effects,
and are hard to see for most geometries even for human observers,
as we have shown in this section. This produces unreliable results
for anisotropy estimation (see Fig. 6).

5 PREDICTING PERCEPTUAL ATTRIBUTES

In this section we describe our approach for predicting material
appearance attributes from images. Note that, as discussed in Sec. 4.2,
we do not consider anisotropy as an attribute for prediction. To
our knowledge, our work is the first that allows for estimating
perceptual material appearance attributes, such as glossiness and
lightness, taking into account the final appearance including the
joint effects of geometry and illumination. We then show that our
predictor is robust under different scenarios and discuss failure
cases of our predictor. Finally, we discuss our perceptual space of
attributes in the context of existing perceptual embeddings.

5.1 Implementation Details

We use as input for training our collection of rendered images, to-
gether with the median of the collected ratings for each image as a
robust statistic (recall that each image has been viewed at least five
times). For training, we fully remove from the dataset all images
containing the bunny and all images containing the (A) illumination,
leading to 33,280 images (520 BRDFs x 8 geometries x 8 illumina-
tions), augmented to more than 3,328,000 images using crops, flips,
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Table 1. Evaluation results with the bunny dataset (set A) and extrapolation results with the additional validation dataset (set B). Mean absolute error +

standard deviation for our two tested architectures and loss functions.

Evaluation (Set A)

Extrapolation (Set B)

Network structure MSE loss

MSLE loss

MSE loss MSLE loss

ResNet52
VGG16

0.1069 + 0.0866
0.0957 £ 0.0818

0.1021 £ 0.0840
0.0955 + 0.0831

0.1718 £ 0.0978
0.1672 + 0.0984

0.1688 + 0.0931
0.1694 + 0.1046

Table 2. Evaluation (set A) and extrapolation (set B) results for each of our five predicted attributes with our selected architecture (VGG16, MSE loss). Mean

absolute error + standard deviation for each attribute.

Glossiness

Contrast of reflections  Sharpness of reflections

Metallicness Lightness All

0.0736 + 0.1068
0.1647 = 0.1375

Evaluation (Set A) 0.0914 + 0.1122
Extrapolation (Set B)  0.1905 + 0.1564

0.0770 + 0.1103
0.1591 + 0.1422

0.08568 + 0.1118  0.1329 + 0.1177  0.0957 + 0.0818
0.1846 = 0.1420  0.1380 = 0.0982  0.1672 + 0.0984

shifts, rotations, scaling, and adding Gaussian and Poisson noise. We
select the bunny and the illumination (A) because they show certain
redundancy with the buddha and the ilumination (B) respectively:
this way we make sure that we are not missing interesting effects in
the training data. When performing augmentation techniques, we
ensure that at least 80% of the geometry remains visible, so that the
ratings are still representative of the images. We train for 30 epochs
with batch-size 4 and input resolution 512 X 512. The optimization is
performed using the Adam optimizer [Kingma and Ba 2014] with an
initial learning rate set to 107>, Since we are interested in regression
and not classification, we remove the last layer of the network and
introduce a fully-connected layer which outputs a 5-dimensional
(attribute) vector. We test two different architectures widely used
for extracting image features: VGG16 [Simonyan and Zisserman
2014; Xu et al. 2018], which stacks convolutions with non-linearities,
and ResNet52 [He et al. 2016; Lagunas et al. 2019], which includes a
residual block allowing to train very deep networks with outstand-
ing performance. Since we are interested in regression predictive
modeling (predicting continuous attributes from image features),
we use the Mean Squared Error (MSE) as a loss function (Eq. 1):

L X
Lyse = N ;(Ei —a;)? (1)

where, @ is the 5-dimensional vector containing the predicted at-
tribute values, a is the vector of ground truth user ratings, and N is
the number of attributes. Additionally, we test the Mean Squared
Logarithmic Error (MSLE), which has been widely used in regression
problems with skewed distributions [Dawson et al. 2014] (Eq. 2):

N
Lusie = (0@ +1) ~log(ai + 1) (2

i=1

5.2 Validation

We evaluate our model with the set of images containing the bunny
geometry and the (A) illumination (set A). Note that, since we left
out of training all images containing either of these, our network
has never seen the bunny, nor any image with this illumination.
Since our goal is that the predicted attributes are as close as possible
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Fig. 5. Prediction results (predicted / ground truth) for the additional val-
idation dataset for glossiness (G), lightness (L), sharpness of reflections
(S), contrast gloss (C), and metallicness (M). From left to right: examples
of images from Lagunas et al., analytic BRDFs, and real materials. Note
that in all these cases, the predictor has never seen the tested materials,
geometries, nor illuminations.

to the measured attributes, and in order to evaluate fairly our two
different loss functions, we use the Mean Absolute Error (MAE) to
evaluate our results (Eq. 3):

Lyag = lla; — ail| 3)

Tab. 1 shows the evaluation results for our two tested architec-
tures and loss functions: all configurations yield similar results for
our test set, with VGG16 slightly outperforming ResNet.

In order to test the extrapolation abilities of our predictor, we
perform an additional evaluation with challenging cases, for which
we collect a new set of data (set B). We include: 20 new edited
BRDFs from MERL [Sun et al. 2018] and 20 analytic BRDFs (none
of these 40 materials has been previously seen by our predictor)
under five new environment maps and five new geometries; 20
real pictures of materials from the Flickr Material Dataset (fabric,
metal, plastic, and leather categories) [Sharan et al. 2014]; and 18
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rendered images containing new geometries and illuminations from
Lagunas et al. [2019]. For testing the consistency of our predictor,
we also include 20 images containing four scenes with different
geometries and illuminations in which we rotate the geometry for
testing different viewpoints (5 rotations for each configuration). For
collecting ground truth data for this new validation dataset, we
follow the same procedure described in Sec. 3. Tab. 1 shows the
results for our two tested architectures and loss functions with the
MAE metric, and Fig 5 and 7, top show examples of our predictions
for this dataset (please, see Sec. 2 in the supplementary material for
more examples, including different attributes). We observe that the
VGG16 architecture with MSE loss performs slightly better for this
task, therefore, we choose this configuration as our final predictor.
Finally, we show in Tab. 2 the prediction error with our selected
architecture for each of our five attributes.

Failure cases. In this additional validation dataset, we include
several challenging cases, including real pictures of patterned cloth,
and new materials. In general, our predictor performs well in most
cases, including the challenging case of real pictures with diverse
materials such as cloth, metals, or plastics. We found two clear
cases in which our predictor fails: images with strong patterns and
no visual cues of reflectance (e.g., total absence of highlights), and
extremely glossy surfaces in which the resulting reflections are
almost a perfect mirror. Examples of these are shown in Fig. 6,
top. For the former, we believe that the gradients produced by the
cloth patterns interfere with the prediction, while for the latter,
we hypothesize that the mirror-like reflections are interpreted as
background irrelevant features (as if light were passing through),
instead of as glossy features. We also include in Fig. 6, bottom
examples of unreliable anisotropy prediction due to the insufficient
amount of available anisotropic materials, and the subtlety of their
effects. Although the predictor is able to detect the anisotropic
materials (center, right), it also produces high values for anisotropy
for similar but isotropic materials (left).

5.3 Consistency evaluation

We further test our predictor to analyze its behavior under changes
in geometry, illumination, point of view, and image features. For
conciseness, we discuss examples with the most relevant attributes
in each case, please refer to the supplementary material for more
results. Note that the geometries and illuminations used in this
section (except the sphere, which we use as baseline for comparisons)
were never seen during training.

Changes in point of view. In Fig. 7, top we show different views
for the same material in the same geometry under the same illu-
mination, and our predictions for glossiness and lightness. While
the predictions for lightness remain constant, glossiness predictions
slightly vary while the geometry rotates. This is to be expected,
since the point of view also plays a role in reflectance perception,
i.e., different orientations of the geometry interact with the illumina-
tion, producing different amount and strength of reflections as the
geometry rotates, specially around the armadillo’s face and nose.

Geometry complexity. Fig. 7, center shows that the predicted
glossiness and lightness increases as the complexity of the geometry

Fig. 6. Top: Three examples of failure cases in which our predictor does
not accurately predict glossiness (G) and lightness (L). Images in which
patterns are more relevant than reflectance cues (left, center), and almost
perfect mirror reflections (right). Bottom: Due to the limited amount of
available anisotropic materials and their subtle effects, our predictor is not
able to fully learn the image features that characterize anisotropy: while it
does detect the two anisotropic materials (center, right), it shows similar
anisotropy predictions for a similar but isotropic material (left).

Fig. 7. Changes in glossiness and lightness predictions for different points
of view (top), increasing surface relief (center), and increasingly blurry envi-
ronment map (bottom). Our predictor is in agreement with visual changes
and the insights derived in our analysis.

increases from a simple sphere, to an increasingly bumpy sphere.
We can observe that this behavior is consistent with our collected
data: the sphere was also rated with lower values of glossiness and
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Fig. 8. Influence of the tone mapping operator in glossiness predictions. Our

predictor is consistent with visual changes in the image: different operators
produce different contrast in the final image, which in turn, affects the
perception of gloss [Wiebel et al. 2015].

lightness than the blob (which is similar to the bumpy spheres in
terms of geometry features). The results of our predictor are also
in agreement with previous work on gloss perception for a similar
scene setup [Marlow and Anderson 2013, Figure 6].

Illumination frequencies. In Sec. 4 we discuss how different illu-
mination characteristics may affect the perception of glossiness and
lightness: as in previous literature [Adams et al. 2018; Zhang et al.
2020a], we observe that high frequencies seem to be related to higher
ratings for glossiness. We show in Fig. 7, bottom the predictions for
these attributes under and increasingly blurry environment map.
Similarly to our data, the prediction for glossiness decreases as the
high frequency content of the environment map decreases.

Influence of tone mapping. Previous work has shown that the
choice of particular tone mapping operator has a relatively small
impact on human judgments of gloss when applied to an object with
visible background, although it may have a larger effect when images
are shown without any additional context [Adams et al. 2018]. In
Fig. 8 we show glossiness predictions for the same image, tone
mapped with two different exposures (gamma-exposure TMO), and
with the Reinhard [2002] and Durand [2002] TMOs. Our predictor
is consistent with visual changes induced by the different TMOs.
This small variations are expected also for human observers, since
different TMOs produce different contrast, and this effectively affects
gloss perception [Wiebel et al. 2015].

Real Images. We validate our predictor with ground truth an-
notations for 20 real images from the Flickr Material Dataset in
Sec. 5.2. In this section, we further illustrate the performance of our
model in real pictures with a subset of 40 images from the MINC-
2500 dataset [Bell et al. 2015] (10 for each of four categories: fabric,
leather, plastic, and metal) illustrating both success and represen-
tative failure cases. Predictions for the attributes glossiness and
lightness are shown in Fig. 9. We mark with red squares failure
cases that we discuss in the following. In general, our predictor per-
forms well for leather materials, since usually they do not exhibit
strong patterns, they show uniform colors, and reflectance cues are
very apparent. The same applies for metallic materials, with the
exception of a metal with very smoothly varying reflections, which
our predictor scores with relatively low glossiness, almost on par
with the fabrics. Due to the particular lighting direction and the
high roughness of this material, we believe that reflectance cues
are wrongly interpreted as smooth color variations, producing un-
reliable glossiness predictions. For the case of fabrics, strong fine
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patterns may overrule reflectance cues, producing unreliable predic-
tions as also discussed in in Sec. 5.2. This is the case of the yellow
fabric with fine white pattern marked in red in the figure: this result
suggests that the predictor is interpreting the white pattern as high-
lights, thus incorrectly producing a high glossiness score. For the
case of plastics, we show as failure case a plastic figurine for which
our predictor scores a relatively low glossiness. While most of the
image shows a matte plastic, the plastic piece corresponding to the
hair is highly glossy. This is a complex case, since different plastics
with different glossiness are present in the image. We believe our
predictor performs reasonably, since a larger portion of the image
displays a matte plastic, however, predictions in these cases with
several materials within the same image are challenging. In these
cases, a potential approach could be to mask out irrelevant materials
for the prediction, and leave only visible the materials of interest.

In general, real pictures displaying uniform materials without
strong patterns are best suited for our predictor, since the images
used during training were rendered with uniform BRDFs. Images
containing several materials, strong patterned fabrics, or very com-
plex geometries may produce unreliable results. However, as shown
in Fig. 9, our model is overall able to handle real images, including
some challenging cases with complex geometries.

5.4 Discussion on other perceptual embeddings

In the last decade a number of works have proposed perceptual
reparameterizations of material appearance, performed either di-
rectly on BRDF space (or a low-dimensional representation of the
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Fig. 10. Left: Perceptual embeddings generated with our predictor: lightness — glossiness, and glossiness — sharpness of reflections. Several interesting effects

can be observed: First, even though glossiness and lightness are not completely orthogonal, both are very distinctive material properties. Second, while
glossiness and sharpness of reflections start growing together (one cannot perceive sharp reflections if there is not sufficient glossiness), once sufficient

glossiness is achieved, the relation between these two attributes becomes non-linear: glossiness tends to saturate, and then sharpness of reflections becomes the
distinctive factor between different materials. Right: perceptual similarity embedding proposed by Lagunas et al. [2019]. Their embedding (UMAP non-linear

principal dimensions) shows a space organized first by reflectance, and second by color as a secondary grouping factor. Note that in both cases, the tested

images were not used during training.

BRDF) [Fores et al. 2012; Guarnera et al. 2018; Hu et al. 2020; Serrano
et al. 2016], or in image space [Bieron and Peers 2020; Lagunas et al.
2019; Ngan et al. 2006; Pereira and Rusinkiewicz 2012; Sztrajman
et al. 2019]. These reparameterizations usually take the form of
perceptual embeddings, or similarity metrics. Embeddings in BRDF
space are computed directly from measured BRDFs or parameters
in analytical models, and do not take into account the final appear-
ance of the material, which may substantially change due to the
effects of geometry, illumination, and point of view. We show an
example of this in Fig. 11: even though the final appearance of the
blue-metallic-paint BRDF (MERL) looks very different under the two
environment maps (left and right), BRDF metrics cannot account for
this difference. Instead, embeddings computed in image space allow
for accounting for the final appearance of materials after interact-
ing with geometry and illumination. Ngan et al. [2006] compute
L2 distances between the cube root of linear RGB rendered images.
Pereira and Rusinkiewicz [2012] propose the use of L4 distances
in Lab space in the context of gamut mapping. Bieron et al. [2020]
recently introduced a new metric for optimizing BRDF fitting by
using the CSSIM color metric. These works yield very good percep-
tual approximations when targeting a given environment map and
geometry, however, since they are based on pixel-wise distances,
they do not allow for comparing perceptual changes under different
geometries and illuminations (see Fig. 11). The closest methodol-
ogy to ours has been recently proposed by Lagunas et al. [2019].
In their work, Lagunas et al. learn a perceptual similarity metric
by training a deep network with similarity triplets, which allows
for comparing perceived material similarity between two images.
In Fig. 10 we compare their perceptual space to two embeddings
created using our predictor: lightness — glossiness, and glossiness
— sharpness of reflections (refer to the supplementary material for
more embeddings including different combinations of attributes, as
well as more illuminations and geometries). As the authors discuss
in their paper, their embedding shows a "clear gradient in reflectance,
followed by color as a secondary, softer grouping factor": the effect
of color and reflectance cannot be easily disentangled. This can
be seen in Fig. 11, the two test images are deemed almost at the

same distance to the reference, in one case due simply to different
color, and in the other due to reflectance changes. There are two
fundamental differences of our work with respect to Lagunas et
al’s work. First, our embeddings allow for perceptual comparison
between attributes, for example, when computing differences a sin-
gle attribute (e.g., glossiness) can be targeted. In other words, it is
possible to identify the properties that make two materials similar or
different. This can be useful for many applications, for example, for
appearance reproduction, as we will show in Sec. 6.1. Second, we can
predict meaningful properties without a reference to compare (i.e.,
we can predict glossiness, or metallicness for a given image), whilst
their similarity metric is most useful for comparing between two
images. This enables a straight-forward application our predictor
to applications such as perceptual editing, as we will demonstrate
in Sec. 6.2. Nevertheless, we believe these two embeddings can be
complementary. While the work of Lagunas et al. provides a unique
measurement of similarity as a whole, our work is useful for dealing
with isolated material properties.

6 APPLICATIONS

We have shown in Sec. 5.4 that our predictor can be used to generate
perceptual embeddings and also as a distance metric. In this section
we illustrate further applications of our attribute predictor.

6.1 Reproducing appearance

Faithfully reproducing objects’ appearance is a challenging problem
with applications ranging from product design, through the preser-
vation of cultural heritage, to the creation of life-like prosthetic. A
vital enabler of these applications is novel printing devices capable
of depositing various materials at a high resolution [Elkhuizen et al.
2019; Luongo et al. 2019; Piovardi et al. 2017; Rouiller et al. 2013;
Weyrich et al. 2009]. Such materials then mix in the human visual
system, enabling to reproduce any BRDF within the convex hull of
available materials [Matusik et al. 2009]. Varnishes are materials of
particular interest, since they modify the surface reflectance without
a change in the subsurface color [Baar et al. 2014; Samadzadegan
et al. 2015].
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Fig. 11. Measuring pairwise distances between a reference material (left),
and the same material with different color (center), or differently illumi-
nated (right). Our predictor can be used to compute differences between
specific attributes, e.g., gloss as in this example. Simpler image-based metrics
(green) based on pixel-wise distances, such as the L4 on Lab space (Pereira
and Rusinkiewicz [2012]) tend to produce extremely large distances under
drastic changes in illumination and/or geometry. The similarity embedding
generated by Lagunas et al. [2019] tends to rely on both reflectance and
color, therefore, it is not easy to disambiguate these two factors. Metrics
in BRDF space (yellow), such as the one proposed by Serrano et al. [2016]
simply cannot take into account perceptual variations due to geometry and
illumination.

We take inspiration from the recent work of Piovarci et al. [2020]
that proposed a novel hardware setup capable of processing off-the-
shelf varnishes. Our goal is to use our predictor to enable perceptual
gloss reproduction in printed samples, therefore we use a similar
approach to fabricate our samples. Note that our predictor is not
constrained to a single manufacturing method but rather acts as a
distance metric suitable for optimization, therefore other printing ap-
proaches are possible. First, we start by 3D printing a test macroscale
geometry (a cylinder) on a resin FormLabs printer. Then, we mix
two acrylic varnishes (Amsterdam Matte 115 and Amsterdam High
Gloss 113) in various ratios to generate different reflectances, and we
apply them to the test cylinders. We measure the reflectance of the
different varnish mixtures in a setup similar to the one described by
Piovarci et al., and fit these measurements to a Cook-Torrance model
with GGX distribution [Trowbridge and Reitz 1975]. This yields a
collection of available measured varnish mixtures v = {v;;i = 1..N}
(see Fig. 12, top) that we can render under different illuminations
and geometries. In this case we have selected a black resin for all our
samples, nevertheless other resins can be considered simply by ren-
dering the varnishes applied over other resin colors (i.e., changing
the diffuse color in the Cook-Torrance model).

We can then use our predictor to find the varnish mixture that
better approximates the glossiness of a target image I; under a new
desired illumination (L;) and geometry (G;) by finding the varnish
mixture from our collection yielding the closest glossiness to the
target gloss (vop):

Yopt = arg min lAR(vi; Le, Gr)) = Alg) ll2 ©)
v;EV

where A(I) means applying our predictor (in this case, we focus
on the glossiness attribute) for a given image, and R denotes a
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Fig. 12. Top: Collection of varnish mixtures fitted to a Cook-Torrance model,
rendered under the same illumination. The labeled value corresponds to
the percentage of Amsterdam High Gloss 113 present in the mixture. Bottom:
Examples of different varnish mixtures (increasing glossiness from left to
right) applied over our printed samples for the bunny (top) and ghost2
(bottom) geometries.

Sample 0 Sample 75 Sample 100
Fig. 13. Optimized varnishes for a target specular illumination and the
dragon geometry (bottom) yielding the desired glossiness for sample mate-

rials from the Flickr Material Database (top).

rendering operation under the target illumination (L;) and geometry
(Gt). Since we do not depend on pixel-wise distances, we can use
any given image as target gloss: Fig. 13 shows examples of this
application with the Flickr Material Database [Sharan et al. 2008].
Our predictor also enables finding the optimal varnish mixture for
reproducing the desired gloss under different illuminations and
geometries: Fig. 1, right shows how different mixtures selected
using perceptual gloss distances according to our predictor result
in equivalent glossiness across illuminations and shapes.

Validation in real samples. We validate our equivalent glossiness
predictions on real samples. We print two different geometries
(bunny and ghost2) and capture two environment maps in a con-
trolled setup (diffuse and specular). Fig. 12, bottom shows examples
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Table 3. Results of our confirmatory study for optimized varnish selection
under different geometries and illuminations. Almost all users responded
that the optimized varnish mixture was closer to the reference in terms of
perceived glossiness (votes are shown in parentheses).

Diffuse illumination Specular illumination

Reference Same mixture ~ Optimized
fry Sample 87 Sample 87 (0)  Sample 50 (5)
5 Sample 100 Sample 100 (0) Sample 62 (5)
% Sample 50 Sample 50 (1)  Sample 25 (4)
S Sample 87 Sample 87 (1)  Sample 50 (4)

of these samples. We then perform a small confirmatory study with
five users. They were presented with a reference mixture under
the diffuse light, and two test mixtures under the specular light:
the same mixture as in the reference, and a new optimized mixture
using our predictor for better reproducing the reference gloss. Tab. 3
shows the results, almost all users determined the optimized varnish
mixture to be closer in terms of glossiness to the reference.

6.2 Appearance editing

Integrating our predictor into a differentiable renderer allows to per-
form material editing using intuitive, perceptually-relevant sliders.
We illustrate this application by using our predictor together with
the differentiable renderer Mitsuba 2 [Nimier-David et al. 2019]. To
illustrate this application, we use the analytical built-in surface scat-
tering model roughconductor (x = (a, eta, k, specular_reflectance))
with a GGX distribution [Walter et al. 2007]. We then select a set
of target glossiness values and fix all the parameters except for «,
which represents the roughness of the surface microgeometry. We
implant our attribute predictor A into the differentiable rendering
pipeline for predicting attributes from the rendered images. This
prediction is then used as the perceptual loss to be minimized such
that:

L=|ARR(x; L, Gy)) - Tyl1% (5)

where R is the differentiable rendering operation in the target il-
lumination (L;) and geometry (G;), x contains the BRDF analytic
parameters as described above (including the surface roughness «
to be optimized), and Ty is the target gloss. Fig. 14 shows the edited
results obtained when adjusting the target glossiness to 0.1, 0.3,
0.5 and 0.9 from left to right (the framed image shows the fixed
starting parameter at 0.72 glossiness). Fig. 15 shows editing results
with target gloss set to 0.9 for a different illumination map (center)
and geometry (right). Note that the optimized «a value changes for
each of these configurations to adapt for the effects of shape and
illumination according to our predictor. More results are available
in the supplementary material.

6.3 Material recommendations for scene design

Performing material selections for complex scenes with many items
is an onerous process in which users typically resort to trial and
error [Zsolnai-Fehér et al. 2018]. For the case of large unlabeled
databases, this process may require browsing through hundreds of

Fig. 14. Material appearance editing results. From left to right edited with

target glossiness: 0.1, 0.3, 0.5, 0.72 (fixed starting parameter), and 0.9.

"

J

Fig. 15. Example of BRDF editing using our predictor under a different
illumination (center) and geometry (right). We set the target glossiness to
0.9. Our predictor takes into account changes in illumination and geometry
and updates a accordingly.

materials [Lagunas et al. 2019]. In order to assist this process our pre-
dictor can be used to sort materials according to desired properties,
such as glossiness and lightness, for target illuminations or shapes.
This is illustrated in Fig. 1. Alternatively, the user can directly pro-
vide our predictor with a query value for a set of attributes so that
suggestions of different materials with the desired properties are
presented. Fig. 16 shows an example for high metallicness queries
with low and high lightness. Note how our suggestions adapt to the
different geometry and illumination based on our predictor, e.g., for
the ganesha-ennis set overall brightness is very high, therefore the
only plausible choices for high metallicness and low lightness are
almost fully black materials. Conversely, the centaur-grace set is
overall very dark, therefore the plausible choices for light materials
are very bright, colorful ones.

6.4 Illumination design

Our predictor can be leveraged to estimate and visualize the effect
that a given illumination may have over a range of materials and
geometries. This may be useful for applications such as planning il-
luminations for interior design or exhibitions. We show an example
of this in Fig 17: we show the glossiness distribution under three
different illuminations for a set of five materials and two geometries.
The Konzerthaus and Autumn park illuminations produce respec-
tively lower and higher glossiness appearances, while the Birchwood
illumination produces a larger range of glossiness values, boosting
material differences.

7 CONCLUSION

In this work we have presented a model that reckons with the effects
of shape and illumination on material perception. In particular, we
have focused on six crucial dimensions of appearance according
to the literature: glossiness, sharpness of reflections, contrast of
reflections [Pellacini et al. 2000], lightness, metallicness [Toscani
et al. 2020], and anisotropy. We have presented a large-scale dataset
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ganesha - ennis

centaur - grace

high metallicness - low lightness

Fig. 16. Material recommendations for scene design. For different geometries and illuminations, we show suggested materials for high metallicness with high
lightness (left) and low lightness (right). Our predictor is able to suggest plausible choices even for very extreme environment maps.

Birchwood
Konzerthaus

Autumn park

o

Fig. 17. Our predictor can be used to visualize the effect of a given illumina-
tion over a range of materials and geometries.

of 42,120 images featuring a variety of (520) materials, (9) geometries,
and (9) illuminations, for which we collect subjective ratings for
our attributes through a web-based online study. From this data,
we have presented an extensive discussion on the effects of shape
and illumination in material appearance, discussing our findings
with those of the literature. Our data enables for the first time a
comprehensive discussion on this topic taking into account a wide
variety of appearances. We have analyzed several aspects of our
data and focused on quantifying general trends that hold across
the sampled factors, nevertheless, we believe this data is still not
exhausted and it can foster new research on this topic.

Material reflectance, shape, and illumination interact in highly
complex manners, and fully understanding their interactions is an
open problem. For instance, further research could focus on analyz-
ing a subset of our data: matte, semi-glossy, or fully glossy materials
may interact in different ways with shape and illumination [Schmid
et al. 2020]. We have shown and discussed illumination and ge-
ometry statistics that are directly linked to changes in attribute
perception. However, similarly to previous literature [Fleming and
Storrs 2019; Lagunas et al. 2021; Olkkonen and Brainard 2010], we
observe that image statistics are not enough for fully explaining
changes in attribute perception. Therefore, we have resorted to deep
features and trained a simple network architecture for predicting
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material appearance attributes given an input image, and we have
thoroughly tested its behavior and discussed its limitations in chal-
lenging scenarios. We have shown that all the tested combinations
of loss function and network architecture yield very similar per-
formance; future network architectures that may outperform our
choice could be easily adopted.

We included anisotropy as one of our attributes for analysis,
however, we found the amount of measured anisotropic materials
available in existing datasets [Dupuy and Jakob 2018; Filip 2015]
not sufficient to reliably predict anisotropy in static images under
complex geometries and illuminations. Most of the materials have
very subtle effects, that can be better visualized under viewpoint
changes rather than static images. Larger datasets of measured
materials could translate into improvements of our predictor, alter-
natively, generating anisotropic samples with analytic models could
be considered.

We have shown that our predictor enables interesting applications.
In particular, we have shown that it can be integrated in a differ-
entiable rendering pipeline [Nimier-David et al. 2019] for editing
applications. We have focused on optimizing material parameters; an
interesting avenue for future work is to use this framework for opti-
mizing geometry or illumination for material perception [Bousseau
et al. 2011; Havran et al. 2016]. Finally, we hope that our work and
dataset can motivate additional research on this topic as well as new
applications.
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