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Abstract. While temperature is well understood as an intensive quantity in standard

thermodynamics, it is less clear whether the same holds in the presence of strong

correlations, especially in the case of quantum systems, which may even display

correlations with no classical analogue. The problem lies in the fact that, under the

presence of strong correlations, subsystems of a system in thermal equilibrium are,

in general, not described by a thermal state at the same temperature as the global

system and thus one cannot simply assign a local temperature to them. However,

there have been identified situations in which correlations in thermal states decay

sufficiently fast so that the state of their subsystems can be very well approximated

by the reduced states of equilibrium systems that are only slightly bigger than the

subsystems themselves, hence allowing for a valid local definition of temperature. In

this work, we address the question of whether temperature is locally well defined for a

bosonic system with local interactions that undergoes a phase transition at non-zero

temperature. We consider a three-dimensional bosonic model in the grand canonical

state and verify that a certain form of locality of temperature holds regardless of the
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temperature, and despite the presence of infinite-range correlations at and below the

critical temperature of the phase transition.
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1. Introduction

Understanding how thermodynamic processes are affected by the presence of quantum

phenomena is a topic of intense research since the early days of quantum physics [1].

For instance, it is still not fully understood how thermodynamic quantities, many of

them originally presented as statistical magnitudes, should be defined in microscopic

systems where fluctuations become important or whether their properties differ from

those in classical systems. More in general, the goal is to understand if and how

thermodynamic concepts can be extended beyond the, often idealized, conditions in

which they were originally derived. One such example is temperature and its intensive

character in standard thermodynamics: given a system in equilibrium with a well-defined

temperature, one can assign an equilibrium state at the same temperature to any part

of it. However, this property valid in standard thermodynamics does not generally hold

in the presence of strong correlations. This is the question we consider in this work, in

particular in the context of quantum systems, which may display forms of correlations

with no classical analogue. We study under what conditions temperature can be locally

well defined for subsystems of a global system at a well-defined temperature.

A standard setting to study this problem is given by a system at thermal equilibrium

at temperature T and described by a local Hamiltonian H that is a sum of local

interacting terms. Specifically, the system is at a thermal state at inverse temperature

β := 1/kBT , with the expression

Ωβ[H] :=
e−β H

Zβ[H]
, (1)

where Zβ[H] is the canonical partition function Zβ[H] := tr(e−β H). The main question

we address here is to understand whether it is possible to assign to its subsystems

a thermal description at the same temperature T . If no constraints are imposed

on the Hamiltonian of the subsystem, this is always possible: it suffices to define

H = − log(ρ)/β, where ρ is the state of the subsystem. Nevertheless, this solution is

not satisfactory, as the resulting Hamiltonian is in general arbitrary and has no physical

interpretation. In the case of systems with local interactions, however, there is a natural

choice for the subsystem Hamiltonian defined by the local terms with support on the

subsystem. For this choice of local Hamiltonian, the reduced state of a thermal state

cannot be typically expressed by Eq. 1 (not even approximately).

In some cases, the global thermal state can be very well approximated by the

product of local thermal states and one can use a local definition of temperature.

This occurs, for instance, for some models with weak interactions. However, that is

typically not the case for strong interactions, where in general it is not straightforward

to define a local thermal state and corresponding temperature, since this depends on

the environment, that is, the rest of the system, and the interactions that couple the

subsystem to it.

A way to tackle this problem for systems with local interactions was presented

by Ferraro et al. in [2]. They studied a system of coupled harmonic oscillators on a
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Figure 1: Scheme of the one-dimensional setting for the problem of locality of

temperature. The boundary size of B and B′ must be large enough to obtain a good

approximation of the partial state ρC by computing ρC′ .

lattice and proposed a way to assign a temperature to a subsystem C by dividing the

global system into three regions: the subsystem C, for which we would like to provide a

thermal description, a boundary region B around it, and the rest of the system A (see

Figure 1). Given this setup, they considered a different system at thermal equilibrium

at temperature T which consists of two regions C′ and B′ that are of the same size and

have the same type of interactions as the subsystem C and its boundary B, respectively.

Then, they showed that it is sufficient to compute the partial state of the subsystem C′

to obtain a very good approximation of the state of the subsystem C, which we refer to

as effective thermal state. If the size of the boundary region B needed to attain a given

error in the approximation is independent of the total system size, temperature is said

to be local.

In last years, there have been several works studying the question of the existence

of local temperatures using the same approach as Ferraro et al. [2], see also [3]. These

works proved the validity of the locality of temperature for different systems: (i) 1D

and 2D systems made of interacting harmonic oscillators [2]; (ii) fermionic and spin

systems with arbitrary dimension and at high enough temperature [4]; (iii) finite-spin

one-dimensional systems at arbitrary temperatures [5]. This last result in fact shows

that a valid local thermal description is even possible at quantum phase transitions in

one-dimensional systems provided that the boundary region is large enough. Now, recall

that all phase transitions in one-dimensional systems take place at zero temperature.

However, this is no longer the case for higher dimensional systems, where phase

transitions may also occur at non-zero temperature. These phase transitions at non-

zero temperature represent interesting phenomena in many-body systems and highly

influence how correlations decay, a question which in turn is closely linked to the

locality of temperature [4]. Our aim is to understand how phase transitions at non-

zero temperature affect the possible local definition of temperature.

In this work, we tackle this problem for a three-dimensional bosonic system at

thermal equilibrium at temperature T and at particle density n. This system undergoes

a phase transition at a non-zero critical temperature Tc: a Bose-Einstein condensate is

formed, i.e., a macroscopic fraction of particles have zero momentum below the critical

temperature. We observe that temperature is local above the critical temperature

(T > Tc) and pseudo-local, as defined in what follows, below and at the critical
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temperature (T ≤ Tc). We also compare these results to the structure of spatial

correlations of the system and find a good agreement between local temperature and

correlations independently of the presence of the phase transition.

2. Model

We consider a free bosonic system in a three-dimensional lattice of volume L3 with

periodic boundary conditions (PBC) that is described by the Hamiltonian

H := −
∑
〈n,m〉

b†m bn + 6
∑
n

b†n bn, (2)

where b and b† are bosonic creation and annihilation operators, and n = (nx, ny, nz)

with ni ∈ [−L/2, L/2 − 1], and i ∈ {x, y, z}. This Hamiltonian describes the

discretized version of the ideal Bose gas. It can be diagonalized by Fourier transform

b̃n = 1
L3/2

∑
k bk eikn, obtaining its eigenvalues ε(k), equal to

ε(k) := 2 (3− cos(kx)− cos(ky)− cos(kz)). (3)

In three dimensions, this model has a phase transition at a non-zero temperature Tc
for fixed particle density n := 〈N〉/V , as below this temperature the particles form a

Bose-Einstein condensate, i.e. a macroscopic fraction of the particles are in the zero

momentum mode [6]. In order to fix both temperature and particle density, we consider

a system in the grand canonical ensemble,

Ω{β, µ} := e−β H+µN/ tr(e−β H+µN) (4)

We choose the chemical potential µ = µ(β) such that the particle density n becomes

fixed at n = 1. We numerically estimate that the critical temperature is around Tc ≈ 5.6

(see Appendix A).

3. Locality of temperature

In this section, we analyze whether the temperature can be locally well defined in the

considered system and how this depends on the presence of a phase transition at non-

zero temperature.

3.1. The problem

We consider the state (4) on two cubic systems ABC and B′C′ such that subsystems

C and C′ have size LC , and B and B′ size LBC (see Figure 2). The reduced density

states of the regions C and C′ are ρC and ρC′ , respectively.

If ρC ≈ ρC′ , observables acting on these subsystems (such as a thermometer)

cannot distinguish between the global system ABC and the smaller system B′C′. If

this happens for a small boundary size LBC − LC , it means that temperature can be
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{β, µ}

ΩB′C′
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Figure 2: Left: Setting of the subsystem of interest C, the boundary region B and their

environment A. Right: Setting of the reference system with the subsystem C′ and the

boundary B′, which are of the same size as C and B respectively.

defined locally. We therefore compare the states ρC and ρC′ while keeping the size

of ABC fixed at a value L0, the size of C and C′ fixed at LC = 2, and varying the

size LBC . This comparison is made at temperatures both above and below the phase

transition to understand how a non-zero-temperature phase transition affects the locality

of temperature.

3.2. Methods

In order to compare the states ρC and ρC′ , we use the quantum fidelity [7], a measure

of distinguishability between any two quantum states ρ and σ defined as

F(ρ, σ) :=
[
tr
(√

ρ1/2 σ ρ1/2
)]2

.

The fidelity satisfies F(ρ, σ) ∈ [0, 1], and F(ρ, σ) = 1 if, and only if ρ = σ.

All the states of our interest, namely the Grand Canonical state of a quadratic

Hamiltonian and reduced states of it, are Gaussian. The elements of the covariance

matrix of the Grand Canonical state Ω{β, µ} (4) described by the Hamiltonian (2), with

size L3, can be expressed as

〈b†n bm〉{β, µ} =
1√
L3

∑
k

e− i (n−m)k

eβ ε(k)+µ − 1
, (5)

〈bn b†m〉{β, µ} = δm,n + 〈b†n bm〉{β, µ}, (6)

〈bn bm〉{β, µ} = 〈b†n b†m〉{β, µ} = 0, (7)

where k is the momentum vector and ε(n) is the eigenvalue of the Hamiltonian (3). The

covariance matrix of any of its subsystems is obtained by taking the matrix elements

corresponding to the sites within that subsystem. At last, we compute the fidelity

between the two resulting Gaussian states, ρC and ρC′ , from their covariance matrices

using the formula of Paraoanu et al. [8].
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Figure 3: Fidelity, F(ρC, ρC′), vs reference system length, LBC, for different

temperatures T = 0.6, 2.6, 4.6, 5.6, 6, 7 and system size L0 = 100.

3.3. Results

We have plotted the obtained values of 1−F (ρC , ρC′) as a function of LBC for different

temperatures and for a system size L0 = 100 (see Figure 3). Calculations are in principle

possible for larger system sizes as the relevant states are Gaussian, but we observe that

the results show almost no variations for systems such as L0 ≥ 60. We therefore expect

that computations for L0 = 100 provide a good approximation of the thermodynamic

limit, with a reasonable numerical effort. First, we observe that the fidelity between the

states ρC and ρC′ increases monotonically with LBC , i.e. with the size of the boundary

region B. We discuss below its different behaviours depending on whether we are below

or at the critical temperature, T ≤ Tc, or above, T > Tc.

Below and at the phase transition the fidelity, F(ρC, ρC′), increases polynomially

to F = 1 with the length LBC (see Figure 4.(a)), described by

1− F(ρC, ρC′) ∝ 1

LνFBC

, (8)

with exponent νF . We analyze how the exponent, νF , behaves as a function of the

temperature, T , for different system sizes L0 and make a finite-size analysis (see

Figure 4.(a) and 4.(b)). At the continuous limit, we observe that the exponent remains

more or less constant around a value slightly below 6 for temperatures T ≤ 4, away

from the phase transition, and that it suddenly decreases up to νF ≈ 4 around the

phase transition, at 4 < T < 5.6, see Figure 4.(b). The exponents for finite systems

were computed by fitting the data of the error fidelity, 1 − F(ρC, ρC′), in the range

LBC ∈ [6, L0/3].

Above the phase transition we find that the fidelity increases exponentially to F = 1

with LBC (see Figure 4.(c)), that is,

1− F(ρC, ρC′) ∝ e− ηFLBC , (9)

with the characteristic exponent ηF . We also study the exponent ηF and observe

that it increases linearly with temperature (see Figure 4.(d)). In fact, we obtain that
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(a) Fidelity error, 1 − F(ρC, ρC′), vs length

LBC for different system lengths L0 and

temperature T = 2.6, below the critical

temperature Tc ≈ 5.6. The dashed line

corresponds to a power-law fit for L0 = 100

and LBC ∈ [6, L0/3].
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(b) Exponent νF for power-law fit (8) vs

temperature below the phase transition (T ≤
Tc). The dashed line corresponds to the curve

resulting of finite-size analysis.
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(c) Fidelity error, 1 − F(ρC, ρC′), vs length

LBC for different systems lengths L0 and

temperature T = 6, above the critical

temperature Tc. The dashed line corresponds

to an exponential fit (9) for L0 = 100

and data in the interval [Lmin
BC, L

max
BC ], where

Lmax
BC = min(2L0/3, Lcut) with Lcut = {L ∈

R : F(L) ≈ 1 − 10−14}, and Lmin
BC =

max(Lmax
BC − 2L0/5, 6).
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(d) Exponent ηF for exponential fit vs

temperature above the phase transition (T >

Tc). The dashed line corresponds to the

linear fit of data for L0 = 100 with

exponent α. Notice that the fidelity decreases

polynomially for T ≤ Tc and exponentially

for T > Tc. Error uncertainty and error

bars represent the standard error of the

parameters, as obtained from the linear

interpolations.

Figure 4: Fidelity vs system size and its scaling above and below phase transition

ηF = αT + β with α ≈ 0.970± 0.005 and ηF ∈ [0, 1.3] for T ∈ [5.6, 7]. Exponents were

computed by fitting data in the interval [Lmin
BC, L

max
BC ], where Lmax

BC = min(2L0/3, Lcut)

with Lcut = {L ∈ R : F(L) ≈ 1− 10−14}, and Lmin
BC = max(Lmax

BC − 2L0/5, 6). The values

of these parameters for the computation of the exponents was motivated by the fact that

they define the largest range in which the curves show a clear exponential behavior.

We also investigate the behavior of the fidelity as a function of the temperature

T for different lengths LBC (see Figure 5.(a)). We observe a global minimum at the
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(a) Fidelity vs temperature for different

lengths LBC = 8, 10, 12, 14, 16. Inset: Plot

for data at temperature T ≤ 1. Notice that

the scaling of the plot is logarithmic, and the

scaling of the inset is double logarithmic.
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(b) Fidelity error, 1− F(ρC, ρC′), vs temper-

ature for L0 = 100 and for length LBC =

8, 12, 16, 20, 24.
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(c) Fidelity error, 1 − F(ρC, ρC′), vs tem-

perature difference T − Tc for L0 = 100

and for length LBC = 8, 12, 16, 20, 24. The

dashed lines correspond to an exponential fit

for T ∈ [6.2, 7]
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(d) Exponent γF of exponential fit vs the

length of reference system size LBC. The

dashed line corresponds to a linear fit with

exponent α′. Error uncertainty and error

bars represent the standard error of the

parameters, as obtained from the linear

interpolations.

Figure 5: Temperature dependence of the fidelity

critical temperature Tc for any length LBC. Unfortunately, we are not able to identify

the behavior of the fidelity around the critical point at Tc. In fact, below the critical

temperature, we do not observe a clear scaling (see Figure 5.(b)), as the data could

be equally fitted to an exponential or power-law function around the critical point Tc.

The same occurs for temperatures that are just above the critical temperature, Tc.

However, at very large temperatures, T >> Tc, it is possible to see that the fidelity goes

exponentially to 1 (see Figure 5.(c)), that is,

1− F(ρC, ρC′) ∝ e− γF T

with exponent γF . We also analyze how this exponent depends on the system size and

obtain that γF ∝ α′LBC + β′ with a factor α′ ≈ 0.786 ± 0.005 (see Figure 5.(d)). The
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Figure 6: Purity of the partial state ρC vs temperature T for different values of system

size L0 = 4, 6, 8, 10, 12, 14, 16.

fits have been obtained for data with T ∈ [6.2, 7].

Additionally, we observe the presence of a local minimum at low temperatures.

We have verified the existence of this minimum by computing the fidelity using a

different approach. We constructed an approximation to the states at low temperature

by computing their elements in the Fock basis and neglecting all the elements with a

large number of bosons. We observe that for large numbers the truncation error seems

to be negligible and obtain the same results for the fidelity. We have also observed that

the ratio between this low-temperature minimum and the one at the critical temperature

decreases when the system size increases, indicating that this may be a finite-size effect.

As a last remark, it is necessary to highlight that the fidelity is extremely high,

with values F > 0.988 for any given parameters. To understand why this happens, let

us study the purity, a measure of how much a given state ρ is mixed and that it is given

by

P(ρ) = tr(ρ2).

The purity satisfies 1
d
≤ P ≤ 1 : P = 1 implies that the state ρ is pure and P = d−1

means that it is completely mixed, where d is the Hilbert space dimension. We compute

the purity of the partial state ρC for different system sizes L0 (see Figure 6) and obtain

that the purity P < 0.06 for any system size L0 ∈ [4, 16]. We therefore see that already

for these small system sizes, L0 ≤ 16, the reduced state ρC is extremely mixed and the

computed purity is almost independent of the system size, which may explain why we

are obtaining such high values of the fidelity.

4. Relation to correlations

In this section, we compare the decay of the distinguishability 1 − F (ρC , ρC′) to that

of the density-density correlations in the finite-size model (2). Let us first review how

density-density correlations,

corr(ni, nj) := 〈ninj〉 − 〈ni〉〈nj〉
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Figure 7: Exponents of the correlation decay above and below the critical temperature.

Error uncertainty and error bars represent the standard error of the parameters, as

obtained from fits (more details in Appendix C).

with density operator ni := b†ibi, decay in this model [6].

Using Wick’s theorem we obtain that these correlations can be rewritten as

corr(ni, nj) = 〈b†i bj〉 〈bi b
†
j〉 − 〈b

†
i b
†
j〉 〈bi bj〉,

and thus their behavior is fully determined by the elements of the covariance matrix.

These in fact decay exponentially with the distance dist := |i − j| above the critical

temperature Tc, thus in this regime

corr(ni, nj) ∝ e− ηC dist.

Below Tc the elements of the covariance matrix decay polynomially to a constant and,

thus, the correlations also show a polynomial decay to a constant corr∞:

corr(ni, nj)− corr∞ ∝ 1

distνC
,

where corr∞ = limdist−→∞ corr(ni, nj) = n2
0 [6].

We have numerically determined the exact values of νC and ηC by considering

correlations between the sites i = (i, 0, 0) and j = (j, 0, 0) (for details, see Appendix C).

We found that the exponent νC is weakly dependent on temperature as νC ≈ 1.05±0.01

for T ≤ 4 and monotonically increases with the temperature for T ∈ [4, 5.6] for L0 = 300

(see Figure 7.(a)). It is worth noting here that for the ideal Bose gas, this exponent is

equal to 1 [6] and our numerical estimates get close to it (recall that the error only refers

to the linear interpolation). The exponent ηC increases linearly with the temperature

T as ηC = α′′T + β′′ with a factor α′′ ≈ 0.759 ± 0.002 and with values ηC ∈ [0, 1.2] for

L0 > 80 (see Figure 7.(b)).

Given these results, we observe that the distinguishability (1 − F ) and the

correlations show the same behavior and both decay exponentially above the critical
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temperature. Below the critical temperature, the distinguishability decays polynomially

to zero. This is not surprising, as the distinguishability has to be zero when LBC =

L0, but it is interesting that the decay remains polynomial despite the long-range

correlations present in the system, namely corr∞ = n2
0 > 0.

Let us finally compare the temperature dependence of the exponents. Below and

at the critical temperature, the exponents νF and νC are constant for T ≤ 4, but νF
grows, while ηF decreases with temperature. Above the critical temperature, ηF and ηC
both increase linearly with the temperature.

5. Conclusions

In this work, we study to what extent temperature can be defined locally for a three-

dimensional discrete version of the Bose-Einstein model (2) at the grand canonical state

(4) with fixed particle density n. This model undergoes a non-zero-temperature phase

transition in a similar fashion as the Bose-Einstein model, i.e., the system condensates

to the ground state below a critical temperature Tc.

We obtain that the reduced density of the grand canonical state to a given

region converges as we consider systems of larger and larger sizes. The convergence

rate is exponential in the system size above the critical temperature and polynomial

below. This rapid convergence then means that temperature can be defined locally:

if temperature is defined through the grand canonical ensemble, a very good

approximation to the reduced state of the full system can be obtained by considering

another subsystem slightly larger than the subsystem of interest. The quality of the

local temperature description attains a minimum at T = Tc at any boundary size LBC,

which is a signature of the phase transition. For all the studied situations, however,

the reported fidelities between the actual state and the effective local grand canonical

state are very high for any boundary length and temperature. We suspect that this is

due to the fact that the reduced states are always highly mixed and therefore almost

independent of the system size LBC . We provide evidence for this by showing that the

purity of the reduces states is very low. As one associates low correlations with locality,

we compared our results to the decay of correlations in this model. We studied density-

density correlations and observe an equivalence between the qualitative behaviors of the

locality and the correlations, as they behave polynomially for T ≤ Tc and exponentially

for T > Tc.

Prior to our work, there were several results demonstrating the validity of a local

temperature description in systems with local interactions. In particular, this was

proven for one-dimensional spin systems in [5] using the fact that correlations decay

exponentially for any value of T > 0. Also, in [4], the quality of approximating the state

of a subsystem in an equilibrium state by the thermal state of a slightly bigger system

was bounded by a function depending on the correlations in the thermal state. None of

these works, however, was able to provide information about how the local temperature

description applies in the presence of non-zero temperature phase transitions. Our
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results show, admittedly in a rather simple example, that local temperatures may also

be assigned in this regime.
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Appendix A. Phase transition

In this section, we characterize the phase transition of the model. First, we calculate

the value of the chemical potential as a function of the temperature and system size,

µ = µ(β, L), such that the particle density is fixed at n = 1. The obtained values of µ are

plotted in Figure A1.(a). We then analyze the population ratio between ground-state

particles and total number of particles, N0/N , as a function of the temperature, T , for

different system sizes, L (see Figure A1.(b)). As expected, we observe a phase transition

at critical temperature, Tc, and a condensate for any temperature T ≤ Tc. As the phase

transition only makes sense at the thermodynamic limit, we obtain that the critical

temperature Tc ≈ 5.59± 0.02 by computing an estimation for each system size, L, and

making a finite size analysis (see Figure A1.(c)). The estimation of the temperature

for each system size was computed by linearly fitting data for N0/N ∈ [0.01, 0.05] and

extracting the temperature at which the linear fit goes to zero (see Figure A1.(d)). The

error estimates correspond to the standard error, as obtained from the fits for each

system size. Notice that we assume a linear behavior of Tc with the inverse system size

1/L, which is a valid assumption for the given data set.

Appendix B. Analysis of the fidelity, entropy and purity for different

subsystems

In this section, we study how the magnitudes of the fidelity, entropy and purity behave

as a function of the temperature for different subsystems. We consider subsystems

consisting of 2 consecutive sites (2× 1× 1), 4 a plane with 4 sites (2× 2× 1) and a cube

with 8 sites (2× 2× 2).

Since the partial states of the subsystems correspond to Gaussian states, it

is possible to compute the different magnitudes by making use of their covariance

matrices. Concretely, we compute the fidelity via the relation given by Paraoanu et

al. [8], the entropy via the sympletic eigenvalues [9] and the purity via its relation

P = 1/
√

det(CM) [10], where CM represents the covariance matrix. The results are

plotted in Figure B1.

Appendix C. Correlations in the finite-size model

In this section, we analyze the behavior of density-density correlations and the

characteristic exponents in the finite-size model (2). We remind here that the results at

the thermodynamic limit are well known, as they correspond to those proven for an ideal

Bose gas [6]. We, thus, expect to observe similar results when studying the asymptotic

behavior.
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(b) Zero-momentum density, N0/N , vs

temperature, T , for density n = 1 and

different system sizes.
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system size. The linear fit has been obtained
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Figure A1: Temperature dependence of the chemical potential and the zero-momentum

density, and size dependence of the critical temperature.
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Figure B1: Magnitudes of fidelity, entropy and purity for subsystems 2 × 1 × 1 (left),

2× 2× 1 (center) and 2× 2× 2 (right).

Appendix C.1. Methods

Density-density correlations are defined as

corr(b†i bi, b
†
j bj) := 〈b†i bib

†
j bj〉 − 〈b

†
i bi〉〈b

†
j bj〉. (C.1)

Since the state of interest ρ{β, µ} is Gaussian, the correlations can be computed via

Wick’s theorem [11, 12], given by the expression

〈
m∏
k=1

cik〉β = Pf(Γ[i1, . . . , im]), (C.2)

where c := (bn1 , b
†
n1
, . . . , bnL

, b†nL
) with sites n1 := −L0/2 (1, 1, 1) and

nL := n1 + L0 − 1; Pf(Γ[i1, . . . , im]) =
√

det(Γ[i1, . . . , im]) is the so-called Pfaffian;

and Γ has matrix elements

(
Γ[i1, . . . , im]

)
a,b

:=


〈cia cib〉β if a < b,

−〈cib cia〉β if a > b,

0 otherwise.

Applying Equation (C.2) into (C.1), correlations are given by the covariance matrix

elements such that

corr(b†i bi, b
†
j bj) = 〈b†i bj〉 〈bi b

†
j〉 − 〈b

†
i b
†
j〉 〈bi bj〉, (C.3)
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Figure C1: Correlations vs distance for L = 100 and for temperatures T =

0.6, 2.6, 4.6, 5.6, 6.7.

where the elements in the left-side term correspond to Eqs. (5-7).

Appendix C.2. Results

We focus on the correlations (C.3) between sites i := (i, 1, 1) and j = (j, 1, 1) as a

function of the distance, dist := |i− j|, for a system length L0, a fixed particle density

n = 1 and different temperatures T around the critical temperature Tc ≈ 5.6.

We observe that the correlations behave differently depending on whether we are

above or below the critical temperature (see Figure C1), as expected from the known

results at the thermodynamic limit [6]. At temperatures T ≤ Tc, correlations decay to

a constant value that asymptotically goes to the square of the ground state density, n2
0,

where

n0 := (1/L3
0) 〈b

†
0 b0〉 =

1

L3
0

1

e−µ − 1
.

Moreover, we observe that the correlations decay as a power law for T ∈ [0.5, Tc] (see

Figure C2.(a)), that is,

corr(b†i bi, b
†
j bj)− n

2
0 ∝

1

distνC
,

where the exponent νC is weakly dependent on temperature as νC ≈ 1.05 ± 0.01 for

T ≤ 4 and monotonically increases with the temperature for T ∈ [4, 5.6] for L0 = 300

(see Figure C2.(b)). Additionally, the exponent νC converges and its temperature-

dependence decreases as the system size increases. The fits have been obtained by

fitting the correlations to a polynomial function with a free constant: a/ distb +c with

dist ∈ [10, 2L0/5].

Regarding the results for T ≤ 0.5, the exponents were too noisy for the system sizes

considered and, thus, they are unreliable and not included. This is in great part due to

the three-dimensional nature of the system and the slow convergence at low tempera-

tures, which challenges to obtain reliable results for the sizes we were able to study.
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Figure C2: Correlation decay above and below the critical temperature.

For temperature T > Tc, we observe that correlations decay exponentially to zero

(see Figure C2.(c)), that is,

corr(b†i bi, b
†
j bj) ∝ e− ηC dist,

where the exponent ηC increases with the temperature T . In particular, it increases

linearly, i.e., ηC = α′′T + β′′ with a factor α′′ ≈ 0.759 ± 0.002 and with values

ηC ∈ [0, 1.2] for T ∈ [5.6, 7] (see Figure C2.(d)). The fits have been computed for

data with dist ∈ [L0/5, 7L0/20].
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We highlight that the results for large enough system sizes are similar to the

theoretical results proven for an ideal Bose gas at the thermodynamic limit. In fact, in

our model we recover the continuum in the thermodynamic limit if we replace cos k by

1 − k2/2, that is, if only the modes with small k are occupied, which certainly occurs

below Tc. For instance, it is known that density-density correlations decay to n2
0 with

exponent ν∞C = 1 for T ≤ Tc at the thermodynamic limit. Thus, we can clearly see that

our numerical results for low temperature are converging to the theoretical ones, as the

exponent νC ≈ 1.05± 0.01 for low temperatures and temperature-dependence decreases

with system size. Moreover, it is known that correlations decay exponentially with an

exponent that increases with temperature for T > Tc, behavior that also coincides with

our numerical results. The theoretical results can be obtained by combining the results

for one-body correlations (page 25, section 3.2 of Pitaevskii and Stringary [6]) with the

relation between two-body and one-body correlations (see Eq. (C.3), or section 3.3 of

Pitaevskii and Stringary [6]).
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