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Abstract
While temperature is well understood as an intensive quantity in standard thermodynamics, it is
less clear whether the same holds in quantum systems displaying correlations with no classical
analogue. The problem lies in the fact that, under the presence of non-classical correlations,
subsystems of a system in thermal equilibrium are, in general, not described by a thermal state at
the same temperature as the global system and thus one cannot simply assign a local temperature
to them. However, there have been identified situations in which correlations in thermal states
decay sufficiently fast so that the state of their subsystems can be very well approximated by the
reduced states of equilibrium systems that are only slightly bigger than the subsystems themselves,
hence allowing for a valid local definition of temperature. In this work, we address the question of
whether temperature is locally well defined for a bosonic system with local interactions that
undergoes a phase transition at non-zero temperature. We consider a three-dimensional bosonic
model in the grand canonical state and verify that a certain form of locality of temperature holds
regardless of the temperature, and despite the presence of infinite-range correlations at and below
the critical temperature of the phase transition.

1. Introduction

Understanding how thermodynamic processes are affected by the presence of quantum phenomena is a
topic of intense research since the early days of quantum physics [1]. For instance, it is still not fully
understood how thermodynamic quantities, many of them originally presented as statistical magnitudes,
should be defined in microscopic systems where fluctuations become important or whether their properties
differ from those in classical systems. More in general, the goal is to understand if and how thermodynamic
concepts can be extended beyond the, often idealized, conditions in which they were originally derived. One
such example is temperature and its intensive character in standard thermodynamics: given a system in
equilibrium with a well-defined temperature, one can assign an equilibrium state at the same temperature
to any part of it. This property valid in standard thermodynamics, however, does not generally hold in
quantum systems exhibiting non-classical correlations. In this work, this is exactly the scenario we consider;
we study under what conditions can temperature be defined for subsystems of a quantum system in thermal
equilibrium.

A standard setting to study this problem is given by a system at thermal equilibrium at temperature T
and described by a local Hamiltonian H that is a sum of local interacting terms. Specifically, the system is at
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Figure 1. Scheme of the one-dimensional setting for the problem of locality of temperature. The boundary size of B and B′ must
be large enough to obtain a good approximation of the partial state ρC by computing ρC′ .

a thermal state at inverse temperature β := 1/kBT, with the expression

Ωβ[H] :=
e−βH

Zβ[H]
, (1)

where Zβ[H] is the canonical partition function Zβ[H] := tr(e−βH). The main question we address here is to
understand whether it is possible to assign to its subsystems a thermal description at the same temperature
T. If no constraints are imposed on the Hamiltonian of the subsystem, this is always possible: it suffices to
define H = −log(ρ)/β, where ρ is the state of the subsystem. Nevertheless, this solution is not satisfactory,
as the resulting Hamiltonian is in general arbitrary and has no physical interpretation. In the case of systems
with local interactions, however, there is a natural choice for the subsystem Hamiltonian defined by the
local terms with support on the subsystem. For this choice of local Hamiltonian, the reduced state of a
thermal state cannot be typically expressed by equation (1) (not even approximately).

In some cases, the global thermal state can be very well approximated by the product of local thermal
states and one can use a local definition of temperature. This occurs, for instance, for some models with
weak interactions. However, that is typically not the case for stronger interactions, where in general it is not
straightforward to define a local thermal state and corresponding temperature, since this depends on the
environment, that is, the rest of the system, and the interactions that couple the subsystem to it.

A way to tackle this problem for systems with local interactions was presented by Ferraro et al in [2].
They studied a system of coupled harmonic oscillators on a lattice and proposed a way to assign a
temperature to a subsystem C by dividing the global system into three regions: the subsystem C, for which
we would like to provide a thermal description, a boundary region B around it, and the rest of the system A
(see figure 1). Given this setup, they considered a different system at thermal equilibrium at temperature T
which consists of two regions C

′
and B′ that are of the same size and have the same type of interactions as

the subsystem C and its boundary B, respectively. Then, they showed that it is sufficient to compute the
partial state of the subsystem C′ to obtain a very good approximation of the state of the subsystem C, which
we refer to as effective thermal state. If the size of the boundary region B needed to attain a given error in
the approximation is independent of the total system size, temperature is said to be local.

In last years, there have been several works studying the question of the existence of local temperatures
using the same approach as Ferraro et al [2], see also [3]. These works proved the validity of the locality of
temperature for different systems: (i) 1D and 2D systems made of interacting harmonic oscillators [2];
(ii) fermionic and spin systems with arbitrary dimension and at high enough temperature [4];
(iii) finite-spin one-dimensional systems at arbitrary temperatures [5]. This last result in fact shows that a
valid local thermal description is even possible at quantum phase transitions in one-dimensional systems
provided that the boundary region is large enough. Now, recall that all phase transitions in one-dimensional
systems take place at zero temperature. However, this is no longer the case for higher dimensional systems,
where phase transitions may also occur at non-zero temperature. These phase transitions at non-zero
temperature represent interesting phenomena in many-body systems and highly influence how correlations
decay, a question which in turn is closely linked to the locality of temperature [4]. Our aim is to understand
how phase transitions at non-zero temperature affect the possible local definition of temperature.

In this work, we tackle this problem for a three-dimensional bosonic system at thermal equilibrium at
temperature T and at particle density n. This system undergoes a phase transition at a non-zero critical
temperature Tc: a Bose–Einstein condensate is formed, i.e. a macroscopic fraction of particles have zero
momentum below the critical temperature. We observe that temperature is local above the critical
temperature (T > Tc) and pseudo-local, as defined in what follows, below and at the critical temperature
(T � Tc). We also compare these results to the structure of spatial correlations of the system and find a
good agreement between local temperature and correlations independently of the presence of the phase
transition.
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2. Model

We consider a free bosonic system in a three-dimensional lattice of volume L3 with periodic boundary
conditions that is described by the Hamiltonian

H := −
∑
〈n,m〉

b†mbn + 6
∑

n

b†n bn, (2)

where b and b† are bosonic creation and annihilation operators, and n = (nx, ny, nz) with
ni ∈ [−L/2, L/2 − 1], and i ∈ {x, y, z}. This Hamiltonian describes the discretized version of the ideal Bose
gas. It can be diagonalized by Fourier transform b̃n = 1

L3/2

∑
kbk eikn, obtaining its eigenvalues ε(k), equal to

ε(k) := 2(3 − cos(kx) − cos(ky) − cos(kz)). (3)

In three dimensions, this model has a phase transition at a non-zero temperature Tc for fixed particle
density n := 〈N〉/V, as below this temperature the particles form a Bose–Einstein condensate, i.e. a
macroscopic fraction of the particles are in the zero momentum mode [6]. In order to fix both temperature
and particle density, we consider a system in the grand canonical ensemble,

Ω{β,μ} := e−βH+μN/tr(e−βH+μN). (4)

We choose the chemical potential μ = μ(β) such that the particle density n becomes fixed at n = 1. We
numerically estimate that the critical temperature is around Tc ≈ 5.6 (see appendix A).

3. Locality of temperature

In this section, we analyze whether the temperature can be locally well defined in the considered system and
how this depends on the presence of a phase transition at non-zero temperature.

3.1. The problem
We consider the state (4) on two cubic systems ABC and B

′
C′ such that subsystems C and C′ have size LC,

and B and B′ size LBC (see figure 2). The reduced density states of the regions C and C′ are ρC and ρC′ ,
respectively.

If ρC ≈ ρC′ , observables acting on these subsystems (such as a thermometer) cannot distinguish between
the global system ABC and the smaller system B′C′. If this happens for a small boundary size LBC − LC, it
means that temperature can be defined locally. We therefore compare the states ρC and ρC′ while keeping
the size of ABC fixed at a value L0, the size of C and C′ fixed at LC = 2, and varying the size LBC. This
comparison is made at temperatures both above and below the phase transition to understand how a
non-zero-temperature phase transition affects the locality of temperature.

3.2. Methods
In order to compare the states ρC and ρC′ , we use the quantum fidelity [7], a measure of distinguishability
between any two quantum states ρ and σ defined as

F(ρ,σ) :=
[

tr
(√

ρ1/2σρ1/2
)]2

.

The fidelity satisfies F(ρ,σ) ∈ [0, 1], and F(ρ,σ) = 1 if, and only if ρ = σ.
All the states of our interest, namely the grand canonical state of a quadratic Hamiltonian and reduced

states of it, are Gaussian. The elements of the covariance matrix of the grand canonical state Ω{β, μ} (4)
described by the Hamiltonian (2), with size L3, can be expressed as

〈b†n bm〉{β,μ} =
1√
L3

∑
k

e−i(n−m)k

eβε(k)+μ − 1
, (5)

〈bnb†m〉{β,μ} = δm,n + 〈b†nbm〉{β,μ}, (6)

〈bnbm〉{β,μ} = 〈b†nb†m〉{β,μ} = 0, (7)

where k is the momentum vector and ε(n) is the eigenvalue of the Hamiltonian (3). The covariance matrix
of any of its subsystems is obtained by taking the matrix elements corresponding to the sites within that
subsystem. At last, we compute the fidelity between the two resulting Gaussian states, ρC and ρC′ , from their
covariance matrices using the formula of Paraoanu and Scutaru [8].
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Figure 2. We consider a large system ABC in grand canonical ensemble. Its reduced state to the region C is ρC. We also consider
another system B′C′ with LBC = LB′C′ and LC = LC′ in grand canonical ensemble. Its reduced state to the region C′ is ρC′ . We
compare ρC and ρC′ by keeping LC fixed and varying LBC.

Figure 3. Fidelity, F(ρC, ρC′ ), vs reference system length, LBC, for different temperatures T = 0.6, 2.6, 4.6, 5.6, 6, 7 and system size
L0 = 100.

3.3. Results
We have plotted the obtained values of 1 − F(ρC, ρC′) as a function of LBC for different temperatures and for
a system size L0 = 100 (see figure 3). Calculations are in principle possible for larger system sizes as the
relevant states are Gaussian, but we observe that the results show almost no variations for systems such as
L0 � 60. We therefore expect that computations for L0 = 100 provide a good approximation of the
thermodynamic limit, with a reasonable numerical effort. First, we observe that the fidelity between the
states ρC and ρC′ increases monotonically with LBC, i.e. with the size of the boundary region B. We discuss
below its different behaviors depending on whether we are below or at the critical temperature, T � Tc, or
above, T > Tc.

Below and at the phase transition the fidelity, F(ρC, ρC′), increases polynomially to F = 1 with the length
LBC (see figure 4(a)), described by

1 − F(ρC, ρC′) ∝ 1

LνF
BC

, (8)

with exponent νF. We analyze how the exponent, νF, behaves as a function of the temperature, T, for
different system sizes L0 and make a finite-size analysis (see figures 4(a) and (b)). At the continuous limit,
we observe that the exponent remains more or less constant around a value slightly below 6 for
temperatures T � 4, away from the phase transition, and that it suddenly decreases up to νF ≈ 4 around the
phase transition, at 4 < T < 5.6, see figure 4(b). The exponents for finite systems were computed by fitting
the data of the error fidelity, 1 − F(ρC, ρC′), in the range LBC ∈ [6, L0/3].

Above the phase transition we find that the fidelity increases exponentially to F = 1 with LBC (see
figure 4(c)), that is,

1 − F(ρC, ρC′) ∝ e−ηF LBC , (9)

with the characteristic exponent ηF. We also study the exponent ηF and observe that it increases linearly
with temperature (see figure 4(d)). In fact, we obtain that ηF = αT + β with α ≈ 0.970 ± 0.005 and
ηF ∈ [0, 1.3] for T ∈ [5.6, 7]. Exponents were computed by fitting data in the interval [Lmin

BC , Lmax
BC ], where

Lmax
BC = min(2L0/3, Lcut) with Lcut = {L ∈ R : F(L) ≈ 1 − 10−14}, and Lmin

BC = max(Lmax
BC − 2L0/5, 6).
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Figure 4. Fidelity vs system size and its scaling above and below phase transition. (a) Fidelity error, 1 − F(ρC, ρC′ ), vs length LBC

for different system lengths L0 and temperature T = 2.6, below the critical temperature Tc ≈ 5.6. The dashed line corresponds to
a power-law fit for L0 = 100 and LBC ∈ [6, L0/3]. (b) Exponent νF for power-law fit (8) vs temperature below the phase
transition (T � Tc). The dashed line corresponds to the curve resulting of finite-size analysis. (c) Fidelity error, 1 − F(ρC, ρC′ ), vs
length LBC for different systems lengths L0 and temperature T = 6, above the critical temperature Tc. The dashed line
corresponds to an exponential fit (9) for L0 = 100 and data in the interval [Lmin

BC , Lmax
BC ], where Lmax

BC = min(2L0/3, Lcut) with
Lcut = {L ∈ R : F(L) ≈ 1 − 10−14}, and Lmin

BC = max(Lmax
BC − 2L0/5, 6). (d) Exponent ηF for exponential fit vs temperature above

the phase transition (T > Tc). The dashed line corresponds to the linear fit of data for L0 = 100 with exponent α. Notice that the
fidelity decreases polynomially for T � Tc and exponentially for T > Tc. Error uncertainty and error bars represent the standard
error of the parameters, as obtained from the linear interpolations.

The values of these parameters for the computation of the exponents was motivated by the fact that they
define the largest range in which the curves show a clear exponential behavior.

We also investigate the behavior of the fidelity as a function of the temperature T for different lengths
LBC (see figure 5(a)). We observe a global minimum at the critical temperature Tc for any length LBC.
Unfortunately, we are not able to identify the behavior of the fidelity around the critical point at Tc. In fact,
below the critical temperature, we do not observe a clear scaling (see figure 5(b)), as the data could be
equally fitted to an exponential or power-law function around the critical point Tc. The same occurs for
temperatures that are just above the critical temperature, Tc. However, at very large temperatures, T 
 Tc,
it is possible to see that the fidelity goes exponentially to 1 (see figure 5(c)), that is,

1 − F(ρC, ρC′) ∝ e−γFT

with exponent γF. We also analyze how this exponent depends on the system size and obtain that
γF ∝ α′LBC + β′ with a factor α′ ≈ 0.786 ± 0.005 (see figure 5(d)). The fits have been obtained for data
with T ∈ [6.2, 7].

Additionally, we observe the presence of a local minimum at low temperatures. We have verified the
existence of this minimum by computing the fidelity using a different approach. We constructed an
approximation to the states at low temperature by computing their elements in the Fock basis and
neglecting all the elements with a large number of bosons. We observe that for large numbers the
truncation error seems to be negligible and obtain the same results for the fidelity. We have also observed
that the ratio between this low-temperature minimum and the one at the critical temperature decreases
when the system size increases, indicating that this may be a finite-size effect.

As a last remark, it is necessary to highlight that the fidelity is extremely high, with values F > 0.988 for
any given parameters. To understand why this happens, let us study the purity, a measure of how much a
given state ρ is mixed and that it is given by

P(ρ) = tr(ρ2).

The purity satisfies 1
d � P � 1: P = 1 implies that the state ρ is pure and P = d−1 means that it is

completely mixed, where d is the Hilbert space dimension. We compute the purity of the partial state ρC for

5
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Figure 5. Temperature dependence of the fidelity. (a) Fidelity vs temperature for different lengths LBC = 8, 10, 12, 14, 16. Inset:
plot for data at temperature T � 1. Notice that the scaling of the plot is logarithmic, and the scaling of the inset is double
logarithmic. (b) Fidelity error, 1 − F(ρC, ρC′ ), vs temperature for L0 = 100 and for length LBC = 8, 12, 16, 20, 24. (c) Fidelity
error, 1 − F(ρC, ρC′ ), vs temperature difference T − Tc for L0 = 100 and for length LBC = 8, 12, 16, 20, 24. The dashed lines
correspond to an exponential fit for T ∈ [6.2, 7]. (d) Exponent γF of exponential fit vs the length of reference system size LBC.
The dashed line corresponds to a linear fit with exponent α′ . Error uncertainty and error bars represent the standard error of the
parameters, as obtained from the linear interpolations.

Figure 6. Purity of the partial state ρC vs temperature T for different values of system size L0 = 4, 6, 8, 10, 12, 14, 16.

different system sizes L0 (see figure 6) and obtain that the purity P < 0.06 for any system size L0 ∈ [4, 16].
We therefore see that already for these small system sizes, L0 � 16, the reduced state ρC is extremely mixed
and the computed purity is almost independent of the system size, which may explain why we are obtaining
such high values of the fidelity.

4. Relation to correlations

In this section, we compare the decay of the distinguishability 1 − F(ρC, ρC′) to that of the density–density
correlations in the finite-size model (2). Let us first review how density–density correlations,

corr(ni, nj) := 〈ninj〉 − 〈ni〉〈nj〉

with density operator ni := b†i bi, decay in this model [6].
Using Wick’s theorem we obtain that these correlations can be rewritten as

corr(ni, nj) = 〈b†i bj〉〈bib
†
j 〉 − 〈b†i b†j 〉〈bibj〉,

6
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Figure 7. Exponents of the correlation decay above and below the critical temperature. Error uncertainty and error bars
represent the standard error of the parameters, as obtained from fits (more details in appendix C). (a) Exponents for the
power-law fits for T � Tc. (b) Exponents for the exponential fits for T > Tc. The dashed line corresponds to a linear fit with
exponent α′′.

and thus their behavior is fully determined by the elements of the covariance matrix. These in fact decay
exponentially with the distance dist := |i − j| above the critical temperature Tc, thus in this regime

corr(ni, nj) ∝ e−ηCdist.

Below Tc the elements of the covariance matrix decay polynomially to a constant and, thus, the correlations
also show a polynomial decay to a constant corr∞:

corr(ni, nj) − corr∞ ∝ 1

distνC
,

where corr∞ = limdist→∞ corr(ni, nj) = n2
0 [6].

We have numerically determined the exact values of νC and ηC by considering correlations between the sites
i = (i, 0, 0) and j = (j, 0, 0) (for details, see appendix C). We found that the exponent νC is weakly
dependent on temperature as νC ≈ 1.05 ± 0.01 for T � 4 and monotonically increases with the
temperature for T ∈ [4, 5.6] for L0 = 300 (see figure 7(a)). It is worth noting here that for the ideal Bose
gas, this exponent is equal to 1 [6] and our numerical estimates get close to it (recall that the error only
refers to the linear interpolation). The exponent ηC increases linearly with the temperature T as
ηC = α′′T + β ′′ with a factor α′′ ≈ 0.759 ± 0.002 and with values ηC ∈ [0, 1.2] for L0 > 80
(see figure 7(b)).

Given these results, we observe that the distinguishability (1 − F) and the correlations show the same
behavior and both decay exponentially above the critical temperature. Below the critical temperature, the
distinguishability decays polynomially to zero. This is not surprising, as the distinguishability has to be zero
when LBC = L0, but it is interesting that the decay remains polynomial despite the long-range correlations
present in the system, namely corr∞ = n2

0 > 0.
Let us finally compare the temperature dependence of the exponents. Below and at the critical

temperature, the exponents νF and νC are constant for T � 4, but νF grows, while ηF decreases with
temperature. Above the critical temperature, ηF and ηC both increase linearly with the temperature.

5. Conclusions

In this work, we study to what extent temperature can be defined locally for a three-dimensional discrete
version of the Bose–Einstein model (2) at the grand canonical state (4) with fixed particle density n. This
model undergoes a non-zero-temperature phase transition in a similar fashion as the Bose–Einstein model,
i.e. the system condensates to the ground state below a critical temperature Tc.

We obtain that the reduced density of the grand canonical state to a given region converges as we
consider systems of larger and larger sizes. The convergence rate is exponential in the system size above the
critical temperature and polynomial below. This rapid convergence then means that temperature can be
defined locally: if temperature is defined through the grand canonical ensemble, a very good approximation
to the reduced state of the full system can be obtained by considering another subsystem slightly larger than
the subsystem of interest. The quality of the local temperature description attains a minimum at T = Tc at
any boundary size LBC, which is a signature of the phase transition. For all the studied situations, however,
the reported fidelities between the actual state and the effective local grand canonical state are very high for
any boundary length and temperature. We suspect that this is due to the fact that the reduced states are
always highly mixed and therefore almost independent of the system size LBC. We provide evidence for this

7
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by showing that the purity of the reduces states is very low. As one associates low correlations with locality,
we compared our results to the decay of correlations in this model. We studied density–density correlations
and observe an equivalence between the qualitative behaviors of the locality and the correlations, as they
behave polynomially for T � Tc and exponentially for T > Tc.

Prior to our work, there were several results demonstrating the validity of a local temperature
description in systems with local interactions. In particular, this was proven for one-dimensional spin
systems in [5] using the fact that correlations decay exponentially for any value of T > 0. Also, in [4], the
quality of approximating the state of a subsystem in an equilibrium state by the thermal state of a slightly
bigger system was bounded by a function depending on the correlations in the thermal state. None of these
works, however, was able to provide information about how the local temperature description applies in the
presence of non-zero temperature phase transitions. Our results show, admittedly in a rather simple
example, that local temperatures may also be assigned in this regime.
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Appendix A. Phase transition

In this section, we characterize the phase transition of the model. First, we calculate the value of the
chemical potential as a function of the temperature and system size, μ = μ(β, L), such that the particle
density is fixed at n = 1. The obtained values of μ are plotted in figure A1(a). We then analyze the
population ratio between ground-state particles and total number of particles, N0/N, as a function of the
temperature, T, for different system sizes, L (see figure A1(b)). As expected, we observe a phase transition at
critical temperature, Tc, and a condensate for any temperature T � Tc. As the phase transition only makes
sense at the thermodynamic limit, we obtain that the critical temperature Tc ≈ 5.59 ± 0.02 by computing
an estimation for each system size, L, and making a finite size analysis (see figure A1(c)). The estimation of
the temperature for each system size was computed by linearly fitting data for N0/N ∈ [0.01, 0.05] and
extracting the temperature at which the linear fit goes to zero (see figure A1(d)). The error estimates
correspond to the standard error, as obtained from the fits for each system size. Notice that we assume a
linear behavior of Tc with the inverse system size 1/L, which is a valid assumption for the given data set.

Appendix B. Analysis of the fidelity, entropy and purity for different subsystems

In this section, we study how the magnitudes of the fidelity, entropy and purity behave as a function of the
temperature for different subsystems. We consider subsystems consisting of two consecutive sites
(2 × 1 × 1), four a plane with four sites (2 × 2 × 1) and a cube with eight sites (2 × 2 × 2).
Since the partial states of the subsystems correspond to Gaussian states, it is possible to compute the
different magnitudes by making use of their covariance matrices. Concretely, we compute the fidelity via the
relation given by Paraoanu and Scutaru [8], the entropy via the symplectic eigenvalues [9] and the purity
via its relation P = 1/

√
det(CM) [10], where CM represents the covariance matrix. The results are plotted

in figure B1.

Appendix C. Correlations in the finite-size model

In this section, we analyze the behavior of density–density correlations and the characteristic exponents in
the finite-size model (2). We remind here that the results at the thermodynamic limit are well known, as
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Figure A1. Temperature dependence of the chemical potential and the zero-momentum density, and size dependence of the
critical temperature. (a) Chemical potential, μ, vs temperature, T, for density n = 1. (b) Zero-momentum density, N0/N, vs
temperature, T, for density n = 1 and different system sizes. (c) Critical temperature, Tc vs inverse distance, 1/L, for density
n = 1. Data involves system sizes L = 100, 200, 250, 300, 350. The red dashed line highlights the critical temperature at the
thermodynamic limit Tc. Error uncertainty and error bars represent the standard error of the parameters, as obtained from fits.
(d) Zero-momentum density, N0/N, vs temperature, T, for density n = 1 and system size L = 200. Data and fit function are
represented by a solid and a dashed line, respectively, while the red line highlights the estimated critical temperature Tc for each
system size. The linear fit has been obtained from data with values between N0/N ∈ (0.01, 0.05) (the min. value is represented by
a gray line). The critical temperature Tc for each length L0 was obtained by fitting data between values N0/N ∈ [0.01, 0.05].

they correspond to those proven for an ideal Bose gas [6]. We, thus, expect to observe similar results when
studying the asymptotic behavior.

C.1. Methods
Density–density correlations are defined as

corr(b†i bi, b†j bj) := 〈b†i bib
†
j bj〉 − 〈b†i bi〉〈b†j bj〉. (C.1)

Since the state of interest ρ{β,μ} is Gaussian, the correlations can be computed via Wick’s theorem [11, 12],
given by the expression

〈
m∏

k=1

cik〉β = Pf(Γ[i1, . . . , im]), (C.2)

where c := (bn1 , b†n1
, . . . , bnL , b†nL

) with sites n1 := − L0/2(1, 1, 1) and nL :=n1 + L0 − 1;
Pf(Γ[i1, . . . , im]) =

√
det(Γ[i1, . . . , im]) is the so-called Pfaffian; and Γ has matrix elements

(Γ[i1, . . . , im])a,b :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈cia cib〉β if a < b,

−〈cib cia〉β if a > b,

0 otherwise.

Applying equation (C.2) into (C.1), correlations are given by the covariance matrix elements such that

corr(b†i bi, b†j bj) = 〈b†i bj〉〈bib
†
j 〉 − 〈b†i b†j 〉〈bibj〉, (C.3)

where the elements in the left-side term correspond to equations (5)–(7).

C.2. Results
We focus on the correlations (C.3) between sites i := (i, 1, 1) and j = (j, 1, 1) as a function of the distance,
dist := |i − j|, for a system length L0, a fixed particle density n = 1 and different temperatures T around the
critical temperature Tc ≈ 5.6.
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Figure B1. Magnitudes of fidelity, entropy and purity for subsystems 2 × 1 × 1 (left), 2 × 2 × 1 (center) and 2 × 2 × 2 (right).

Figure C1. Correlations vs distance for L = 100 and for temperatures T = 0.6, 2.6, 4.6, 5.6, 6.7.

We observe that the correlations behave differently depending on whether we are above or below the
critical temperature (see figure C1), as expected from the known results at the thermodynamic limit [6]. At
temperatures T � Tc, correlations decay to a constant value that asymptotically goes to the square of the
ground state density, n2

0, where

n0 := (1/L3
0)〈b†0b0〉 =

1

L3
0

1

e−μ − 1
.

Moreover, we observe that the correlations decay as a power law for T ∈ [0.5, Tc] (see figure C2(a)), that is,

corr(b†i bi, b†j bj) − n2
0 ∝

1

distνC
,

where the exponent νC is weakly dependent on temperature as νC ≈ 1.05 ± 0.01 for T � 4 and
monotonically increases with the temperature for T ∈ [4, 5.6] for L0 = 300 (see figure C2(b)). Additionally,
the exponent νC converges and its temperature-dependence decreases as the system size increases. The fits
have been obtained by fitting the correlations to a polynomial function with a free constant: a/distb + c
with dist ∈ [10, 2L0/5].

Regarding the results for T � 0.5, the exponents were too noisy for the system sizes considered and,
thus, they are unreliable and not included. This is in great part due to the three-dimensional nature of the
system and the slow convergence at low temperatures, which challenges to obtain reliable results for the
sizes we were able to study.

10
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Figure C2. Correlation decay above and below the critical temperature. (a) Correlations for T = 2.6 < Tc with a log–log scaled
inset. The inset corresponds to the function corr − corr∞, where corr∞ is the converging value for dist 
 1. The dashed line
corresponds to a power-law fit for L0 = 300 with dist ∈ [10, 2L0/5]. (b) Exponents for the power-law fits for T � Tc.
(c) Logarithmic plot of the correlations at T = 6 > Tc. The dashed line corresponds to an exponential fit for L0 = 100 and data
between dist = L0/5 and dist = 7L0/20. (d) Exponents for the exponential fits for T > Tc. The dashed line corresponds to a
linear fit with exponent α′′. Notice that the exponent values converge for L0 � 80. Error uncertainty and error bars represent the
standard error of the parameters, as obtained from fits.

For temperature T > Tc, we observe that correlations decay exponentially to zero (see figure C2(c)), that
is,

corr(b†i bi, b†j bj) ∝ e−ηCdist,

where the exponent ηC increases with the temperature T. In particular, it increases linearly, i.e.
ηC = α′′T + β ′′ with a factor α′′ ≈ 0.759 ± 0.002 and with values ηC ∈ [0, 1.2] for T ∈ [5.6, 7] (see
figure C2(d)). The fits have been computed for data with dist ∈ [L0/5, 7L0/20].

We highlight that the results for large enough system sizes are similar to the theoretical results proven
for an ideal Bose gas at the thermodynamic limit. In fact, in our model we recover the continuum in the
thermodynamic limit if we replace cos k by 1 − k2/2, that is, if only the modes with small k are occupied,
which certainly occurs below Tc. For instance, it is known that density–density correlations decay to n2

0 with
exponent ν∞C = 1 for T � Tc at the thermodynamic limit. Thus, we can clearly see that our numerical
results for low temperature are converging to the theoretical ones, as the exponent νC ≈ 1.05 ± 0.01 for low
temperatures and temperature-dependence decreases with system size. Moreover, it is known that
correlations decay exponentially with an exponent that increases with temperature for T > Tc, behavior
that also coincides with our numerical results. The theoretical results can be obtained by combining the
results for one-body correlations (page 25, section 3.2 of Pitaevskii and Stringari [6]) with the relation
between two-body and one-body correlations (see equation (C.3), or section 3.3 of Pitaevskii and Stringari
[6]).
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