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1 Introduction

Topological string models with Calabi-Yau target spaces provide us with subsectors of
string theory in which certain quantities can be computed exactly. The key to this is that
(2, 2) σ-models with Calabi-Yau targets admit certain topological twists. To be precise,
there are two distinct twists which give the A- and B-models [1]. In both of these models,
the metric is not a fundamental degree of freedom — the A- and B-models are theories of
Kähler and complex structures respectively — which suggests that the resulting theories
may be topological. At the quantum level, the A-model can be defined on any Kähler
manifold, while the B-model can be defined consistently only on Calabi-Yau targets. With
these assumptions, one can show that observables indeed do not depend on the metric and
so deserve the name topological.

The connection between topological strings and geometries captured by invariant func-
tionals was first discussed in [2–4], where the partition function of the topological B-model
and its conjugate [1, 5–7] on a six-dimensional target space M was argued to be encoded in
the Hitchin functional for an SL(3,C) structure on the same target space [8]. Pestun and
Witten later observed that there is a discrepancy between the two at 1-loop, and showed
that the 1-loop partition function of the B-model is actually given by the partition function
of an extended Hitchin functional [9]. Generalising the real three-form that characterises an
SL(3,C) structure, this extended functional is written in terms of a polyform which defines
a generalised Calabi-Yau structure. A key insight here was that although the critical points
of the two functionals agree, at the quantum level the fluctuating degrees of freedom of the
two structures are different. Thus, it was essential to view the target space as a background
in generalised geometry in order to match the topological B-model calculation.

One can view the above calculation by first starting with a conventional σ-model with
a Calabi-Yau target space. In the large-volume limit, the worldsheet theory is captured
by an effective theory on the target space. The topological twist that leads to the B-
model corresponds to a subsector of the target-space theory described by a generalised
Calabi-Yau structure. There is a similar construction for σ-models with a G2 holonomy
target space. One starts with the G2 worldsheet algebra, which contains an extended (1, 1)
supersymmetry algebra [10]. Importantly, this algebra has a c = 7/10 subalgebra, known as
a tri-critical Ising model, which can be used to define a topological twist of the σ-model [11].
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One might expect that there is a subsector of the target-space theory that captures this
twisted sector. An attempt at constructing this theory was made in [11], where a target-
space action was proposed by starting from a Hitchin functional for a generalised G2×G2
structure. In this case, the 1-loop partition function of the topological G2 string disagreed
with the target-space calculation, differing by a factor of the Ray-Singer torsion of the
background G2 manifold.

The goal of this paper is to resolve this discrepancy and give a target-space interpre-
tation of the topological G2 string calculation. Rather than starting from a functional on
the target space, we follow a different path and suggest that these results can be obtained
by considering a certain double complex that arises naturally in generalised geometry.

To be precise, we will give a double complex for G2×G2 that realises the BRST
complex of the topological G2 string. The degrees of freedom of the worldsheet theory
break into right- and left-moving sectors, each with their own BRST operators, with the
string states given by tensor products of these sectors. Physical states are then cohomology
classes of the total BRST operator. We will give a target-space interpretation for each of
these ingredients, culminating in an expression for the 1-loop partition function that agrees
with the worldsheet calculation of de Boer et al. [11] and a target-space action whose BV
quantisation reproduces this answer. Given the conjectured existence of theories in seven
and eight dimensions that unify the A- and B-models [2–4, 12, 13], it seems sensible to
consider how topological Spin(7) strings might also be captured by generalised geometry.
Following the same logic as for the G2 string, we make a conjecture for its 1-loop partition
function.

Our construction does not require that the target space has special holonomy, but
instead requires only the weaker condition of being a purely NSNS Minkowski background
(with metric, dilaton and B field) preserving at least N = 1 supersymmetry. In outline,
starting with an O(d, d)×R+ generalised geometry description of the target space, we show
that supersymmetry implies the existence of a torsion-free G×G structures. From these,
one can construct a compatible, torsion-free generalised connection which, together with
certain projectors onto representations of G×G, can be used to define a pair of differentials
(d+, d−). These differentials give the maps in a double complex for G×G ⊂ O(d)×O(d) ⊂
O(d, d). After working out the Hodge theory and the analogue of Kähler identities for these
differentials, we conjecture that a certain alternating sum of determinants of the Laplacian
defined by d̂ = d+ + d− determines the 1-loop partition function of the corresponding
worldsheet theory. Upon restricting to honest special holonomy backgrounds with vanishing
H flux, our expression reduces to the known result for the G2 string and the A- and B-
models, and gives a prediction for the Spin(7) string.

Though our work gives a target-space description of the 1-loop partition function for
these topological strings, we have not been able to find target-space actions that repro-
duce these calculations upon quantisation in all cases. The central result of [9] was the
construction of a target-space theory based on an extended Hitchin functional for SL(3,C)
whose BV quantisation gives precisely the 1-loop partition function of the B-model on a
Calabi-Yau target. For the G2 string, a similar calculation was attempted in [14] with
less success — the quantisation of neither the conventional nor the extended G2 Hitchin
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functionals reproduced the 1-loop partition function of the G2 string. To the authors’
knowledge, there has been no attempt to repeat this for the Spin(7) string. In this paper,
we give a target-space action whose quantisation does agree with the G2 string, but it is
not based on an invariant functional that we are aware of. For the Spin(7) string, we have
not been able to write down a target-space action.

A summary of our results follows:

• in section 4, we introduce a new double complex for G2×G2 structures on seven-
dimensional manifolds within generalised geometry. The differential operators that
appear in this double complex are defined using a generalised connection that is
compatible with the G2×G2 structure. We show that the operators are nilpotent
and commute in the correct manner (so that they define a complex) if the generalised
connection is torsion-free, which implies that the underlying string background is an
NSNS Minkowski solution preserving at least N = 1 supersymmetry. We define
Laplacians for these operators and their Hodge theory.

• We conjecture that the 1-loop partition function of the corresponding topological
string is given by a certain alternating product of determinants of the Laplace op-
erators acting on the double complex. In section 5 we restrict to the case of a G2
holonomy background, and show that our general expression for the 1-loop partition
function agrees with the worldsheet calculation of de Boer et al. [11].

• We give a target-space action whose BV quantisation reproduces our expression
for the 1-loop partition function in section 5.2. It does not seem that this action
comes from considering variations of an invariant functional, unlike the case of the
B-model [9].

• In section 6 we repeat the above analysis for Spin(7) × Spin(7) structures on eight-
dimensional manifolds. We again show that one can define a double complex pro-
vided there exists a torsion-free connection compatible with the generalised structure,
equivalent to the corresponding NSNS Minkowski background preserving some su-
persymmetry. In section 7 we compute the alternating product of determinants, and
in the case of a Spin(7) holonomy manifold conjecture that this gives the 1-loop
partition function of the Spin(7) string. We find it to be

Z1 = (det ′∆1)−1(det ′∆7)(det ′∆21)−1/2(det ′∆27)−1/2, (1.1)

where ∆r is the Laplacian acting on the r representation of Spin(7) and det ′ is the
ζ-regularised determinant.

• We outline in section 8 how our formalism applies to the A- and B-models with flux
and show that the relevant Laplacian is associated to the Lie algebroid defined by the
corresponding generalised complex structure, agreeing with [15]. We also comment
on topological strings on K3 surfaces where one finds that the 1-loop contribution is
trivial.

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
9

We begin with an overview of the worldsheet theories for the A- and B-models, G2 and
Spin(7) in section 2. We then review the complexes that one can define on manifolds with
G-structures and outline their Hodge theory in section 3, before moving onto the results
outlined above. The appendices contain our conventions and useful identities, a discussion
of determinants and partition functions, and a quick review of O(d, d) × R+ generalised
geometry.

2 Review of topological strings

Since we will be proposing a target-space interpretation of various topological theories, we
will first spend some time reviewing topological strings from the worldsheet, starting with
the well-known A/B-models [1, 5, 7, 16] and then moving on to the topological G2 [10, 11,
14, 17] and Spin(7) strings [10].

In each of these cases, special holonomy of the target space implies the existence of an
extended worldsheet symmetry which allows a twisting procedure that renders the theory
topological. In brief, one looks for an operator ρ, often related to the extended symmetry,
with which to ‘twist’ the energy-momentum tensor

T −→ Ttwist ∼ T + ∂2ρ, (2.1)

such that the central charge c of the twisted theory vanishes. This twisted energy-momen-
tum tensor endows operators of the theory with new charges under Lorentz transformations.
Interestingly, the twisting operator ρ is intimately related to the spectral flow operator, or
analogues thereof, which is used to generate target-space supersymmetry.

Next, one looks for a nilpotent scalar1 operator Q:

Q2 = 0. (2.2)

Typically, Q is built from the supersymmetry generators and then identified as the relevant
BRST operator. One then requires that Ttwist is a Q-trivial operator.2 This is usually done
by requiring the action to be written as a Q-exact piece, plus terms independent of the
target-space metric. If this is the case, one can use localisation techniques to obtain exact
results for correlators by evaluating them on fixed points of the BRST symmetry [1]. We
further require that physical operators fall into Q-cohomology classes. These physical
fields form a closed ring under the OPE, called the chiral ring, which is often related to
certain cohomological data of the target space. The chiral ring generates certain highest-
weight states in the NS sector, which can be related to the R sector ground states through
spectral flow.

For closed topological strings, one has independent left- and right-moving sectors.
States of the theory are built from tensor products of left- and right-moving states, and
the BRST operator can be split into a left- and a right-moving operator

Q = QL +QR, Q2
L = Q2

R = {QL, QR} = 0. (2.3)
1This is a scalar with respect to the twisted Lorentz symmetry.
2A necessary condition for this is that the central charge vanishes, hence the need to look for a Ttwist

with vanishing central charge.
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Grading the states by left- and right-moving fermion number (p, q), we find that observables
fit into a double complex

...
...

...

. . . Op−1,q+1 Op,q+1 Op+1,q+1 . . .

. . . Op−1,q Op,q Op+1,q . . .

. . . Op−1,q−1 Op,q−1 Op+1,q−1 . . .

...
...

...

QL

QR

QL

QR

(2.4)

This double complex is understood for the A/B-model [15]. It is the main goal of this
paper to show that there is a nice target-space interpretation of (2.4) for any topological
string with a special holonomy target space, at least in the infinite-volume limit, and that
the 1-loop partition function of the worldsheet theory calculates a particular quantity of
the double complex that we have dubbed the analytic torsion.

We will now go into more detail about the twisting procedure and the cohomological
structure of the topological string for A/B, G2 and Spin(7) strings.

2.1 The A- and B-models

When the target spaceM is Kähler and theH-flux vanishes, the worldsheet supersymmetry
is enhanced to N = (2, 2). This symmetry is built from a left-moving and a right-moving
sector which each have an energy-momentum tensor T , two supercurrents G±, and a U(1)
current J . The ± on the supercharges correspond to their charge under the U(1). We will
denote fields in the right-moving sector with a bar.

After the usual mode expansion, the relevant commutators for the left-moving sec-
tor are

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0, (2.5)

[Lm, G±n±a] =
(1

2m− n∓ a
)
G±m+n±a, (2.6)

[Lm, Jn] = −nJm+n, (2.7)

[Jm, Jn] = c

3mδm+n,0, (2.8)

[Jm, G±n±a] = ±G±m+n±a, (2.9)

and similarly for the right-movers. Strikingly, if one defines a twisted energy-momentum
operator via

Ttwist = T + 1
2∂J, (2.10)
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then the new modes L̃m = Lm − 1
2(m+ 1)Jm satisfy

[L̃m, L̃n] = (m− n)L̃m+n, [L̃0, G
+
−1/2] = 0. (2.11)

Hence we see that the central charge of the twisted algebra vanishes, and the supercharge
G+
−1/2 is a scalar with respect to the new Lorentz symmetry. We can therefore use it as

the left-moving BRST operator.
Given this twist, there are two inequivalent twists of the right-moving sector given

by [18]
T̄twist = T̄ ± 1

2∂J̄, (2.12)

where the upper sign corresponds to the B-model and the lower leads to the A-model. Both
twists result in algebras with vanishing central charge, but with different nilpotent scalar
operators. One then finds that the relevant right-moving BRST operators are

[ ¯̃Lm, Ḡ±−1/2] = 0. (2.13)

The total BRST operators for each model are then

QA = G+
−1/2 + Ḡ−−1/2, QB = G+

−1/2 + Ḡ+
−1/2. (2.14)

One can then examine the cohomology of local observables in each case.
Let us also briefly note how this twist is related to spectral flow. This is a symmetry

of the algebras given by

Lηn = Ln + ηJn + c

6η
2δn,0, (2.15)

Gη±n±a = G±n±(a+η), (2.16)

Jηn = Jn + c

3η δn,0. (2.17)

In particular, we see from (2.16) that for η = 1
2 , we have a map from the R to the NS

sector, and vice versa. This is generated by an operator which one can bosonise to eiρ/2.
One then finds that the U(1) generator can be written in terms of ρ as

J = ∂ρ. (2.18)

Inserting this into (2.10), one finds a formula for the twisted energy-momentum tensor
more like that of (2.1).

The A-model. The A-model action can be written as

S =
{
QA,

∫
Σ
V

}
+
∫
x(Σ)

ω, (2.19)

for some V , where ω is the Kähler form on M , Σ is the worldsheet and x : Σ→M is a map
from the worldsheet to the target space. The action is thus QA-exact, up to a term that
depends only on the homology class of x(Σ) ⊂M and so is independent of the worldsheet
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metric. This is sufficient to show that the energy-momentum tensor is QA-exact.3 Note
further that the second term is also independent of the target-space complex structure,
and hence all correlators will depend only on the Kähler moduli. This topological string is
thus quasi-topological, depending on some but not all the target-space moduli.

Localisation techniques allow us to evaluate correlators exactly by restricting the cal-
culation to solutions of the equations of motion for V . It turns out that, for the bosonic
sector, these are

∂̄x = ∂x̄ = 0. (2.20)

The theory therefore localises on holomorphic maps x : Σ → M . Coupling this theory to
gravity, one must then integrate correlators over the moduli space of complex structures
on Σ. This ensures the result is indeed independent of the target-space complex structure.

To study the QA cohomology ring, and hence the physical local operators, it is useful
to go to the infinite-volume limit in which contributions from non-trivial homology classes
x(Σ) drop out of all correlation functions. In this limit, it is possible to show that the
chiral operators take the form

Oα = α(x)µ1...µpν̄1...ν̄qχ
µ1 . . . χµpχ̄ν̄1 . . . χ̄ν̄q , (2.21)

where the χµ and χ̄ν̄ are the left- and right-moving worldsheet fermions with U(1) charge
+1 and −1 respectively. Note that under the twisted Lorentz symmetry, these are scalars
and thus dimension-zero operators, as is required for a topological observable. Moreover,
one can identify χµ ∈ x∗(T 1,0) and χ̄ν̄ ∈ x∗(T 0,1).4 Hence, the space of operators is
identified with standard (p, q)-forms on M . Under this identification, one finds that

G+
−1/2 ∼ ∂, Ḡ−−1/2 ∼ ∂̄, QA ∼ ∂ + ∂̄ = d. (2.22)

Therefore, the chiral ring is isomorphic to the de Rham cohomology ring ofM in the infinite-
volume limit. Furthermore, the double complex given in (2.4) maps onto the Dolbeault
complex of M .

At finite volume, the chiral ring is deformed by worldsheet instantons coming from
the second term in (2.19). While the operators can still be identified with (p, q)-forms, QA
no longer matches the de Rham operator, and the ring structure does not match the de
Rham cohomology. Instead, one finds what is called the quantum-deformed cohomology
of M which takes into account holomorphic multiwrappings of the worldsheet on Riemann
surfaces in M [19, 20].

The correlators are interesting in their own right as they compute Gromov-Witten
invariants [21]. Unfortunately, contributions from worldsheet instantons make them diffi-
cult to calculate directly. In practice, one uses either the holomorphic anomaly equations
to relate correlators at genus g to lower-genus correlators, or mirror symmetry to relate
correlators in the A-model to those in the B-model.

3In fact, to write S as in (2.19), one has to use the equations of motion. It is possible to show that
there exists an operator Q̃A, which is related to QA by the equations of motion, such that (2.19) also holds
off-shell.

4Here, and throughout the paper, we will use the shorthand T = TM , T 1,0 = T 1,0M , and so on.
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The B-model. Unlike the A-model, which exists for any Kähler target space, the axial
R-symmetry generated by the pair (J,−J̄) is anomalous unless c1(M) = 0. Hence, for the
B-model twist to be well defined at the quantum level, one must restrict to Calabi-Yau
target spaces.

With this restriction, it is possible to write the action as a QB-exact piece, plus a term
that is independent of both the worldsheet metric and the target-space Kähler form.5 Thus
one finds that correlators depend only on the complex structure moduli, and again one has
a quasi-topological theory. The theory localises on solutions to

dx = dx̄ = 0, (2.23)

and hence we can calculate exact results by restricting to constant maps x : Σ → M .
This observation often makes B-model correlators easier to calculate (though perhaps less
interesting from a mathematical point of view).

To study the QB cohomology ring, it is once again useful to go to the infinite-volume
limit. There one finds the dimension-zero operators take the form

Oβ = β(x)µ1...µp
ν̄1...ν̄qθµ1 . . . θµp η̄

ν̄1 . . . η̄ν̄q , (2.24)

where the θµ and η̄ν̄ are left- and right-moving fermions (though scalars under the twisted
Lorentz symmetry), both with U(1) charge +1. We can identify θµ ∈ x∗(T ∗1,0) and η̄ν̄ ∈
x∗(T 0,1), and so the space of operators corresponds to sections of ΛqT ∗0,1 ⊗ΛpT 1,0. Using
this identification, one finds

G+
−1/2 ∼

1
2(∂̄ + ∂†), Ḡ+

−1/2 ∼
1
2(∂̄ − ∂†), QB ∼ ∂̄. (2.25)

The chiral ring of physical operators is therefore isomorphic to the bundle-valued Dolbeault
cohomology groups

H•
∂̄
(M,Λ•T 1,0) =

⊕
p,q

Hq

∂̄
(M,ΛpT 1,0). (2.26)

The holomorphic (n, 0)-form of the Calabi-Yau target space then gives an isomorphism
between this and the usual Dolbeault complex on (n− p, q)-forms.

Looking at (2.25), we see that the left and right BRST operators do not correspond to
the Dolbeault operators, but instead raise the antiholomorphic degree while lowering the
holomorphic degree of forms. This means that the left and right fermion numbers cannot
be matched to the holomorphic and antiholomorphic degree of the form respectively, and
the BRST double complex (2.4) cannot be identified with a Dolbeault complex on the
target space. However, the total cohomology can still be identified with the Dolbeault
cohomology as above [7]. Moreover, given that the B-model is independent of the Kähler
moduli, this chiral ring is exact at finite volume even though it was derived at infinite
volume.

5We do not give the action explicitly as we did for the A-model as it is not enlightening in this case. It
can be found in e.g. [22].
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The 1-loop partition function. Finally, we will briefly review the 1-loop partition
functions of the A- and B-models. One can calculate the 1-loop partition function from
the free energy which is given by [7, 23, 24]

F1 = 1
2

∫ dτdτ̄
τ2

tr
(
(−1)FFLFR e2πiτHLe−2πiτ̄HR

)
, (2.27)

where FL and FR are the left- and right-moving fermion number operators respectively,
F = FL + FR is the total fermion number operator, HL = {QL, Q†L} is the left-moving
Hamiltonian, and similarly for HR. The BRST operators are given by QL = G+

−1/2 and
QR = Ḡ±−1/2 depending on whether we are in the A- or B-model. Integrating over the
upper half-plane, this can be shown to be equal to [7, 14]

F1 = δ(HL −HR)1
2 log

 ∏
FL,FR

(det ′(HL +HR))(−1)FFLFR

, (2.28)

with the partition function then given by e−F1 .
From a worldsheet perspective, this is simply an alternating product of determinants

of Hamiltonians acting on the double BRST complex (2.4). To understand what this
calculates on the target space, one needs to use the target-space identification of (2.4). For
the A-model at infinite volume (ω →∞), this identification is clear and (2.28) becomes an
alternating product of Laplacians acting on the Dolbeault complex:

ZA
1
ω→∞=

[∏
p,q

(det ′∆p,q)(−1)p+qpq

]−1/2

, (2.29)

which can be written in terms of holomorphic Ray-Singer torsions:

ZA
1
ω→∞= I1

I3
0
. (2.30)

For finite volume, the answer will receive contributions from strings wrapping cycles in
M [24].

For the B-model, understanding the 1-loop calculation in terms of the double BRST
complex is more opaque as the target-space BRST complex is more complicated. Despite
this, one can show that, up to moduli-independent terms (i.e. a multiplicative constant),
one obtains the same answer as for the A-model [7]:

ZB
1 = I1

I3
0
. (2.31)

This holds for arbitrary Calabi-Yau target spaces, even for finite volume.
We emphasise the form of the 1-loop partition function given by the right-hand side

of (2.29), as it will appear again when we look at the 1-loop partition function of the
G2 and Spin(7) strings. The 1-loop partition function calculates a quantity related to
the target-space BRST double complex, given by a particular product of determinants
of Laplacians on that complex as shown. Given the similarity to the analytic torsion of
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(0, 0)

(1, 0) (0, 1)

(0, 2)(1, 1)(2, 0)

(3, 0) (2, 1) (1, 2) (0, 3)

(1, 3)(2, 2)(3, 1)

(3, 2) (2, 3)

(3, 3)

−
A

+
B

+
B

−
C

−
A

−
A

+
B

+
B

−
A b11 ∧ ∂∂̄b11

b00 ∧ ∂∂̄b22

Figure 1. Figure adapted from [9]. Complex conjugation, Hodge duality and contraction with
the holomorphic 3-form Ω leave only three independent determinants which all det ′∆p,q can be
expressed in terms of. For example, det ′∆0,0 = A and det ′∆1,1 = AB2C. The analytic torsion
(the 1-loop partition function) is then given by (A−4B4C−1)1/2, in agreement with (2.29). Note that
upon BV quantising (2.32), the first and second terms contribute A−4B2 and B2C−1 respectively,
corresponding to the products of the determinants along the dotted lines in the figure.

one-dimensional complexes [25, 26], we shall refer to the quantity (2.29), when applied to
arbitrary complexes, as the analytic torsion of the double complex.

In [9], Pestun and Witten showed that this result for ZB
1 could be obtained by BV

quantising the target-space theory defined by

S =
∫
M
b00 ∧ ∂∂̄b22 + b11 ∧ ∂∂̄b11, (2.32)

where the subscripts denote the (p, q)-form degree. Furthermore, they showed that this
action has a natural interpretation as the quadratic variation of the Hitchin functional for
a generalised Calabi-Yau structure, where the variation is taken within a fixed cohomology
class [27]. We review the generalised Hitchin functional in appendix C.2. This provides a
link between topological strings at 1-loop and geometric structures in the O(d, d) geometry
of Hitchin that we will explore further in this paper.

Note that the 1-loop partition function has a nice pictorial interpretation in terms of
the Dolbeault complex, as we illustrate in figure 1 [9]. Briefly, the determinant of ∆p,q

can be decomposed into a product of Laplacians acting on the subspaces appearing in the
Hodge decomposition of Ωp,q(M). These four spaces are represented by the four squares
surrounding each vertex in the complex. By Hodge duality and complex conjugation,
there are only three independent values these can take, represented by A, B and C in
the diamond. It turns out that the 1-loop partition function can be read off from the
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Hodge diamond by multiplying these factors together with alternating powers of ±1
2 , in

a “checkerboard pattern”, as shown in the figure. We give a brief review of ζ-regularised
determinants of Laplacians in appendix B.1.

2.2 The G2 string

The existence of a topological string with G2 target space was conjectured in [10] and
further studied in [11, 14, 17], yet its properties are still not fully understood. Evidence
for the twisting procedure comes from the extended worldsheet symmetry implied by G2
holonomy of the target space. Indeed, given a G2 structure ϕ ∈ Ω3(M), one can define the
operators

Φ = 1
3!ϕµνρψ

µψνψρ, (2.33)

K = 1
2ϕµνρψ

µψν∂xρ, (2.34)

X = − 1
4!(∗ϕ)µνρσψµψνψρψσ −

1
2gµνψ

µ∂ψν , (2.35)

M = − 1
3!(∗ϕ)µνρσψµψνψρ∂xσ −

1
2gµν∂x

µ∂ψν + 1
2gµνψ

µ∂2xν . (2.36)

These operators along with the N = 1 superconformal operators (T,G) define a closed
algebra denoted by SW [0, 21

2 ]
(

3
2 ,

3
2 , 2
)
, a particular supersymmetric W-algebra.6

As in the A/B-models, one can identify a spectral flow-like operator which implements
the twisting. It turns out that, in this case, it is easier to understand the theory via the
states, rather than the chiral ring. In the topological theory, the chiral ring is in one-to-
one correspondence with the R ground states of the untwisted theory. These become the
physical states in the twisted theory and hence one obtains an equivalent description of
the theory.

To study the states of the theory, we introduce the operators TI = −1
5X and GI =

i√
15Φ. One finds they define an N = 1 superconformal algebra of central charge c = 7

10 .
This is a minimal model known as the tri-critical Ising model. One can write the original
energy-momentum tensor T as

T = TI + Tr, TI(z)Tr(w) = regular, (2.37)

where Tr defines a Virasoro algebra commuting with TI with central charge c = 98
10 . States

are then labelled by two quantum numbers, |∆I ,∆r〉, specifying their weights under TI
and Tr. Since TI defines a minimal model, we know the weights of the conformal primaries
of the theory. They split into an NS and an R sector:

NS : 0, 1
10 ,

6
10 ,

3
2 , R : 7

16 ,
3
80 . (2.38)

6This is true in the free-field or infinite-volume limit. More generally, properties like the Jacobi identity
hold only modulo the ideal generated by the null field N defined by [28]

N = 4GX − 2ΦK − 4∂M − ∂2G.
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We also know that the R ground states of the full theory must have total weights
∆ = ∆I + ∆r = d

16 = 7
16 . Therefore, we find that the R ground states are∣∣∣∣ 7

16 , 0
〉
,

∣∣∣∣ 3
80 ,

2
5

〉
. (2.39)

Note that the first of these states has non-zero weight only in the (tri-critical Ising) minimal
model subsector. Since it is a minimal model, the fusions rules of this state with others are
known, and so we can use this state to define a map between the R-sector ground state and
certain special NS states. This is the analogue of the spectral flow operator of N = (2, 2)
theories, which we recall was important for the twist in the A/B-model. Using the fusion
rules of the tri-critical Ising model, we find the following NS states:

|0, 0〉,
∣∣∣∣ 1
10 ,

2
5

〉
,

∣∣∣∣ 6
10 ,

2
5

〉
,

∣∣∣∣32 , 0
〉
. (2.40)

By examining the total weight of the states, we notice that these states are respectively
generated by the operators7

f(x), Aµ(x)ψµ, Bµν(x)ψµψν , Cµνρ(x)ψµψνψρ, (2.41)

and so they define target-space 0-, 1-, 2-, and 3-forms. To ensure they have the correct
weight under TI , the coefficients must be restricted to lie in particular G2 representations.
In particular, they must fall into the irreducible representations that appear in the G2
instanton complex of [29], which will be explored in more detail in the next section.

One can also use the R ground state to twist the model to produce an energy-
momentum tensor Ttwist whose algebra has vanishing central charge. Bosonising the theory,
one can write

Φ = exp
( 3i√

5
ρ

)
, (2.42)

X = (∂ρ)2 + 1
4
√

5
∂2ρ, (2.43)∣∣∣∣ 7

16 , 0
〉

= exp
( −5i

4
√

5
ρ

)
. (2.44)

Given that one can relate twisted and untwisted correlators of the A/B-models by 2g − 2
insertions of the spectral flow operator at genus g, one may guess that a twisted G2 string
is obtained by inserting 2g − 2 copies of (2.44). This has the effect of shifting the energy-
momentum tensor induced by X to

Xtwist = (∂ρ)2 + 3
2
√

5
∂2ρ. (2.45)

7One could ask why we do not include fields of the form ∂x or ∂ψ. The reason is that the derivative
ensures that these have conformal weight ≥ 1 and hence cannot be scalars under a twisted Lorentz symmetry.
They should therefore not be included in a set of local physical topological operators.
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Taking the total twist Ttwist = 1
5Xtwist + Tr, one finds an algebra with vanishing central

charge. The NS states of (2.40) then have a shifted ∆I weight and become

|0, 0〉,
∣∣∣∣−2

5 ,
2
5

〉
,

∣∣∣∣−2
5 ,

2
5

〉
, |0, 0〉. (2.46)

In particular, they have total weight zero — a necessary condition for a physical state in a
topological theory.

It remains to be seen whether there exists a nilpotent operator Q that is a scalar with
respect to the twisted Lorentz algebra such that Ttwist is Q-exact. In [11], it was argued
that the correct operator is a particular conformal block of the supersymmetry generator
G−1/2, which was denoted by G↓−1/2.

8 While it was not shown that Ttwist is exact with
respect to this operator, it was argued that G↓−1/2 is indeed nilpotent and maps the special
NS states within themselves:

|0, 0〉
G↓−1/2−−−−−−−→

∣∣∣∣ 1
10 ,

2
5

〉
G↓−1/2−−−−−−−→

∣∣∣∣ 6
10 ,

2
5

〉
G↓−1/2−−−−−−−→

∣∣∣∣32 , 0
〉
. (2.47)

This complex has a target-space interpretation as the G2 Dolbeault complex (3.5) which
we will describe in the following section. The physical states should therefore be in the
cohomology of this complex. In addition, a heuristic argument was given that the path
integral localises on constant maps x : Σ → M , and so one would not expect instanton
corrections at finite volume.

One finds completely analogous results for the right-moving sector and so the total
BRST operator should be

Q = G↓−1/2 + Ḡ↓−1/2, (2.48)

with the physical states given by tensor products of left- and right-moving states, each
in (2.46), that are annihilated by Q. This poses the question: what is the target-space
interpretation of the BRST double complex (2.4)? One of the results of this paper is to
show that there exists a double complex on any G2 manifold which naturally represents
this worldsheet complex. Moreover, we will examine its relation to the 1-loop partition
function and compare our results to those found in [14].

2.3 The Spin(7) string

The topological Spin(7) string was also conjectured to exist in [10] but there has been little
further study since then.9 We will now outline some of the evidence for its existence.

As before, a target space with Spin(7) holonomy implies an extended worldsheet sym-
metry which is required for the twisting procedure. If Θ ∈ Ω4(M) is the self-dual 4-form

8Note that Fiset and Gaberdiel [30] show that the cohomology of G↓−1/2 is not restricted to the chiral
ring and so it cannot be the exact BRST operator which captures the geometry of the target space (though
the honest BRST operator is likely related to G↓−1/2). For our purposes, we need only the identification of
the complex of special NS states as later we will identify the analogue of the correct BRST operator in the
target space.

9Though see, for example, [31–35].
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defining the Spin(7) structure, we can define the operators

X̃ = 1
4!Θµνρσψ

µψνψρψσ + 1
2gµνψ

µ∂ψν , (2.49)

M̃ = 1
3!Θµνρσψ

µψνψρ∂xσ − 1
2gµν∂x

µ∂ψν + 1
2gµνψ

µ∂2xν . (2.50)

These, together with the N = 1 superconformal generators (T,G), form a closed algebra.
The rescaled operator TI = 1

8X̃ generates a Virasoro algebra with central charge c = 1
2 ,

known as the bosonic Ising model. This plays the same role as the tri-critical Ising model
in the G2 string and will be important for the putative twisting procedure.

Once again, it is easier to understand the theory via the states. We can write the total
energy-momentum tensor as

T = TI + Tr, TI(z)Tr(w) = regular, (2.51)

where Tr defines a Virasoro algebra commuting with TI of central charge c = 23
2 . We can

therefore label states as |∆I ,∆r〉 with respect to their weights under TI and Tr. Since the
bosonic Ising model is a minimal model, we know the possible weights are given by

∆I : 0, 1
16 ,

1
2 . (2.52)

Since the total weight of the R ground states must be equal to d
16 = 8

16 = 1
2 , one finds that

they must be ∣∣∣∣0, 1
2

〉
,

∣∣∣∣ 1
16 ,

7
16

〉
,

∣∣∣∣12 , 0
〉
. (2.53)

Once again, we find a state with only non-vanishing bosonic Ising weight which we can use
as a spectral flow-like operator to define a map between the R ground states and certain
NS highest-weight states. Indeed, using the fusion rules, the states in the NS sector are

|0, 0〉,
∣∣∣∣ 1
16 ,

7
16

〉
,

∣∣∣∣12 , 1
2

〉
. (2.54)

By examining the total weight, we see that these states are generated by the operators10

f(x), Aµ(x)ψµ, Bµν(x)ψµψν . (2.55)

Hence, the states are related to target-space 0-, 1-, and 2-forms. To ensure the states
have the correct TI weights, we find that Bµν must be restricted to lie in the 7 of Spin(7).
Intriguingly, these representations are precisely those that appear in the Spin(7) instanton
complex [29].

We can also use the R ground state to form a twisted energy-momentum tensor with
vanishing central charge. Indeed, bosonising the theory, one can write

X̃ = (∂ρ)2 + 1
4
√

3
∂2ρ, (2.56)∣∣∣∣12 , 0

〉
= exp

( 3i
2
√

3
ρ

)
. (2.57)

10Once again, we do not include terms with ∂x or ∂ψ as they cannot be scalars with respect to a twisted
Lorentz symmetry.

– 14 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
9

The insertion of 2g−2 copies of (2.57) into correlators is equivalent to twisting the energy-
momentum tensor to

X̃twist = (∂ρ)2 + 5
4
√

3
∂2ρ. (2.58)

Taking the twist of the full theory to be Ttwist = 1
8X̃twist +Tr, one finds a Virasoro algebra

with vanishing central charge. Furthermore, the weights of the NS states under this twisted
algebra become

|0, 0〉,
∣∣∣∣− 7

16 ,
7
16

〉
,

∣∣∣∣−1
2 ,

1
2

〉
. (2.59)

These have total weight zero under the twisted Lorentz symmetry, a necessary condition
for the physical states of a topological theory.

It is still unknown whether there is an appropriate nilpotent operator Q such that
Ttwist is Q-exact. However, we find it highly suggestive that states of weight zero in the NS
sector define the vector spaces of the Spin(7) instanton complex of [29], much like we saw
for the G2 string.11 We therefore expect that the correct operator is some sub-operator of
G, suitably projected so that one gets the correct target-space complex. We will provide
some evidence for this in section 7. The full theory contains states that are tensor products
of the left- and right-moving sectors, and the physical operators in the chiral ring again
correspond to cohomology classes of Q = QL +QR.

Despite not knowing the precise worldsheet theory, we will show that there exists a
natural double complex on any Spin(7) target space that seems to encode the left- and
right-moving states and gives candidates for the left- and right-moving BRST operators.
We will use this to make a conjecture for the partition function at 1-loop.

3 G-structure complexes for special holonomy manifolds

It is very striking that the left- and right-moving states selected by the topological twist
precisely form the vector spaces in the instanton complexes of [29]. These are particular
complexes that arise on manifolds with G-structure G ⊂ O(d) as a subcomplex of de
Rham.12 Given the appearance of these complexes in topological strings, we will briefly
review them for G2 and Spin(7) holonomy manifolds and analyse their Hodge theory. We
will find a doubled version of these complexes in later sections by lifting to O(d, d) × R+

geometry, and match them to the BRST double complex. We will mirror the techniques
used in this section when analysing the properties of these double complexes.

3.1 A G2 complex and Hodge theory

Let (M,ϕ) be a seven-dimensional manifold with a (possibly torsionful) G2 structure. The
G2 structure defines a unique metric g and hence a Hodge star operator ∗. The intrinsic
torsion of the structure is encoded by dϕ and d ∗ ϕ, which both vanish if and only if the

11In fact, it is also possible to formulate the left- and right-moving sectors of the A- and B-models in
terms of the instanton complex for SU(n) structures.

12The cohomology of these complexes is also related to the moduli space of G-instantons on these mani-
folds.
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intrinsic torsion vanishes [36]. Any such manifold admits a decomposition of differential
forms into irreducible G2 representations as [37]

Λ0T ∗ = Λ0
1T
∗, (3.1)

Λ1T ∗ = Λ1
7T
∗, (3.2)

Λ2T ∗ = Λ2
7T
∗ ⊕ Λ2

14T
∗, (3.3)

Λ3T ∗ = Λ3
1T
∗ ⊕ Λ3

7T
∗ ⊕ Λ3

27T
∗, (3.4)

where the subscript denotes the dimension of the G2 representation, and we are using
the shorthand T ∗ ≡ T ∗M . Higher-degree differential forms have similar decompositions
via Hodge duality. A precise definition of the subspaces in terms of (ϕ, ∗ϕ) is given in
appendix A.2. We will denote the space of sections of p-forms in the r-dimensional repre-
sentation as Ωp

r(M), and the projection onto those subspaces by Ppr .
Given such a decomposition, consider the following sequence of maps defined by com-

posing the de Rham differential with certain projections [38, 39]

ď : Ω0
1(M) d−−−−→ Ω1

7(M)
P2

7d
−−−−−−→ Ω2

7(M)
P3

1d
−−−−−−→ Ω3

1(M) . (3.5)

Provided the intrinsic torsion of the G2 structure has no component in the 14, one finds
ď2 = 0 and so the above sequence is actually a complex — we will then refer to (3.5) as
the “G2 complex” [29]. For the remainder of this section we will restrict to torsion-free G2
structures, i.e. those with dϕ = d ∗ ϕ = 0, and hence G2 holonomy.

Given the G2 complex, we can introduce an inner product on each of the vector spaces
and consider the Laplacian defined by ∆̌ = ďď† + ď†ď. We do this in a way that will allow
for comparison to the usual de Rham Laplacian. First, we define isomorphisms between
spaces with the same G2 representation as

θ1 : Λ0
1T
∗ −→ Λ3

1T
∗, θ7 : Λ1

7T
∗ −→ Λ2

7T
∗,

f 7−→ k1fϕ, λ 7−→ k2λ
aϕabc,

(3.6)

where k1 and k2 are constants we will determine later and indices are raised and lowered
using the G2 metric defined by ϕ. Next, we fix an inner product (·, ·) to be the standard
inner product on 0- and 1-forms:

(f, g)0 =
∫
M

vol fg, (λ, ν)1 =
∫
M

volλyν, (3.7)

where the notation λyν is defined in appendix A. We extend this to an inner product on
the whole complex by demanding that it depends only on the representation and not the
degree of the p-form:

(θ1(f), θ1(f ′))3 = (f, f ′)0, (θ7(λ), θ7(λ′))2 = (λ, λ′)1, (3.8)

where (·, ·)p denotes restriction to p-forms. Note that this forces (·, ·) to be the usual inner
product on differential forms, up to possible multiplicative constants that are determined
by k1 and k2.
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We can fix the constants by demanding that the following diagram commutes

Ω0
1 Ω1

7 Ω2
7 Ω3

1

Ω3
1 Ω2

7 Ω1
7 Ω0

1

ď

θ1 θ7

ď

θ−1
7

ď

θ−1
1

ď† ď† ď†

(3.9)

If this holds the Laplacians acting on isomorphic G2 representations are equivalent in the
sense that

θ1∆̌0 = ∆̌3θ1, θ7∆̌1 = ∆̌2θ7, (3.10)

where ∆̌p is the restriction of ∆̌ to p-forms. We can therefore unambiguously write ∆̌r
for the Laplacian acting on differential forms in the G2 representation r. This will be
important later when we consider determinants of these Laplacians. A quick calculation
shows that the diagram commutes and the Laplacians are isomorphic for

k1
k2

= −3
7 . (3.11)

Finally, we can fix the coefficient k2 (and hence k1) up to an irrelevant overall sign by
demanding that

∆̌7 = ∆7, (3.12)

where ∆ = dd† + d†d is the de Rham Laplacian.13 It is possible to show that ∆ also
commutes with the projection operators and only depends on the G2 representation of
the form, not the degree, and hence (3.12) is well defined. Note that this is a non-trivial
constraint since ∆7 contains terms coming from P2

14d, while ∆̌7 does not. Fortunately, for
a torsion-free G2 structure and any λ ∈ Ω1

7, we have [40]

d†P2
14dλ = 2d†P2

7dλ. (3.13)

With this it is easy to check that (3.11) and (3.12) impose

k2 = −1
3 , k1 = 1

7 . (3.14)

The inner product is then given by

(α, β)p = κp

∫
M
α ∧ ∗β, κp =


1 p = 0, 1,
3 p = 2,
7 p = 3.

(3.15)

Having fixed the coefficients k1 and k2 we can now define explicitly the operators
(ď, ď†, ∆̌). Since we have assumed that the G2 structure is torsion-free, we can replace

13We emphasise that the de Rham adjoint d† is defined by the usual inner product on forms and not the
rescaled inner product we have defined for the ď complex.
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the de Rham differential in the definition of ď in (3.5) with the Levi-Civita connection
∇ compatible with the G2 structure. This simplifies calculations as derivatives will then
commute with the projection operators since the Ppr are defined in terms of ϕ and ∗ϕ which
are covariantly constant (see appendix A.2 for more details).

In terms of the Levi-Civita connection, the ď operator acting on p-forms becomes

(ďω)a1...ap+1 = (p+ 1)(Pp+1
r )a1...ap+1

b1...bp+1∇[b1ωb2...bp+1]. (3.16)

The adjoint operator ď† becomes

(ď†ω)a1...ap−1 = −Cp∇bωba1...ap−1 , Cp =


1 p = 1,
3 p = 2,
7
3 p = 3.

(3.17)

Note that we do not need to include projectors in the definition of the adjoint operator as
we are assuming that ω lives in one of the spaces in (3.5). Again, these definitions have
the useful properties that the natural differential operators that one can construct depend
only on the G2 representation and not the p-form degree of the object on which they act.
For example, acting on 1-, 2- or 3-forms we have14

ď†|1 = θ−1
1 ďθ7, ď†|2 = θ−1

7 ďθ−1
7 , ď†|3 = θ7ďθ−1

1 . (3.18)

Finally, the Laplacian ∆̌ can be written as

∆̌0f = −∇a∇af = ∆1f,

∆̌1λ = −6(P2
7)bacd∇b∇cλd −∇a∇bλb = ∆7λ,

∆̌2µ = −7(P3
1)ba1a2

def∇b∇dµef − 6(P2
7)a1a2

bc∇b∇dµdc = θ7∆7θ
−1
7 µ,

∆̌3ρ = −7(P3
1)abcdef∇d∇gρgef = θ1∆1θ

−1
1 ρ.

(3.19)

Given these operators, it is natural to ask if there is some kind of Hodge decomposition
for the spaces Ωp

r. We defined the inner product (·, ·) in terms of the usual inner product
on differential forms, differing on 2- and 3-forms by a positive multiplicative factor. The
usual inner product is positive definite and is G2 invariant,15 hence it reduces to a positive-
definite inner product on the irreducible G2 representations in (3.1)–(3.4). In particular, it
is positive definite on the spaces (Ω0

1,Ω1
7,Ω2

7,Ω3
1), and hence (·, ·) is positive definite. We

therefore have a decomposition of the spaces in (3.5) as

Ωp
r = Ȟp ⊕ ďΩp−1

r′ ⊕ ď†Ωp+1
r′′ , (3.20)

where Ȟp is the space of ∆̌-harmonic p-forms. Of course, with our choice of Laplacian,
we have

Ȟ0 ' Ȟ3 ' H1 ' R, Ȟ1 ' Ȟ2 ' H7 = 0, (3.21)
where Hr is the de Rham cohomology group restricted to forms in the G2 representation r.
The fact that the cohomology group depends only on the representation follows from the
equivalent statement for ∆. The final equality holds on any manifold of G2 holonomy [41].

14Cf. these with the relations given by Bryant [40] using the de Rham differentials, which in the notation
of that paper read (dp

q)† = dq
p.

15This is inherited from the SL(7,R) invariance of the inner product.
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3.2 A Spin(7) complex and Hodge theory

An eight-dimensional Spin(7) manifold M is defined by a 4-form Θ which, unlike the G2
case, is not stable but instead lives in a particular GL(8) orbit. Any such admissible 4-
form defines a metric g as in [42] with respect to which we have Θ = ∗Θ. We then say
the Spin(7) structure is torsion-free if there exists a torsion-free compatible connection16

which is the case if and only if dΘ = 0. As in the G2 case, we can decompose the exterior
algebra into Spin(7) representations:

Λ0T ∗ = Λ0
1T
∗, (3.22)

Λ1T ∗ = Λ1
8T
∗, (3.23)

Λ2T ∗ = Λ2
7T
∗ ⊕ Λ2

21T
∗, (3.24)

Λ3T ∗ = Λ3
8T
∗ ⊕ Λ3

48T
∗, (3.25)

Λ4T ∗ = Λ4
1T
∗ ⊕ Λ4

7T
∗ ⊕ Λ4

27T
∗ ⊕ Λ4

35T
∗. (3.26)

The definition of these spaces along with the relevant projectors are given in appendix A.2.
Following [29], one can define a sequence of maps built from the de Rham differential and
suitable projectors:

ď : Ω0
1(M) d−−−−−→ Ω1

8(M)
P2

7d
−−−−−−→ Ω2

7(M) (3.27)

which, for torsion-free Spin(7) structures, defines a complex.
Again, we would like to define an inner product on this complex such that the induced

Laplacians ∆̌ match the conventional Laplacians ∆ evaluated on Ωp
r, possibly up to an

overall scaling (which drops out when evaluating determinants of ∆̌). To do so, we adapt
the arguments made in [40] for G2 manifolds and find that

d†P2
21d|Ω1

8
= 3d†P2

7d|Ω1
8
, P2

7d†P3
48d|Ω2

7
= 12

7 P
2
7d†P3

8d|Ω2
7
. (3.28)

One can then use these identities to show

∆0
1 = d†d, ∆1

8 = dd† + 4d†P2
7d, ∆2

7 = 4P2
7dd†. (3.29)

Taking the following inner product on (3.27), it is easy to check that ∆̌p
r = ∆p

r as required:

(α, β)p = κp

∫
M
α ∧ ∗β, κp =

1 p = 0, 1,
4 p = 2.

(3.30)

In terms of the Levi-Civita connection, the ď operator acting on p-forms becomes

(ďω)a1...ap+1 = (p+ 1)(Pp+1
r )a1...ap+1

b1...bp+1∇[b1ωb2...bp+1], (3.31)

with the adjoint operator ď† given by

(ď†ω)a1...ap−1 = −Cp∇bωba1...ap−1 , Cp =

1 p = 1,
4 p = 2.

(3.32)

16Since Θ defines a metric g, this is equivalent to saying that the Levi-Civita connection is compatible
and hence has Spin(7) holonomy.
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4 The G2 ×G2 complex

In the previous section we reviewed the G2 complex and its Hodge theory in the case where
the G2 structure is torsion-free. In this section, we will give an extension of these ideas
which is relevant for type II backgrounds with NSNS flux. In particular, we will see that
the relevant geometric structure is that of a torsion-free G2×G2 structure, which naturally
gives rise to a double complex and Laplace-type operators that will turn out to capture
information about the topological G2 string. This will be described using the formalism of
O(7, 7)× R+ generalised geometry

Generalised geometry has been of great use for understanding supergravity back-
grounds that preserve some amount of supersymmetry and thus admit generalised G-
structures. These structures are characterised by the presence of additional objects, usually
in the form of globally defined non-vanishing tensors, that reduce the structure group of the
generalised tangent bundle from O(d, d)×R+ to some subgroup G. For example, the gen-
eralised complex/Calabi-Yau structures of Hitchin and Gualtieri [27, 43] are respectively
U
(
d
2 ,

d
2

)
and SU

(
d
2 ,

d
2

)
structures. These have found many applications in string theory

including formulating topological strings [9, 15, 44, 45]. We mostly follow the conventions
of [46], and provide a brief review of the key concepts we will be using in appendix C.

4.1 Generalised G2 ×G2 structures

Let M be a seven-dimensional Riemannian spin manifold and E its O(7, 7) × R+ gener-
alised tangent bundle. Introducing an O(7)×O(7) generalised metric G, or equivalently a
Riemannian metric g, a two-form gauge field B and a scalar φ, corresponds to specifying
an orthogonal decomposition E = C+ ⊕ C−, with each C± ∼= T . Let us now also assume
that there exist two globally defined real spinors ε+ ∈ S(C+) and ε− ∈ S(C−). Each define
a G2 structure on M given by ϕ±.17 When the spinors ε± are linearly independent, the
G2 structures are orthogonal and intersect on an SU(3) structure. There may, however,
be points on the manifold where the ε± align and hence the G2 structures coincide. In
this case, the manifold does not admit a conventional global G-structure. However, within
generalised geometry they define a single global generalised G2×G2 structure on E.18

It turns out that certain supersymmetric backgrounds of string theory compactified to
three dimensions can be described by such G2×G2 structures. For concreteness, consider
a type IIB NSNS background of the form R2,1 ×M where M is seven-dimensional — this
is the case first described in [48]. We have two supersymmetry parameters of opposite
chirality ε± which decompose under the reduction Spin(9, 1)→ Spin(2, 1)× Spin(7) as

ε± = ζ± ⊗ ε±, (4.1)

where ζ± and ε± are irreducible Spin(2, 1) and Spin(7) spinors respectively.
17These are sometimes labelled G2±. Moving forward we will mostly omit the signs on ϕ± since they can

generally be deduced from the context.
18Note that this is different from the SU(7) structure defined in [47], which generalises G2 geometry to

M-theory or string backgrounds with RR flux.
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For the background to preserve supersymmetry, the variations of the gravitinos and
dilatinos under ε± must vanish. These conditions give the Killing spinor equations for the
supersymmetry parameters. Under the decomposition (4.1), for vanishing RR fields these
equations impose that ζ± is a constant spinor on R2,1, and on M we need(

γµ∂µφ∓
1
12γ

µνρHµνρ

)
ε± = 0,(

∇µ ∓
1
8γ

νρHµνρ

)
ε± = 0,

(4.2)

where the γµ are gamma matrices for the O(7) structure defined by g, and ∇ is the as-
sociated Levi-Civita connection. As was shown in [48], these equations are satisfied if
and only if ε± define a generalised torsion-free G2×G2 structure. For generic (g,H, φ),
these equations describe a background preserving minimal supersymmetry in three dimen-
sions. However, when H vanishes and φ is constant, as must be the case for compact
backgrounds [49], these equations imply the preservation of four supercharges or N = 2
supersymmetry in three dimensions.

4.2 Torsion-free generalised G2 ×G2 structures

Recall that one can always find a torsion-free generalised connection that is compatible with
the O(7)×O(7) generalised metric structure on M , giving the analogue of the Levi-Civita
connection in generalised geometry. As we review in appendix C, this connection is not
uniquely defined, but there are certain combinations of it which give a unique generalised
Ricci tensor and scalar. The generic form of a generalised Levi-Civita connection D in
terms of the background fields is given in (C.26).

We begin by finding the conditions that this generalised Levi-Civita connection must
satisfy in order to be compatible with a G2×G2 structure. Since the generalised Levi-Civita
connection is torsion-free, the resulting G2×G2-compatible connection will also be torsion-
free. However, unlike generalised metric structures, the existence of such a compatible
connection is, in general, obstructed by the intrinsic torsion of the G2×G2 structure.
That is, if D is a generalised Levi-Civita connection, the conditions Dε+ = Dε− = 0 can
be solved only if the generalised intrinsic torsion vanishes.

Using similar logic to [50, 51], it can be shown that this constraint is equivalent to
the background preserving minimal supersymmetry with vanishing RR fluxes, i.e. that
equations (4.2) are satisfied. Using the expression for a generalised Levi-Civita connection
given in (C.26), one has that the compatibility conditions which must be imposed are

Daε+ = ∇aε+ −
1
24Habcγ

bcε+ −
1
6∂bφγa

bε+ + 1
4A

+
abcγ

bcε+ = 0,

Dāε+ = ∇āε+ −
1
8Hābcγ

bcε+ = 0,
(4.3)

which ensure that the connection is compatible with the G2 structure defined by ε+. There
are then similar conditions for compatibility with the G2 structure defined by ε−.

The second equation should be familiar, as it says that Dā must act on C+ as the ε+-
preserving Hull connection ∇−. This connection exists if and only if the ordinary intrinsic
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torsion of the G2+ structure has no component in the 14 [52]. We can combine the two
equations and derive a purely algebraic relation between the components of the generalised
connection:

Xabcγ
bcε+ ≡

( 1
12Habcγ

bc − 1
6∂bφγa

b + 1
4A

+
abcγ

bc
)
ε+ = 0. (4.4)

Note that this equation holds only when Xabc acts on the structure-defining spinor, not
for a generic spinor. To find the constraints this imposes, we can use G2 representation
theory (for the G2 factor defined by ε+). In general, X is a 1-form taking values in
the 21-dimensional adjoint representation of Spin(7), so under G2 it decomposes as X ∈
7 × 7 + 7 × 14. The second term gives a 1-form valued in the adjoint of G2, i.e. it is
the component of X that is compatible with ε+, and so drops out of (4.4). Therefore, it
is the components of X in the 7 × 7 that must be set to vanish. Now consider the G2
decompositions of the fields

∂φ ∈ 7, H ∈ 1 + 7 + 27, A+ ∈ 14 + 27 + 64. (4.5)

One can quickly check that the representations 1 and 14 occur only in the tensor product
7 × 7 while the 64 is only in 7 × 14, and the remainder may appear in both. As a
result, we immediately conclude that (4.4) sets: 1) A+|14 = 0 — recall that the A+

tensor simply parametrises the freedom one has within the family of generalised Levi-
Civita connections, and so this is not a constraint on the background; 2) H|1 = 0 — this
is an actual constraint on the structure.19 On the other hand, since the component A+|64
drops out entirely from (4.4), it is left unconstrained, implying that G2×G2-compatible
torsion-free connections, if they exist, are not unique.

For the 7 components, we isolate the relevant terms by writing

∂aφ|7 = ∂aφ, Habc|7 = (∗ϕ)abcdHd, (4.6)

which gives ( 1
12(∗ϕ)adbcHdγbc −

1
6∂bφγa

b
)
ε+ = 0. (4.7)

Next we note that ζTγabε+ ∈ 7 for any spinor ζ, and so we can use the expression (A.15)
for the projector onto the 7 representation to write

(∗ϕ)abcdγcdε+ = 4γabε+. (4.8)

We then have 1
3

(
Hb −

1
2∂bφ

)
γa
bε+ = 0. (4.9)

This will vanish for Ha = 1
2∂aφ, which must thus be the choice which is necessary for a

G2×G2-compatible connection.
Next, consider the 27 components, which we pick out by writing

Habc|27 = He[aϕ
e
bc], A+

abc|27 = A+
eaϕ

e
bc −A+

e[aϕ
e
bc], (4.10)

19The vanishing of the singlet component of the H flux matches the physical observation that this
component of the torsion can be related to the cosmological constant in a supersymmetric background, and
so it must be set to zero for the Minkowski solutions that we are considering.
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where Hab and A+
ab are symmetric and traceless. Plugging this into the expression for X,

we then have

1
4

(1
3He[aϕ

e
bc] + (A+

eaϕ
e
bc −A+

e[aϕ
e
bc])
)
γbcε+ = 1

4(αaeϕebc + βbeϕ
e
ca)γbcε+ = 0, (4.11)

where
αae = 1

9Hae + 2
3A

+
ae, βbe = 2

9Hbe −
2
3A

+
be. (4.12)

To see how these two terms are related, one can contract (4.8) with αaeϕefb and use (A.11)
to show that

(αaeϕebc + 6αbeϕeca)γbcε+ = 0. (4.13)

Thus the precise combination of the 27s which appears in (4.11) is β−6α, which vanishes for

A+
ab = − 2

21Hab. (4.14)

This is the choice which is necessary for a connection compatible with ε+. Note that since
we are simply using the freedom in choosing the A+ tensor to obtain this cancellation, the
background flux H|27 is entirely unconstrained, in agreement with the G-structure analysis
of [49, 53].

The calculations for compatibility with ε− are analogous, with the result

Dε− = 0 ⇔
∇+ϕ− = 0, Hāb̄c̄ϕ

āb̄c̄ = 0,

Hā = −1
2∂āφ, A−

āb̄
= 2

21Hāb̄.
(4.15)

The remaining unfixed components of the connection are the parts of A+ and A− in the
(64,1) + (1,64). These simply parametrise the family of torsion-free connections which
are compatible with the same G2×G2 structure.

Putting this all together, a compatible, torsion-free G2×G2-generalised connection
takes the form

Dav
b = ∇avb −

5
42ϕbcdH

d
av
c − 1

42ϕcadH
d
bv
c − 1

42ϕabdH
d
cv
c

− 1
12(∗ϕ)abcd∂dφvc −

1
3δ

b
a∂cφv

c + 1
3∂

bφva + (A+|64)abcvc,

Dāv
b = ∇−ā vb ≡ ∇āvb −

1
2Hā

b
cv
c,

Dav
b̄ = ∇+

a v
b̄ ≡ ∇avb̄ + 1

2Ha
b̄
c̄v
c̄,

Dāv
b̄ = ∇āvb̄ + 5

42ϕb̄c̄d̄H
d̄
āv
c̄ + 1

42ϕc̄ād̄H
d̄
b̄v
c̄ + 1

42ϕāb̄d̄H
d̄
c̄v
c̄

− 1
12(∗ϕ)āb̄c̄d̄∂

d̄φvc̄ − 1
3δ

b̄
ā∂c̄φv

c̄ + 1
3∂

b̄φvā + (A−|64)āb̄c̄vc̄.

(4.16)
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4.3 The double complex

We now introduce the analogue of the G2 complex within O(7, 7)× R+ generalised geom-
etry. Given a G2×G2 structure, we can consider a decomposition of ΛnE into irreducible
representations of G2×G2. In particular, we will be interested in the spaces

Ap,qm,n := Γ(ΛpmC+ ⊗ ΛqnC−), (4.17)

where m and n correspond to irreducible G2± representations defined by ϕ±. We write
(p, q)-forms ω ∈ Ap,q as

ω = 1
p!q!ωa1...apb̄1...b̄q

E+a1...ap ⊗ E−b̄1...b̄q , (4.18)

where {E+a} and {E−b̄} are a basis for C+ and C− respectively.
Moreover, using a generalised connection we can build maps between the spaces to

give the following diagram

A0,0
1,1

A1,0
7,1 A0,1

1,7

A2,0
7,1 A1,1

7,7 A0,2
1,7

A3,0
1,1 A2,1

7,7 A1,2
7,7 A0,3

1,1

A3,1
1,7 A2,2

7,7 A1,3
7,1

A3,2
1,7 A2,3

7,1

A3,3
1,1

d+ d−

(4.19)

where we have defined

(d+ω)a1...ap+1ā1...āq = (p+ 1)(P+
m)a1...ap+1

b1...bp+1Db1ωb2...bp+1ā1...āq , (4.20)

(d−ω)a1...apā1...āq+1 = (−1)p(q + 1)(P−m)ā1...āq+1
b̄1...b̄p+1Db̄1

ωa1...apb̄2...b̄q+1
, (4.21)

where ω ∈ Ap,qm,n, and P±m are the projectors onto the relevant G2± representation as given
in appendix A.2. Here we assume that D is a G2×G2-compatible connection so that it
commutes with the projectors — such a connection always exists (though it may not be
torsion-free).

We now ask when (4.19) is actually a double complex. That is, when do we have

d2
± = 0, d+d− + d−d+ = 0. (4.22)

We will show that a sufficient condition is that the G2×G2 structure is torsion-free, which
corresponds physically to a supersymmetric NSNS Minkowski background. Then we can
take the generalised connections in (4.20) to be of the form (4.16).
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At first sight this statement might worry the reader — since these connections are
not uniquely determined, it would seem that we need some extra information (beyond
that of the supergravity background) to further constrain the connection, as otherwise
the operators might not be uniquely defined. As we mentioned earlier, the generalised
Levi-Civita connection is also not unique however one can construct unique operators
from it, such as the generalised versions of the Ricci tensor and scalar. Something similar
happens here, namely the d± operators do not depend on the undetermined (64,1)+(1,64)
components of the connection, and so they are actually unique, i.e. they depend only on
the data of the torsion-free G2×G2 structure itself. To see this, note that the double
complex consists solely of maps between the G2×G2 representations (1,1), (7,1), (1,7)
and (7,7). Now, simple representation theory tells us that the (64,1) or (1,64) cannot
give such maps. In other words, any tensor transforming in those representations must be
projected out. Therefore, we can compute the double complex with any choice of A±|64
tensor in (4.16) and obtain a unique answer.

Another useful result for the torsion-free case is that one may use the following “sim-
plified” connection to define the d± operators:

D̂av
b = ∇avb,

D̂āv
b = ∇−ā vb = ∇āvb −

1
2Hā

b
cv
c,

D̂av
b̄ = ∇+

a v
b̄ = ∇avb̄ + 1

2Ha
b̄
c̄v
c̄,

D̂āv
b̄ = ∇āvb̄,

(4.23)

where the Hull connections ∇∓ are assumed to preserve the G2 structures ϕ±. As a
generalised connection D̂ is neither torsion-free nor is it compatible with the G2×G2
structure, and yet the operators d± defined from it coincide with the ones defined using D.
Remarkably, this means that in the torsion-free case, the double complex can be described
using just the ordinary Levi-Civita and Hull connections.

To verify this, take for example α ∈ A1,1
7,7, and let D be a generalised Levi-Civita

connection of the form (C.26). Then we have

1
2(dD+α− dD̂+α)abā = Pabcd(Dc − D̂c)αdā

= Pabcd
(1

6Hc
e
dαeā −

1
3∂cφαdā − (A+)cedαeā

)
= Pabcd

(1
6Hϕc

e
dαeā −

1
6H

f (∗ϕ)cdefαeā −
1
6H

f
[cϕde]fα

e
ā

−1
3∂cφαdā + (A+)f cϕdefαeā − (A+)f [cϕde]fα

e
ā

)
= 1

6Hϕa
e
bαeā + 1

3Pab
cd(2Hc − ∂cφ)αdā

− 1
18

(
Hcd − 21

2 (A+)cd
)
ϕabcαdā.

(4.24)
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The difference between the operators vanishes precisely when D is a G2×G2-compatible,
torsion-free connection (these are the same conditions we found in the previous section). It
should also be clear from this calculation that one could consider the action on any other
element of the complex (4.19) and obtain analogous constraints. Thus, the two operators
coincide if and only if the generalised structure has vanishing torsion. Assuming this is the
case, we see that the operators agree, and so we are free to use D̂ to define d±.

This simplified connection makes checking the nilpotency conditions (4.22) substan-
tially easier. First consider d2

+. We have that the simplified connection satisfies

[D̂[a1 , D̂a2 ]ωa3...ap+2]b̄1...b̄q
= −pR[a1a2

e
a3ω|e|a4...ak]b̄1...b̄q

− qR+
[a1a2|

c̄
[b̄1ω|a3...ak]|c̄|b̄1...b̄q ]

= −qR+
[a1a2|

c̄
[b̄1ω|a3...ak]|c̄|b̄1...b̄q ],

(4.25)

where we have used (A.2) to write the commutator of connections in terms of curvatures.
Now notice that because ∇+ is compatible with ϕ− it follows that R+ ∈ Λ2T ⊗ g−2 , and
similarly R− ∈ Λ2T ⊗ g+

2 . But since dH = 0, we have that R+
a1a2b1b2

= R−b1b2a1a2
and so

actually R+ ∈ g+
2 ⊗g

−
2 (and R− ∈ g−2 ⊗g

+
2 ). Therefore, (4.25) vanishes when the projectors

in the definition of d+ are applied to it. So for ω ∈ A0,q one has

1
2(d2

+ω)a1a2b̄1...b̄q
= Pa1a2

c1c2Dc1Dc2ωb̄1...b̄q

= Pa1a2
c1c2D̂[c1D̂c2]ωb̄1...b̄q

= 0,
(4.26)

and if ω ∈ A1,q

1
6(d2

+ω)a1a2a3b̄1...b̄q
= Pa1a2a3

d1d2d3Dd1Pd2d3
c1c2D̂c1ωc2b̄1...b̄q

= Pa1a2a3
d1d2d3Pd2d3

c1c2Dd1D̂c1ωc2b̄1...b̄q

= Pa1a2a3
c1c2c3Dc1D̂c2ωc3b̄1...b̄q

= Pa1a2a3
c1c2c3D̂[c1D̂c2ωc3]b̄1...b̄q

= 0,

(4.27)

where we have used that the projectors commute with the compatible connection D and
that (P1)a1a2a3

b1b2b3(P7)b1b2c1c2 = (P1)a1a2a3
c1c2b3 . Obviously, if ω ∈ Ap>1,q then d2

+ω = 0
trivially, and one can repeat this reasoning to also conclude that d2

− = 0.
To see that {d+, d−} = 0, consider first α ∈ A1,1

7,7. Then

[][D̂a, D̂b̄]αcd̄ = [∇a,∇b̄]αcd̄ + 1
2(∇aHb̄

e
c)αed̄ + 1

2(∇b̄Ha
ē
d̄
)αcē

+(1− 1)1
2Hb̄

e
cαed̄ + (1− 1)1

2Ha
ē
d̄∇b̄αcē

−1
2
(
Ha

ē
b̄∇ēαcd̄ +Hb̄

e
a∇eαcd̄

)
= −

(
Rab̄

e
c −

1
2∇aHb̄

e
c + 1

4Ha
f̄
b̄Hf̄

e
c

)
αed̄

−
(
Rab̄

ē
d̄ −

1
2∇b̄Ha

ē
d̄ + 1

4Hb̄
f
aHf

ē
d̄

)
αcē.

(4.28)
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Antisymmetrising on [ac] and [b̄d̄], this becomes

−1
2R

+
ac
e
b̄αed̄ + 1

2R
−
b̄d̄
ē
aαcē. (4.29)

Again, due to the representations that R+ andR− live in, this is projected out in {d+, d−}α.
To show that on an element β ∈ A2,0

7,1 we also have {d+, d−}β = 0, it is actually simpler
to use a torsion-free compatible connection. One then has

ϕabc(DaDā −DāDa)βbc = [Da, Dā]ϕabcβbc = R0
aāϕ

abcβbc = 0, (4.30)

where in the first equality we used compatibility to commute the G2 3-form through the
derivatives, then we used the definition of the generalised Ricci tensor of a torsion-free con-
nection (C.28), and finally we used the fact that generalised torsion-free G2×G2 manifolds
are generalised Ricci-flat.

The action of {d+, d−} on the remaining spaces of the double complex can be computed
similarly to these two examples and leads to the same result. One can therefore conclude
that if a generalised G2×G2 structure has vanishing intrinsic torsion, then there exists a
double complex of the form (4.19).

4.4 Hodge theory

Let us now see how several concepts familiar from the conventional G2 complex naturally
generalise to the G2×G2 double complex.

We start by defining the adjoint operators in direct analogy with section 3.1. Consider
two tensors in A1,0

α = αaE
+a, β = βaE

+a. (4.31)

We can define an inner product between them as

(α, β) =
∫
M

ΦG(α, β) =
∫
M

Φαaβb η(E+a, E+b)

=
∫
M

Φαaβb η
ab =

∫
M

e−2φ vol αyβ,
(4.32)

where both Φ and G are O(d)×O(d) invariant, so that the inner product is also invariant.
More generally for α, β ∈ Ap,q one has∫

M
ΦG(α, β) = κpκq

∫
M

e−2φ vol αyβ, (4.33)

where the constants κp and κq are defined by

κp =


1 p = 0, 1,
3 p = 2,
7 p = 3.

(4.34)
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This ensures that this inner product agrees with the usual inner product for each G2 factor.
Given this definition, one can check that the adjoint operators, defined by (α, d±β) =
(d†±α, β), act on (p, q)-forms as

(d†+α)c2...cpd̄1...d̄q
= −γpDc1αc1...cpd̄1...d̄q

, (4.35)

(d†−α)c1...cpd̄2...d̄q
= γq(−1)p+1Dd̄1αc1...cpd̄1...d̄q

, (4.36)

where

γp =


1 p = 1,
3 p = 2,
7
3 p = 3.

(4.37)

In this way, the adjoint operators inherit many of the properties of the those for the usual
G2 complex, as described in section 3.1. For example, using (3.18), acting on a tensor
α ∈ A3,1, we have that d†+α = (θ+)7d+(θ+)−1

1 α.

4.4.1 Kähler identities

There exist useful anticommutation relations between the differentials and their adjoints,
which are the G2×G2 analogues of the Kähler identities of the Dolbeault complex. Taking
λ ∈ A1,0, in components we have that

(d†+d−λ)ā = DaDāλa, (d−d†+λ)ā = −DāD
aλa, (4.38)

and so
(d†+d−λ+ d−d†+λ)b̄ = [Da, Db̄]λ

a = R0
ab̄
λa ≡ 0, (4.39)

since the generalised Ricci tensor vanishes for a torsion-free G2×G2 structure. Note
that this is essentially the same calculation as (4.30). Indeed, because of the isomor-
phisms (3.18), the Kähler identities are automatically implied by the anticommutation
relations of the d± operators, and vice-versa. For example, acting on µ ∈ A2,0 satisfying
µ = (θ+)7λ for some λ ∈ A1,0, we have

(d†+d− + d−d†+)µ = (d†+d− + d−d†+)(θ+)7λ = (θ+)−1
7 (d+d− + d−d+)λ = 0, (4.40)

since {d+, d−}λ = 0.
We conclude that the differentials and their adjoints over the G2×G2 complex satisfy

d2
± = (d†±)2 = {d±, d∓} = {d†±, d∓} = 0. (4.41)

4.4.2 Laplacians

We define Laplacians for both the “plus” and “minus” differentials as usual:

∆± = d†±d± + d±d†±. (4.42)

Much as for the G2 complex in section 3.1, it follows from the properties of the adjoints
that the Laplacians depend only on the G2×G2 representation of the object on which they
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act and not on the (p, q) degree of the form. For instance, taking α ∈ A2,3
7,1, there exists

some β ∈ A1,0
7,1 such that α = (θ+)7(θ−)1β. Then

∆+α =
(
d†+d+ + d+d†+

)
(θ+)7(θ−)1β = (θ−)1

(
d†+d+ + d+d†+

)
(θ+)7β

= (θ−)1
(
d†+(θ+)−1

7 d†+ + d+(θ+)−1
7 d+

)
β

= (θ−)1(θ+)7
(
d+d†+ + d†+d+

)
β = (θ−)1(θ+)7∆+β.

(4.43)

Note as well that if we consider the combined differential d̂ = d+ +d−, the Kähler identities
imply that its Laplacian coincides with the sum of the Laplacians for d+ and d−:

∆̂ = d̂†d̂ + d̂d̂† = ∆+ + ∆−. (4.44)

We will now show that the ∆+ and ∆− Laplacians are in fact equal, as is the case for
∆∂ and ∆∂̄ of the Dolbeault complex. Considering first f ∈ A0,0, we have that

∆+f = d†+d+f = −DaDaf = −∇2f + 2∂aφ∇af,
∆−f = d†−d−f = −DāDāf = −∇2f + 2∂āφ∇āf,

(4.45)

and so ∆+f = ∆−f . Now take λ ∈ A1,0. For ∆− we have
(∆−λ)b = (d†−d−λ)b = −DāDāλb

= −∇2λb −Hācb∇āλc + 2∂āφ∇āλb + 1
4H

ād
bHādcλ

c

−1
2(∇āHābc − 2∂āφHābc)λc.

(4.46)

For the two terms in ∆+, we find

(d+d†+λ)b = −DbD
aλa = −∇b∇aλa + 2∂aφ∇bλa + 2(∇b∇aφ)λa, (4.47)

and
(d†+d+λ)b = −2DaD[aλb] − ϕabcdDaDcλd

= −∇2λb +∇a∇bλa + 4∂aφ∇[aλb]

−1
2(∗ϕ)bcde∂cφ∇dλe − ϕc[bdHc

e]∇dλe

= −∇2λb +∇a∇bλa + 4∂aφ∇[aλb] −Hbcd∇cλd,

(4.48)

where we used the compatibility condition 1
2∂aφ = Ha and the G2 decomposition of H in

reverse Habc = (∗ϕ)abcdHd + ϕe[abH
e
c] for the final step. Putting this together, we can

compare the two Laplacians to find

(∆−λ−∆+λ)b = 2
(
DaD[aλb] + 1

2(∗ϕ)abcdDaDcλd
)

+DbD
aλa −DāDāλb

= [∇b,∇a]λa − 2(∇a∇bφ)λa + 1
4H

ād
bHādcλ

c

−1
2(∇āHābc − 2∂āφHābc)λc +Hābc∇āλc +Hbcd∇cλd

+2∂āφ∇āλb − 2∂aφ∇bλa − 2∂aφ∇[aλb]

= 0,

(4.49)

– 29 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
9

which can be checked in a gauge where the C± frames are aligned, and using the fact that
the equations of motion are automatically satisfied for a generalised G2×G2 background.
It should also be clear that the computation of the actions of ∆± on an element λ̃ ∈ A0,1

would be entirely symmetrical, and so ∆+λ̃ = ∆−λ̃ as well.
Now let us consider the action of the Laplacians on an element ζ ∈ A1,1. Using

(∗ϕ)cdefR+
cdab = −2R+

efab, which follows from R+ ∈ g+
2 ⊗ g−2 , we perform a similar calcu-

lation to find the “plus” Laplacian
(∆+ζ)aā = −DaD

bζbā − 2DaD[aζb]ā − ϕabcdDaDcζdā

= −∇2ζaā +HacbH
c
āb̄ζ

bb̄ + 2∂bφ∇bζaā −Habc∇bζcā +Hbb̄ā∇
bζa

b̄

−[∇a,∇b]ζbā + 2(∇a∇bφ)ζbā −
1
4H

b
c̄āHb

b̄c̄ζab̄

+R+
abb̄ā

ζbb̄ +∇[aHb]b̄āζ
bb̄ + 1

2H[b
c̄
|ā|Ha]b̄c̄ζ

bb̄

= −∇2ζaā +HacbH
c
āb̄ζ

bb̄ + 2R+
abb̄ā

ζbb̄ + 2∂bφ∇bζaā −Habc∇bζcā +Hbb̄ā∇
bζa

b̄.

(4.50)
We can immediately deduce the “minus” Laplacian by exchanging barred and unbarred
indices and taking H → −H:

(∆−ζ)aā = −∇2ζaā +Hāc̄b̄H
c̄
abζ

bb̄ + 2R−
āb̄ba

ζbb̄ + 2∂ b̄φ∇b̄ζaā +Hāb̄c̄∇
b̄ζa

c̄ −Hb̄ba∇
b̄ζbā,

(4.51)
and so we directly observe that ∆+ζ = ∆−ζ too.

Finally, since the Laplacians depend only on the G2×G2 representation, the cases
we have covered are actually sufficient to conclude that over the entire double complex
∆+ = ∆− = 1

2∆̂.

5 Relation to the topological G2 string

In this section, we will show that the double complex (4.19) is the target-space realisation
of the worldsheet BRST complex of the topological G2 string. Indeed, if one studies the
left- and right-moving sectors separately, one finds that the states in the topological theory
are the following [10, 11, 14, 17]

|0, 0〉
Ω0

1
,

∣∣∣ 1
10 ,

2
5

〉
Ω1

7
,

∣∣∣ 6
10 ,

2
5

〉
Ω2

7
,

∣∣∣32 , 0〉
Ω3

1
. (5.1)

Here, the states are labelled as in section 2 and the second row shows the interpretation
of these states as differential forms on the target space. By studying the OPE of the
supercurrent G+ with states of the form Aµ1...µk

(X)ψµ1 . . . ψµk , one can show that the
left-moving BRST operator QL = G↓−1/2 ∼ ď acts as

|0, 0〉 QL−−−−−→
∣∣∣ 1
10 ,

2
5

〉
QL−−−−−→

∣∣∣ 6
10 ,

2
5

〉
QL−−−−−→

∣∣∣32 , 0〉
Ω0

1
ď−−−−→ Ω1

7
ď−−−−→ Ω2

7
ď−−−−→ Ω3

1

. (5.2)

Similar results hold for the right-moving sector as well, with QR = Ḡ↓−1/2.
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The full string states are tensor products of left- and right-moving states from (5.1).
As target-space tensors, we find that the string states correspond to

Ωp
m ⊗ Ωq

n = Ap,qm,n, (5.3)

where the spaces Ap,qm,n are as in (4.17). Moreover, given (5.2) and the fact that Q2
L = Q2

R =
{QL, QR} = 0, we see that the natural target-space identification of the BRST operators is

QL ∼ d+, QR ∼ d−. (5.4)

Physical states then correspond to cohomology classes of Q = QL+QR in the Hilbert space,
or equivalently, harmonic forms under the Laplacian ∆̂ given in (4.44). By the analysis in
section 4.4, we see that these are precisely the harmonic forms of ∆±.

5.1 1-loop partition function

We can use these observations to understand the 1-loop partition function of the topological
G2 string from the target space. As was shown in [14], one can find the 1-loop partition
function using the standard formula for the 1-loop free energy of the topological string [7]:

F1 = 1
2

∫ dτdτ̄
τ2

tr
(
(−1)FFLFR e2πiτHL−2πiτ̄HR

)
, (5.5)

where FL and FR are the left- and right-moving fermion number operators respectively,
F = FL + FR is the total fermion number operator, HL = {QL, Q†L} is the left-moving
Hamiltonian, and similarly for HR. Taking the domain of τ to be the upper half plane,
evaluating the integral gives

F1 = 1
2δ(HL −HR) log

 ∏
FL,FR

det
(
2π(HL +HR)

)(−1)FFLFR

. (5.6)

Our target space picture provides a clear interpretation of this object. It is precisely the
product20

F1 = 1
2 log

[∏
p,q

(det ′∆̂p,q)(−1)p+qpq

]
. (5.7)

It is instructive to compare this with the analogous result for the topological B-
model [7, 9]. Indeed, the free energy in (5.7) is of precisely the same form as that for
the B-model on a Calabi-Yau threefold, but with the Dolbeault complex replaced with the
G2×G2 complex found in the previous section. This striking fact will become important
when we consider the topological Spin(7) string in section 7, about which far less is known.

Using the usual normalisation of the partition function in terms of the free energy,
Z = e−F , the corresponding 1-loop partition function is

Z1 =
[∏
p,q

(det ′∆̂p,q)(−1)p+qpq

]−1/2

(5.8)

= (det ′∆̂1,1)−9/2(det ′∆̂7,1)3/2(det ′∆̂1,7)3/2(det ′∆̂7,7)−1/2, (5.9)
20We are using the ζ-regularised determinant of the Laplacians with zero modes removed, denoted by det ′.

– 31 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
9

where in the second line the subscript denotes the G2×G2 representation that ∆̂ acts on,
and we have used the fact that the determinant depends only on the representation on
which ∆̂ acts. Comparing (5.8) to (2.29), we see that, much like in the A/B-model, the
1-loop partition function calculates the analytic torsion of the G2 double complex.

In the case of the topological G2 string, the target manifold has G2 holonomy with
vanishing H-flux. This means we can further simplify the partition function by considering
the diagonal subgroup G2 ⊂ G2×G2, and using the decomposition 7×7 = 1+7+14+27.
With this, the combined Laplacian ∆̂ reduces to the G2 one ∆̌, and since ∆̌ ' ∆ on these
subspaces, see (3.19), the 1-loop partition function of the topological G2 string is given by

Z1 = (det ′∆1)−5(det ′∆7)5/2(det ′∆14)−1/2(det ′∆27)−1/2, (5.10)

which exactly matches the expression given in [14]. Much like in the A/B-models, we can
read this result off immediately from the double complex, as shown in figure 2. For the
pure G2 case, we find three independent Laplacians assigned to the faces of the squares in
the diamond. These once again correspond to determinants of Laplacians restricted to the
subspaces in the Hodge decomposition of Ap,q. The partition function is then given by the
product of these values with alternating powers of ±1

2 in a checkerboard pattern, as shown
in the figure.

We can use the work of Pestun and Witten [9] on the B-model to identify the target-
space theory that reproduces this 1-loop expression. An attempt was made in [14] to
describe the topological G2 string in terms of a target-space theory defined by a Hitchin-
like functional (see equation (C.52)), but this did not reproduce the partition function that
one calculates from the worldsheet. Rather than starting from an invariant functional, we
will simply write down a target-space action whose BV quantisation matches Z1.

5.2 A quadratic target-space action

Using our double complex (4.19), and by direct analogy with the Dolbeault complex of
complex geometry and Pestun and Witten [9], we propose the following quadratic target-
space action:

S0 =
∫
M

Φ (θ+)−1
1 (θ−)−1

1

(1
2 b11 ∧ d+d−b11 + a00 ∧ d+d−c22

)
(5.11)

s.h∼
∫
M

e−2φ vol ϕmnpϕqrs
(
−1

2(b11)mq∇n∇r(b11)ps + 1
4a00∇m∇q(c22)nprs

)
, (5.12)

where the fields a00, b11 and c22 are real elements of Ap,q. The integrand now sits in A3,3
1,1

multiplied by the G2×G2 volume form Φ = e−2φ√g (which ensures one can integrate by
parts). In the second line, we have written the action for the case of G2 special holonomy,
with ∇ denoting the Levi-Civita connection. The volume form and projections will be
omitted from hereon and taken as part of the integration measure. Since in what follows
we will be tackling the two terms in the action separately, we will denote the first term
involving c11 by Sa0 , and the second term by Sb0.

The idea then is that the partition function of this theory should match the 1-loop
partition function calculated in (5.9). We can compute this partition function in two ways.
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(0, 0)

(1, 0) (0, 1)

(0, 2)(1, 1)(2, 0)

(3, 0) (2, 1) (1, 2) (0, 3)

(1, 3)(2, 2)(3, 1)

(3, 2) (2, 3)

(3, 3)

−
A

+
B

+
B

−
C

−
A

−
A

+
B

+
B

−
A

Figure 2. For a global G2 structure with vanishing flux, equality of ∆± and the isomorphisms
provided by the 3-form ϕ mean that det ′∆p,q can be expressed in terms of three independent
determinants. For example, det ′∆̂0,0 = det ′∆̂1,1 = det ′∆1 ≡ A, det ′∆̂1,0 = det ′∆̂7,1 = det ′∆7 ≡
AB, and det ′∆̂1,1 = det ′∆̂7,7 = det ′∆1 det ′∆21 det ′∆27 ≡ AB2C. The analytic torsion (the
1-loop partition function) is then given by (A−4B4C−1)1/2, in agreement with (5.10).

The first is to use the standard BRST-BV quantisation procedure [54], in analogy with [9].
We will follow this path here, assuming all relevant cohomologies ofM vanish to simplify the
presentation. The second approach is by direct computation, as also demonstrated in [9].
Given a quadratic action, this method is usually robust and perhaps more illustrative if the
reader is unfamiliar with the BV approach. We illustrate this computation in appendix B.2.

b11 ∧ d+d−b11. We begin by considering the first term Sa0 involving the field b11 and
constructing the BV action. The gauge symmetries of this term lead to the following BRST
transformations:

Qb11 = d+b01 + d−b10,

Qb10 = d+b00,

Qb01 = d−b00.

(5.13)

These are similar to the transformations of [9] but without any reality constraints as the
fields involved are real. We have introduced ghosts b10 and b01, and a ghost for ghosts b00.
The fields bpq have statistics (−1)(p+q).

As in [9] we introduce antifields. The antifield of bpq is a field b∗(3−p)(3−q) of ghost
number p+ q − 3 and statistics (−1)p+q+1. The master action then takes the form

S = Sa0 +
∑
p,q

∫
M
b∗(3−p)(3−q) ∧Qbpq. (5.14)
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This action reduces to Sa0 when the antifields are zero, and satisfies the usual require-
ments that

{S, S} = 0, {S,Ψi} = QΨi, (5.15)

for any field Ψi, where the antibracket between two functionals F and G is given by

{F,G} =
∑
i

(
δF

δΨi
· δG
δΨ∗i

− δF

δΨ∗i
· δG
δΨi

)
, (5.16)

where Ψ∗i is the antifield for Ψi. Using the master action, one can also derive the BRST
transformations of the antifields via QΨ∗i = {S,Ψ∗i }:

Qb∗22 = d+d−b11,

Qb∗23 = d−b∗22,

Qb∗32 = d+b
∗
32.

(5.17)

Next one chooses a Lagrangian submanifold. We choose this so as to remove the kernels
of kinetic terms in the master action. This is done by projecting each field onto a subspace
orthogonal to its variation under gauge transformations. From the classical part Sa0 , the
Hodge decomposition implies that we should set

b11 = d†+d†−d22. (5.18)

The term involving fermionic ghosts and antifields reads

Sa1 =
∫
M
b∗22 ∧ (d+b01 + d−b10). (5.19)

Note that d+ acting on b01 has no kernel (assuming vanishing cohomologies), and likewise
for d− on b10. This implies that we can decompose b01 and b10 as

b01 = d†−d02 + d−d00,

b10 = d†+d20 + d+d̃00.
(5.20)

Plugging this into (5.19), we see that terms involving the adjoint operators are orthogonal
and so cannot cancel. However, terms involving the differentials cancel when d̃00 = d00. To
remove the kernel, we should set d̃00 = −d00. Finally, the bosonic action involving ghosts
of ghosts reads

Sa2 =
∫
M

(b∗23 ∧ d+b00 + b∗32 ∧ d−b00). (5.21)

Again assuming vanishing cohomologies, this term puts no constraints on b00.
The antifields are constrained by demanding∑

i

∫
M

Ψ∗i ∧Ψi = 0. (5.22)

As b00 is unconstrained, we are forced to set b∗33 = 0. From the constraint on b11, we can
derive a constraint on b∗22:

b∗22 = d†+d∗32 + d†−d∗23. (5.23)
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The constraints on b∗23 and b∗32 come from requiring that∫
M

(b∗32 ∧ b01 + b∗23 ∧ b10) = 0. (5.24)

This holds provided we set

b∗32 = d†−d33, b∗23 = d†+d33. (5.25)

To show this requires an integration by parts, and the fact that the Laplacians ∆+ and
∆− are equal.

We now compute the contribution to the partition function for each term in the master
action of Sa0 . For the classical term, the result is (det ′d+d−)−1/2 as the term is quadratic
in b11, which is bosonic. Note however that with the projection onto the Lagrangian
submanifold, the operator d+d− should be thought of as acting on d†+d†−-exact (1, 1)-forms.
The determinant is then(

det ′(d+d−)
)−1/2 =

(
det ′(d†+d†−d+d−)

)−1/4
=
(
det ′∆̂

•
1,1)−1/2

, (5.26)

as again the Laplacians are equal. The dot below denotes the fact that we are acting on
d†+d†−-exact forms, as explained in appendix B.1. This is also the determinant we have
referred to as C in figure 2.

Next, let us compute the partition function of the bosonic action Sa2 involving ghosts
and ghosts of ghosts. We can write the ghost of ghost action as∫

M
(b∗23 + b∗32) ∧ (d+ + d−)b00. (5.27)

With the projection onto the Lagrangian submanifold, the result is
(
det ′(d+ + d−)

)−1 =
(
det ′∆̂

•
0,0)−1/2

= A−1/2. (5.28)

Finally, the fermionic ghost term reads

Sa1 =
∫
M

(b01 + b10) ∧ (d+ + d−)b∗22. (5.29)

The Lagrangian submanifold projects b∗22 onto •A2,2 ⊕ A
•

2,2 ⊕ A•2,2, as defined in ap-
pendix B.1. The contribution to the partition function of this term is therefore

det ′(d+ + d−) =
(
det ′∆̂

•
2,2 det ′•∆̂2,2 det ′∆̂•2,2

)1/2
=
(
AB′B

)1/2
, (5.30)

where in the general G2×G2 case with flux there is a potential asymmetry between B and
B′ when mirroring the diagram of figure 2 about the vertical axis. In this case we denote
the Laplacians of the middle upper-left square and the middle lower-right square B, and
the middle upper-right and lower-left squares are denoted B′. For a global G2 structure,
one has B = B′, which is the case shown in figure 2. Putting this together, the partition
function of the term Sa0 in the classical action is

Za =
(
BB′

C

)1/2
. (5.31)
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a00 ∧ d+d−c22. Next we consider the term Sb0 in the classical action. The BRST trans-
formations read

Qc22 = d+c12 + d−c21, Qc20 = d+c10,

Qc12 = d+c02 + d−c11, Qc02 = d−c01,

Qc21 = d−c20 + d+c11, Qc10 = d+c00,

Qc11 = d+c01 + d−c10, Qc01 = d+c00,

(5.32)

while the field a00 is gauge invariant. For each field and ghost cpq we again introduce an
antifield c∗(3−p)(3−q) of statistics (−1)p+q+1 and ghost number p+ q − 5. We also introduce
a fermionic antifield a∗33 for the field a00.

The master action is now given as

S = Sb0 +
∑
p,q

∫
M
c∗(3−p)(3−q) ∧Qcpq, (5.33)

which is easily checked to satisfy {S, S} = 0, and generates the BRST transformations
as Qcpq = {S, cpq}. Similarly, the BRST transformations of the antifields are given as
Qc∗pq = {S, c∗pq} and Qa∗33 = {S, a∗33}. We proceed by introducing a Lagrangian subman-
ifold to project out kernels of kinetic terms in the master action. This is again done by
projecting each field onto a subspace orthogonal to its variation under gauge transforma-
tions. Assuming vanishing cohomologies, for the classical fields c22 and a00 we get

c22 = d†+d†−d33, (5.34)

or c22 ∈ A•
2,2 and with no conditions on a00. We can immediately compute the partition

function of Sb0:
Zb0 = A−1. (5.35)

Next consider the first-level fermionic ghost action

Sb1 =
∫
M
c∗11 ∧ (d+c12 + d−c21). (5.36)

The contribution from this is most easily computed by considering the BRST transforma-
tion of the antifield c∗11:

Qc∗11 = {S, c∗11} = d+d−c00. (5.37)

The Lagrangian submanifold should hence project c∗11 to •A1,1 ⊕ A
•

1,1 ⊕ A•1,1, and the
contribution from Sb1 is straightforwardly computed as

Zb1 = (CBB′)1/2. (5.38)

The second-level bosonic ghost action reads

Sb2 =
∫
M
c∗21 ∧ (d+c02 + d−c11) +

∫
M
c∗12 ∧ (d−c20 + d+c11). (5.39)
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Consider first the terms involving the field c11. The gauge transformation of c11 requires
us to project c11 to A

•
1,1 giving a contribution C−1/2 from these terms. The gauge trans-

formation of c02 suggests projecting to A
•

0,2, while c20 is projected to A
•

2,0. Both of these
terms hence contribute a factor A−1/2, giving

Zb2 = A−1C−1/2. (5.40)

The third-level fermionic action reads

Sb3 =
∫
M

(c∗22 ∧ (d+c01 + d−c10) + c∗31 ∧ d−c01 + c∗13 ∧ d+c10). (5.41)

The contribution from this action is again most easily computed by considering the BRST
transformation of the antifields. We have

Qc∗22 = d+c12 + d−c21, (5.42)

which tells us that we should project c∗22 to A
•

2,2. The term involving c∗22 then contributes
a factor A1/2 to the partition function. Similarly, the BRST transformation of c∗31 is

Qc∗31 = d+c
∗
21. (5.43)

Neglecting cohomologies, we find that we should set c∗31 = 0 as part of the Lagrangian
projection. Similarly, we also set c∗13 = 0. The third-level action thus contributes

Zb3 = A1/2 (5.44)

to the partition function.
The final term to consider is the bosonic action

Sb4 =
∫
M

(c∗23 + c∗32) ∧ (d+ + d−)c00. (5.45)

As the ghost field c00 is gauge invariant we have no constraints on this field. This term
hence contributes

Zb4 = A−1/2. (5.46)

Collecting all contributions, we thus find

Zb = (BB′)1/2

A2 . (5.47)

Final result. Putting together (5.31) and (5.47), the full partition function for the target-
space action (5.11) is

Z = ZaZb = BB′

C1/2A2 . (5.48)

It is straightforward to check that this expression agrees with the general G2×G2 ex-
pression (5.8), and in particular the expression (5.10) for the special case of a global G2
structure where B′ = B.
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6 The Spin(7)× Spin(7) complex

So far we have seen that we can use O(d, d)× R+ generalised geometry to build a double
complex that gives the target-space analogue of the worldsheet BRST complex. We used
this double complex to compute the 1-loop partition function of the topological G2 string
and then identify a target-space action which reproduces this result. These arguments can,
in fact, be extended to any subgroup G ⊂ O(d) identified in [29] where one “doubles” the
complexes discussed in that work. These should provide the 1-loop partition function to a
suitably twisted σ-model on a target space with the corresponding G-structure. Here, we
will focus on the Spin(7) case and use our results to provide a prediction for the conjectured
topological Spin(7) string [10]. The calculations here are entirely analogous to those in the
G2×G2 case, so we will be light on details and simply sketch out some of the proofs while
stating the key results.

6.1 Generalised Spin(7)× Spin(7) structures

The set up is much like section 4.1, except now we take M to be eight-dimensional, so
that we are working in O(8, 8) × R+ geometry. In this case, two globally non-vanishing
chiral21 spinors ε± ∈ S(C±) each define a Spin(7) structure given by Θ±. When the spinors
are linearly independent, the Spin(7) structures are orthogonal and intersect on a G2 or
SU(4) structure depending on the relative chirality of ε± [55, 56]. Much like in the G2
case, however, there may be places where the spinors align and the structure degenerates
to Spin(7). If this is the case, the manifold admits only a local conventional G-structure,
however the spinors still define a global Spin(7) × Spin(7) structure within generalised
geometry.

One can describe certain backgrounds of type II strings compactified down to two
dimensions in terms of Spin(7) × Spin(7) structures. In this case, we assume that we
have a decomposition of the chiral ten-dimensional spinors as ε± = ζ±⊗ ε± into irreducible
Spin(1, 1) and Spin(8) spinors respectively. For the background to preserve supersymmetry,
we need the supersymmetry variations of the gravitinos and dilatinos to vanish under ε±.
Under the decomposition above, and the assumption of vanishing RR flux, we find that
we need ζ± to be constant spinors on R1,1, and that ε± must satisfy the Killing spinor
equations (4.2) on M . It was shown in [55] that these equations hold if and only if ε±
define a torsion-free Spin(7)× Spin(7) structure.

6.2 The double complex

A generalised Spin(7)× Spin(7) structure defines a generalised metric and hence a decom-
position E = C+⊕C− as discussed in appendix C.1. As we did for G2×G2 structures, we
can use the G-structure to define a refinement of the exterior algebra of this space and take

Ap,qm,n = Γ(ΛpmC+ ⊗ ΛqnC−), (6.1)

21Note that the subscript ± identifies which spinor bundle the spinors are sections of (as in section 4.1),
and not the chirality of the spinors.
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where m and n now denote Spin(7) representations. Then, given some compatible connec-
tion D, we can define a doubling of the complex (3.27) through the following diagram:

A0,0
1,1

A1,0
8,1 A0,1

1,8

A2,0
7,1 A1,1

8,8 A0,2
1,7

A2,1
7,8 A1,2

8,7

A2,2
7,7

d+ d−

(6.2)

where for ω ∈ Ap,qm,n we have defined

(d+ω)a1...ap+1ā1...āq = (p+ 1)(P+
m′)a1...ap+1

b1...bp+1Db1ωb2...bp+1ā1...āq , (6.3)

(d−ω)a1...apā1...āq+1 = (−1)p(q + 1)(P−n′)ā1...āq+1
b̄1...b̄p+1Db̄1

ωa1...apb̄2...b̄q+1
. (6.4)

We will see that, when D is torsion-free, (6.2) defines a double complex and the restriction
to (A•,0, d+) is isomorphic to (3.27).

First, we find the condition on the components of a generalised Levi-Civita connection
for it to be Spin(7) × Spin(7) compatible. As before, this comes from taking a type IIB
NSNS background of the form R1,1×M whereM is eight-dimensional, and then considering
the Killing spinor equations onM . The conditions on (H,φ,A±) that we need to impose are

Daε+ = ∇aε+ −
1
24Habcγ

bcε+ −
1
7∂

bφγa
bε+ + 1

4A
+
abcγ

bcε+ = 0, (6.5)

Dāε+ = ∇āε+ −
1
8Hābcγ

bcε+ = 0, (6.6)

where ε± are the internal spinors that appear in the Killing spinor equations and hence
define the Spin(7)× Spin(7) structure. The conditions above imply compatibility with the
first Spin(7) factor, while the analogous conditions for ε− imply compatibility with the
second Spin(7) factor.

Decomposing the fields under the first Spin(7), one finds

∂φ ∈ 8, H ∈ 8 + 48, A+ ∈ 48 + 112. (6.7)

We can therefore write

Habc = HdΘdabc + H̃abc, (6.8)

A+
abc =

(
ÃadeΘbc

de − Ã[a|deΘ|bc]de
)

+ Âabc, (6.9)

where Hd ∈ Ω1
8, H̃, Ã ∈ Ω3

48, and Â transforms in the 112 representation. Using the
fact that

(P2
21)abcdγcdε+ = 0, Ã[a|deΘ|bc]de = 2

3Ãabc, (6.10)
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we find that the conditions for D to be a compatible connection are

Hd = 2
7∂dφ, H̃ = 20Ã, (6.11)

while Â is unfixed. One finds analogous relations for the second Spin(7) factor.
As in the G2×G2 case, we find that the operators in the double complex can be

defined in terms of a “simplified” connection D̂ which is neither torsion-free, nor compatible.
Nonetheless, it can be used to check the nilpotency and anticommutivity of d±. The
simplified connection is

D̂av
b = ∇avb,

D̂āv
b = ∇−ā vb = ∇āvb −

1
2Hā

b
cv
c,

D̂av
b̄ = ∇+

a v
b̄ = ∇avb̄ + 1

2Ha
b̄
c̄v
c̄,

D̂āv
b̄ = ∇āvb̄.

(6.12)

Note that the first line of (6.12) immediately implies that (A∗,0, d+) is isomorphic to (3.27)
as required.

We now check the conditions for (3.27) to be a double complex. Firstly note that, as
in (4.25), we find that d2

+ acting on ω ∈ A0,p is given by (P2
7)+ acting on the following:

[D̂a1 , D̂a2 ]ωb̄1b̄2 = −qR+
a1a2

c̄
[b̄1|ωc̄|b̄2]. (6.13)

However, after taking the projection, this vanishes because R+ ∈ spin+
7 ⊗ spin−7 . It is

clear, therefore, that d2
+ = 0 acting on any vertex of (6.2). The d2

− = 0 condition follows
analogously, and so we just need to check {d+, d−} = 0 on A0,0, A1,0, A0,1 and A1,1. The
calculation is very similar to those done in section 4.3, and so we will demonstrate it only
for ω ∈ A1,0

8,1. First consider

[D̂a, D̂b̄]ωcd̄ =
(
Rab̄

e
c −

1
2∇aHb̄c

e − 1
4Hab̄

d̄Hd̄c
e
)
ωe. (6.14)

Antisymmetrising on [ac], this becomes

− 1
2R

+
ac
e
b̄ωe, (6.15)

which is annihilated by (P2
7)+. The others follow similarly and hence we see that if D is a

torsion-free Spin(7)× Spin(7) connection, (6.2) defines a double complex.

6.3 Hodge theory

Next, we define Laplacians and analyse the Hodge theory. To do so, we introduce a metric
on the complex as we did in (4.33). That is, for α, β ∈ Ap,q, we have

(α, β) =
∫
M

ΦG(α, β) = κpκq

∫
M

e−2φ vol αyβ, (6.16)

– 40 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
9

where now

κp =

1 p = 0, 1,
4 p = 2.

(6.17)

Defining adjoint operators d†± with this metric, we find their action on (p, q)-forms to be

d†+α = −γpDa1αa1...apb̄1...b̄q
, (6.18)

d†−α = (−1)p+1γqD
b̄1αa1...apb̄1...b̄q

, (6.19)

where

γp =

1 p = 1,
4 p = 2.

(6.20)

6.3.1 Kähler identities

As in the G2×G2 case, the operators d± satisfy the analogue of the Kähler identities:

d2
± = (d†±)2 = {d†±, d∓} = 0. (6.21)

Unlike in the G2×G2 case, however, we do not have isomorphisms connecting different
vertices in the complex. We must therefore check the relations on all vertices. For the
condition {d†+, d−} = 0, the only non-trivial checks are on A1,0,A1,1,A2,0 and A2,1. For
λ1,0 ∈ A1,0, the condition follows simply from (C.28) and the fact that R0

ab = 0 for torsion-
free Spin(7)× Spin(7) manifolds:(

{d†+, d−}λ1,0
)
ā

= [Da, Dā]λa = R0
aāλ

a = 0. (6.22)

For λ1,1 ∈ A1,1 we find(
{d†+, d−}λ1,1

)
āb̄

= 2(P2
7)āb̄

c̄d̄
(
∇c̄∇aλad̄ −∇a∇c̄λ

a
d̄

+
(
−2∇c̄∇aφ+ 1

2∇bHc̄
b
a + 1

4Hbc̄
ēHē

b
a + ∂bφHc̄

b
a

)
λad̄

+
(1

2∇c̄Had̄
ē + 1

4Hbd̄
ēHc̄

b
a

)
λaē

)
= 2(P2

7)āb̄
c̄d̄(−R0

c̄aλ
a
d̄ + 1

2R
+
c̄d̄
ē
aλ

a
ē
)

= 0.

(6.23)

The first term vanishes as before, and the second term vanishes because R+ ∈ spin+
7 ⊗spin

−
7

and hence is annihilated by P2
7. For the remaining vertices, A2,0 and A2,1, the calculation

is similar:(
{d†+, d−}λ2,0

)
aā

= −4R0
ābλ

b
a − 2R−bcāaλ

bc

= 0,
(6.24)

(
{d†+, d−}λ2,1

)
aāb̄

= 8(P2
7)āb̄

c̄d̄
(
−R0

c̄bλ
b
ad̄ −

1
2R
−
bcac̄λ

bc
d̄ −

1
2R

+
c̄d̄
ē
bλ
b
aē

)
= 0.

(6.25)
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The terms involving R− vanish since contraction with λ gives a contraction between the
21 and 7 which is necessarily zero. The analysis for {d†−, d+} then mirrors what we have
done above. Putting this all together, one sees

{d†±, d∓} = 0. (6.26)

One can also check that (d†±)2 = 0. Unlike in the G2×G2 case, this does not immedi-
ately follow from d2

± = 0 and certain automorphisms of the complex. Instead, one needs
to do the calculation explicitly. For example, for λ ∈ A2,q, one finds(

(d†+)2λ
)
ā1...āq

= −4R0
abλ

ab
ā1...āq − 2qR−ab

b̄
[ā1|λ

ab
b̄|...āq ] = 0, (6.27)

and similarly for (d†−)2. This proves the Kähler identities in (6.21).

6.3.2 Laplacians

Finally, we can define the Laplacians of the “plus” and “minus” differentials via

∆± = d†±d± + d±d†±. (6.28)

Taking the combined differential d̂ = d+ + d−, we find that the Kähler identities imply
d̂2 = 0, and that

∆̂ = d̂†d̂ + d̂d̂† = ∆+ + ∆−. (6.29)

While we omit the rather lengthy calculations, one can follow the same arguments as in
section 4.4.2 to show that the Laplacians are again equal: ∆+ = ∆− = 1

2∆̂.

7 Relation to the topological Spin(7) string

The topological Spin(7) string was postulated in [10] but is far less understood than its
G2 counterpart. Despite this, we can use the double complex we have derived, along with
intuition gained from the A/B-model and the G2-string, to provide a conjecture for its
1-loop partition function.

The key idea is to take the double complex above as the target space interpretation of
the BRST complex and assume (5.8) holds for any topological string. That is, we assume
that the 1-loop partition function calculates the analytic torsion of the Spin(7) double
complex:

Z1 =
[∏
p,q

(det ′∆̂p,q)(−1)p+qpq

]−1/2

, (7.1)

where now the product is taken over the vertices in the Spin(7) double complex. Again,
using the fact that the determinants depend only on the Spin(7)× Spin(7) representation,
we find

Z1 = (det ′∆̂7,7)−2(det ′∆̂8,7)(det ′∆̂7,8)(det ′∆̂8,8)−1/2. (7.2)

As before, the subscripts denote the Spin(7)× Spin(7) representation that ∆̂ is acting on.
The topological Spin(7) string should correspond to the case where we have a global

Spin(7) structure with vanishing flux, so that the metric on M has special holonomy. The
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(0, 0)

(1, 0) (0, 1)

(0, 2)(1, 1)(2, 0)

(2, 1) (1, 2)

(2, 2)

−
A

+
B

+
B

−
C

Figure 3. For a global Spin(7) structure with vanishing flux, equality of ∆± means that all
det ′∆p,q can be expressed in terms of three independent determinants. For example, det ′∆̂0,0 =
det ′∆̂1,1 = det ′∆1 ≡ A, det ′∆̂2,0 = det ′∆̂7,1 = det ′∆7 ≡ B, and det ′∆̂2,2 = det ′∆̂7,7 =
det ′∆1 det ′∆21 det ′∆27 ≡ C. The analytic torsion (the 1-loop partition function) is then given by
(A−1B2C−1)1/2, in agreement with (7.4).

above expression can then be rewritten using representations of the diagonal Spin(7) and
the fact that, by construction, ∆̂ ' ∆ on these subspaces:

Z1 = (det ′∆1)−5/2(det ′∆7)−1/2(det ′∆8)2(det ′∆21)−5/2(det ′∆27)−2

(det ′∆35)−1/2(det ′∆48)2.
(7.3)

It is possible to further simplify this as, for a Spin(7) manifold, the Laplacians are not
independent. Using the relations outlined in appendix A.3 we find that

Z1 = (det ′∆1)−1(det ′∆7)(det ′∆21)−1/2(det ′∆27)−1/2. (7.4)

Once more, this result can be read off directly from the double complex by assigning
values to the squares in the diamond, using the isomorphisms to see which are equal, and
multiplying them together with alternating powers of ±1

2 . This is illustrated in figure 3.
Before providing more motivation for why this might be the correct 1-loop partition

function, we make some brief comments about the result. Firstly, this combination of
determinants does not define a topological invariant of the Spin(7) manifold, much like
the G2 case.22 This is not a surprise, given that the G-structure defines a unique metric
and the partition functions clearly depend on the G-structure. Secondly, there does not
appear to be a quadratic target-space action whose partition function reproduces (7.4)
since the natural “top form” one would write down transforms in the (7,7) and hence is
not a Spin(7) × Spin(7) invariant. Despite this, our analysis provides a natural geometric
interpretation of the 1-loop partition function as the product of ζ-regularised determinants
of Laplacians acting on the double complex (6.2).

22One can calculate the combinations of determinants that are topological, much like in [14]. For Spin(7)
there are three independent combinations, see appendix A.3. We find that Z1 in (7.4) cannot be written as
a combination of these invariants.
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Let us now motivate the above result by finding worldsheet operators that act as d±.
As we saw in section 2.3, the special NS highest-weight states selected out by the topological
string are the following:

|0, 0〉
Ω0

1
,

∣∣∣ 1
16 ,

7
16

〉
Ω1

8
,

∣∣∣12 , 1
2

〉
Ω2

7
, (7.5)

where we have written their interpretation as target-space differential forms underneath.
These states should be generated by the chiral ring of the theory, which in turn should
be annihilated by some nilpotent operator Q we are yet to find. Given the discussion in
this and the previous section, we expect that this Q should have a left-moving piece that
corresponds to the differential ď described in (3.27).

Typically, the operator Q is built from the supersymmetry generators of the theory.23

We therefore examine the OPE of the supercurrent G with the operators defining the NS
states above, and find

G(z)f(w) = . . .− ∂µfψ
µ(w)

2(z − w) + . . . (7.6)

G(z)Aµψµ(w) = . . .− ∂µAνψ
µψν(w)

2(z − w) + ∂xµAµ(w)
(z − w) + . . . (7.7)

where we have expressed only the order-one poles which give the action of G−1/2. We see
that, up to some term that involves ∂xµ, we have G−1/2 ∼ −1

2d. In fact, if we decompose
the expressions above according to their weight under TI = 1

8X̃, we find

∂µfψ ∼
[ 1

16

]
, (7.8)

(P2
7)µνρσ∂ρAσψµψν ∼

[1
2

]
, (7.9)

−1
2(P2

21)µνρσ∂ρAσψµψν + ∂xµAµ ∼ [0]. (7.10)

We would like to pick some sub-operator of G−1/2 that selects (7.8) and (7.9), but leaves
out (7.10).

To see what this could be, we need to understand better the fusion rules of the Ising
model. The Ising model is a minimal model at p = 3. It therefore has three states αn for
n = 1, 2, 3, where the weight of αn is

αn ∼
(3n− 4)2 − 1

48 =


0 n = 1,
1
16 n = 2,
1
2 n = 3.

(7.11)

Plugging in the different values for n reproduces the weights we have written above as
expected. By examining the fusion rules, one finds [10]

α1α2 ∼ α2, α2α2 ∼ α1 + α3, α3α2 ∼ α2. (7.12)
23At least this is true in the A/B-models, and there is evidence that a version of this is true for the G2

string.
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Using the conformal block decomposition of a state — in which we view a state αn as a
collection of maps between states dictated by the fusion rules — we find that we can write

α2 = α+
2 + α−2 , α±2 : αn → αn±1, (7.13)

where we take αn = 0 for n /∈ {1, 2, 3}.
Looking at (7.8)–(7.10), we see that, at least in the Ising sector, G−1/2 ∼ α2. De-

composing the action of G−1/2 into conformal blocks as we did for α2, the sub-operator
that selects only the special NS states in (7.5), and hence the natural candidate for the
left-moving BRST operator, is

QL = G+
−1/2 ∼ d−. (7.14)

One finds similar results for the right-moving sector with QR = Ḡ+
−1/2, and hence we

reproduce the Spin(7) × Spin(7) double complex of section 6. Note that this construction
is analogous to that of the BRST operator in [11] for the topological G2 string. We view
this as strong evidence that this, or a small variation of this, is the correct worldsheet and
target-space interpretation of the BRST operator for the topological Spin(7) string.

8 Some other examples

Though we have focused on the cases of G2×G2 and Spin(7)× Spin(7), and the diagonal
subgroups relevant for topological strings, our construction is in fact far more general. Once
one has identified a group G ⊂ O(d) and the relevant instanton complex from [29], one can
find a doubled version of the complex by lifting to a G × G ⊂ O(d, d) structure and then
using a torsion-free generalised connection that is compatible with the structure. Moreover,
this construction will work for non-vanishing H-flux even if this breaks integrability of the
conventional G-structure.

Since the proofs are essentially the same as for the G2 and Spin(7) case with the relevant
groups and representations exchanged, we will not show explicitly that the diagrams we
give are double complexes, that the Kähler identities hold, nor that the left and right
Laplacians are equal. Instead, we simply write down the complexes in a few cases of
interest and comment on connections to 1-loop partition functions.

8.1 A- and B-models with background H-flux

As we have seen, the double complex exists only for certain choices of H-flux. While
these choices may break integrability of the conventional G-structure, if the flux preserves
integrability of the generalised G × G structure, and hence the background is still super-
symmetric, the double complex is well defined.24 This allows us to describe topological
strings on backgrounds with non-vanishing flux where one necessarily needs to use gener-
alised geometry and the doubled complex. In particular, it is interesting to see how our
double complex describes the A- or B-models with flux.

24Recall that integrability of the generalised structure forces some components of H to vanish, while
others are related to ∂φ or left unconstrained.
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First, let us build the double complex that applies to six-dimensional supersymmet-
ric backgrounds. These backgrounds have a torsion-free SU(3) × SU(3) structure25 which
means we can decompose the bundles C± under this group into complex conjugate repre-
sentations

C± = C1,0
± ⊕ C

0,1
± . (8.1)

In this case, we can build two inequivalent double complexes out of this decomposition
that we suggestively call the A- and B-complexes. These are respectively defined by

Ap,qA = Γ(ΛpC0,1
+ ⊗ ΛqC1,0

− ), (8.2)
Ap,qB = Γ(ΛpC0,1

+ ⊗ ΛqC0,1
− ). (8.3)

We can build the corresponding differentials from a torsion-free compatible connection as
before, this time with the projections mapping onto the vector spaces above. The 1-loop
partition function then follows immediately from the analytic torsion formula we used
previously, namely

Z1 =
[∏
p,q

(det ′∆̂p,q)(−1)p+qpq

]−1/2

. (8.4)

Let us now see how this relates to the A- and B-models with flux, as studied in [15].
The relation of the A/B-models to generalised geometry has been studied in great

detail [45, 57, 58]. In general, a two-dimensional N = (2, 2) σ-model with H-flux has a
target space with a twisted generalised Kähler structure [43, 59]. This is defined by two
commuting, torsion-free generalised complex structures J1 and J2. Individually, they give
a decomposition of the generalised tangent bundle into eigenbundles:

EC = L1 ⊕ L1 = L2 ⊕ L2, (8.5)

where Li is the +i eigenbundle of Ji. Since the two complex structures commute, we can
find mutual eigenbundles and write

EC = L+
1︸︷︷︸

(1,1)

⊕ L−1︸︷︷︸
(1,−1)

⊕ L+
1︸︷︷︸

(−1,−1)

⊕ L−1︸︷︷︸
(−1,1)

, (8.6)

where we have indicated the charges under (J1,J2). We see that L1 and L2 can be
identified with

L1 = L+
1 ⊕ L

−
1 , L2 = L+

1 ⊕ L
−
1 . (8.7)

As usual, the two generalised complex structures define a generalised metric via G =
−J1J2, which in turn defines the subspaces C±. It turns out that the decompositions (8.1)
and (8.5) are then related via

C1,0
+ = L+

1 , C1,0
− = L−1 . (8.8)

25In fact, one only needs the target space to be generalised Kähler, which is a slightly weaker structure.
However, restricting to SU(3)× SU(3) ensures there are no anomalies in the twist [15].
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Using this, the vector spaces (8.2) and (8.3) that we have dubbed the A- and B-complexes
are given by

Ap,qA = Γ(ΛpL+
1 ⊗ ΛqL−1 ) ⊆ Γ(Λp+qL2), (8.9)

Ap,qB = Γ(ΛpL+
1 ⊗ ΛqL−1 ) ⊆ Γ(Λp+qL1), (8.10)

so that the total space of the A- and B-complexes are Λ•L∗2 and Λ•L∗1 respectively.
Using the results of [43], we know that for any generalised complex structure J , its +i

eigenbundle L defines a Lie algebroid under the Courant bracket. This means that there is
an associated differential dL that makes (Λ•L∗, dL) a complex. Furthermore, if J is part
of a generalised Kähler structure, then the differential splits as

dL = ∂+
L + ∂−L , (8.11)

with
∂+
L : Λp,qL∗ → Λp+1,qL∗, ∂−L : Λp,qL∗ → Λp,q+1L∗, (8.12)

where we have defined Λp,qL∗1 = ΛpL+
1 ⊗ ΛqL−1 , and similarly for L2 (see also [60]). One

can show that these differentials coincide with those in the double complex defined via
generalised connections, i.e. ∂±L = d±. Hence, the total BRST operator is

Q = QL +QR = d+ + d− = ∂+
L + ∂−L (8.13)

= dL, (8.14)

where L is L1 for the B-model and L2 for the A-model. The chiral ring then corresponds to
the cohomology associated to one of the generalised complex structures, with the choice of
structure fixed by whether one uses the A or B twist. This exactly reproduces the results
of [15]. We can now interpret the 1-loop partition function (8.4) more concretely with the
knowledge that the relevant Laplacian ∆̂ is that associated to the differential dL.26

For completeness, note that one can recover the chiral rings of the A- and B-models
by defining a generalised Kähler structure from a conventional Kähler structure (I, ω) via

J1 =
(
I 0
0 −I

)
, J2 =

(
0 −ω−1

ω 0

)
. (8.15)

With this choice, the A- and B-complexes in (8.2) and (8.3) reproduce the chiral rings
of the A- and B-models respectively, with the 1-loop partition function in (8.4) reducing
to (2.29).

8.2 Topological strings on K3

A K3 manifold has an SU(2) ⊂ Spin(4) structure, for which the relevant instanton complex
is isomorphic to the Dolbeault complex

Ω0,0 ∂̄−−−−→ Ω0,1 ∂̄−−−−→ Ω0,2, (8.16)
26As was shown in [15], depending on whether one uses J1 or J2, Z1 may receive instanton corrections

at finite volume, and so we should view (8.4) as the 1-loop partition function at infinite volume.
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where we can choose any combination of the three commuting complex structures to define
the ∂̄ operator. Lifting to a generalised SU(2) × SU(2) ⊂ Spin(4, 4) structure, we find
two possible ways to define the doubling of the complex, corresponding to the A- and B-
models on K3. In both cases, in the infinite-volume limit where instanton corrections can
be neglected, the complex is naturally isomorphic to the Dolbeault complex:27

Ω0,0

Ω1,0 Ω0,1

Ω2,0 Ω1,1 Ω0,2

Ω2,1 Ω1,2

Ω2,2

∂ ∂̄

(8.17)

One can then find the 1-loop partition function of the topological string on K3 using the
analytic torsion (8.4). Thanks to the Calabi-Yau structure of a K3, one finds that the
ζ-regularised determinants of Laplacians have many identifications:

det ′∆p,q = det ′∆q,p = det ′∆2−p,q, (8.18)
det ′∆1,1 = (det ′∆1,0)2 = (det ′∆0,0)4. (8.19)

Applying these to (8.4), we find that the 1-loop partition function is trivial, ZK3
1 = 1. This

matches the result that the partition functions for the A- and B-models are trivial on a
K3 in the large-volume limit [7].28 Note that we were able to show this directly from the
target-space geometry without a detailed description of the worldsheet theory.

9 Conclusions and future directions

In this paper, we have given a prescription for calculating the 1-loop partition function of
certain topological string models whose target spaces admit torsion-free G×G structures
within O(d, d)×R+ generalised geometry. We reviewed how there are natural complexes for
both G2 and Spin(7) structures. We then extended these to double complexes for G2×G2
and Spin(7)×Spin(7), with the relevant differentials constructed from torsion-free compat-
ible generalised connections. We showed that such connections exist provided the target
space satisfies certain differential conditions that correspond to it being a supersymmetric
NSNS background for a Minkowski spacetime. In each case, there existed an analogue
of Kähler identities and Hodge theory which allowed us to define Laplacians acting on
representations of G ×G. Starting from the conjecture that the 1-loop partition function
is given by a certain alternating product of determinants of these Laplacians, we showed

27By changing the choice of complex structure within the hyperkähler structure, one can continuously
interpolate between the A- and B-model [58].

28One needs to use the worldsheet theory to see that it is not possible to absorb fermion zero-modes in
order to show that the partition function for the A-model remains trivial at finite volume.
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that our formalism reproduced the known worldsheet results for the A- and B-models and
the G2 string. Our result for the Spin(7) string is new. Finally, as further examples, we
discussed how our formalism captures topological strings on K3 surfaces and the A- and
B-models with flux.

An overarching theme of our work is that G×G ⊂ O(d, d)×R+ structures within gen-
eralised geometry should be thought of as the correct target-space language for describing
worldsheet models, with the left- and right-moving sectors captured by the spaces C+ and
C− respectively (as mentioned previously in [46, 61]). By moving to the twisted theory,
one is restricted to special subspaces of C± selected by the G-structure.

Unfortunately, we were not able to give a target-space action for the Spin(7) string,
nor for backgrounds with general G × G structure without special holonomy. Following
the logic of [9], one might imagine that there are functionals whose quantisation leads to
the 1-loop partition functions we have calculated in this paper. It may be that one needs
to consider RR degrees of freedom and extend to exceptional generalised geometry [62–66]
in order to understand these, or if one wants to understand the story in M-theory. We
hope to tackle this in the future, for example by building on the work defining invariant
functionals in [47, 67–69]. As a first step, one could imagine quantising variations of
the “hypermultiplet structure” of [67], which in type IIA would give the analogue of [9]
but for the A-model (or Kähler gravity). However, in order to extend the G2×G2 and
Spin(7) × Spin(7) constructions introduced in this paper one would need to identify the
corresponding structures in E8(8) and E9(9) generalised geometries respectively, which have
not yet been formulated (though certain subsectors of E8(8) generalised geometry have been
introduced in [70] which might provide clues on how to build the invariant functionals).

There are a number of research directions opened up by our work. In [14], the quantised
G2 target-space theory was compared with the results of Pestun and Witten [9] by reducing
the theory on a circle. One could perform a similar check by reducing the Spin(7) double
complex to G2 in the cases with and withoutH flux. Staying in eight dimensions, as another
direction one might consider embedding a global SU(4) structure in Spin(7)×Spin(7) where
it should give a non-critical version of the B-model on a fourfold.

Another relatively straightforward extension of this work would be to consider the cases
where the generalised intrinsic torsion of the G2×G2 or Spin(7)× Spin(7) structures does
not (entirely) vanish. Recall that we used the fact that we were examining supersymmetric
Minkowski backgrounds to immediately conclude that the G × G generalised structures
must be torsion-free, and that was sufficient to prove the existence of the corresponding
double complexes. However, it is possible that one may be able to weaken this constraint
for other backgrounds — in particular, supersymmetric AdS backgrounds are described in
generalised geometry by constant singlet torsion [71–73]. For the G2×G2 case, one could
then hope to use the concepts developed in this work to make contact with worldsheet
computations for NSNS AdS3 backgrounds [30].

It would also be worthwhile to understand whether there is a physical interpretation
of the double complexes when the groups for right- and left-movers on the worldsheet are
not matched. For example, one could imagine taking SU(3) × G2 ⊂ O(7) × O(7). Such a
generalised structure would be defined by three global spinors, a pair of orthogonal ε1,2+ and
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an ε−, so that the seven-dimensional manifold would generically have an SU(2) structure
that becomes SU(3) wherever ε− is parallel to either εi+. Again, one can write down the
conditions for the structure to be torsion-free and construct differentials using the corre-
sponding torsion-free compatible connection. Closely related to this would be considering
the generalised geometric description of heterotic supergravity, where the relevant group
is O(d) × O(d + n), with the gauge group G embedding in the second factor [68, 74–80].
If a double complex can be constructed in this case, one imagines it could be related to
G-instantons.

Given the importance of the A- and B-models for understanding mirror symmetry on
Calabi-Yau threefolds, one might wonder if these double complexes could be used to probe
mirror symmetry on G2 or Spin(7) manifolds [10, 32, 81–84], or if the 1-loop partition
functions can be expressed in terms of the “ρ-characteristic” of [85] which has special
properties for self-mirror manifolds. As a consistency check, G2 mirror symmetry appears
on the worldsheet as a certain automorphism of the right-moving extended algebra [86–88],
suggesting that figure 2 should be symmetric when reflected along the diagonal from the
top left to the bottom right, which indeed it is.

Our work may also have applications in K-theory and index formulae, which can be
seen by reinterpreting the construction of the double complexes in terms of generalised
spinors (similar to the perspective of [60]). Indeed, for Spin(7) × Spin(7), one can check
that the total space of the double complex is isomorphic to the space of generalised spinors.
The operators D± = d± + d†± then define new elliptic operators on this space which are
related to, but not exactly, (twisted) Dirac operators on Ω•(M). If these operators, or some
construction related to them, has a parallel Cliff(8, 8) action, it would descend to the finite-
dimensional space kerD±, giving it the structure of a Cliff(8, 8) module. The residue of this,
as defined in e.g. [89], would give a Z-valued index for the manifold which, under general
arguments, should be invariant under continuous deformations of the operator [90, 91].
We would like to see if and how this index is related to other indices on eight-dimensional
manifolds. Something even more curious happens in the G2 × G2 case. Here, the total
space of the double complex is isomorphic to two copies of the generalised spinors, possibly
indicating that the correct description should be in terms of pinors. In any case, if one
can find a parallel Cliff(7, 7) action with respect to D±, then the finite-dimensional space
kerD± becomes a Cliff(7, 7) module. Due to the split signature of the Clifford algebra,
the residue of this representation does not trivially vanish as one would expect for seven-
dimensional manifolds. This may give a new index that could be used to distinguish G2
structures.

More speculatively, one might hope that higher-loop contributions to the partition
function can also be captured by the generalised geometry of the target space. Similarly,
one might wonder whether one can use the double complexes to compute twisted world-
sheet indices in the spirit of Cecotti et al. [92]. In another direction, there has also been
recent progress in both the physics and mathematics literature in understanding instan-
tons, invariants and enumerative geometry in the exceptional setting, see e.g. [93–97]. As
mentioned, for instantons and their counting, the single complexes of [29] play a natural
role. Then, in analogy with how the open-closed duality of the A-model and gauge theory
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can be used to compute Gromov-Witten invariants of Calabi-Yau manifolds [98], one could
ask about the relations between our double complexes and the counting of, for example,
associative submanifolds and G2 instantons.
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A Conventions and useful identities

In this appendix, we collect our conventions together with a number of useful identities
and projectors for G2 and Spin(7).

A.1 Conventional geometry

Given a conventional connection ∇ on M , we can express its torsion T ∈ Γ(TM ⊗
Λ2T ∗M) as

∇mvn = ∂mv
n + Γmnpvp,

T (v, w) = ∇vw −∇wv − [v, w], (A.1)
Tmnp = Γnmp − Γpmn,

where [ , ] is the Lie bracket. The curvature of ∇ is then given by the Riemann tensor
R ∈ Γ(Λ2T ∗M ⊗ EndTM), defined by

R(u, v)w = [∇u,∇v]w −∇[u,v]w,

Rmnpqwq = [∇m,∇n]wp − T qmn∇qwp,
(A.2)

with the Ricci tensor and Ricci scalar defined by

Rmn = Rpmpn, R = gmnRmn. (A.3)

We define the generalised Kronecker delta as

δm1...mp
n1...np

= δ[m1
n1 . . . δmp]

np
, (A.4)

so that its components are zero or ± 1
p! . In particular, this convention implies

δm1...mp
n1...np

αn1...np = α[m1...mp]. (A.5)
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Following the notation of [66, appendix A], we use y to indicate the contraction of
a p-vector with a q-form. Given the forms λ and ν, we take λyν to mean first raising
the indices of λ using the conventional metric (defined by whatever G-structure we are
considering), followed by the contraction:

(λ y ν)m1...mq−p
= 1
p!λ

n1...npνn1...npm1...mq−p if p ≤ q, (A.6)

(λ y ν)m1...mp−q = 1
q!λ

m1...mp−qn1...nqνn1...nq if p ≥ q. (A.7)

A.2 G2

We use a (conventional) orthonormal frame gmn = δmn and take the seven-dimensional
gamma matrices to furnish a representation of Cliff(7;R) with γ(8) = γ1 . . . γ7 = −i1.29

We take the G2 structure to be defined by a Majorana spinor ε normalised such that ε̄ε = 1.
The G2-invariant 3-form ϕ and its Hodge dual ∗ϕ are defined as

ϕmnp = −iε̄γmnpε, (∗ϕ)m1...m4 = −ε̄γm1...m4ε. (A.8)

In an orthonormal frame, these can be written as

ϕ = e246 − e235 − e145 − e136 + e127 + e347 + e567,

∗ϕ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457.
(A.9)

Identities. Using Fierz identities on products of four ε’s, one can show the following
identities hold:

ϕm1m2pϕn1n2p = 2δm1m2
n1n2 + (∗ϕ)m1m2

n1n2 ,

ϕmp1p2ϕnp1p2 = 6δmn,
ϕm1m2m3ϕm1m2m3 = 42,

(A.10)

(∗ϕ)m1m2m3pϕn1n2p = −6δ[m1
[n1ϕn2]

m2m3],

(∗ϕ)m1m2p1p2ϕnp1p2 = 4ϕm1m2
n.

(A.11)

One also has

(∗ϕ)m1...m4(∗ϕ)n1...n4 = 24δm1...m4
n1...n4 + 72δ[m1m2

[n1n2
(∗ϕ)m3m4]

n3n4]

−16δ[m1
[n1ϕ

m2m3m4]ϕn2n3n4],

(∗ϕ)m1m2m3p(∗ϕ)n1n2n3p = 6δm1m2m3
n1n2n3 + 9δ[m1

[n1(∗ϕ)m2m3]
n2n3] − ϕm1m2m3ϕn1n2n3 ,

(∗ϕ)m1m2p1p2(∗ϕ)n1n2p1p2 = 8δm1m2
n1n2 + 2(∗ϕ)m1m2

n1n2 ,

(∗ϕ)mp1p2p3(∗ϕ)np1p2p3 = 24δmn,
(∗ϕ)p1...p4(∗ϕ)p1...p4 = 168.

(A.12)
Other useful identities include

ϕm1m2m3ϕn1n2n3 = 3ϕ[m1m2
[n1ϕ

m3]
n2n3] + 6δ[m1

[n1(∗ϕ)m2m3]
n2n3],

ϕ[m1m2m3ϕm4m5]
p = (∗ϕ)[m1...m4δm5]

p.
(A.13)

29One can take the gamma matrices to be imaginary and antisymmetric, so that a Majorana spinor is
real and obeys ε̄ = εT [99].
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Projectors on forms. It is useful to have explicit expressions for the various projectors
onto representations of G2. We define the projectors Ppr , which project a p-form onto the
r representation, so that

λmm′ =
(
P2

7 + P2
14
) nn′

mm′
λnn′ ,

σm1m2m3 =
(
P3

1 + P3
7 + P3

27
) n1n2n3
m1m2m3

σn1n2n3 .
(A.14)

In indices, these projectors are given by

(P2
7)mm′nn

′ = 1
3
(
δnn

′
mm′ + 1

2(∗ϕ)mm′nn
′)
,

(P2
14)mm′nn

′ = 1
3
(
2 δnn′mm′ −

1
2(∗ϕ)mm′nn

′)
,

(P3
1)m1m2m3

n1n2n3 = 1
42ϕm1m2m3ϕ

n1n2n3 ,

(P3
7)m1m2m3

n1n2n3 = 1
4

1
3!(∗ϕ)m1m2m3q(∗ϕ)n1n2n3q,

(P3
27)m1m2m3

n1n2n3 = 3
4δ

n1n2n3
m1m2m3 −

3
8δ[m1

[n1(∗ϕ)m2m3]
n2n3] + 1

56ϕm1m2m3ϕ
n1n2n3 .

(A.15)

From these we can obtain useful relations like

∗ ϕmnpq(λ7)pq = 4(λ7)mn, ∗ϕmnpq(λ14)pq = −2(λ14)mn. (A.16)

A.3 Spin(7)

We use an orthonormal frame gmn = δmn and take the eight-dimensional gamma matrices
to furnish a representation of Cliff(8;R) with γ(9) = γ1 . . . γ8 = 1.30 We take the Spin(7)
structure to be defined by a chiral Majorana spinor ε, with chirality γ(9)ε = ε normalised
such that ε̄ε = 1. The self-dual Spin(7)-invariant 4-form is defined as

Θmnpq = ε̄γmnpqε. (A.17)

In an orthonormal frame, this can be written as

Θ = −e1234 − e1256 − e1278 − e3456 − e3478 − e5678 − e1357

+e1368 + e1458 + e1467 + e2358 + e2367 + e2457 − e2468.
(A.18)

Identities. Again, using Fierz rearrangement one can show the following identities hold:

ΘmnpqΘmnpq = 336, (A.19)
ΘqmnpΘrmnp = 42δqr , (A.20)
ΘpqmnΘrsmn = 12δpqrs − 4Θpq

rs, (A.21)

ΘijkmΘpqrm = 6δijkpqr − 9Θ[ij
[pqδ

k]
r] . (A.22)

30One can take the gamma matrices to be real and symmetric, so that a Majorana spinor obeys ε̄ = εT [99].
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Projectors on forms. We define the projectors Ppr , which project a p-form onto the r
representation of Spin(7), so that

λmm′ =
(
P2

7 + P2
21
) nn′

mm′
λnn′ , (A.23)

σm1m2m3 =
(
P3

8 + P3
48
) n1n2n3
m1m2m3

σn1n2n3 , (A.24)

τm1...m4 =
(
P4

1 + P4
7 + P4

27 + P4
35
) n1...n4
m1...m4

τn1...n4 . (A.25)

In indices, these projectors are given by

(P2
7)mm′nn

′ = 1
4

(
δnn

′
mm′ −

1
2Θmm′

nn′
)
, (A.26)

(P2
21)mm′nn

′ = 3
4

(
δnn

′
mm′ + 1

6Θmm′
nn′
)
, (A.27)

(P3
8)m1m2m3

n1m2n3 = 1
7

(
δn1n2n3
m1m2m3 −

3
2Θ[m1m2

[n1n2δ
n3]
m3]

)
, (A.28)

(P3
48)m1m2m3

n1n2n3 = 1
7

(
6 δn1n2n3

m1m2m3 + 3
2Θ[m1m2

[n1n2δ
n3]
m3]

)
, (A.29)

(P4
1)m1...m4

n1...n4 = 1
336Θm1...m4Θn1...n4 , (A.30)

(P4
7)m1...m4

n1...n4 = 1
8

(
δn1...n4
m1...m4 −

3
2Θ[m1m2

[n1n2δ
n3n4]
m3m4] −

1
6Θ[m1...m3

[n1Θm4]
n2...n4]

)
,

(A.31)

(P4
27)m1...m4

n1...n4 = 1
8

(
3 δn1...n4

m1...m4 + 15
2 Θ[m1m2

[n1n2δ
n3n4]
m3m4]

−1
2Θ[m1...m3

[n1Θm4]
n2...n4] + 1

7Θm1...m4Θn1...n4

)
,

(A.32)

(P4
35)m1...m4

n1...n4 = 1
8

(
4 δn1...n4

m1...m4 − 6Θ[m1m2
[n1n2δ

n3n4]
m3m4]

+2
3Θ[m1...m3

[n1Θm4]
n2...n4] − 1

6Θm1...m4Θn1...n4

)
.

(A.33)

Note in particular the helpful relations

Θmn
pq(λ7)pq = −6(λ7)mn, Θmn

pq(λ21)pq = 2(λ21)mn. (A.34)

Differential operators. Using the decomposition of differential forms into Spin(7) rep-
resentations and taking f ∈ Ω0

1, α ∈ Ω1
8, β ∈ Ω2

7, γ ∈ Ω2
21, δ ∈ Ω3

48, µ ∈ Ω4
27 and ν ∈ Ω4

35,
one can write the exterior derivative as combinations of the following operators

d1
8 : Ω0

1 → Ω1
8, d1

8f = df, (A.35)
d8

7 : Ω1
8 → Ω2

7, d8
7α = P2

7dα, (A.36)
d8

21 : Ω1
8 → Ω2

21, d8
21α = P2

21dα, (A.37)
d8

35 : Ω1
8 → Ω4

35, d8
35α = P4

35d ∗ (α ∧Θ), (A.38)
d7

48 : Ω2
7 → Ω3

48, d7
48β = P3

48dβ, (A.39)
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d21
48 : Ω2

21 → Ω3
48, d21

48γ = P3
48dγ, (A.40)

d48
27 : Ω3

48 → Ω4
27, d48

27δ = P4
27dδ, (A.41)

d48
35 : Ω3

48 → Ω4
35, d48

35δ = P4
35dδ. (A.42)

We also impose (dp
q)† = dq

p, where the adjoint is defined by the standard inner product
on differential forms. Adapting the arguments made in [40], one can find the following
decomposition of the exterior derivative:

df = d1
8f, (A.43)

d(fΘ) = d1
8f ∧Θ, (A.44)

dα = d8
7α+ d8

21α, (A.45)

d ∗ (α ∧Θ) = −1
2d8

1αΘ + 1
2(d8

7α) ·Θ + d8
35α, (A.46)

d(α ∧Θ) = d8
7α ∧Θ + d8

21α ∧Θ, (A.47)

d ∗ α = − ∗ d8
1α, (A.48)

dβ = −3
7 ∗ (d7

8β ∧Θ) + d7
48β, (A.49)

d(β ·Θ) = −16
7 d7

8β ∧Θ + 4 ∗ d7
48β, (A.50)

d ∗ β = ∗d7
8β, (A.51)

dγ = 1
7 ∗ (d21

8 γ ∧Θ) + d21
48γ, (A.52)

d ∗ γ = ∗d21
8 γ, (A.53)

dδ = 1
8(d48

7 δ) ·Θ + d48
27δ + d48

35δ, (A.54)

d ∗ δ = − ∗ d48
7 δ − ∗d48

21δ, (A.55)

dµ = ∗d27
48µ, (A.56)

dν = 1
7d35

8 ν ∧Θ− ∗d35
48ν. (A.57)

In the above, we have used the notation β ·Θ to denote the isomorphism Ω2
7 → Ω4

7 given by

(β ·Θ)abcd = 4β[a|
iΘi|bcd]. (A.58)

Laplacians. One can use the relations above to prove various identities for determinants
of Laplacians on Spin(7) manifolds. In particular, one has

det ′∆8 = (det ′∆7)(det ′∆1), (A.59)
det ′∆35 = (det ′∆27)(det ′∆8), (A.60)
det ′∆48 = (det ′∆27)(det ′∆21). (A.61)
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As an example, we will prove the first of these relations — the others follow similarly. Using
the decomposition of the exterior derivative into dp

q, and the fact that d2α = d2β = 0, for
α ∈ Ω1

8 and β ∈ Ω2
7 we have

∆1f = d8
1d1

8f, (A.62)
∆7β = 4d8

7d7
8β, (A.63)

∆8α = d1
8d8

1α+ 4d7
8d8

7α. (A.64)

Then one finds

det ′∆8 = det ′(d1
8d8

1 + 4d7
8d8

7)

= det ′
(
(d1

8 + 2d7
8)(d8

1 + 2d8
7)
)

= det ′
(
(d8

1 + 2d8
7)(d1

8 + 2d7
8)
)

= det ′(d8
1d1

8 + 2d8
1d7

8 + 2d8
7d1

8 + 4d8
7d7

8)
= det ′(d8

1d1
8 + 4d8

7d7
8)

= det ′(∆1 + ∆7)
= (det ′∆1)(det ′∆7).

(A.65)

Note that, in going from the second to the third line, we used the fact that det ′ is the (ζ-
regularised) product of non-zero eigenvalues. In going from the fourth line to the fifth, we
used d8

7d1
8 = 0, which is simply the statement that (3.27) is a complex. The final identity

follows from noting that ∆1∆7 = ∆7∆1 = 0.
One can ask when a product of determinants I is independent of the metric

I = (det ′∆0)a(det ′∆1)b(det ′∆2)c(det ′∆3)d(det ′∆4)e. (A.66)

Using the techniques in [14], we can consider the variation of I under a change of the metric
δg. We find that, to first order, δI is proportional to

a+ 8b+ 28c+ 56d+ 70e. (A.67)

Hence, this linear combination must vanish so that I is independent of the metric. We call
these “topological” invariants. Decomposing into Spin(7) representations and using the
identities (A.59)–(A.61) above, a choice of basis for these invariants is given by

I1 = (det ′∆1)7(det ′∆7)−1, (A.68)
I2 = (det ′∆7)6(det ′∆21)−2, (A.69)
I3 = (det ′∆1)−1(det ′∆7)(det ′∆21)(det ′∆27)−1. (A.70)

B Determinants and partition functions

B.1 ζ-regularised determinants

We give a brief outline of ζ-regularised determinants and their properties [100]. We follow
the notation of [9].
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Given an increasing sequence of positive real numbers A = {a1, a2, . . .}, we define the
ζ-regularised sum of the numbers to be ζA(−1) where, for large Re s, we define

ζA(s) =
∑
n

a−sn Re s� 0, (B.1)

and then extended to the whole of C by analytic continuation. The ζ-regularised product
of A is then defined to be

e−ζ′A(0), (B.2)

where the prime denotes differentiation with respect to the complex parameter s.
Given a vector space V and an operator A : V → V with only non-negative real

eigenvalues, we define the ζ-regularised determinant, denoted det ′A, to be the ζ-regularised
product of its non-zero eigenvalues. That is

det ′A := e−ζ′A(0) (B.3)

where we have used the same symbol for the operator and its sequence of non-zero eigen-
values. For an operator B : V →W , we note the useful identity

|det ′B| := (det ′B†B)1/2. (B.4)

Note that since we neglect the zero eigenvalues, we also have

det ′B†B = det ′BB†. (B.5)

Given two operators A,B : V → V that obey AB = BA = 0, it is simple to show

det ′(A+B) = det ′A det ′B. (B.6)

These determinants are useful when looking at Laplacians of differential operators. We
will highlight some useful identities for these determinants in the de Rham and Dolbeault
complexes. The results in the latter case all naturally generalise to the G2 × G2 and
Spin(7)× Spin(7) complexes we discuss in this paper.

First consider the de Rham Laplacian ∆ = dd† + d†d. Denoting the space of p-forms
on an n-dimensional manifold M by Ωp, the Hodge decomposition gives

Ωp = dΩp−1 ⊕ d†Ωp+1 ⊕Hp. (B.7)

Figure 4a shows this pictorially: we can associate the exact (resp. co-exact) subspaces with
the left (resp. right) region surrounding the node in the de Rham complex. Note that, by
definition, Hp is the zero eigenspace of ∆ and so can be neglected when calculating det ′∆.
Hence, we can write

det ′∆p = det ′(′∆p) det ′(∆′p), (B.8)

where ′∆p is the restriction of ∆p to dΩp−1, and ∆′p is the restriction to d†Ωp+1. Observe
that one can identify

′∆ = dd†, ∆′ = d†d. (B.9)
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dΩp−1 d†Ωp+1

(a)

∂†∂̄Ωp+1,q−1 ∂∂̄†Ωp−1,q+1

∂∂̄Ωp−1,q−1

∂†∂̄†Ωp+1,q+1

(b)

Figure 4. A pictorial representation of the Hodge decomposition of differential forms (neglecting
harmonic forms). Figure (a) shows the de Rham decomposition of Ωp into exact and co-exact pieces
which we can view as coming from the left and right of the node respectively. Figure (b) shows
the Dolbeault decomposition of Ωp,q. Pictorially, the subspaces can be associated with the squares
surrounding the node, corresponding to the direction the double differential maps from.

Due to (B.5), we see that
det ′(′∆p) = det ′(∆′p−1). (B.10)

Furthermore, since the Hodge star commutes with the Laplacian, we have

det ′∆p = det ′∆n−p, (B.11)

where n = dimM .
For Kähler manifolds, we can refine this further. We have the Laplacians for ∂, ∂̄ and

d which are proportional:
∆∂ = ∆∂̄ = 1

2∆. (B.12)

We also have the Hodge decompositions of Ωp,q with respect to ∂ and ∂̄:

Ωp,q = ∂Ωp−1,q ⊕ ∂†Ωp+1,q ⊕Hp,q
∂ , (B.13)

= ∂̄Ωp,q−1 ⊕ ∂̄†Ωp,q+1 ⊕Hp,q

∂̄
. (B.14)

By (B.12), we have equality of the spaces of harmonic forms, Hp,q
∂ = Hp,q

∂̄
, which means

that we can combine the Hodge decompositions above and write

Ωp,q = ∂∂̄Ωp−1,q−1 ⊕ ∂∂̄†Ωp−1,q+1 ⊕ ∂†∂̄Ωp+1,q−1 ⊕ ∂†∂̄†Ωp+1,q+1 ⊕Hp,q. (B.15)

Once again, Hp,q is the zero eigenspace of ∆ and so can be ignored when computing det ′.
The Laplacian ∆ then decomposes according to its action on the four subspaces in (B.15).
One can identify these subspaces with the four squares surrounding a vertex in the Hodge
diamond, as shown in figure 4b. Given this decomposition, one finds

det ′∆ = (det ′
•
∆)(det ′∆•)(det ′∆

•
)(det ′•∆), (B.16)
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where the position of • denotes the restriction of ∆ to the relevant subspace as labelled in
figure 4b. For example

•
∆ = ∆|∂∂̄Ωp−1,q−1 . (B.17)

Note that we also use this notation for the spaces Ap,q, with the replacement (∂, ∂̄) →
(d+, d−). Using (B.5) and (B.12) one then finds

det ′
•
∆p,q = det ′(∆•)p,q−1 = det ′∆

•
p−1,q−1 = det ′(•∆)p−1,q. (B.18)

Hence, the value of the determinant depends only on the “square” in the Hodge diamond
and not the vertex (as is shown in figure 1).31 One can then use the symmetries of the
Hodge diamond to relate the value of determinants on different squares. In particular, for a
Calabi-Yau n-fold, one can use Hodge duality, complex conjugation, and contraction with
the holomorphic n-form to see that

det ′∆p,q = det ′∆q,p = det ′∆n−p,q = det ′∆p,n−q = det ′∆n−p,n−q. (B.19)

For a Calabi-Yau threefold, this leaves us with three independent determinants, as shown
in figure 1.

All of this generalises to the G2 × G2 and Spin(7) × Spin(7) complexes, where for G2
the maps θ± play the role of Hodge duality and contraction with the holomorphic n-form.
A small distinction is that in general there is no notion of “complex conjugation” and so
det ′∆̂p,q 6= det ′∆̂q,p. However, when one has a genuine G2 or Spin(7) structure, these
determinants are in fact equal, leading to figures 2 and 3.

B.2 Direct calculation of partition function

In section 5.2 of the main text, we gave a calculation of the partition function of the
target-space theory for the G2×G2 double complex (4.19) via BV quantisation. Here,
following [9], we will show that this calculation agrees with a direct calculation using
formal manipulations of the path integral.

The partition function of the theory is

Z = 1
V(G)

∫
DaDbDc e−S0 , (B.20)

where the measure is for the fields b11, a00 and c22, S0 is the quadratic target-space ac-
tion (5.11), and V(G) is the volume of the gauge group.

b11 ∧ d+d−b11. Let us start by focusing on Sa0 , the term in the action that depends on
b11. Since Sa0 is a quadratic action for a single real bosonic field with a second-order kinetic
operator, the path integral over b11 is formally given by

Za = 1
V(Ga)

V(H1,1) V(•A1,1) V(
•
A1,1) V(A•1,1)√

det ′d+d−|A
•

1,1

= 1
V(Ga)

V(H1,1) V(•A1,1) V(
•
A1,1) V(A•1,1)√

det ′∆̂C

,

(B.21)

31These were referred to as the determinants of the “face” Laplacians in [9].
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where we are again denoting the volume of a (formally infinite-dimensional) space Ω by
V(Ω). Here the determinant comes from the integral over the component of b11 that is
orthogonal to gauge transformations (so that the restricted kinetic operator has no kernel).
One then needs to account for b11 that do come from gauge transformations, which in this
case is simply the product of the volumes of •A1,1,

•
A1,1 and A•1,1. One can think of these

as b11 that are of the form d+b01 + d−b10, where b10 and b01 can be independent of each
other. We then need to compute the (formal) volumes of the spaces.

First consider d− : A
•

1,0 → •A1,1. Since d− is an invertible map between real vector
spaces, the ratio of the volumes is

V(•A1,1)
V(A
•

1,0)
=
√

det ′d†−d−|A
•

1,0 =
√

det ′∆̂B, (B.22)

where we have observed that the operator d†−d− acting on A
•

1,0 is simply ∆̂B. Using the
Hodge decomposition, the volume of A1,0 is

V(A1,0) = V(A
•

1,0) V(A•1,0) V(H1,0), (B.23)

where V(H1,0) is the space of ∆̂-harmonic (1, 0)-forms. Finally, using the map d+ : A
•

0,0 →
A•1,0, we have

V(A•1,0)
V(A
•

0,0)
=
√

det ′d†+d+|A
•

0,0 =
√

det ′∆̂A. (B.24)

Noting that V(A0,0) = V(A
•

0,0) V(H0,0), we then have

V(•A1,1) = V(H0,0)
V(H1,0)

√
det ′∆̂B√
det ′∆̂A

V(A1,0)
V(A0,0) . (B.25)

One can find V(A•1,1) in a similar fashion:

V(A•1,1) = V(H0,0)
V(H0,1)

√
det ′∆̂B′√
det ′∆̂A

V(A0,1)
V(A0,0) . (B.26)

Finally, we need to calculate V(
•
A1,1). Given d− : A•1,0 →

•
A1,1, one has

V(
•
A1,1)

V(A•1,0) =
√

det ′d†−d−|A•1,0 =
√

det ′∆̂A. (B.27)

Using the above expressions for V(A•1,0), one then finds

V(
•
A1,1) = 1

V(H0,0) det ′∆̂A V(A0,0). (B.28)

Putting this together, one has

Za = 1
V(Ga)

V(H1,1) V(H0,0)
V(H1,0) V(H0,1)

(
det ′∆̂B det ′∆̂B′

det ′∆̂C

)1/2 V(A1,0) V(A0,1)
V(A0,0) . (B.29)
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Formally, one identifies V(Ga) with V(A1,0) V(A0,1)/V(A0,0), so that the gauge group Ga
can be thought of as gauge transformations by (1, 0) and (0, 1) fields, modulo (0, 0)-form
ghosts. The contribution to the partition function from Sa0 is then

Za = V(H1,1) V(H0,0)
V(H1,0) V(H0,1)

(
det ′∆̂B det ′∆̂B′

det ′∆̂C

)1/2

. (B.30)

a00 ∧ d+d−c22. We now compute the contribution of Sb0, which depends on a00 and c22.
In this case, since Sb0 is an action for two real bosonic fields with a second-order kinetic
operator, the path integral over a00 and c22 is formally given by

Zb = 1
V(Gb)

V(H0,0) V(H2,2) V(•A2,2) V(
•
A2,2) V(A•2,2)

det ′d+d−|A
•

2,2

= 1
V(Gb)

V(H0,0) V(H2,2) V(•A2,2) V(
•
A2,2) V(A•2,2)

det ′∆̂A

,

(B.31)

where again the determinant comes from the component of c22 that is orthogonal to gauge
transformations (so that the restricted kinetic operator has no kernel). Note that a00 has
no gauge transformations. Again, we need the volumes of the spaces appearing above.

Consider first the map d− : A
•

2,1 → •A2,2 so that

V(•A2,2)
V(A
•

2,1)
=
√

det ′d†−d−|A
•

2,1 =
√

det ′∆̂B′ . (B.32)

We also note that

V(A2,1) = V(
•
A2,1) V(A•2,1) V(A

•
2,1) V(•A2,1) V(H2,1). (B.33)

We now want to write the volume of the various subspaces of A2,1 in terms of lower-degree
Ap,q. For example, we have

V(•A2,1) = V(H1,0)
V(H2,0) V(H0,0)

det ′∆̂A√
det ′∆̂B

V(A2,0) V(A0,0)
V(A1,0) . (B.34)

Similar calculations for V(A•2,1) and V(
•
A2,1) give

V(A•2,1) = V(H0,1) V(H1,0)
V(H0,0) V(H1,1)

√
det ′∆̂C

det ′∆̂B

V(A1,1) V(A0,0)
V(A1,0) V(A0,1) , (B.35)

V(
•
A2,1) = V(H0,0)

V(H1,0)
det ′∆̂B√
det ′∆̂A

V(A1,0)
V(A0,0) . (B.36)

Using these we have

V(•A2,2) = V(H2,0) V(H1,1) V(H0,0)
V(H2,1) V(H1,0) V(H0,1)

det ′∆̂B√
det ′∆̂A det ′∆̂C

V(A2,1) V(A1,0) V(A0,1)
V(A2,0) V(A1,1) V(A0,0) ,

(B.37)
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from which it is simple to see

V(A•2,2) = V(H0,2) V(H1,1) V(H0,0)
V(H1,2) V(H1,0) V(H0,1)

det ′∆̂B′√
det ′∆̂A det ′∆̂C

V(A1,2) V(A1,0) V(A0,1)
V(A0,2) V(A1,1) V(A0,0) . (B.38)

Finally we need V(
•
A2,2) which is given by

V(
•
A2,2) = V(H1,0) V(H0,1)

V(H1,1) V(H0,0)
det ′∆̂C√

det ′∆̂B det ′∆̂B′

V(A1,1) V(A0,0)
V(A1,0) V(A0,1) . (B.39)

Putting this all together, we find that the contribution to the partition function is

Zb = 1
V(Gb)

V(H2,2) V(H2,0) V(H0,2) V(H1,1) V(H0,0)2

V(H2,1) V(H1,2) V(H1,0) V(H0,1)

√
det ′∆̂B det ′∆̂B′

det ′2∆̂A

× V(A2,1) V(A1,2) V(A1,0) V(A0,1)
V(A2,0) V(A0,2) V(A1,1) V(A0,0) .

(B.40)

Again, taking V(Gb) to cancel the various volumes of the spaces of forms, this simplifies to

Zb = V(H2,2) V(H2,0) V(H0,2) V(H1,1) V(H0,0)2

V(H2,1) V(H1,2) V(H1,0) V(H0,1)

√
det ′∆̂B det ′∆̂B′

det ′2∆̂A

. (B.41)

Final result. Combining the contributions from Sa0 and Sb0, the partition function is
given by

Z = V(H2,2) V(H2,0) V(H0,2) V(H1,1)2 V(H0,0)3

V(H2,1) V(H1,2) V(H1,0)2 V(H0,1)2
det ′∆̂B det ′∆̂B′

det ′2∆̂A

√
det ′∆̂C

. (B.42)

Upon taking the cohomologies to be trivial and setting det ′∆̂A = A, and so on, we have
Z = BB′A−2C−1/2 in agreement with both the double complex calculation in section 5.1
and the BV quantisation calculation in section 5.2.

C Review of O(d, d)× RRR+ generalised geometry

Generalised geometry is a geometric formalism in which one extends the tangent bundle
by a sequence of differential forms to create a vector bundle T ↪→ E that has an enlarged
structure group GL(d,R) ↪→ G. The case we will be interested in is the geometry defined
by the vector bundle

E = T ⊕ T ∗, (C.1)

with sections or generalised vectors written as V = v+λ. This bundle has a natural O(d, d)
structure which preserves a symmetric bilinear form

η(V, V ) = vyλ. (C.2)
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One can then take tensor products of E and decompose them according to O(d, d) repre-
sentations, and sections of such bundles are called generalised tensors.

One can also define a bracket J·, ·K which gives E the structure of an exact Courant
algebroid [101, 102].32 It is called the Courant bracket and is given by

Jv + λ,w + µK = Lvw + Lvµ− Lwλ−
1
2d(vyµ− wyλ), (C.3)

where W = w + µ is another section of E.
The Courant bracket is clearly covariant under diffeomorphisms and also under a closed

2-form transformation b ∈ Ω2
cl(M) given by

eb(v + λ) = v + λ− vyb. (C.4)

We therefore have an enlarged automorphism group of the Courant algebroid given by
Diff ↪→ GDiff = Diff nΩ2

cl(M), whose elements we refer to as generalised diffeomorphisms.
These are generated by a local derivative along a generalised vector V = v + λ called the
Dorfman derivative. The action of the Dorfman derivative is

LVW = Lvw + Lvµ− wydλ. (C.5)

Note that this is not antisymmetric but instead satisfies

1
2(LVW − LWV ) = JV,W K,

1
2(LVW + LWV ) = dη(V,W ). (C.6)

We can naturally incorporate the NSNS flux H into the construction by twisting the
Dorfman derivative (and hence the Courant bracket) to get the flux twisted derivative

LHV W = Lvw + Lvµ− wydλ+ wy(vyH). (C.7)

An alternative but equivalent way to include the flux is to take (C.1) to just be a local
definition and allow non-trivial patching by Ω2

cl(M). That is, for an open subset Ui ⊂ M

and Vi = vi + λi ∈ Γ(Ui, E), Vj = vj + λj ∈ Γ(Uj , E), there exists a Λij ∈ Ω1(Ui ∩ Uj) such
that, on Ui ∩ Uj

vi = vj

λi = λj − vjydΛij
⇒ Vi = edΛijVj . (C.8)

This patching defines a bundle EH . The equivalence of (C.7) and (C.8) comes from choos-
ing a global isomorphism EH ' E. To do so, one must pick a connection B which is locally
a 2-form, and patches as33

Bi = Bj + dΛij
Λij + Λjk + Λki = dΛijk

on Ui ∩ Uj ,
on Ui ∩ Uj ∩ Uk,

(C.9)

32One also needs a smooth bundle map a : E → T called the anchor in the definition of the Courant
algebroid. We will normally take this to just be the projection onto T in (C.1).

33This non-trivial constraint on triple intersections means B is a connective structure on a gerbe [103].
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where Λijk ∈ C∞(Ui ∩ Uj ∩ Uk). The flux is determined by this connection via H = dB
locally. It is easy to see from the patching (C.8) and (C.9) that V ∈ Γ(E) if and only if
eBV ∈ Γ(EH). Moreover, it is easy to check that LeBV eBW = eBLHV W . Hence a choice of
B defines an isomorphism of algebroids

(EH , L) ←→ (E,LH). (C.10)

It is possible to show that a twist by H and H ′ are equivalent as algebroids if and only
if H ′ = H + dα. That is, inequivalent exact Courant algebroids are classified by [H] ∈
H3(M) [101].34 This equivalence of twisted bundle versus twisted derivative applies to all
generalised tensor bundles and we will often move between the two pictures in (C.10) and
will drop the superscript H to avoid cluttering our notation further.

Since it geometrises the H flux, generalised geometry turns out to be naturally well
suited to describe the NSNS sector of string backgrounds. In fact, as was shown in [46], one
can also account for the dilaton by enlarging the structure group further to O(d, d)× R+.
All tensors should then be appropriately weighted under the R+ by including factors of
detT ∗ in the bundles. In particular, we can consider weighted generalised vectors Ṽ ∈ Γ(Ẽ)
and the induced action of the O(d, d) metric η

Ẽ = E ⊗ detT ∗ ⇒ η(Ṽ , W̃ ) ∈ Γ
(
(detT ∗)2

)
. (C.11)

The O(d, d) structure defines a Clifford algebra via

{ΓA,ΓB} = ηAB, (C.12)

where ηAB are the components of the O(d, d) inner product η in some orthonormal frame.
One can show that this has a natural representation on the exterior algebra, so that
weighted p-forms (detT ∗)−1/2 ⊗ Λ•T ∗ form a spinor representation of Spin(d, d) × R+.
We then call any ρ ∈ Γ((detT ∗)−1/2 ⊗ Λ•T ∗) a generalised spinor and denote the vector
bundle of generalised spinors by S. Note that S is reducible as an O(d, d)×R+ representa-
tion. There exists a notion of chirality and we can define even/odd spinors to be even/odd
polyforms. That is

S = S+ ⊕ S−, S± = (detT ∗)−1/2 ⊗ Λev/oddT ∗. (C.13)

More generally we can define the weighted spinor bundles

S
(p)
± = (detT ∗)p ⊗ S±, (C.14)

so that S(1/2)
± corresponds to unweighted polyforms.

There exists a natural O(d, d)-invariant pairing on S called the Mukai pairing. Taking
ρ, µ ∈ Γ(S(p)

± ), it is given by

〈ρ, µ〉 =
∑
i

ρi ∧ σ(µd−i) ∈ Γ((detT ∗)2p), (C.15)

34In addition, this class must be quantised in string theory.
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where ρi means the restriction of the polyform ρ to its degree i component, and σ : S → S

is the automorphism defined by35

σ(µk) = (−1)k(k+1)/2µk. (C.16)

Note that for d even, 〈·, ·〉 restricts to a pairing on S(1/2)
± , and that for d = 6 this pairing

defines a non-degenerate symplectic structure.
As with conventional geometry, one has a notion of connections, torsion and curvature.

A generalised connection is simply a first-order linear differential operator D which acts
on a generalised vector in frame indices as

DAV
B = ∂AV

B + ΩA
B
CV

C , (C.17)

where ∂A denotes the natural embedding of the ordinary partial derivative in E, and the
generalised connection one-form Ω takes values in the adjoint representation of O(d, d)×R+,
so that the action of D has the obvious extension to any generalised tensor with arbitrary
conformal weight. The generalised torsion T of such a connection is a generalised tensor
defined in terms of the Dorfman derivative (C.5) by

T (V ) · α = LDV α− LV α, (C.18)

where V ∈ Γ(E), α is a generalised tensor, and LDV is the Dorfman derivative with all
partial derivatives replaced with the connection D. One might also expect there exists
a generalised analogue of the Riemannian curvature, however the naive object one would
define turns out to not be tensorial, and we find that there is no useful notion of “generalised
curvature” for an arbitrary generalised connection without specifying additional structure.

C.1 O(d)× O(d) structures

A generalised metric is given by a reduction of O(d, d) × R+ to the maximal compact
subgroup O(d) × O(d) [43, 46, 104]. As for many conventional G-structures, it is defined
by a set of globally non-vanishing tensors (Φ, G), where Φ ∈ Γ(det T ∗) — which specifies
the isomorphism between weighted and un-weighted generalised vectors Ẽ ∼= E — and
G : S2E → R is a positive-definite inner product on E that is compatible with the O(d, d)
metric (C.2) in the following sense. Using η as an isomorphism E ∼= E∗, we can view
G : E → E and then require G2 = 1. Given such a G, we get a decomposition of E into
eigenbundles of G so that

E = C+ ⊕ C−, (C.19)

where C± are η-orthogonal subbundles of E such that η|C± is positive (resp. negative)
definite. The inner product G can then be written

G = η|C+ − η|C− . (C.20)

Hence a choice of G is equivalent to a choice of decomposition (C.19).
35This convention is different than the one chosen in e.g. [43].
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An alternative definition of a generalised metric (Φ, G) is given via a choice of conformal
split frame of Ẽ. This is defined to be a local frame {Ê+

a } ∪ {Ê−ā } such that

η(Ê+
a , Ê

+
b ) = Φ2δab, (C.21)

η(Ê−ā , Ê−b̄ ) = −Φ2δāb̄, (C.22)
η(Ê+

a , Ê
−
b̄

) = 0. (C.23)

This determines Φ uniquely and defines C± to be the span of {Ê±}.
A generalised metric is equivalent to a choice of conventional metric g, B-field, and

dilaton φ. Indeed, given two independent local orthonormal frames ê+
a , ê−a of T , the

conformal split frame can be written as

Ê+
a = e−2φ√g (ê+

a + ıê+a g + ıê+a B),

Ê−ā = e−2φ√g (ê−ā − ıê−ā g + ıê−ā
B).

(C.24)

In several applications, it is useful to evaluate O(d)×O(d) expressions in which one chooses
frames such that ê+

a = ê−a = êa are aligned.
A generalised G-structure is said to be torsion-free if there exists a torsion-free gener-

alised connection that is compatible with the structure. An O(d)×O(d) structure is thus
torsion-free if there exists a generalised connection D that satisfies

DG = 0, DΦ = 0, LDV = LV . (C.25)

We call a connection that satisfies these constraints a generalised Levi-Civita connection.
As was shown in [46], such connections always exist but are not unique. Using a split
frame, the torsion-free connection acting on V = vaÊ+

a + vāÊ−ā takes the form

Dav
b = ∇avb −

1
6Ha

b
cv
c − 2

d− 1(δab∂cφ− δac∂bφ)vc +A+
a
b
cv
c,

Dāv
b = ∇−ā vb ≡ ∇āvb −

1
2Hā

b
cv
c,

Dav
b̄ = ∇+

a v
b̄ ≡ ∇avb̄ + 1

2Ha
b̄
c̄v
c̄,

Dāv
b̄ = ∇āvb̄ + 1

6Hā
b̄
c̄v
c̄ − 2

d− 1(δāb̄∂c̄φ− δāc̄∂ b̄φ)vc̄ +A−ā
b̄
c̄v
c̄,

(C.26)

where ∇ is the Levi-Civita connection for g, H = dB and A± are undetermined tensors
satisfying

A+
abc = −A+

acb, A+
[abc] = 0, A+

a
a
b = 0,

A−
āb̄c̄

= −A−
āc̄b̄
, A−[āb̄c̄] = 0, A−ā

ā
b̄ = 0,

(C.27)

so that they do not contribute to the torsion. The A± tensors thus parametrise the failure
of the metric-compatibly and vanishing torsion conditions to specify a unique generalised
connection.

Thanks to the generalised metric structure, we can use the compatible connection D

to define generalised curvatures. The analogue of the Riemann tensor is not unique, i.e.,
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depends on the choice of generalised Levi-Civita, and so it is not a very useful object.
However, there exist certain contractions and projections that are uniquely defined. In
particular, we can define the generalised Ricci tensor R0 and generalised Ricci scalar R via
the action of D on either generalised vectors [46]

R0
ab̄
wa+ = [Da, Db̄]w

a
+, R0

ābw
ā
− = [Dā, Db]wā−, (C.28)

or spinors

R0
ab̄
γaε+ = [γaDa, Db̄]ε

+,

R0
ābγ

āε− = [γāDā, Db]ε−,

−1
4Rε

+ = (γaDaγ
bDb −DāDā)ε+,

−1
4Rε

− = (γāDāγ
b̄Db̄ −D

aDa)ε−.
(C.29)

Here ε± are S(C±) spinors and the γa are representations of the Clifford algebra induced
by the O(d) structure on C±. Upon explicit evaluation, one finds

R0
ab = Rab −

1
4HacdHb

cd + 2∇a∇bφ+ 1
2e2φ∇c(e−2φHcab), (C.30)

R = R+ 4∇2φ− 4(∂φ)2 − 1
12H

2, (C.31)

where we have aligned the frames ê+
a = ê−ā , and Rab and R are the conventional Ricci

tensor and scalar for g. The right-hand side of these are simply the equations of motion
in the absence of RR fluxes, and hence both R0

ab and R vanish on on-shell. In particular,
since a background which is supersymmetric and solves the Bianchi identity dH = 0 auto-
matically solves the equations of motion, both R0

ab and R must vanish for supersymmetric
backgrounds. This crucial result is used many times in the main text.

C.2 Generalised Calabi-Yau

A generalised Calabi-Yau structure is a reduction of the structure group to SU(n, n) where
d = 2n. It is defined by a nowhere-vanishing complex pure spinor Ψ. Given such a spinor,
one can define the null space LΨ

LΨ = {V ∈ Γ(E) | /VΨ = V AΓAΨ = 0}. (C.32)

A generalised Calabi-Yau structure is then given by a Ψ satisfying

dimC LΨ = d, 〈Ψ, Ψ̄〉 6= 0. (C.33)

A spinor satisfying the first condition is said to be pure, and the associated null space is
said to be maximally isotropic. The generalised Calabi-Yau structure is torsion-free (i.e.
there exists a torsion-free compatible connection) if and only if

dΨ = 0. (C.34)

Hitchin showed that for d = 6 these structures can be described via a variational
problem [27]. Indeed, consider a real chiral spinor ρ which is stable in the sense of [105].
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Since 〈·, ·〉 defines an O(d, d) invariant symplectic structure, there is an associated moment
map µ : S± → g∗ given by

µ(ρ)(a) = 1
2〈a · ρ, ρ〉 ∀ a ∈ O(d, d). (C.35)

Then we can consider the following map which is an invariant quartic homogeneous function
in ρ

q : S± → (detT ∗)2, q(ρ) = tr
(
µ(ρ)2

)
. (C.36)

It turns out that ρ defines an SU(n, n) structure if and only if q(ρ) < 0, which is an open
condition on ρ. Such a ρ is known as stable. Note that q(ρ) ∈ Γ((detT ∗)2) which has a
canonical orientation and hence a well-defined notion of a negative section. The real spinor
ρ then becomes the real part of the complex pure spinor Ψ, with the imaginary part ρ̂
given by the first variation of the functional

H(ρ) =
∫
M

√
−q(ρ)

3 ⇒ δH =
∫
M
〈δρ, ρ̂〉. (C.37)

Note that H is a homogeneous functional of degree 2 in ρ. Denoting the space of stable
spinors of definite chirality by U , one can show that there is a torsion-free complex structure
J on ρ ∈ Γ(U) and that the second variation of the functional H is given by

δ2H(δ1ρ, δ2ρ) =
∫
M
〈δ1ρ,J δ2ρ〉. (C.38)

Now suppose we fix some ρ ∈ Γ(U) such that dρ = 0 and only allow variations within
the cohomology class of ρ. That is, we take δρ = db for some real polyform b. Then
by (C.37) we have

δH(db) =
∫
M
〈db, ρ̂〉 =

∫
M
〈b, dρ̂〉 = 0 ⇒ dρ̂ = 0. (C.39)

Therefore, stationary points of H within a fixed cohomology class [ρ] correspond to SU(3, 3)
structures with dρ = dρ̂ = 0, that is dΨ = d(ρ + iρ̂) = 0. Hence, stationary points
correspond to torsion-free SU(3, 3) structures.

C.3 The generalised Hitchin functional for torsion-free G2 ×G2 structures

Turning now to the generalised geometry of a seven-dimensional manifold, in the main text
we describe G2×G2 structures in terms of a pair of C± spinors. However, following [48, 55],
one can also define them through a Spin(7, 7)×R+ globally defined nowhere-vanishing real
chiral spinor ρ ∈ S± that is stable in the sense of [105]. By a simple dimension count, one
has that the spinor lives in an open orbit of Spin(7, 7)× R+.

One can define an operator �ρ which maps spinors of one chirality to the other given by

�ρ : S± → S∓, �ρ(α) = eB ∗ σ(e−Bα), (C.40)

where α is a generalised spinor, ∗ is the Hodge operator associated to the Riemannian
metric g and σ was given in (C.16). If we work in the flux twisted differential picture
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instead, then we can just write �ρ(α) = ∗σ(α). It is possible to show that this is an
O(7)×O(7) covariant map and hence a generalised G2×G2 structure can be equivalently
described by either a stable ρ ∈ Γ(S±) or a stable �ρρ ∈ Γ(S∓). The G2×G2 structure is
then said to be torsion-free (there exists a compatible torsion-free generalised connection)
if and only if

dρ = d�ρρ = 0, (C.41)

which is the analogue of dΨ = d(ρ + iρ̂) = 0 for an SU(3, 3) structure. For concreteness,
we will take ρ ∈ Γ(S−), and so �ρρ ∈ Γ(S+).

To match the description of generalised G2×G2 structures given in the main text
around 4.1 where we consider the spinors ε± ∈ S(C±), we note that there is also a natural
isomorphism between these bundles and the bundle of O(d, d)× R+ spinors S as

S ' S(C+)⊗ S(C−), (C.42)

and under this isomorphism we associate

e−2φeB(ε+ ⊗ ε−) = ρ+�ρρ. (C.43)

In general, a G2×G2 structure defines a local SU(3) structure on the manifold. We can
then write ρ,�ρρ explicitly in terms of the local SU(3) structure of the manifold. While
the results of this paper will hold in general, we will mostly be interested in the case where
the generalised structure is induced from a genuine G2 structure. In that case, we can
write

ρ = e−2φeB(−ϕ+ vol), (C.44)
�ρρ = e−2φeB(1− ∗ϕ). (C.45)

where vol is the volume form associated to the metric defined by the G2 structure.
We can write the generalised G2×G2 structure more explicitly in terms of the local

SU(3) structure defined by the ε±. This SU(3) structure locally defines a 1-form α, a
2-form ω, and two 3-forms ψ± which can be viewed as the real and imaginary parts of a
holomorphic 3-form on some 6-dimensional D ⊂ T that is orthogonal to α. There is also a
scalar cos a, where a is the angle between ε+ and ε− as 8-dimensional real vectors. Without
loss of generality, we can take ρ ∈ Γ(S−) and can write

ρ = e−2φeB
(
sα− c(ψ+ + ω ∧ α)− sψ− − s

1
2ω

2 ∧ α+ c vol
)
, (C.46)

�ρρ = e−2φeB
(
c+ sω − c

(
ψ− ∧ α+ 1

2ω
2
)

+ sψ+ ∧ α− s
1
6ω

3
)
, (C.47)

where s and c are shorthand for sin a and cos a, and vol is the volume form defined by
the SU 3 structure. While individually the tensors in these expressions are defined only
where s 6= 0, the precise combinations that appear can be written as bilinears of ε± and so
are globally defined. When s = 0, the spinors ε± become parallel and the SU(3) stabiliser
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degenerates to a G2 defined by some 3-form ϕ. At these points one finds

ρ = e−2φeB(−ϕ+ vol), (C.48)
�ρρ = e−2φeB(1− ∗ϕ). (C.49)

As for SU(3, 3) structures, one can understand torsion-free generalised G2×G2 struc-
tures via a variational approach [55]. Since ρ ∈ Γ(S−) must be in an open orbit of
Spin(7, 7)× R+, we can consider a function

q(ρ) = 〈ρ,�ρρ〉 ∈ Γ(detT ∗), (C.50)

where we think of this as defined on U ⊂ S−, the space of stable ρ. As shown in [55], this
is a homogeneous function of degree 2 in ρ and the first variation is given by

δq(δρ) = 〈δρ,�ρρ〉. (C.51)

Integrating q over M , one obtains the Hitchin functional for G2×G2 structures:

H(ρ) =
∫
M
〈ρ,�ρρ〉. (C.52)

If we assume that dρ = 0 and vary only within a cohomology class δρ = db, we find that
the extrema of the Hitchin functional are given by

δH(δρ) =
∫
M
〈db,�ρρ〉 =

∫
M
〈b, d�ρρ〉 = 0 ⇒ d�ρρ = 0. (C.53)

Hence the functional extremises on torsion-free G2×G2 structures.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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