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We introduce plaquette projected entangled-pair states, a class of states in a lattice that can be
generated by applying sequential unitaries acting on plaquettes of overlapping regions. They sat-
isfy area-law entanglement, possess long-range correlations, and naturally generalize other relevant
classes of tensor network states. We identify a subclass that can be more efficiently prepared in a
radial fashion and that contains the family of isometric tensor network states [1]. We also show how
such subclass can be efficiently prepared using an array of photon sources.

Tensor network states play a fundamental role both in
quantum information processing and many-body physics,
as they are natural representations of states with area-
law entanglement [2–4]. In one dimension, Matrix-
Product States (MPS) [5–7] efficiently approximate the
ground state of gapped [8] and critical Hamiltoni-
ans [9]. Their higher-dimensional generalizations, Pro-
jected Entangled-Pair States (PEPS) [10], also play an
important role in many-body physics. Apart from pro-
viding efficient approximations in different scenarios,
they embrace many paradigmatic states of condensed
matter physics, including topological states like the toric
code [11, 12], string-net states [13–15], or resonating va-
lence bound states [11]. They also contain elements that
are relevant in the context of quantum metrology [16],
like the W [17] or GHZ states [18], or in quantum comput-
ing, like the cluster [19], graph [20–22] and hypergraph
state [23, 24]. Thus, the efficient preparation of such
states would have an important impact on the study of
many-body systems and quantum information.

One can generate MPS by sequentially applying local
unitaries [25, 26]. This is essential component in nu-
merous theoretical frameworks [27–36]. Sequential gen-
eration further provides a convenient way to determin-
istically prepare entangled states, be it on a quantum
computer [36, 37] or in photonic systems [26, 38–46].
The generation time (circuit depth), TMPS, scales lin-
early with the system size n (number of qudits), i.e.
TMPS = O(n).

Efficient generation of PEPS is, however, much more
difficult. Even in two dimensions, it is believed that most
states will require a preparation time that increases ex-
ponentially with the system size [11, 47]. Nevertheless,
most of the paradigmatic examples mentioned above can
be efficiently prepared also in higher dimensions, and ex-
perimental efforts have already started [48]. This calls for
efforts to identify, classify, and extend subclasses of PEPS
that allow for efficient preparation, ideally together with
an explicit algorithm to do so. In this vein, there are
two subclasses of PEPS in two dimensions that stand
out: (i) sequentially generated states (SGS) [49], and (ii)
PEPS generated by photon feedback (f-PEPS) [50]. In-

terestingly, both of these classes can be obtained from a
product state by a sequential quantum circuit.

In this paper, we introduce plaquette PEPS (p-PEPS),
which are defined by sequentially applying unitaries to
plaquettes of qudits initially in a product state. p-PEPS
can straightforwardly be expressed as PEPS and natu-
rally encompass SGS and f-PEPS. We focus on a partic-
ular radial plaquette ordering, which leads to a subset we
call radial plaquette PEPS (rp-PEPS). This class allows
certain local observables to be computed efficiently and
has SGS and isometric tensor network states (isoTNS) [1]
as proper subsets. Our construction thus provides a
quantum circuit to prepare isoTNS, which is a class that
has been shown to include graph, hypergraph, and all
string-net states [51]. While for a q-dimensional lattice
of N = n1 × ... × nq sites, in the worst case, p-PEPS
require a circuit depth scaling with the total number of
sites, rp-PEPS can be prepared particularly efficiently,
with the circuit depth Trp scales as the side length of the
lattice

Trp = O(max
i
ni). (1)

We show that an array of coupled quantum sources
each comprising an ancilla–emitter pair can naturally
produce rp-PEPS with the same efficient scaling, and pre-
pare f-PEPS with a circuit depth O(N). This subsumes
all families of high-dimensional states that have been
proposed for sequential photon generation to date [21,
45, 50, 52–61], and our scheme thus serves as the theo-
retical foundation for various photon generation proto-
cols [21, 41, 43–45, 52–54, 60].

Plaquette PEPS.—For concreteness, we restrict our
attention to a two-dimensional lattice of qudits of size
N = n×m, and the high-dimensional generalization will
be discussed in SI [62]. We define p-PEPS as the states
generated through sequential application of unitaries to
plaquettes of size Lp × Lp (Lp � m,n), beginning from
|0〉⊗N [c.f. Fig. 1(a)]

∣∣ψp

〉
=

N∏
µ=1

Û~vµ |0〉
⊗N

, (2)
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where ~vµ = (iµ, jµ) and the unitary Û~v acts on qubits in
the square spanning from (i, j) to (i+Lp−1, j+Lp−1).
Here the choice of plaquette shape reflects the locality
of the unitaries. In case of periodic boundary conditions
(PBC), we identify the rows i±m ≡ i and columns j±n ≡
j. The ordering of the unitaries P = (~v1, ~v2, ..., ~vN ) fulfils
the conditions ~vµ 6= ~vν for µ 6= ν. We show an example of
P in Fig. 1(b), and call the position of the first unitary ~v1
the source point. To define the state with open boundary
conditions (OBC), we simply omit gates that act across
the boundaries.

p-PEPS is a subclass of PEPS, which are states defined
through a network of tensors with one tensor per lattice
site (shown in Fig. 1c), whose virtual bonds (or legs) are
contracted with their neighbours. In two dimensions,

|ΨPEPS〉 =

d−1∑
{k}=0

F2D({Bk[i,j]lurb})|{k}〉, (3)

where the Bk[i,j]lurb
is a rank-5 tensor on the site (i, j)

that has one physical index k of dimension d and four
virtual indices l, u, r, b of bond dimension D. The sym-
bol F2D denotes the contraction of all virtual indices. To
obtain the PEPS representation of p-PEPS, we decom-
pose the plaquette unitaries into projected entangled-pair
operators (PEPO) [4] (shown in Fig. 1d). This allows one
to write the sequential circuit as PEPO, which applied
to a product state yields a PEPS with bond dimension

D ≤ O(dL
4
p) [62].

We are particularly interested in cases where each uni-
tary overlaps with at least one of the earlier ones, such
that they create correlations. State in Fig. 1(a) is such
an example. A sequential circuit with overlapping uni-
taries efficiently establishes correlations between arbi-
trary points of the lattice using O(N) unitaries [62]. This
should be contrasted with brickwall circuits [63] that take
O(N · max

i
ni) unitaries to do so [62]. This implies p-

PEPS offers a more efficient parametrization of states
with correlations across the whole system. Moreover,
while the p-PEPS have area-law entanglement, brickwall
circuits that create long-range correlations will instead
lead to states with volume-law entanglement [64–66].

It is clear that sequentially applying n ·m unitaries in
Eq. (2) yields a circuit depth scaling as O(N). However,
some orderings P allow unitaries to be applied in parallel.
One example is to fully parallelize the circuit, leading to
a brickwall circuit of depth O(L2

p), which already contain
interesting ansatz like the one used for variational diag-
onalization of many-body localized Hamiltonians [67].

Radial plaquette PEPS (rp-PEPS).— One important
subclass of p-PEPS are are rp-PEPS, where starting from
the source point, the positions ~vi of the unitaries are or-
dered such that they can be grouped to multiple layers
of commuting plaquettes, where each layer act on the
boundary of the existing gate-acted region. A example
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FIG. 1. Plaquette PEPS (p-PEPS). (a) Starting from a prod-

uct state, one sequentially applies plaquette unitaries {Û~vi}
(denoted by the gray squares) of size Lp × Lp (Lp = 2 here).
The source point ~v1 is marked by a red dot. Periodic and
open boundary conditions are distinguished by whether or
not the sequence of unitaries contains some that act across the
boundary (green squares). (b) p-PEPS is determined by the
unitaries and their ordering P. Here we show an example of
P with a directional string and the numbers from 1 to N . (c)
PEPS are states defined through arrays of tensors with virtual
indices of dimension D, which are contracted between neigh-
bouring tensors (connected lines), and one physical index or
leg of dimension d (sticking out). (d) The plaquette unitaries
can be decomposed into PEPO, which lead to a PEPS repre-
sentation of p-PEPS. (e) Radial plaquette PEPS (rp-PEPS).
Here starting from the source point (the red dot), in the case
of Lp = 2 the ordering P is denoted by the numbers. Such
ordering allow one to parallelize the circuit, and different lay-
ers of circuits are denoted by the shades of different colors.
The gates in 5-th layer are denoted by boxes.

with Lp = 2 is illustrated in Fig. 1(e), where the gates are
grouped as

[
(1) , (2, 3) , (4 ∼ 7) , (8 ∼ 13) , (14 ∼ 21) , ...

]
(denoted by shades of different colors). To resolve the
ambiguities that one can arbitrarily arrange the order-
ing within each layer of gates, one need to choose pre-
ferred directions that the position of the plaquette moves,
where in Fig. 1(e) is ‘horizontal first, and positive direc-
tion first’. The circuit depth of preparing rp-PEPS is
asymptotically Trp ≈ n + Lpm, following the scaling in
Eq. (1). In addition to efficient preparation, rp-PEPS
allow efficient computation of expectation values of lo-
cal observables that are geometrically close to the source
point or the line that passes through the source point
along the preferred direction [62], which is reminiscent of
isoTNS [1].
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The above definitions straightforwardly generalize to
higher dimensional lattices, where plaquettes become
high-dimensional cubes [62]. While the general circuit
depth for p-PEPS again scales with N , rp-PEPS obeys
Eq. (1).

Relation to other families of PEPS.—By definition, the
p-PEPS can be efficiently prepared, have a PEPS descrip-
tion, and host long-range correlations. Now we show that
rp-PEPS (and thus p-PEPS) naturally encompass other
families of PEPS that are prepared sequentially (SGS and
f-PEPS), as well as isoTNS (we follow the definition in
Ref. [1], and see Ref. [68] for a different definition).

SGS are defined in terms of one-dimensional sequential
circuits comprising unitaries {V̂[i,j]} of length Lp acting
on rows across qubits whose columns have been prepared
in MPS [49]

|ψsgs〉 =

n−s∏
i=1

m∏
j=1

V̂[i,j]
n
⊗
i′=1
|ψi
′

MPS〉, (4)

as sketched in Fig. 2(a). Without loss of generality we as-
sume that the MPS are in canonical form such that they
can be written in terms of a one-dimensional sequential
quantum circuit [25]. This allows us to write the tensor
of the corresponding PEPS as two overlapping Lp-qudit
gates [c.f. Fig. 2(b)]. The unitary shown in Fig. 2(b) is
a special case of a Lp × Lp plaquette unitary. The or-
der of the unitaries is the same as in rp-PEPS, with the
source point at the bottom left of the lattice in the case
of Fig. 2(a).

The above observation directly implies that SGS ⊂ rp-
PEPS. To be precise, let us denote the class of SGS (p-
PEPS) with the circuit length (plaquette length) Lp as

SGS
Lp
n×m (p-PEPS

Lp
n×m), we have

SGS
Lp
n×m ⊂ rp-PEPS

Lp
n×m. (5)

The tensors of SGS in the bulk satisfy an isometry con-
dition shown in Fig. 2(d), which is the same condition
as is obeyed by the tensors in isoTNS [1]. Indeed, as we
show in the following, these classes are closely related.

IsoTNS are PEPS [Eq. (3)] in which all tensors satisfy
certain isometry conditions that depend on their position
in the lattice. Specifically, when all incoming legs of a
tensor (denoted by incoming arrows in Fig. 2c) and the
physical leg are contracted with corresponding legs of a
complex conjugate of the tensor, the remaining legs yield
the identity. For example, the tensor in the dashed box
in Fig. 2(c) obeys∑

k,ur

Bk[i,j]lurb(B
k
[i,j]l′urb′

)
∗

= δbb′δll′ , (6)

which is shown graphically in Fig. 2(d). The red shaded
lines in Fig. 2(c) only have incoming arrows and are or-
thogonality hypersurfaces. Their intersection is the or-
thogonality center (OC) [1]. They play a special role,
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FIG. 2. (a) 2D SGS are constructed by first preparing mul-
tiple columns of MPS with tensors {A}, and then coupling
neighboring columns of MPS with linear sequential unitaries
{V̂ } of length Lp (Lp = 2 illustrated here). Here the MPS are
in canonical forms with their orthogonality center at the bot-
tom of each column. The red dot denotes the source point of
the corresponding p-PEPS. (b) The tensor inside the dashed
box in (a) can be viewed as two connected two-qudit uni-
taries [25, 49] and identified as a PEPS tensor. (c) Schematic
of a 2D isometric tensor network states (isoTNS). The red
shaded lines are the orthogonality hypersurfaces, and their
intersection is the orthogonality center (red dot). (d) The
isometry condition of the tensor inside the dashed box in (a)
and (c).

as expectation values of operators with support on this
surface can be evaluated efficiently.

One can prepare isoTNS as rp-PEPS, but restricting
the unitaries in the bulk to be ‘L’-shaped, as shown in
boxes 1–6 of Fig. 3(a). The required three-qudit unitaries
in the bulk can be written

B̂[i,j] =
∑
lurb,k

Bk[i,j]lurb|k, r, u〉〈l, b, 0|, (7)

where |k, r, u〉 ≡ |k[i,j], r[i,j+1], u[i+1,j+1]〉, and the rank-5

tensor Bk[i,j]lurb
automatically satisfies the isometry con-

dition Eq. (6) as it is derived from a unitary. This is the
tensor that appears in the PEPS [see Fig. 3(b)]. It has
two ‘incoming’ virtual legs l, b and two ‘outgoing’ virtual
legs r, u.

Sequentially applying the gates shown in step 1-6 of
Fig. 3(a) gives rise to the tensor contraction pattern
shown in step 7 of Fig. 3(a), which represents an arbi-
trary isoTNS with OC in the corner, which in this case
coincides with the source point, but in general lies in
the first plaquette. The generated isoTNS has bond di-
mension d and physical dimension d, except at the right
boundary, where two sites of each row are combined to
form a site with physical dimension d2. Note that arbi-
trary isoTNS of that geometry with a uniform physical
dimension can be embedded in that state by setting the
rightmost qudits to zero and treating them as ancillas.
Moreover, it is clear from Fig. 3(a) that the circuit depth
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FIG. 3. Radial preparation of isoTNS. (a) The protocol starts

from an initial state |0〉⊗N , and we sequentially apply three-
qudit unitaries that couple neighboring qudits vertically and
horizontally follow the order from steps 1-6. Each unitary
becomes a tensor of the resulting PEPS at the location indi-
cated by the leg sticking out. The dashed lines are guiding
lines to indicate the connection to previously applied unitary
blocks. At the end (4-6) we group the sites of the last two
columns (dashed boxes). In step 7 we show the final isoTNS
[cf. Fig. 2(c)]. This structure contains arbitrary isoTNS of the
same geometry of bond dimension d, and physical dimension
d. We discuss the higher bond dimension and OC in the bulk
in the SI [62]. (b) The identification of the applied unitaries
with the PEPS tensor, where the output of the unitary cor-
responds to the physical index and the incoming legs of the
isoTNS tensor.

for preparing isoTNS is Tiso ≈ n + m. We show in the
SI [62] that: i) by extending the legs of ‘L’-shaped uni-
taries to 2s+1 qubits with s = dlogdDe and changing the
source point of the rp-PEPS, isoTNS with bond dimen-
sion D and with OC in the bulk can be prepared. ii) This
protocol can be generalized to prepare isoTNS of higher
dimensions. The circuit depth for preparing isoTNS on
a n1 × ...× nq lattice scales as

Tiso ≈
q∑
i=1

ni. (8)

The above observation shows that isoTNS ⊂ rp-PEPS.
A similar relation also holds between p-PEPS and f-
PEPS [50], here understood in a generalization to qudits
and with arbitrary feedback. f-PEPS can be viewed as
isoTNS on a lattice with different connectivity [50]. If we

denote isoTNSD,dn×m (f-PEPSD,dn×m) as the class of isoTNS
(f-PEPS) on a n×m lattice with bond dimension D and
physical dimension d, we prove in the SI that [62]

isoTNSD,dn×m ⊂ rp-PEPS2s+1
(n+2s)×(m+2s), (9)

and

f-PEPSD,dn×m ⊂ p-PEPS2s+1
(n+s)×(m+s). (10)

Thus isoTNS and f-PEPS are contained in p-PEPS with
a slightly larger lattice. A corollary of this construction
is that isoTNS admit an exact representation as a se-
quential quantum circuit.

emitter emission

end

ancilla photon

⎫⎬ ⎪⎪⎭ ⎪⎪

repeated

FIG. 4. Generation of photonic rp-PEPS using an array of
coupled sequential photon sources. (a) In the preparation of

the [i, j]-th rp-PEPS site, we apply a unitary Û[i,j] followed

by a photon emission M i
ph of the emitter Ej . After the initial

steps (1) and (2), steps (3) and (4) will be repeated. (b)
At the end of the protocol, we swap the excitations on the
ancillas to the emitters and then convert them to photons,
denoted as S.

Having established that both SGS and isoTNS are rp-
PEPS with ‘L’-shaped unitaries, we note that SGS has
a further condition on the unitaries, namely that they
can be decomposed into two unitaries corresponding to
the two arms of the L (see Fig. 2b), which indicates that
SGS are a subset of isoTNS. This has direct consequences
for the states. While in SGS, local observables can effi-
ciently be calculated anywhere in the lattice, in isoTNS,
this requires shifting the OC, which can only be done
approximately. Their precise relation is [62]

SGS
Lp
n×m ⊂ isoTNSd

Lp(Lp−1),d
n×m . (11)

Finally, we note that, since the isometry of the PEPS
tensors derives directly from the unitarity of the prepa-
ration circuit, we further show that rp-PEPS can be ex-
pressed as isoTNS on lattices with unusual connectiv-
ity [62].

Generating rp-PEPS of flying qub(d)its.—To prepare
photonic MPS of bond dimension D and physical dimen-
sion d, one can use a photon source comprising a D-
level ancilla A1 and a d-level emitter E1. The MPS is
prepared by repeatedly applying a unitary on the joint
ancilla-emitter system, followed by swapping the emitter
state into a flying photon, defined in terms of the photon
emission isometry Mph [25]

Mph : |k〉d → |0〉d|k〉ph, k ∈ (0, ..., d− 1). (12)

Now we extend the above protocol by considering an
array of m sequential photon sources coupled to each
other as shown in Fig. 4, and show that photonic rp-
PEPS can be prepared with this setup. To make a close
connection, we assume the ancilla has D = dLp−1, in
which case it can be thought of as Lp − 1 qudits.

Starting with all ancillas {Aj} and emitters {Ej} in
the ground state |ϕ0〉 = |0{Aj}〉 ⊗ |0{Ej}〉, in the step
to prepare the (i, j)-th site of the rp-PEPS, we apply a
unitary Û[i,j] that acts on the ancillas {Aj , ..., Aj+Lp−1}
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and emitters {Ej , ..., Ej+Lp−1} [see Fig. 4(a) for Lp = 2
case]. After the unitary, we trigger the photon emission
from the emitter Ej (denoted as M j

ph [cf. Eq. (12)]). To
disentangle the ancilla from the photons, in the last Lp−1
steps of the protocol, we sequentially swap the effective
Lp − 1 qudits contained in the ancilla into photons, an
operation collectively denoted by S. The final state of
the system is |ϕ0〉

∣∣ψpsg

〉
ph

, with photonic state

|ψrp〉ph = 〈ϕ0| S
n−Lp+1∏
i=1

m−Lp+1∏
j=1

(M j
phÛ[i,j]) |ϕ0〉. (13)

|ψrp〉ph is a rp-PEPS with OBC and plaquette size Lp,
with its source point at the first photonic qudit. Notice
that, in the boundary of the photon source array, the
photon emission process M i

ph emits multiple photons, as
visualized in step 4 in Fig. 4(a). In contrast to the pro-
tocol that produces rp-PEPS on a static lattice, here the
overlapping of gates along the horizontal direction are
produced by acting on the ancillas.

Overall, this setup allows one to prepare arbitrary pho-
tonic rp-PEPS (including isoTNS [62]) with circuit depth
that follows the same scaling as the matter-based lattice
case [c.f. Eq. (1)], and prepare photonic f-PEPS with the
circuit depth scaling as O(N) [62].

Conclusion.—We have introduced p-PEPS and its sub-
class rp-PEPS, which constitute a natural generalization
of sequential preparation protocols from one to higher
dimensions. These states satisfy area-law entanglement
by construction, combine the capacity to host long-range
correlations, topologically ordered states, and a large
subclass of PEPS with a simple and efficient preparation
protocol. Our work helps to clarify the relation between
various relevant classes of PEPS, including SGS [49], f-
PEPS [50] and isoTNS [1], that we show SGS ⊂ isoTNS
⊂ rp-PEPS, and f-PEPS ⊂ p-PEPS.

The family of states we introduce come with explicit
construction of quantum circuits that prepare them in
matter-based and photon-based lattices, which makes
them promising targets for near-term experimental re-
alization. Furthermore, one can include several layers of
sequential plaquettes to increase the expressivity of the
ansatz.
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(Grant Agreement No. 742102), and within the D-
A-CH Lead-Agency Agreement through project No.
414325145 (BEYOND C), and the European Union’s
Horizon 2020 research and innovation program under
Grant No. 899354 (FET Open SuperQuLAN).

Supplementary Materials

CONTENTS

Properties of p-PEPS 5

Bond dimension of the PEPS representation of
p-PEPS 5

Efficient computation of certain expectation
values 6

Long-range correlation in the p-PEPS, and
comparison to brickwall circuits 6

Preparing arbitrary 2D isoTNS on atomic lattice 7

Increase the isoTNS bond dimension 7

Preparing isoTNS with OC at arbitrary location 7

Ancilla in preparing isoTNS with uniform bond
dimensions 8

Proof of isoTNS ⊂ rp-PEPS [Eq. (9) in the main
text] 8

Representing rp-PEPS as isoTNS 8

Preparing higher-dimensional p-PEPS and isoTNS 9

Proof of SGS ⊂ isoTNS [c.f. Eq. (11) in the main
text] 10

Proof of f-PEPS ⊂ p-PEPS [Eq. (10) in the main
text] 12

Preparing isoTNS and f-PEPS of flying qub(d)its 12

References 13

Properties of p-PEPS

Bond dimension of the PEPS representation of
p-PEPS

As discussed in the main text, one can obtain the
PEPS representation of p-PEPS by decomposing the pla-
quette unitaries into projected entangled-pair operators
(PEPO) [4] (shown in Fig. 1d in the main text). To
be precise, given a plaquette unitary of side length Lp,
the resulting bond dimension of the PEPO is trivially

bounded by D ≤ O(dL
2
p), which come from the MPO de-

composition of given unitary acting on L2
p qudits. More-

over, there are L2
p plaquette unitaries acting on a single

site in total. Thus the bond dimension of the PEPS rep-

resentation of p-PEPS is bounded from above by O(dL
4
p).
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Efficient computation of certain expectation values

Let us assume we have a local operator Ô. Then its
expectation value in a given p-PEPS is〈

ψp

∣∣ Ô ∣∣ψp

〉
= 〈0|⊗N Û†~v1 ...Û

†
~vN
ÔÛ~vN ...Û~v1 |0〉

⊗N
. (14)

Depending on the ordering P of the |ψp〉 and the location

of Ô in the lattice, it is possible to directly cancel some
gates in Eq. (14) with their hermitian conjugate.

We illustrate this effect in Fig. 5 using a rp-PEPS with
the source point in a corner of the lattice. For rp-PEPS,
the ordering P reflects the distance of the unitary to the
source point. In this case, the expectation values of local
operators that are geometrically close to the source point
can be computed efficiently [c.f. Fig. 5(a)]. Moreover,
due to the choice of the preferred direction for plaque-
ttes at equal distance, one finds that also along the line
starting from the source point and along the preferred
direction, expectation values can be computed efficiently
[c.f. Fig. 5(b)].

Note that this is very similar to what happens in iso-
metric tensor networks, in which expectation values of
operators close to the OC or the orthogonal hypersur-
faces can be calculated efficiently [1].

FIG. 5. Efficient computation of certain expectation values
for rp-PEPS (Lp = 2 here). Here the red dot marks the source
point. When we want to compute the expectation values of
an operator Ô located at the site marked by the purple dot,
that is (a) geometrically close to the source point, or (b) along
the line that crosses the source point and extends along the
preferred direction, a majority of unitaries in Eq. (2) in the
main text will be canceled with their hermitian conjugates,
marked by the green plaquettes here.

Long-range correlation in the p-PEPS, and
comparison to brickwall circuits

In case that the plaquette unitaries for creating p-
PEPS [Eq. (2) in the main text] overlap with earlier ones,
the resulting p-PEPS generally have long-range correla-
tions among arbitrary locations in the lattice. To illus-
trate this, first let us compare such one-dimensional p-
PEPS and the brickwall circuit [63], shown in Fig. 6.
Here the ‘plaquette’ gates for one-dimensional p-PEPS
are local gates of Lp qub(d)its.

In this section, we assume the shape of unitaries in the
brickwall circuits is the same as in the case of p-PEPS.
A similar discussion between these two circuit structures
can be found in Ref. [36].

FIG. 6. The correlation in sequential circuit pattern for p-
PEPS and the brickwall circuits in the one-dimensional case
(Lp = 2 here). (a) The sequential circuit pattern ensures
long-range correlation, as the reversed light cone (the yellow
regions) always have overlap, at least at the position of the
first unitary (marked by the red box). (b) Given the same
amount of gates O(N) for the sequential circuit pattern, the
brickwall circuit can only create short-range correlations. (c)
To also create long-range correlation using brickwall circuit,
the circuit depth scale the same as the circuit pattern for
rp-PEPS Trp [Eq. (1) in the main text], which also mean a
Trp-fold increase on the number of gates needed, compared to
the sequential circuit in panel (a).

Given a state prepared by quantum circuits, the corre-
lations between two locations are non-zero if the reversed
‘light cones’ starting from these two locations overlap.
This is illustrated in one dimension in Fig. 6(a). If we
take the same number of unitaries and arrange them in a
brickwall circuit (this also belong to p-PEPS), it will be
a finite-depth circuit of depth O(Lp) [shown in Fig. 6(b)
for Lp = 2], which only creates correlations up to a dis-
tance O(Lp). To create long-range correlations in brick-
wall circuits requires a circuit depth of at least O(n/Lp)
[c.f. Fig. 6(c)], which uses many more gates.

The above observation also holds for higher dimen-
sional p-PEPS. Thus, when the plaquette unitaries in
Eq. (2) in the main text have overlap with earlier ones,
the reversed light cones of two arbitrary locations in the
lattice always overlap, at the very least on the first pla-
quette. For a N = n1 × ...× nq lattice, it generally take
a brickwall circuit of depth O(max

i
ni) to produce long-

range correlations among the whole lattice, thus takes
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O(N ·max
i
ni) gates, many more than for p-PEPS prepa-

ration.
Thus p-PEPS contain states with long-range corre-

lation among arbitrary locations in the lattice. More-
over, such long-range correlated states in the form of
rp-PEPS can be prepared particularly efficiently, with
circuit depth scale as the maximum edge length of the
lattice [Eq. (1) in the main text].

Preparing arbitrary 2D isoTNS on atomic lattice

In this section, we show how to extend the circuit pat-
tern in Fig. 3(a) in the main text to prepare arbitrary 2D
isoTNS in a square atomic lattice.

Increase the isoTNS bond dimension

One can increase the bond dimension of isoTNS pre-
pared by sequential circuit in Fig. 3(a) in the main text by
making the gates acting on more common sites. In partic-
ular, the gate B̂[i,j] that generate isoTNS of bond dimen-

sion D acts on the site
{

(i, j) , ..., (i, j + s) , (i+ s, j + s)
}

where s = dlogdDe. The example of s = 2 is shown
in Fig. 7(a), with the identification of the PEPS bonds
shown in Fig. 7(b).

Notice that, unlike the case of rp-PEPS [Eq. (1) in the
main text], increasing the legs of the ‘L’-shape unitaries
does not change the circuit depth Eq. (8) in the main
text of preparing isoTNS, since it is clear from Fig. 7(a)
that we can always parallelize the two unitaries on the
upper and right side of a given ‘L’-shape unitary.

l

u

r

k
k

b

B

⎫⎬ ⎪⎭ ⎪

r

⎫
⎬⎪

⎭⎪

⎫
⎬ ⎪

⎭ ⎪

⎫ ⎬⎪

⎭⎪

l

u

b
0

FIG. 7. (a) One can prepare isoTNS with higher bond di-
mension by applying gates that have more common sites. (b)
The applied gates converted to an isoTNS with higher bond
dimension. Here each black line is a bond of dimension d,
thus the virtual bond dimension here is D = d2.

Preparing isoTNS with OC at arbitrary location

The protocol in Fig. 3(a) in the main text prepares
arbitrary isoTNS of the geometry shown in step 7 of
Fig. 3(a) in the main text, where the OC is at the cor-
ner of the lattice, marked with the red dot. In general,
the number of incoming virtual bonds qin in an isoTNS

l

l
u

u

r
r kk

b

b B

FIG. 8. The preparation of the isoTNS with OC in the bulk.
(a) The tensor of isoTNS at OC has qin = 4 incoming virtual
bonds, which correspond to a qunit = 5 qudit unitary acts on
the initial state, which follows the general relation Eq. (15).
(b) The preparation procedure. Here we use the same nota-
tions as in Fig. 3(a) in the main text. One first prepare the
OC in step 1, and then sequentially grow the region along
all directions. The tensors in the orthogonality hypersurface
(denoted by the red shaded areas) generally have qin = 3
incoming virtual bonds, thus are prepared by four-qudit uni-
taries shown in step 2 and 3. After that, one can use the same
procedure as in Fig. 3(a) in the main text to grow the four
regions of the lattice, eventually, prepare an isoTNS with OC
in the bulk.

tensor is directly related to the number of outgoing legs
qunit for the unitary, as

qin = qunit − 1. (15)

For example, the isoTNS tensor shown in Fig. 3(b) in
the main text are created with three-qudit unitaries
(qunit = 3), since there are two incoming legs (qin = 2) for
that tensors. When OC at an arbitrary location inside
the bulk (like that in Fig. 2a in the main text), the ten-
sor at OC has qin = 4 incoming virtual bonds, thus one
need a 5-qudit unitary to prepare it, which is shown in
Fig. 8(a). Thus we can use the circuit pattern in Fig. 8(b)
to prepare isoTNS with OC in the bulk of the lattice.
In step 1, we prepare the tensor at OC by applying a
5-qudit unitary. Then the tensors at the orthogonality
hypersurface are prepared by 4-qudit unitaries, for ex-
ample, shown in step 2. Then one can apply the same
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procedure as that in Fig. 3(a) in the main text to grow
the size of the prepared isoTNS on four regions separated
by the orthogonality hypersurface, and use the sites on
both left and right boundaries of the lattice as ancillas,
to create an arbitrary isoTNS of bond dimension d and
physical dimension d, with OC at an arbitrary location of
the lattice. The method to increase the bond dimensions
also naturally applies in this scenario.

Preparing isoTNS with OC inside the bulk of the lat-
tice not only makes the class of isoTNS with open bound-
ary conditions we prepare complete but also has practical
relevance for the state preparation speed. As the region
of prepared sites expands along all directions simultane-
ously, one can prepare an isoTNS with OC at the center
four times faster than one with the OC at the corner. We
also point out that the isoTNS with OC inside the bulk is
also naturally contained in the class of p-PEPS, as we can
just cover the local gates shown in Fig. 8(b) inside ap-
propriate plaquettes and the ordering of plaquette gates
naturally captures the sequential ordering in Fig. 8(b).

Ancilla in preparing isoTNS with uniform bond
dimensions

As shown in the main text Fig. 3(a) and the previous
sections [c.f. Fig. 8(b) and Fig. 13(b)], one need to use
some ancillas when preparing isoTNS. This comes from
the mechanism of connecting the tensors of the isoTNS,
that we need to let the neighboring gates have overlap-
ping regions to create virtual bonds of the tensors. As
a result, when reaching the boundary of the system, we
have to merge sites to obtain a general isoTNS of that
geometry, for example as shown in Fig. 3(a6-7) in the
main text. Without merging, the resulting state would
lack vertical bonds between the rightmost sites. Clearly
one can embed arbitrary isoTNS of uniform bond dimen-
sion and smaller lattice into that geometry, treating the
sites on the boundary as ancillas.

FIG. 9. Using ancillas to create virtual bonds of isoTNS with
uniform bond dimension. Here the blue dots are the sites used
as ancillas. The physical site of the tensor and the overlapping
sites of the two gates are marked more prominently. Panel (a)
shows that for the left/right boundary, we need s columns of
ancillas, and panel (b) shows for the upper/bottom boundary,
one needs s− 1 rows of ancillas.

We show the usage of ancilla more explicitly on the

right and upper boundary of the lattice in Fig. 9. For
‘L’-shape gates of the direction shown there, we need ad-
ditional s columns and s − 1 rows of qubits as ancilla,
where s = dlogdDe for creating isoTNS of bond dimen-
sion D. Thus overall, given such an isoTNS with OC in
the bulk of size n×m, we will need a (n+2s)×(m+2s−2)
lattice, where the sites on the boundary of the lattice act
as ancillas.

Moreover, one also needs to use ancilla when creating
photonic isoTNS with uniform bond dimensions. We will
elaborate it in the photonic isoTNS generation protocol
around Fig. 14.

Proof of isoTNS ⊂ rp-PEPS [Eq. (9) in the main
text]

It is clear from the previous section that, to produce
isoTNS of bond dimension D in a n × m lattice, one
needs a sequential quantum circuit that acts on a (n +
2s) × (m + 2s − 2) lattice [c.f. Fig. 9], where the sites
on the boundary are used as ancillas. Also notice that
in Fig. 9(b) the length of the vertical arm of the ‘L’-
shape unitary at the upper boundary of the lattice is
also slightly reduced. Thus we need to formally put an
additional row of ancillas in Fig. 9(b) to make that ‘L’-
shape unitary properly covered in a plaquette unitary.

Overall, We can cover the isoTNS preparation circuit
into the rp-PEPS preparation circuit on a (n + 2s) ×
(m + 2s) lattice, where the largest plaquette size is de-
termined by the gate that prepares the OC of isoTNS
[c.f. Fig. 8(a)], where we need a plaquette of side length
Lp = 2s + 1. This thus proves the relation between
isoTNS and rp-PEPS [Eq. (9)]:

isoTNSD,dn×m ⊂ rp-PEPS2s+1
(n+2s)×(m+2s),

A similar argument also holds in higher dimensions, that
arbitrary isoTNS is contained in rp-PEPS of slightly big-
ger lattices.

At last, we point out that, if we are allowed to move
the location of the ancilla, we could reduce the number
of ancillas to the order of O(dlogdDe) by efficiently reuse
the ancilla that has been disentangled after providing
the virtual bonds. For example, in Fig. 3(a) in the main
text there are always only two ancillas that are under
operation or being entangled to the system during the
state preparation procedure.

Representing rp-PEPS as isoTNS

The sequential application of local quantum gates that
have overlapping sites naturally defines a ‘causal’ struc-
ture, and the unitarity of gates implies certain isometry
conditions. One can view each unitary as a tensor (see
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Fig. 10(a)), with its incoming and outgoing legs that have
overlap with other unitaries as the virtual bonds, and
the outgoing legs that do not further connect to other
gates as the physical bond. In this way, we can write
an arbitrary rp-PEPS as isoTNS. The simplest example
of Lp = 2 rp-PEPS is shown in Fig. 10(b). Compare to
standard isoTNS [1] [c.f. Fig. 2(a)], the isoTNS represen-
tation of rp-PEPS has unusual connectivity and spatial
non-uniform bond dimensions and physical dimensions.
By further increasing Lp and changing the ordering P,
the isoTNS representation of rp-PEPS will contain vir-
tual bonds that connect more distant sites and more un-
usual connectivity.

FIG. 10. Writing rp-PEPS as an isoTNS. (a) States produced
by sequential quantum circuits can be converted to isoTNS,
where we identify each unitary as a tensor site. The physical
index of the tensor corresponds to the outgoing leg(s) that
does not connect to other gates, and the virtual indices of the
tensors are produced by the connected legs of the gates. (b)
The two-dimensional rp-PEPS with grid length Lp = 2 can
be written as an isoTNS with connectivity shown on the right
side of the figure. Here each line is a bond of dimension d.

Preparing higher-dimensional p-PEPS and isoTNS

It is desirable to generalize our protocols to pre-
pare higher-dimensional p-PEPS and isoTNS, since these
states potentially efficiently characterize the ground
state of higher-dimensional local Hamiltonians [69], with
prominent examples like the three-dimensional cluster
state [21, 70].

Here we briefly discuss how to generalize our scheme
to higher dimensions. First, the p-PEPS can naturally
be extended to higher dimensions by sequentially apply-
ing higher-dimensional cubes of side length Lp. For a
q-dimensional lattice of size N = n1 × ... × nq, the p-
PEPS is still of form [Eq. (2) in the main text]:

∣∣ψp

〉
=

N∏
µ=1

Û~vµ |0〉
⊗N

,

where now the position vector ~vµ ≡ (iµ1 , i
µ
2 , ..., i

µ
q ). Other

quantities like the ordering P and the state with open
boundary conditions are defined in the same way as two-
dimensional case, and it is clear that the worst-case cir-
cuit depth is of O(N).

The rp-PEPS can also be defined in the same way, as
starting from the source point, we group the unitaries

into layers, and each layer of the gates acts on q-cubes
across the boundary of the gate-acted region, which bal-
listically expand this region. The three-dimensional case
is illustrated in Fig. 11(a). We also need to define the pre-
ferred direction as a permutation of directions 1, 2, ..., q.
If we assume the preferred directions is (1, 2, ..., q), i.e.
the first index of the position vector ~vµ grows first, we
will get the following depth:

Trp ≈
q∑
i=1

Li−1p ni,

which lead to the scaling Eq. (1) in the main text.
Compare to p-PEPS, it is less obvious to obtain the

exact circuit representation of isoTNS in higher dimen-
sion. Let us first draw some intuition of this represen-
tation from our two-dimension case. In the main text,
the isoTNS with the geometry shown in Fig. 3(a7) in
the main text have its bulk tensor equivalent to a three-
qudit gate B̂[i,j] acting on the sites (i, j), (i, j + 1) and

(i + 1, j + 1). Notice that the geometry of B̂[i,j] is not
symmetric for the index i, j, which reflect the fact that
j is the preferred direction of the underlying rp-PEPS in
Fig. 3(a).

It turns out that the tensor of q-dimensional isoTNS
with bond dimension D = d can be mapped to a unitary
that acts on q + 1 qudits, such that the number of the
tensor indices 2q + 1 will match the number of incoming
and outgoing legs of the unitary with one leg acts on the
reference state |0〉, which is also 2q + 1. For example,
in the two-dimensional case [Fig. 3(b) in the main text],
the PEPS tensor have 5 legs, corresponds to a 3-qudit
unitary with a single input leg as reference state |0〉.

If we follow the same sequential ordering for the rp-
PEPS discussed in this section, the unitary B̂[i1,...,iq ] that
creates a single isoTNS tensor acts on the sites{ (

i1, ..., iq−1, iq
)
,
(
i1, ..., iq−1, iq + 1

)
,(

i1, ..., iq−1 + 1, iq + 1
)
, ...,

(
i1 + 1, ..., iq−1 + 1, iq + 1

) } .
For example, to create three-dimensional isoTNS, we

apply four-qudit unitary B̂[i1,i2,i3] that acts on{
(i1, i2, i3) , (i1, i2, i3 + 1) ,
(i1, i2 + 1, i3 + 1) , (i1 + 1, i2 + 1, i3 + 1)

}
. (16)

Several adjacent unitaries for preparing isoTNS of
bond dimension D = d are shown in Fig. 11(b)
with different colors. The geometric overlapping of
these unitaries gives rise to an isoTNS in a reg-
ular three-dimensional lattice, and it is clear that
isoTNS ⊂ rp-PEPS also holds in higher dimensions.
Fig. 11(b) also shows that, given a unitary B̂[i1,i2,i3], its

adjacent unitaries
{
B̂[i1+1,i2,i3], B̂[i1,i2+1,i3], B̂[i1,i2,i3+1]

}
commute with each other and can be implemented in
the same layer of circuit. This eventually lead to a
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circuit depth for preparing q-dimensional isoTNS on a
n1 × ...× nq lattice as [c.f. Eq. (8) in the main text]

Tiso ≈
q∑
i=1

ni,

which is slightly smaller than that for preparing rp-PEPS
by a factor of Lq−1p .

FIG. 11. (a) The illustration of generation process of
three-dimensional rp-PEPS and isoTNS. Similar to the two-
dimensional case [c.f. Fig. 1(e)], start from the source point
(the red dot), the gate-acted region ballistically expands along
all directions, with its boundary at different times denoted
by the color surfaces. For rp-PEPS it takes a circuit depth
Trp ≈ n1 + Lpn2 + L2

pn3 to finish the state preparation [here
assume the preferred directions is (1, 2, 3)], and for isoTNS
it takes a circuit depth Tiso ≈ n1 + n2 + n3. (b) The uni-

taries B̂[i1,i2,i3] (green shades), B̂[i1,i2,i3+1] (blue shades),

B̂[i1,i2+1,i3] (purple shades) and B̂[i1+1,i2,i3] (red shades) for
creating three-dimensional isoTNS of bond dimension D = d.
The overlapping sites of these gates provide virtual bonds
that connect tensor sites, leading to the desired cubic lattice
structure of three-dimensional isoTNS.

At last, one can also generalize the photon gener-
ation protocol to higher dimensions in the same way.
To prepare a q-dimensional photonic lattice, we need a
(q − 1)-dimensional array where each site consists of an
D = dLp−1-level ancilla and an d-level emitter as shown
in Fig. 4 in the main text. Together the photon emission
of emitters, one can operate the same sequential genera-
tion protocol as shown in Fig. 4 in the main text, where

we replace the unitaries by Û[i1,...,iq ] (B̂[i1,...,iq ]) to pre-
pare q-dimensional rp-PEPS (isoTNS).

Proof of SGS ⊂ isoTNS [c.f. Eq. (11) in the main
text]

As already discussed in the main text, the SGS admit a
PEPS representation [49]. In this section, we prove SGS
is a strict subclass of isoTNS using graphical notations.
As introduced in the main text, the SGS is prepared by
coupling unitaries {V̂ } on multiple lines of MPS. Without
loss of generality, we can assume the MPS are all in the
canonical form, with their orthogonality centers at the
bottom of the lattice, as we show in Fig. 12(a).

QR

FIG. 12. (a) The two-dimensional SGS (also see Fig. 2a).
Here we further use arrows to denote the isometry conditions
of MPS tensors in canonical form, to imply its relation with
isoTNS. The OC of the corresponding isoTNS is shown as the
red dot. (b) The SGS can be written as an isoTNS, with the
OC marked by the red dot, and the structure of bonds shown
in the figure. (c) One can do QR decomposition of tensors in
panel (b) that have more physical indices, where we denote
the index that will be decomposed out with blue color. This
will result in multiple tensors, where each one satisfies an
isometry condition. (d) After the QR decomposition, the SGS
can be written as an isoTNS with uniform physical dimension
d.

In SGS, the unitaries V̂[i,j] in the bulk couple Lp neigh-
boring columns. The PEPS tensor inside the bulk of the
lattice takes the form [49]

l

u

r

k

b

B

k

l

u

r

b . (17)

Notice this relation is the same as that in Fig. 2(b) in
the main text, and we further use the arrows to denote
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the isometry conditions. Depending on the bond dimen-
sion of the underlying MPS and the number of qub(d)its
that the unitaries {V̂ } acts on, the PEPS representa-
tion of SGS could have different bond dimensions in the
horizontal and vertical bonds. Without loss of general-
ity, we assume a uniform bond dimension D = dLp−1 in
the bulk. Also notice that, at the left boundary of the
two-dimensional lattice (the case of Lp = 2 is shown in
Fig. 12(a)), the corresponding PEPS sites (denoted by
the dashed box) have higher vertical bond dimension as
DLp , and on the right boundary we group Lp sites in
each row (shown in the rightmost dashed box) as one, as
PEPS sites with bond dimension D and physical dimen-
sion dLp .

Thus SGS in Fig. 12(a) can be mapped to PEPS of
bond dimension D′ = DLp = dLp(Lp−1) and physical di-
mension d′ = dLp , as shown in Fig. 12(b) for the case of
Lp = 2. In Fig. 12(b) we further use the isoTNS nota-
tions, as in the following we will show that the PEPS rep-
resentation of arbitrary SGS is an isoTNS. We also point
out that, one can do QR decomposition on the tensors
that have multiple physical indices, to separate them to
multiple tensor sites that have physical dimension d and
also satisfy isometry conditions (shown in Fig. 12c). In
this way, the isoTNS in Fig. 12(b) can always be written
as an isoTNS of a uniform bond dimension d that have
the same lattice size as the original SGS (Fig. 12d).

Proposition 1 The PEPS representation of SGS
[c.f. Fig. 12(b)] is an isoTNS.

Proof: One can directly check the isometry condition
of the corresponding tensors in Fig. 12(b). For the sites
in the bulk, the unitarity of V̂[i,j] and the canonical form
of A lead to

k

,
(18)

where the connected lines denotes the contraction of the
corresponding indices. This directly leads to the isometry
condition of SGS tensor in the bulk [Eq. (17)]:

l

u

l '
l '

B

B†

k k
u
r

r
l
b

l

u

l '

r
l

l '

.
(19)

Analogously, one can check all tensors in the bound-
aries also satisfy the corresponding isometry conditions,

with arrow directions denoted in Fig. 12(b). Thus
the PEPS representation of SGS is itself an isoTNS
(c.f. Fig. 12). �

From the reverse direction, isoTNS is not necessarily a
SGS. In the main text, we have qualitatively shown that
the circuit representation of a tensor for SGS and isoTNS
are quite similar, as they both acts on the same set of the
qudits. In the case of bond dimension D = d, for SGS it
contain two two-qudit unitaries [c.f. Fig. 2(d) in the main
text], while in the case of isoTNS the circuit is a generic
three-qudit unitary [c.f. Fig. 3(b) in the main text].

Proposition 2 A single PEPS tensor corresponding to
a SGS site [c.f. Eq. (17)] does not cover arbitrary isoTNS
tensor [c.f. Fig. 3(b) in the main text] with the same
isometry condition.

Proof: Let us consider the single PEPS tensor Bklurb that
have the same structure as that come from the SGS
[c.f. Eq. (17)]. For simplicity, we consider the Lp = 2
case, where Bklurb has both physical dimension and bond
dimension d, with the isometry condition shown by be-
low Eq. (20). One can apply a QR decomposition to the
tensor, getting

l
l

u

ur

rk k

b
b

B
QR

, (20)

where the V ′ part is an isometry (due to the QR decom-
position), and each black line denote a bond of dimension
d. Thus, an arbitrary isoTNS tensor satisfying isometry
condition is equivalently represented by arbitrary V ′ and
A′ that satisfy

,
.

(21)
It is clear that coming from an isoTNS, the resulting

tensor coming from QR decomposition [Eq. (21)] does
not necessarily satisfy the condition for SGS Eq. (18).
They differ in the following points: i) For the V part of
SGS, one requires a full identity on the indices l and q as
shown in Eq. (18). However, for the V ′ part of isoTNS,
we only require an identity relation on q when we con-
tract the other three legs l, k, r. ii) The index q that
connects two tensors V ′ and A′ for isoTNS can generally
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have dimension d2, while the one for SGS can only have
the dimension d. The above point i) is particularly im-
portant, since even if one arbitrarily increases the bond
dimension of the SGS, one can still find isoTNS that does
not have an identity condition on the index l, thus makes
SGS unable to cover the full class of isoTNS with any
non-trivial bond dimension D ≥ 2. �

Thus SGS is a strict subclass of isoTNS. More precisely,
we have [c.f. Eq. (11) in the main text]:

SGSLpm,n ⊂ isoTNSd
Lp(Lp−1),d
m,n .

Here we have used the PEPS representation of SGS
[c.f. Fig. 12(d)]. We also point out that, here the bond
dimension D′ = dLp(Lp−1) of the isoTNS aims to capture
the bond dimension at the boundary of the lattice, how-
ever, the majority of the sites in the bulk of the lattice
just have D = dLp−1, thus isoTNS of D = dLp−1 ‘almost’
cover the class of SGS of circuit length Lp.

The difference between SGS and isoTNS is reflected
in their qualitative difference, that SGS admits efficient
computation of local correlators at an arbitrary location
of the lattice [49], however, isoTNS can only shift OC
approximately [1], thus compute local correlators at an
arbitrary location only in an approximate way.

Proof of f-PEPS ⊂ p-PEPS [Eq. (10) in the main
text]

The f-PEPS proposed in Ref. [50] is a subclass of PEPS
produced by photon feedback from a single emitter. It is
clear from Ref. [50] that, f-PEPS is a PEPS with shifted
PBC, where each tensor satisfies an isometry condition.
Thus, we can represent f-PEPS as isoTNS with a shifted
PBC shown in Fig. 13(a), where the isometry conditions
are denoted by the arrows. In this section, we will show
the preparation protocol of f-PEPS on atomic lattices
using a sequential circuit, which will naturally serve as
proof of the fact that f-PEPS ⊂ p-PEPS [Eq. (10) in the
main text].

The direction of the arrows in the isoTNS representa-
tion of f-PEPS [c.f. Fig. 13(a)] indicates a full sequential
ordering of its preparation circuit. In particular, the site
on the boundary of each row has to be prepared earlier
than the site on the boundary of the next row. Thus un-
like the preparation of isoTNS with OBC [c.f. Fig. 3(a)],
the preparation of f-PEPS does not allow the gates to be
applied simultaneously along different directions.

We can prepare f-PEPS with a full sequential circuit
shown in Fig. 13(b). Compare to the isoTNS preparation
protocol [c.f. Fig. 3(a) in the main text], here we modify
the shape of gates that create sites on the right boundary
of each row (denoted with green boxes in steps 3 and 6),
such that these gates now also act on the first site of the
next row. The coupling of different boundaries creates

FIG. 13. (a) The f-PEPS can be viewed as isoTNS with
shifted periodic boundary condition. Here we use the same
notation as that in Fig. 3(a). (b) The sequential preparation
of f-PEPS of bond dimension D = d in an atomic lattice.
Here the blue dots denote the sites used as the ancilla.

additional virtual bonds of the resulting isoTNS, thus
give us an arbitrary isoTNS of bond dimension D = d of
the geometry shown in Fig. 13(b10), with shifted PBC.
Here we have used the sites on the right boundary of the
lattice as ancillas.

Similar to the isoTNS case [c.f. Fig. 9], to create arbi-
trary f-PEPS with larger bond dimension D, we need to
let the neighboring gates to have s = dlogdDe common
sites, thus require s columns and s − 1 rows of ancillas
(later we will put s rows of ancillas, to ensure the gates
are covered by plaquette unitaries). Also, the sequen-
tial circuit of the maximal size are those that couples
to boundaries of the lattice( shown as green boxes in
Fig. 13), and they can be contained in plaquette of side
length Lp = 2s+1. With that, it is clear that [c.f. Eq. (10)
in the main text]

f-PEPSD,dn×m ⊂ p-PEPS2s+1
(n+s)×(m+s).

The above construction shows that f-PEPS ⊂ p-PEPS,
and serve as the way to create them. To create a f-PEPS
on N = n×m lattice, the circuit depth is T = O(N). We
also point out that isoTNS with other kinds of periodic
boundary conditions can be prepared in the same way.

Preparing isoTNS and f-PEPS of flying qub(d)its

As shown in the main text, each isoTNS tensor can be
mapped to a ‘L’-shape unitary B̂[i,j] [c.f. Eq. (7) in the
main text]. Thus using the ancilla-emitter array setup
shown in Fig. 4 in the main text, we are able to create
photonic isoTNS.

The procedure to produce photonic isoTNS of bond
dimension D = d with the open boundary condition is
shown in Fig. 14(a). Here we follow the rp-PEPS gener-
ation protocol in Fig. 4 in the main text, and the unitary
B̂[i,j] that prepares the [i, j]-th isoTNS site acts on the
ancilla Aj and emitters Ej , Ej+1. Due to the sequential
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FIG. 14. Generation of photonic isoTNS using an array of
coupled sequential photon sources. (a) To prepare isoTNS
with open boundary condition, one apply the same procedure
of the rp-PEPS generation shown in Fig. 4, with the ‘L’-shape
gates. (b) By coupling the two ends of the array of sequential
photon sources with ‘L’-shape gate (shown in the step 3), one
can prepare f-PEPS, which are photonic isoTNS with shifted
periodic boundary condition.

nature of the protocol, the OC sits on the first photonic
qudit being produced. One can also increase the bond
dimension of the resulting isoTNS in the same way as
shown in Fig. 7(a), by increasing the ancilla dimension
and increase the length of the ‘L’-shape gate along the
emitters. Also, similar to the matter-based isoTNS case
[c.f. Fig. 9(b)], we need to put additional s − 1 qudits
(each of the dimension d) with s = dlogdDe on the top
or bottom boundary of the array, which will be used to
create virtual bonds of the isoTNS tensors.

In this case, this photonic isoTNS is again contained
in the photonic rp-PEPS on a slightly larger lattice.

At last, by another simple modification of the above
protocol, our platform can also prepare photonic f-PEPS,
which are isoTNS with shifted periodic boundary condi-
tions (sPBC). In Fig. 14(b), we show the steps to pre-
pare f-PEPS. The key point is step (3), which applies a
gate that couples two boundaries of the lattice, provid-
ing the virtual bond for sPBC shown in step (4). This
indicates that the class of states that our ancilla-emitter
array setup can prepare is strictly larger than that the
non-Markovian feedback approaches can prepare [50, 55–
59, 61].

Compared to the non-Markovian feedback ap-
proaches [50, 55–59, 61], our array-based approach does
not require interaction with the emitted photons, there-
fore is easier to implement experimentally. Specifically,
it allows one to implement generic unitaries and makes it
possible to increase the complexity of the state by acting

on more qub(d)its.
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