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Abstract: In this paper, we introduce and explore the properties of a new gauge choice
for the vacuum Einstein equation inspired by the ingoing and outgoing radiation gauges
(IRG, ORG) for the linearized vacuum Einstein equation introduced by Chrzanowski in
his work onmetric reconstruction (Chrzanowski in Phys Rev D 11:2042–2062, 1975) on
the Kerr background. It has been shown by Price et al. (Class QuantumGravity 24:2367–
2388, 2007) that the IRG/ORG are consistent gauges for the linearized vacuum Einstein
equation on Petrov type II backgrounds. In (Andersson et al. Stability for linearized
gravity on the Kerr spacetime, 2019), the ORG was used in proving linearized stability
for the Kerr spacetime, and the new non-linear radiation gauge introduced here is a direct
generalization of that gauge condition, and is intended to be used to study the stability
of Kerr black holes under the evolution generated by the vacuum Einstein equation.
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1. Introduction

Given M > 0 and a ∈ (−M, M), for (v, r, ω) ∈ R × (0,∞) × S
2 and (θ, φ) spherical

coordinates on S2, the Kerr metric in Eddington-Finkelstein coordinates takes the form

g̊ =
(
1 − 2Mr

�

)
dv2 +

4Mra

�
sin2 θdvdφ − (r2 + a2)2 − a2� sin2 θ

�
sin2 θdφ2

− �dθ2 − 2dvdr + 2a sin2 θdrdφ, (1.1a)

� = r2 + a2 cos2 θ, � = r2 − 2Mr + a2. (1.1b)

For M > 0 and a ∈ (−M, M), this metric describes a subextremal black hole geometry.
As explained in many textbooks (e.g. [29]), the metric (1.1a) extends smoothly to the set
K∗ = R× (0,∞) × S

2, in particular to the north and south poles, and there is a further
analytic extension, extending beyond v = ±∞ and (for a �= 0) to r < 0. The Kerr
space-time is of Petrov type D (or {2, 2}), which means there are two, repeated principal
null directions; a future-directed ingoing (respectively outgoing) principal null vector is
a positive multiple of n̂ (respectively l̂), where

n̂ = − ∂r , (1.2a)

l̂ = �

2
∂r +

(
(r2 + a2)∂v + a∂φ

)
. (1.2b)

Central to this paper is the following gauge condition:

Definition 1.1. Let M > 0 and a ∈ (−M, M). Let g̊ be the Kerr metric on K∗, and let
n be a future-directed, ingoing principal null vector. Let U be an open subset of K∗.

A symmetric tensor g on U is defined to satisfy the radiation gauge condition iff

nagab = na g̊ab. (1.3)

We shall use the term diffeomorphism gauge to be synonymous with a local diffeo-
morphism. In order to be able to state our main results, we shall need the following,
somewhat technical definition. For convenience, we define a reference Riemannian met-
ric on K∗ from which we further define, for any k ∈ N, the Ck norm with respect to the
reference metric on any subset of K∗. It is well known that when dealing with diffeo-
morphism gauges, it is unfortunately common to lose regularity and to need to restrict
to somewhat smaller sets. The relevant sets for the following definition are illustrated in
Fig. 1.
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Fig. 1. The sets arising in Definition 1.2

Definition 1.2. In this paper, given a nonnegative integer k and an open set V ⊂ K∗, a
Ck diffeomorphism gauge is a map 	 : V → K∗ such that 	 is a Ck diffeomorphism
of V to its image.

Let (X,Y, I, J, h,U, V ) be such that: X is a bounded, open subset of R× S
2; Y is a

open set such that its closure is a subset of X ; 0 < J < I < ∞; h : X → (M/2,∞) is
smooth; andU and V are the spacetime slabsU = {(v, r, ω) : (v, ω) ∈ X, h(v, ω)− I <

r < h(v, ω) + I }, V = {(v, r, ω) : (v, ω) ∈ Y, h(v, ω) − J < r < h(v, ω) + J }. A
diffeomorphism	 is defined to be compatible with (X,Y, I, J, h,U, V ) if	(V ) ⊂ U .
Abusing notation, we use h(X) (and similarly for h(Y )) to denote the graph inR×R×S

2

of h over X rather than the image in R of X .

Our first result is that for initial data that is close to data from the Kerr spacetime,
it is possible to construct a diffeomorphism gauge so as to impose the radiation gauge
condition.

Theorem 1.3 (Enforceability of the radiation gauge condition). Let M > 0 and a ∈
(−M, M). Let g̊ be the Kerr metric on K∗, and let n be a future-directed, ingoing
principal null vector. Let (X,Y, I, J, h,U, V ) be as in Definition 1.2, and let k′ be a
sufficiently large integer.

There exist ε0 > 0, k > k′, and K > 0 such that, if gab is a symmetric (0, 2) tensor
satisfying |g − g̊|Ck (U ) < ε0, then there is a Ck′

diffeomorphism gauge 	 compatible
with (X,Y, I, J, h,U, V ) such that 	−1∗ g satisfies the radiation gauge condition on V .
Furthermore, there is the following bound of the initial data for 	−1∗ g in terms of the
initial data for g: |	−1∗ g − g̊|Ck′ (h(Y ))

≤ K |g − g̊|Ck (h(X)).

Our other main result is to make the vacuum Einstein equation well-posed by con-
structing a first-order symmetric hyperbolic system. This involves using the Geroch-
Held-Penrose (GHP) formalism [16,31] to construct components of g− g̊, the difference
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between the connection coefficients of g and of g̊, the difference of the corresponding
curvatures, and some additional variables that describe the difference between fore-
ground and background frames, which we call differential Lorentz transformations. In
applying the GHP formalism, it is necessary to make a choice of an equivalence class
of frames, which we refer to as a choice of frame gauge. This is explained in Sect. 3.

Theorem 1.4 (Well-posedness). Let M > 0 and a ∈ (−M, M). Let g̊ be the Kerr metric
on K∗, and let n be a future-directed, ingoing principal null vector.

(i) The vacuum Einstein equation, the radiation gauge condition and the frame gauge
hypotheses in Definition 3.12 together imply a first-order symmetric hyperbolic
system for the geometric variables in Definition 3.9.

(ii) The geometric variables in definition 3.9 uniquely determine a metric g.
(iii) If the initial data for first-order symmetric hyperbolic system in (i) arise from initial

data for the vacuumEinstein equation, then themetric determined by (i)-(ii) satisfies
the vacuum Einstein equation.

It is well established that first-order symmetric-hyperbolic systems are well posed
in suitable function spaces [27]. Note that the geometric nature of our variables ensures
that the first-order symmetric hyperbolic system is well-defined for all ω ∈ S

2 and not
just in a particular coordinate patch on the sphere.

In the final two sections of this paper, we go further in relating the radiation gauge
condition for the Einstein equation to previously existing results for the linearized Ein-
stein equation. In Sect. 4, we apply a residual gauge transformation to further impose a
condition on the trace gabg̊ab analogous to that imposed in the linear case by [10,32]. In
the final section of this paper, we linearize the Einstein equation with the radiation and
frame gauge conditions imposed, and we show that resulting linearized metric coeffi-
cients coincide with those constructed in our previous work on the linear stability of the
Kerr metric [1]. In the previous and current works, we have made different choices in
decomposing the linearized connection and curvature coefficients; the different choices
of linearized variables are related by a linear change of variables and satisfy equivalent
PDE systems, as explained in Sect. 5.

1.1. Motivation and relation to existing literature. In this paper, we introduce a new
gauge choice to study the stability of Kerr black holes under the evolution generated
by the vacuum Einstein equation. This gauge is inspired by what is called the “outgo-
ing radiation gauge (ORG)” in [10,32], a so-called linearized gauge for the linearized
Einstein equation.

The Kerr stability problem remains a central problem in the study of the Einstein
equation as a hyperbolic differential equation. In brief, the problem is to show that, for
any initial data that generates a solution containing a Kerr exterior, any sufficiently small
perturbation of such initial data will generate a solution which contains a region that,
in the future, converges to some Kerr exterior. So far, most work has focused on the
linearized Einstein equation and models for it, such as the wave and Maxwell equations
[2,3,5–8,14,15,25,30,34] and the linearized gravity [1,11,12,19,21,26]. Quite recently,
a few works [13,22,23] have made important progress on the full nonlinear stability of
Kerr spacetimes.

We are particularly interested in the following approach to proving decay of solutions
to the linearization of the Einstein equation on a Kerr background: The Kerr solutions
admit a pair of principal null vectors. At least locally, one can construct a basis consisting



Nonlinear Radiation Gauge

of these principal null vectors, and an oriented orthonormal basis for the plane orthog-
onal to them. The GHP formalism uses spinors to construct the analogue of the Cartan
formalism for such bases [16,31]. Of central importance, in this set up, the two extreme
components of the linearized curvature each satisfy a decoupled equation known as
the Teukolsky master equation (TME) [35]. Chrzanowski [10] introduced a linearized
gauge transformation, and showed that, in this linearized gauge, all linearized metric
coefficients can be reconstructed from the linearized curvature. In the very slowly ro-
tating case, uniform energy bounds and integrated local energy decay has been shown
for the Teukolsky equation [11,26]. Recently similar results have been obtained using
physical-space methods [17]. In the full subextremal range, decay is proved for bounded
frequencies in [33]. Higher order perturbations of the Kerr spacetime was studied in
[9,18,24].

From such results, we have shown that it follows that there are pointwise decay esti-
mates for the linearized metric coefficients in the linear ORG [1]. In spherical symmetry,
this linearized gauge choice uses the same choice of null tetrad as in the linearized gauge
choice arising from double null coordinates, which has been used previously to show
decay of linearized perturbations about Schwarzschild black holes [12]. A significantly
different approach to the linear stability problem was taken in [19].

As a geometric equation for curvature, the Einstein equation is invariant under
changes of coordinate or, equivalently, diffeomorphisms. As a consequence of the result-
ing freedom to choose a diffeomorphism gauge, for any solution of the Einstein equation
g̊, any vector field X , and any solution h of the linearization of the Einstein equation
g̊, one finds that h + LX g̊ is also a solution of the linearization of the Einstein equation
about g̊. The freedom to add any LX g̊ is called linearized gauge freedom.

For the linearized Einstein equation, the radiation gauge can be defined in the fol-
lowing way.

Definition 1.5. Let M > 0 and a ∈ (−M, M). Let U be a subset of the maximal
extension of the Kerr black hole with mass and angular momentum per unit mass M, a,
and let g̊ be the metric on U . Let n denote an ingoing principal null vector on U .1 Let
h be a symmetric (0, 2) tensor field on U .

h is defined to satisfy the linear radiation gauge condition2 if

nahab = 0, (1.4a)

and to satisfy the linear trace condition if

g̊abhab = 0. (1.4b)

h is defined to satisfy the full radiation gauge of Chrzanowski (ORG) if it satisfies
both the radiation gauge and the linear trace conditions.

Essentially, this was first introduced in [10] and then clarified in [32]. [32] has shown
that if h satisfies the linear radiation gauge condition, then there is a linearized gauge
transformation so that h+LX g̊ satisfies the full radiation gauge ofChrzanowski. From the
perspective of naive function counting, it is surprising that all five of the conditions can
be imposed, not merely the four of the linear null condition. A careful reading of [32]
shows that for any linearized metric (i.e. symmetric (0, 2) tensor), one can construct
a linear gauge transformation so that the linear radiation gauge condition is satisfied

1 Because equation (1.4a) is homogeneous, the normalisation of n does not need to be specified.
2 Note that [32] calls this the n · h gauge.
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on open sets. Furthermore, one can apply further residual gauge transformations that
maintain the linear radiation gauge condition. From the perspective of naive function
counting, it is convenient to consider residual gauge transformations as diffeomorphisms
of the initial data set that can be applied in addition to the four gauge conditions that are
applied within the spacetime and that generate a well-posed dynamics when combined
with the Einstein equation and a frame gauge condition.

While it is clear that if one has a smooth family of gauge transformations 	t then
the linearization of this family determines a linear gauge transformation d

dt 	
∗
t h, it is

not clear that any so-called linear gauge transformation genuinely arises from the lin-
earization of a family of gauge transformations, nor that, even if they did, the family of
gauge transformations would have desirable properties. The main results of this paper,
Theorems 1.3-1.4, show that the linear radiation gauge condition does arise from the
linearization of a gauge for the full Einstein equation, namely the radiation gauge con-
dition, and that this gauge together with a frame gauge choice gives a locally well-posed
Cauchy problem for the Einstein equation. Furthermore, in Sect. 4, we show that for
the full Einstein equation, one can make use of the diffeomorphism gauge freedom to
find a gauge that both satisfies the radiation gauge condition and such that the trace
gabg̊ab − 4 vanishes quadratically, and the frame gauge hypotheses in Definition 3.12
can be further imposed such that the well-posedness Theorem 1.4 holds additionally.
Thus, the linearization of this system can be seen as satisfying full radiation gauge of
Chrzanowski.

The formalism we use to treat the radiation gauge condition has important similar-
ities with and differences from the formalism based on principal geodesic structures
in [23]. Both formalisms specify one null vector field that is tangent to null geodesics.
They are both frame formalisms based on a choice of a pair of null vector fields such
that the orthogonal plane fails to be integrable in the sense of Frobenius. By exclusively
using properly weighted quantities, we can use the GHP formalism without specifying a
choice of basis for the orthogonal plane and, hence, avoid the “artificial gauge singulari-
ties” noted in [23, p27]. Perhaps in most striking contrast to the previous literature, both
formalisms use not one but two classes of frame. In obtaining the first-order symmetric-
hyperbolic form of the Einstein equations under the radiation gauge condition and the
frame gauge hypotheses in Definition 3.12, we use the background principal null vec-
torfields l̊, n̊ of the background Kerr geometry g̊ and a foreground pair of vectorfields
l, n = n̊ that are null with respect to the new, foreground geometry g. To each pair of
null vectors, we associate the plane that is orthogonal in the relevant geometry. In con-
trast, the two frames used in the principal geodesic structures of [23] share the same null
legs, but one frame is completed by adjoining a basis for the (non-integrable) orthogonal
plane while the other frame is completed by adjoining a basis for the (integrable) tangent
space of the spheres that are r, v level sets. Our two classes of frames coincide when the
metric is exactly the Kerr metric, which suggests the possibility that the formalism based
on the radiation gauge condition will provide significant simplifications, in addition to
connecting with the previously existing physics literature.

1.2. Structure of the proofs and of the paper. Section 2 proves theorem 1.3 about the
existence of a gauge transformation to impose the radiation gauge condition. Section 3
proves Theorem 1.4 on the existence of a first-order symmetric hyperbolic system for the
metric components and other geometric quantities; this section includes the definition
of the frame gauge and the relevant geometric variables in terms of the GHP formalism.
Section 4 proves that perturbations of the trace, gabg̊ab − 4, can be made to vanish
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quadratically, in a quantifiable sense introduced in that section; this section is heavily
inspired by [32]. Section 5 treats the linearization of the Einstein equation under our
gauge choices and makes a comparison with our earlier work [1].

2. Imposing the radiation gauge condition

This section begins with some definitions to simplify discussion of the geometry in the
directions orthogonal to the principal null vectors. There is then a lemma about metrics
satisfying the radiation gauge condition, in particular that the flow along n = −∂r
generates affinely parameterized null geodesics, as is the case in the Kerr spacetime.
Finally, there is a proof of the enforceability of the radiation gauge condition, which is
based on appropriately constructing null geodesics. This completes the proof of theorem
1.3.

Recall the notions of real null tetrad and complex null tetrads. These are given in
appendix A. Unless otherwise specified, a null tetrad is understood to mean an oriented
complex null tetrad.

Definition 2.1. Let M > 0 and a ∈ (−M, M). Let U be an open subset of K∗ pa-
rameterized by (v, r, ω). In the domain of the standard spherical coordinates, define

e� = ∂θ , (2.1a)

e	 = ∂φ − a sin2 θ∂v. (2.1b)

Lemma 2.2 (Necessary results of the radiation gauge condition). Let M > 0 and
a ∈ (−M, M). Let U be an open subset of K∗ parameterized by (v, r, ω).

If g is a Lorentzian metric on U that satisfies the radiation gauge condition, then

(i) ∂r is null.
(ii) In the portion of U covered by spherical coordinates, e	 and e	 are orthogonal to

∂r .
(iii) At each point in the domain of the spherical coordinates, if n = −∂r and m is a

complex linear combination of e� and e	 such that m and its complex conjugate m̄
are a complex basis for the space spanned by e� and e	 such that g(m,m) = 0 and
g(m, m̄) = −1, then there is a unique, future-directed null vector l that is orthogonal
to m and m̄ and that satisfies g(l, n) = 1. Furthermore, if g(m,m) = g(m̄, m̄) = 0
and g(m, m̄) = −1, then (l, n,m, m̄) form a null tetrad.

(iv) For all (v0, ω0) ∈ R×S
2, the curve γ (s) = (v0, s, ω0) is a (not necessarily affinely

parameterized) geodesic.
(v) If � is 3-submanifold of U parameterized by (v, ω), and if (v̂, ω̂) are the restric-

tions of (v, ω) to �, (θ̂ , φ̂) denote the values of the standard spherical coordinate
corresponding to ω̂, and r̂ is the restriction of r to �, then, in the domain of the
standard spherical coordinates, ∂v̂, ∂θ̂

, ∂
φ̂

∈ T� ⊂ TU satisfy

g(∂r , ∂v̂) = − 1, (2.2a)

g(∂r , ∂θ̂
) = 0, (2.2b)

g(∂r , ∂φ̂
) = − a sin2 θ. (2.2c)
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Proof. Unless otherwise specified, in this proof, we work in the domain of the spherical
coordinates and then extend by continuity. Since gradxa = (dv + a sin2 θdφ), it follows
that g(∂r , ∂r ) = gradxa(∂r ) = (dv + a sin2 θdφ)(∂r ) = 0, that g(∂r , e	) = (dv +
a sin2 θdφ)(∂θ ) = 0, and that g(∂r , e	) = (dv+a sin2 θdφ)(∂φ −a sin2 θ∂v) = 0, which
establishes the first two claims in the domain of the spherical coordinates. By continuity,
∂r remains null at the poles of the spherical coordinates. The plane orthogonal to m and
m̄ is a 1 + 1-dimensional Lorentzian vector space with a time orientation, and, since n
is null but not zero, the existence of a unique l as in the statement of point iii holds.

To show that the curves (v0, s, ω0) are (not necessarily affinely parameterized)
geodesics it is sufficient to show that γ̈ b = na∇anb is parallel to n. This is equiva-
lent to γ̈ bnb = γ̈ bmb = γ̈ bm̄b = 0. Trivially,

nbn
a∇an

b = 1

2
na∇a(nbn

b) = 0, (2.3)

since nbnb = 0. Before continuing, first observe that the commutator [n,m] satisfies
[n,m] = − [∂r ,m�e� + m	e	]

= − [∂r ,m�∂θ + m	(∂φ − a sin2 θ∂v)]
= − (∂rm

�)e� − (∂rm
	)e	, (2.4a)

g(n, [n,m]) = 0. (2.4b)

Now, observe, from the orthogonality conditions and from properties of the commutator,
that

mbn
a∇an

b = na∇a(mbn
b) − nbn

a∇am
b = −nbn

a∇am
b, (2.5a)

nbn
a∇am

b = 0 + nbm
a∇an

b + nb[n,m]b

= 1

2
ma∇a(nbn

b) + 0 = 0. (2.5b)

Observe that cosφ∂θ +
sin φ
sin θ

(∂φ − a sin2 θ∂v) and sin φ∂θ − cosφ
sin θ

(∂φ − a sin2 θ∂v) form
a basis for the planes they span, and that this combination extends smoothly to θ = 0
and to θ = π . Thus, the results extend from the domain of the spherical coordinates to
all of U .

From the chain rule, one finds ∂v̂ = ∂v + ∂r̂
∂v̂

∂r . From this and the fact that ∂r is
null, it follows that g(∂r , ∂v̂) = g(∂r , ∂v), which is equal to −1 by the radiation gauge
condition. This proves the first equation of (2.2). Replacing v̂ by θ̂ and φ̂, one obtains
the remaining two equations. ��
Proof of the enforceability of the radiation gauge condition, Theorem 1.3. To begin we
construct the gauge transformation. In this paragraph (v, r, ω) denotes the original pa-
rameterization in V . On h(X), define (v̂, ω̂) and r̂ to be the restrictions of (v, ω) and r
respectively. By the closeness (in C0) of g to g̊, at each point p ∈ h(X) in the domain
of the spherical coordinates, there is a unique vector n in TpW such that n is null and
satisfies the analogue of (2.2), i.e.

g(n, ∂v̂) = 1, (2.6a)

g(n, ∂
θ̂
) = 0, (2.6b)

g(n, ∂
φ̂
) = a sin2 θ. (2.6c)
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Furthermore, since a sin2 θdφ extends smoothly to 0 in TS2, the vector field n has a
unique continuous extension from the portion of h(X) covered by spherical coordinates
to all of h(X). To avoid overloading notation, let n denote this extension. By the C2

closeness of g and g̊, n isC2 on h(X), and there is an ε0 > 0 and an open neighbourhood
W of h(X) such that the geodesic flow defines a diffeomorphism (−ε0, ε0)×h(Y ) → U .
At q ∈ W , define (vnew, ωnew) to be the value of (v̂, ω̂) at the unique point p ∈ h(X)

such that q is on the geodesic launched by n at p. (The diffeomorphism guarantees the
existence of such a point.) Let γ̃(vnew,ωnew)(s) denote the geodesic corresponding to the
values (vnew, ωnew) with, on h(X), the initial conditions s = r and d

ds γ̃ = −n. Set
rnew = s. Thus, (vnew, rnew, ωnew) is a gauge choice. In this parameterization, −∂rnew is
null, since it is the tangent to a geodesic launched from a null vector.

It remains to show the radiation gauge condition holds in this diffeomorphism gauge.
For the remainder of this proof (v, r, ω) denotes the parameters in the new parameteriza-
tion. In the domain of the spherical coordinates, the form λ = ing = −gab(∂br )dxa can
be expanded, in dv, dr , dθ , and dφ. It is sufficient to show that g(∂r , ∂r ) = 0= g(∂r , e�)

= g(∂r , e	) and g(−∂r , ∂v) = 1. Since ∂r is null, clearly g(∂r , ∂r ) = 0. From (2.6),
g(∂r , e�) has the desired value on h(X). Let n denote −∂r . Observe that since ∂r is
tangent to an affinely parameterized geodesic, ∇∂r ∂r = 0. Observe further that [n, e�]
= [−∂r , ∂θ ] = 0. Thus,

0 = g(∇nn, e�)

= ∇n (g(n, e�)) − g(n,∇ne�)

= ∇n (g(n, e�)) − g(n,∇e�n)

= ∇n (g(n, e�)) − 1

2
∇e� (g(n, n)) . (2.7)

The final term vanishes since n is always a null vector. Thus, g(n, e�) is constant, and, in
particular, since it is initially zero, it remains zero along the entire geodesic. Since [n, e	]
= [−∂r , ∂φ − a sin2 θ∂v] = 0, the same argument applies with e	. Since g(∂r , ∂θ ) = 0,
the dθ component of λ vanishes. Since g(∂r , e	) = 0, the dφ component of λ is a sin2 θ

times the coefficient of dv. Since [n, ∂v] = 0, a similar calculation shows that g(n, ∂v)

is constantly −1. Since the parameterization is constructed smoothly, the construction
extends from the domain of the spherical coordinates to the full sphere. Since the Kerr
metric is itself a solution, from the continuity of solutions of ODE, it follows that for
any V ⊂ U , if the initial data is sufficiently close (in a sufficiently high regularity class),
the gauge transformation maps V to a subset of U . Observe that the new metric on
the initial hypersurface h(X) depends only on the old metric on h(X), which gives the
desired norm property. This completes the proof. ��

3. Field Equations

Within this section, we introduce geometric variables and a frame gauge condition,
which are used to construct a first-order symmetric-hyperbolic system.

3.1. GHP notation. In this subsection, we review the GHP notation [16] for connection
and curvature components,whichwewill use throughout this paper.AppendixAexplains
the nature of GHP scalars and recalls the definitions of tetrads and properly weighted
scalars. All calculations for this paper were done using the xAct suite for Mathematica
[28], and in particular the SpinFrames package [4].
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Definition 3.1. Given any null tetrad (la, na,ma, m̄a) and the Levi-Civita connection
∇a with respect to the corresponding metric, the spin coefficients are

κ = lamb∇alb, κ ′ = m̄anb∇bna, (3.1a)

ρ = mam̄b∇bla, ρ′ = mam̄b∇anb, (3.1b)

σ = mamb∇alb, σ ′ = m̄am̄b∇bna, (3.1c)

τ = manb∇bla, τ ′ = lam̄b∇anb, (3.1d)

and

β = − 1
2m

am̄b∇amb − 1
2 l

amb∇bna, β ′ = 1
2 m̄

am̄b∇bma + 1
2 l

am̄b∇bna, (3.2a)

ε = − 1
2 l

am̄b∇amb − 1
2 l

alb∇bna, ε′ = 1
2 m̄

anb∇bma + 1
2 l

anb∇bna . (3.2b)

Definition 3.2. Given any null tetrad (la, na,ma, m̄a) and the Weyl tensor Cabcd with
respect to the corresponding metric, we define the Weyl scalars

�0 = lalcmbmdCabcd , �1 = lalcmbndCabcd , �2 = lambm̄cndCabcd , (3.3a)

�3 = lam̄cnbndCabcd , �4 = m̄am̄cnbndCabcd . (3.3b)

One of the central results of the GHP framework is that κ, τ, ρ, σ, κ ′, τ ′, ρ′, σ ′ and
all the �i are properly weighted, but β, ε, β ′, ε′ are not.

3.2. Background and foreground metrics. To begin our analysis of perturbations of the
Kerr metric, we introduce the following hypotheses, which we typically use throughout
the rest of this section.

Definition 3.3 (The vacuum, radiation-gauge hypotheses). The background hypothe-
ses are defined as follows: “Let M > 0 and a ∈ (−M, M). Let g̊ab be the background
Kerr metric as in equation (1.1a) with parameters (M, a). LetU be an open subset ofK∗.
Let (l̊a, n̊a, m̊a, ¯̊ma) denote an arbitrary element of the set of local complex null tetrads
such that l̊ and n̊ are outgoing and ingoing, future-directed principal null vectors. Let
(l̊a, n̊a, m̊a, ¯̊ma) be the corresponding co-frame. The spin coefficients and Weyl scalars
with respect to this tetrad are indicated with the accent .̊”

The vacuum, radiation-gauge hypotheses are defined to be the background hy-
potheses together with the assumption that gab is a Lorentzian metric satisfying the
vacuum Einstein equation and the radiation gauge condition

n̊b(gab − g̊ab) = 0. (3.4)

The background and foreground metrics are defined to be g̊ab and gab respectively
with inverses g̊ab and g#ab.

Because (l̊, n̊, m̊, ¯̊m) is used to denote an arbitrary element of the set of local tetrads
in Kerr aligned with (l̂, n̂), there is a freedom to apply spin and boost transformations.
As long as our variables and operators are made so that they transform properly under
such transformation, this allows us to introduce properly weighted quantities, which
are globally defined. In the language of principal-G bundles, as long as our variables
transform equivariantly, we may use local tetrads to construct a globally defined section
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of an associated complex line bundle. In the language of gauge theory, we have a gauge
freedom corresponding to choice of boost and spin transformation, and, as long as our
variables transformcorrectly under such gauge transformations, they are globally defined
gauge fields. This allows us to avoid problems at the poles in spherical coordinates that
might arise from, for example, taking m̊ = 2−1/2(r − ia cos θ)−1(∂θ + i(sin θ)−1(∂φ +
a sin2 θ∂v)) or any other explicit combination of e� and e	.

Definition 3.4 (Foreground metric coefficients in the background frame). Assume the
vacuum, radiation-gauge hypotheses of Definition 3.3. Define the foreground metric
coefficients in the background frame to be

G2 = ¯̊ma ¯̊mb(gab − g̊ab) = ¯̊ma ¯̊mbgab, (3.5a)

G1 = l̊a ¯̊mb(gab − g̊ab) = l̊a ¯̊mbgab, (3.5b)

G0 = l̊a l̊b(gab − g̊ab) = l̊a l̊bgab, (3.5c)

/G = g̊ab(gab − g̊ab) = g̊abgab − 4, (3.5d)

G#
2 = ¯̊ma

¯̊mb(g
#ab − g̊ab) = ¯̊ma

¯̊mbg
#ab, (3.5e)

G#
1 = l̊a ¯̊mb(g

#ab − g̊ab) = l̊a ¯̊mbg
#ab, (3.5f)

G#
0 = l̊a l̊b(g

#ab − g̊ab) = l̊a l̊bg
#ab, (3.5g)

/G# = g̊ab(g
#ab − g̊ab) = g̊abg

#ab − 4. (3.5h)

Observe that they vanish if the perturbation vanishes. They are all properly weighted
with respect to background boost and spin transformations. The remaining metric co-
efficients vanish by the radiation gauge condition. The set (G#

2,G
#
1,G

#
0, /G#

) can be
algebraically computed from the set (G2,G1,G0, /G ) and vice versa via

G#
2 = − G2

(1 + 1
2

/G )2 − |G2|2
, (3.6a)

G#
1 = − (1 + 1

2
/G )G1 + G1G2

(1 + 1
2

/G )2 − |G2|2
, (3.6b)

G#
0 = − G0 − 2(1 + 1

2
/G )G1G1 + G2G1

2 + G1
2G2

(1 + 1
2

/G )2 − |G2|2
, (3.6c)

/G# = 1

1 − |G2| + 1
2

/G
+

1

1 + |G2| + 1
2

/G
− 2, (3.6d)

G2 = − G#
2

(1 + 1
2

/G#
)2 − |G#

2|2
, (3.7a)

G1 = − (1 + 1
2

/G#
)G#

1 + G#
1G

#
2

(1 + 1
2

/G#
)2 − |G#

2|2
, (3.7b)

G0 = − G#
0 − 2(1 + 1

2
/G#

)G#
1G

#
1 + G#

2G
#
1
2 + G#

1
2G#

2

(1 + 1
2

/G#
)2 − |G#

2|2
, (3.7c)

/G = 1

1 − |G#
2| + 1

2
/G# +

1

1 + |G#
2| + 1

2
/G# − 2. (3.7d)
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3.3. Frame choice. Given the set (G#
2,G

#
1,G

#
0, /G#

) of background frame components
of the inverse foreground metric g#ab, we can construct a null tetrad for the foreground
metric. However, due to Lorentz gauge freedom this frame is not unique. Due to the
fact that the radiation gauge condition singles out n̊a , we choose to use it also in the
foreground tetrad, i.e. na = n̊a . With this leg fixed, the remaining group of Lorentz
transformations are described by one real differential spin rotation parameter ν with
(p, q)-weight (0, 0) and a complex parameter η with (p, q)-weight (2, 0).

Remark 3.5. In principle one could instead demand that na is merely proportional to
n̊a . Doing this would introduce a real differential boost parameter μ to the group of
Lorentz transformations, so that na = μ−1n̊a . However, as we later would like to set the
ε̃′ = ε′ − μ−1ε̊′ to zero, and we find that ε̃′ + ε̃′ = −μ−1 þ′μ, we conclude that μ = 1,
i.e. na = n̊a is sensible.

Definition 3.6 (Foreground frame). Assume the vacuum, radiation-gauge hypotheses
of Definition 3.3.

A choice of differential Lorentz transformation variables is a choice of (ν, η)

with (p, q)-weights (0, 0) and (2, 0) respectively.
Assuming a choice of differential Lorentz transformation variables, define the fore-

ground frame to be

la = l̊a + (ηη̄ + 1
2G

#
0)n̊

a −
(
G#

1 +
ηG#

2

2eiνς# − eiν η̄ς#
)
m̊a −

(
G#

1 +
eiν η̄G#

2

2ς# − ης#

eiν

) ¯̊ma,

(3.8a)

na = n̊a, (3.8b)

ma = ηn̊a + eiνς#m̊a − eiνG#
2

¯̊ma

2ς# , (3.8c)

along with the auxiliary variables

ς = 1
2

√
1 − |G2| + 1

2
/G + 1

2

√
1 + |G2| + 1

2
/G , (3.9a)

ς# = 1
2

√
1 − |G#

2| + 1
2

/G# + 1
2

√
1 + |G#

2| + 1
2

/G#
. (3.9b)

Lemma 3.7. Assume the vacuum, radiation-gauge hypotheses of Definition 3.3 and a
choice of differential Lorentz transformation variables.

The foreground frame is a null tetrad for the foreground metric gab, i.e.

g#ab = 2l(anb) − 2m(am̄b). (3.10)

The corresponding co-frame is

la = l̊a +
(
ηη̄ − 1

2G
#
0 − eiν η̄G#

1ς − ηG#
1ς

eiν
− eiν η̄G#

2G
#
1ς

2ς#2 − ηG#
1G

#
2ς

2eiνς#2

)
n̊a

+
(
eiν η̄ς +

ηG#
2ς

2eiνς#2

)
m̊a +

(ης

eiν
+
eiν η̄G#

2ς

2ς#2

) ¯̊ma, (3.11a)

na = n̊a, (3.11b)

ma =
(
η − eiνG#

1ς − eiνG#
2G

#
1ς

2ς#2

)
n̊a + eiνςm̊a +

eiνG#
2ς

2ς#2
¯̊ma . (3.11c)
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Definition 3.8. Assume the vacuum, radiation-gauge hypotheses of Definition 3.3 and
a choice of differential Lorentz transformation variables.

Define the foreground metric coefficients to be

/̃G = g̊abg
#ab − 4, G̃2 = g̊abm̄

am̄b, G̃1 = g̊abl
am̄b, G̃0 = g̊abl

alb, (3.12a)

/̃G# = g̊abgab − 4, G̃#
2 = g̊abm̄am̄b, G̃#

1 = g̊ablam̄b, G̃#
0 = g̊ablalb. (3.12b)

Unless otherwise specified, define metric coefficients to be the foreground metric co-
efficients.

Note that the background metric coefficients are the components of the foreground
metric with respect to the background tetrad, and, conversely, the (foreground) metric
coefficients are the components of the background metric with respect to the foreground
frame.

We have the following useful relations

/G# = /̃G = −2 + 4ς#2 − 2ς#

ς
, |G#

2|2 = |G̃2|2 = 4ς#4 − 4ς#3

ς
, (3.13a)

/G = /̃G# = −2 + 4ς2 − 2ς

ς# , |G2|2 = |G̃#
2|2 = 4ς4 − 4ς3

ς# . (3.13b)

The relations between ( /̃G, G̃2, G̃1, G̃0), ( /̃G#, G̃#
2, G̃

#
1, G̃

#
0) follows the pattern (3.6).

Givenν andηwecanexpress the sets ( /̃G, G̃2, G̃1, G̃0), ( /̃G#, G̃#
2, G̃

#
1, G̃

#
0), (G

#
2,G

#
1,G

#
0, /G#

)

and (G2,G1,G0, /G ) in terms of each other. For instance

G̃#
2 = G2

e2iν
, (3.14a)

G̃#
1 = G1ς

#

eiν
− 1

2 η̄
/G +

ηG2

e2iν
+
G1G2ς

#

2eiνς2 , (3.14b)

G̃#
0 = G0 − ηη̄ /G + e2iν η̄2G2 +

η2G2

e2iν
+ eiν η̄ς#

(
2G1 +

G2G1

ς2

)
+

ης#

eiν

(
2G1 +

G1G2

ς2

)

+
ς#2

ς2

(
(2 + /G )G1G1 + G2G1

2 + G1
2G2

)
, (3.14c)

G#
2 = − e2iν G̃#

2ς
#2

ς2 , (3.14d)

G#
1 = − eiν G̃#

1ς
# + eiν η̄(ς# − ς) − eiν G̃#

1G̃
#
2ς

#

2ς2 +
eiνηG̃#

2(ς
# + ς)

2ς2 , (3.14e)

G#
0 = − G̃#

0 + 2ηG̃#
1 + 2η̄G̃#

1 − η2G̃#
2 − η̄2G̃#

2 + ηη̄ /̃G#. (3.14f)

3.4. Geometric variables and operators. In this section, we define differential spin coef-
ficients and differential curvature components. The foreground spin coefficients carry all
the information about the connection. However, several are not small for a small metric
perturbation, because several of the background components are non-vanishing. Further-
more, not all of themare properlyweightedwith respect to spin andboost transformations
of the background frame. Our choice of differential spin coefficients compensate for both
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of these issues. While the foreground curvature components are properly weighted, the
middle curvature component is not small, since the middle curvature component in the
background is non-vanishing. Our choice of differential curvature components compen-
sates for this problem.

Definition 3.9. Assume the vacuum, radiation-gauge hypotheses of Definition 3.3 and
a choice of differential Lorentz transformation variables.

Define the differential spin coefficients

β̃ = β − eiνς#β̊ − eiνG#
2β̊

′

2ς# + ηε̊′, (3.15a)

β̃ ′ = β ′ − G#
2β̊

2eiνς# − ς#β̊ ′

eiν
− η̄ε̊′, (3.15b)

ε̃ = ε − ε̊ +
(
G#

1 +
ηG#

2

2eiνς# − eiν η̄ς#
)
β̊ −

(
G#

1 +
eiν η̄G#

2

2ς# − ης#

eiν

)
β̊ ′ + (ηη̄ + 1

2G
#
0)ε̊

′,

(3.15c)

ε̃′ = ε′ − ε̊′, (3.15d)

κ̃ = κ, (3.15e)

κ̃ ′ = κ ′, (3.15f)

ρ̃ = ρ − ρ̊, (3.15g)

ρ̃′ = ρ′ − ρ̊′, (3.15h)

σ̃ = σ, (3.15i)

σ̃ ′ = σ ′, (3.15j)

τ̃ = τ − τ̊ , (3.15k)

τ̃ ′ = τ ′ − τ̊ ′. (3.15l)

Define the differential curvature coefficients as

�̃0 = �0, �̃1 = �1, �̃2 = �2 − �̊2, �̃3 = �3, �̃4 = �4. (3.16)

The geometric variables are defined to be

u =(η, ν, G̃#
2, /̃G#, G̃#

1, G̃
#
0, σ̃

′, ρ̃′, τ̃ ′, β̃, β̃ ′, ε̃, ρ̃, σ̃ , κ̃, �̃0, �̃1, �̃2, �̃3, �̃4)
T .

The differential variables are chosen so that they are properly weighted with respect
to the background tetrad. This may initially seem surprising, since β̊, ε̊, β̊ ′, ε̊′ are not.
It may be helpful to recall this is similar to the fact that the Christoffel symbols for
a connection do not transform as a tensor, but the difference between the Christoffel
symbols for two different connections does transform as a tensor.

This choice of variables is not unique, and not all of them are properly weighted under
differential Lorentz transformations. However, they are the simplest choices of variables
that are properlyweighted under spin and boost transformations of the background tetrad.
We are going to use the differential Lorentz transformations to eliminate some of the
differential spin coefficients. This would have been impossible if they were properly
weighted under the differential Lorentz transformations.
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Definition 3.10. Assume the vacuum, radiation-gauge hypotheses of Definition 3.3 and
a choice of differential Lorentz transformation variables.

Define the foreground GHP operators acting on a (p, q)-weighted scalar ϕ to be

þϕ = þ̊ϕ + (ηη̄ + 1
2G

#
0) þ̊′ϕ −

(
G#

1 +
ηG#

2

2eiνς# − eiν η̄ς#
)
ð̊ϕ −

(
G#

1 +
eiν η̄G#

2

2ς# − ης#

eiν

)
ð̊

′ϕ

− pε̃ϕ − q ε̃ϕ, (3.17a)

þ′ϕ = þ̊′ϕ + pε̃′ϕ + q ε̃′ϕ, (3.17b)

ðϕ = η þ̊′ϕ + eiνς#
ð̊ϕ − eiνG#

2 ð̊
′ϕ

2ς# − pβ̃ϕ + qβ̃ ′ϕ, (3.17c)

ð
′ϕ = η̄ þ̊′ϕ − G#

2 ð̊ϕ

2eiνς# +
ς#

ð̊
′ϕ

eiν
− qβ̃ϕ + pβ̃ ′ϕ, (3.17d)

where þ̊, þ̊′, ð̊ and ð̊
′ are the classical GHP operators as defined in [16] with respect to

the background tetrad.

Remark 3.11. Observe that we define weight to be with respect to the background tetrad.
Any background spin and boost transformation will induce the same spin and boost
transformation on the foreground tetrad. Hence, any quantity which is properly weighted
with respect to the foreground tetrad will become properly weighted with the same
weights with respect to the background tetrad, when we have tied the frames together
as in definition 3.6. For any quantity which is properly weighted with respect to the
foreground tetrad, our definition corresponds to the classical definition ofGHPoperators.
Our definition can therefore be seen as an extension to quantities which are weighted
only in terms of the background tetrad.

These GHP operators satisfy the commutator relations in appendix B.

3.5. Structure equations. We now choose η and ν so that two differential spin coeffi-
cients are eliminated (in addition to κ ′, which vanishes as a result of n being tangent to
null geodesics in the radiation gauge condition) and so that the remaining connection
coefficients satisfy transport equations.

Definition 3.12 (The frame-gauge hypotheses). Assume the vacuum, radiation-gauge
hypotheses of Definition 3.3.

The frame-gauge hypotheses are defined to hold if there is a choice of differential
Lorentz transformation variables satisfying

þ′ν = − i

2ς
(ς# − ς)(ρ̊′ − ¯̊ρ′) +

i G̃#
2σ̃

′

4ς2 − i G̃#
2σ̃

′
4ς2 , (3.18a)

þ′η = β̃ − β̃ ′ + η(ρ̊′ + ρ̃′) + η̄σ̃ ′ − τ̊ + eiνς# τ̊ +
G̃#

2ς
# ¯̊τ

2eiνς2 . (3.18b)

Lemma 3.13 (Structure equations). Assume the vacuum, radiation-gauge hypotheses
of Definition 3.3 and frame-gauge hypotheses of Definition 3.12.

The structure equations take the form of a transport system for the metric coefficients

(þ′ + ρ̊′ + 2ρ̃′ − ¯̊ρ′)G̃#
2 = (2 + /̃G#)σ̃ ′, (3.19a)
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(þ′ + ρ̃′ + ρ̃′) /̃G# = − 2ρ̃′ − 2ρ̃′ + 2G̃#
2σ̃

′ + 2G̃#
2σ̃

′, (3.19b)

(þ′ + ρ̃′ + ¯̊ρ′)G̃#
1 = 2τ̃ ′ −

(
G̃#

1G̃
#
2
ς#

ς
+ 2G̃#

1ς
#ς + 2η̄ς2

)
(ρ̊′ − ¯̊ρ′)

− η̄(2 + /̃G#) ¯̊ρ′ − G̃#
1σ̃

′

+ ηG̃#
2(ρ̊

′ + ¯̊ρ′) + 1
2

/̃G#( ¯̊τ + τ̊ ′ + τ̃ ′) − G̃#
2(τ̊ + τ̃ ′ + ¯̊τ ′)

+
eiν G̃#

2
¯̊τ ′

ς
+ 2(1 − ςe−iν)τ̊ ′, (3.19c)

þ′G̃#
0 = − 2ε̃ − 2ε̃ +

(
η2G̃#

2 + η̄2G̃#
2 − ηη̄(2 + /̃G#)

)
(ρ̊′ + ¯̊ρ′)

− (
2ηG̃#

1G̃
#
2 − 2η̄G̃#

1G̃
#
2 + (ηG̃#

1 − η̄G̃#
1)(2 + /̃G#)

)
× ς#ς−1(ρ̊′ − ¯̊ρ′)

+ e−iν(2G̃#
1ς

# + G̃#
1G̃

#
2ς

#ς−2 + η̄G̃#
2ς

−1 − 2ης)τ̊ ′

− 2G̃#
1(

¯̊τ + τ̊ ′ + τ̃ ′)

+ eiν(2G̃#
1ς

# + G̃#
1G̃

#
2ς

#ς−2 + ηG̃#
2ς

−1 − 2η̄ς) ¯̊τ ′

− 2G̃#
1(τ̊ + τ̃ ′ + ¯̊τ ′), (3.19d)

algebraic relations for the spin coefficients

κ̃ ′ = 0, ε̃′ = 0, τ̃ = 0, (3.20a)

ρ̃′ − ρ̃′ = (ς# − ς)(ρ̊′ − ¯̊ρ′)
ς

, (3.20b)

β̃ − β̃ ′ = − (G̃#
1ς

# − η̄G̃#
2ς

# − ης + 2ης#ς2)(ρ̊′ − ¯̊ρ′)
ς

+
G̃#

2ς
# τ̊ ′

2eiνς2 − τ̃ ′

+ (eiνς# − 1) ¯̊τ ′, (3.20c)

and a supplementary set of equations displayed in (D.1).

Proof. The foreground Levi-Civita connection ∇ and background ∇̊ connections are
related via

�̃a
bc = 1

2g
#ad(∇̊bgcd + ∇̊cgbd − ∇̊dgbc). (3.21)

Definition 3.1 lets us express the foreground spin coefficients in terms of the foreground
∇ acting on the foreground tetrad. We can re-express this in terms of the background ∇̊
as

β = − 1
2m

am̄b(−�̃c
abmc + ∇̊amb) − 1

2 l
amb(−�̃c

banc + ∇̊bna), (3.22a)

β ′ = 1
2 m̄

am̄b(−�̃c
bamc + ∇̊bma) + 1

2 l
am̄b(−�̃c

banc + ∇̊bna), (3.22b)

ε = − 1
2 l

am̄b(−�̃c
abmc + ∇̊amb) − 1

2 l
alb(−�̃c

banc + ∇̊bna), (3.22c)

ε′ = 1
2 m̄

anb(−�̃c
bamc + ∇̊bma) + 1

2 l
anb(−�̃c

banc + ∇̊bna), (3.22d)

κ = lamb(−�̃c
ablc + ∇̊alb), (3.22e)
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κ ′ = m̄anb(−�̃c
banc + ∇̊bna), (3.22f)

ρ = mam̄b(−�̃c
balc + ∇̊bla), (3.22g)

ρ′ = mam̄b(−�̃c
abnc + ∇̊anb), (3.22h)

σ = mamb(−�̃c
ablc + ∇̊alb), (3.22i)

σ ′ = m̄am̄b(−�̃c
banc + ∇̊bna), (3.22j)

τ = manb(−�̃c
balc + ∇̊bla), (3.22k)

τ ′ = lam̄b(−�̃c
abnc + ∇̊anb). (3.22l)

Using the relation between the background and foreground tetrads, and expressing all
background derivatives of background frame components in terms of background spin
coefficients, we get expressions of all background tetrad components of �̃a

bc in terms of
the metric components (G2,G1,G0, /G ) or ( /̃G#, G̃#

2, G̃
#
1, G̃

#
0). See (C.1) below for ex-

plicit expressions. Putting it all together, we can express all differential spin coefficients
in terms of background spin coefficients and GHP derivatives of the above mentioned
metric components.

For instance, we get

ρ̃′ = 1

2ς
(ς# − ς)(ρ̊′ − ¯̊ρ′) − ς# þ̊′ /G

4ς
(2ς#ς − 1) +

G2ς
#2 þ̊′G2

4ς2 +
G2ς

#2 þ̊′G2

4ς2 ,

(3.23a)

σ̃ ′ = G2ς
#

2e2iνς
(ρ̊′ − ¯̊ρ′) − G2ς

#2 þ̊′ /G
4e2iνς2 +

G2
2ς#2 þ̊′G2

8e2iνς4 +
ς#2 þ̊′G2

2e2iν
. (3.23b)

This is equivalent to

þ̊′ /G = − (2 + /G )(ρ̃′ + ρ̃′) + 2e2iνG2σ̃
′ + 2G2σ̃ ′

e2iν
, (3.24a)

þ̊′G2 = G2( ¯̊ρ′ − ρ̊′ − ρ̃′ − ρ̃′) + 2e2iνς2σ̃ ′ + G2
2σ̃ ′

2e2iνς2 , (3.24b)

ρ̃′ = ρ̃′ − 1

ς
(ς# − ς)(ρ̊′ − ¯̊ρ′). (3.24c)

Similarly, we get

ε̃′ = − /Gς#ρ̊′

8ς
+

/Gς# ¯̊ρ′

8ς
− 1

2 i þ̊′ν +
G2ς

# þ̊′G2

16ς3 − G2ς
# þ̊′G2

16ς3 (3.25a)

= 1

4ς
(ς# − ς)(ρ̊′ − ¯̊ρ′) − e2iνG2σ̃

′

8ς2 +
G2σ̃ ′

8e2iνς2 − 1
2 i þ̊′ν. (3.25b)

As we have not yet fixed the differential spin rotation parameter ν, we can use it to set
ε̃′ = 0. Translated into the foreground operators and G̃#

2, this condition is equivalent to
the evolution equation (3.18a) in the frame-gauge hypotheses. Using this relation one
can express the system (3.24) in terms of G̃#

2 and /̃G# to get (3.19a), (3.19b) and (3.20b).
A similar calculation for τ̃ ′ yields the following after reduction with (3.24)
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τ̃ ′ = ρ̊′

4eiνς2 (G1G2ς
# + 4eiν η̄ς2 + 4G1ς

#ς2) +
ρ̃′

2eiνς2 (G1G2ς
# + 2eiν η̄ς2 + 2G1ς

#ς2)

− G1ς
# ¯̊ρ′

2eiν
+

σ̃ ′

2ς2 (eiνG2G1ς
# + 2ης2 + 2eiνG1ς

#ς2) +
G2τ̊

4eiνς2 (ς# + ς) +
¯̊τ

2eiν
(ς# − ς)

− τ̊ ′

2eiν
(2eiν − ς# − ς) +

G2
¯̊τ ′

4eiνς2 (ς# − ς) +
G2ς

# þ̊′G1

4eiνς2 +
ς# þ̊′G1

2eiν
. (3.26)

This equation can be used to solve for þ̊′G1.
Similarly τ̃ can be expressed as follows after substitution of the expressions for þ̊′ /G ,

þ̊′G2, þ̊′G1 and þ̊′ν above

τ̃ = − eiνς#2

2ς3 (G2G1 + 2G1ς
2)(ρ̊′ − ¯̊ρ′) − η(2ε̃′ − ρ̃′ − ¯̊ρ′)

+ η̄σ̃ ′ + eiνG2ς
#

2ς2 ( ¯̊τ + τ̊ ′) − τ̃ ′ + (eiνς# − 1)(τ̊ + ¯̊τ ′) − þ̊′η. (3.27)

In the frame-gauge hypotheses of Definition 3.12, equation (3.18b) was chosen so that
τ̃ = 0. This gives an expression for þ̊′η. Using this in the expression for G̃#

1, we can
derive the evolution equation for G̃#

1, i.e. (3.19c).

Using all the previous relations, one can express β̃ − β̃ ′ as

β̃ − β̃ ′ = − ς#

2ς3 (eiνG2G1ς
# + 2ης2 + 2eiνG1ς

#ς2)(ρ̊′ − ¯̊ρ′) + eiνG2ς
# τ̊ ′

2ς2

− τ̃ ′ − ¯̊τ ′ + eiνς# ¯̊τ ′. (3.28)

Using this relation, we can eliminate G1 from (3.27) to obtain the evolution (3.18b).
Translating to the G̃#

i variables, we also get (3.20c).
Similarly, using the previous relations, we get a long expression

ε̃ + ε̃ = − 1
2 þ̊′G0 + . . . (3.29)

where the dots indicates an expression depending onG1,G2, /G , σ̃ ′, τ̃ ′, ρ̃′ and the back-
ground spin coefficients. Translating this to the G̃#

i variables, we get (3.19d).

Similarly, one can express β̃+β̃ ′ and ε̃− ε̃ to obtain (D.1a) and (D.1b). Here however,
the G̃i variables turned out to give shorter expressions, so we used them instead. The
remaining equations in (D.1) were derived in the sameway using the expressions for ρ̃, σ̃
and κ̃ . As the direct expressions for these spin coefficients became long and complicated,
we found that solving for the left hand sides of (D.1) gave us shorter expressions. The
expressions can be inverted though, so all spin coefficients are expressible in terms of
derivatives of ν, η and the metric components. ��

3.6. Ricci relations.

Lemma 3.14 (Ricci relations). Assume the vacuum, radiation-gauge hypotheses of Def-
inition 3.3 and frame-gauge hypotheses of Definition 3.12.

The Ricci relations take the form
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(þ′ − ρ̊′ − ρ̃′ − ρ̃′ − ¯̊ρ′)σ̃ ′ = �̃4, (3.30a)

(þ′ − 2ρ̊′ − ρ̃′)ρ̃′ = σ̃ ′σ̃ ′, (3.30b)

(þ′ − ρ̊′ − ρ̃′)τ̃ ′ = �̃3 + (τ̃ ′ − τ̊ + ¯̊τ ′)σ̃ ′ + ρ̃′(−¯̊τ + τ̊ ′), (3.30c)

(þ′ − ρ̊′ − ρ̃′)β̃ = −β̃ ′σ̃ ′ + (1 − eiνς#)ρ̊′τ̊ + ρ̃′τ̊ , (3.30d)

(þ′ − ρ̃′ − ¯̊ρ′)β̃ ′ = �̃3 − β̃σ̃ ′ − G#
2ρ̊

′τ̊
2eiνς# − σ̃ ′τ̊ , (3.30e)

þ′ε̃ = − �̃2 + (τ̃ ′ − ¯̊τ + τ̊ ′)β̃ +
(
G#

1 +
ηG#

2

2eiνς# − eiν η̄ς#
)
ρ̊′τ̊ + τ̊ τ̃ ′

+ β̃ ′(τ̊ − τ̃ ′ − ¯̊τ ′), (3.30f)

(þ′ − ρ̃′ − ¯̊ρ′)ρ̃ = −�̃2 + ρ̊ρ̃′ + σ̃ σ̃ ′ + (β̃ + β̃ ′)τ̊ + 2η̄ρ̊′τ̊ − G#
2 τ̊

2

2eiνς# −
(
1 − ς#

eiν

)
ð̊

′τ̊ ,

(3.30g)

(þ′ − ρ̊′ − ρ̃′)σ̃ = (ρ̊ + ρ̃)σ̃ ′ − (β̃ + β̃ ′)τ̊ + 2ηρ̊′τ̊ − (1 − eiνς#)τ̊ 2 − eiνG#
2 ð̊

′τ̊
2ς# ,

(3.30h)

þ′κ̃ = − �̃1 + (τ̃ ′ − τ̊ + ¯̊τ ′)ρ̃ + (τ̃ ′ − ¯̊τ + τ̊ ′)σ̃ − (ε̃ − ε̃)τ̊ + (2ηη̄ + G#
0)ρ̊

′τ̊

−
(
G#

1 +
ηG#

2

2eiνς# − eiν η̄ς#
)
τ̊ 2 + ρ̊τ̃ ′ −

(
G#

1 +
eiν η̄G#

2

2ς# − ης#

eiν

)
ð̊

′τ̊ , (3.30i)

together with the supplementary relations (D.2). Here G#
i can be interpreted in terms of

G̃#
i via (3.14) and there is the background formula

ð̊
′τ̊ = 1

2 �̊2 −
¯̊
�2κ̄1′

2κ1
+ ρ̊ρ̊′ − ρ̊ ¯̊ρ′ + τ̊ τ̊ ′, (3.31)

where

κ1 = − 1

3
(r − ia cos θ). (3.32)

Proof. To prove these relations, we begin with the Newman-Penrose (NP) version of the
Ricci relations equations (4.11.12) in [31] for both the foreground spin coefficients and
operators. The foreground spin coefficients can then be written in terms of the differen-
tial spin coefficients from definition 3.9. When the foreground NP operators acts on the
background spin coefficients, we express the operators in terms of the background oper-
ators, via the relations in definition 3.6. The resulting background NP operators acting
on background spin coefficients can then be eliminated using the background Ricci rela-
tions. After this procedure, all non-properly weighted quantities have been eliminated,
and the operators can be translated into the foreground GHP operators yielding (3.30)
and (D.2) after reduction with the structure equations (3.18), (3.19), (3.20), (D.1). Here
some background derivatives of background spin coefficients have been simplified due
to the vacuum Bianchi type D property of the Kerr spacetime.

As an example we derive (3.30e) starting with the foreground NP-Ricci relation

�β ′ = �3 + β̄ε′ − β ′ε′ + β ′ρ′ − βσ ′ − σ ′τ − ε′τ̄ + δ̄ε′. (3.33)
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Translating to the differential spin coefficients and expressing the foreground NP deriva-
tives in terms of the background NP derivatives when acting on background spin coef-
ficients, we get

�β̃ ′ = �̃3 + β̃ε̃′ + e−iνς# ¯̊
β(ε̊′ + ε̃′) + 1

2e
−iνG#

2ς
#−1 ¯̊

β ′(ε̊′ + ε̃′) − β̃ ′ε̃′ − (β̃ ′ + η̄ε̃′) ¯̊ε′

+ β̃ ′ρ̃′ + δ̄ε̃′ + β̃ ′ ¯̊ρ′ − β̃σ̃ ′ − σ̃ ′τ̊ − σ̃ ′τ̃ − ε̃′τ̃ − ε̃′ ¯̊τ
− 1

2e
−iνG#

2ς
#−1(�̊β̊ + δ̊ε̊′) − e−iνς#(�̊β̊ ′ − ˚̄δε̊′)

− β̊
(
eiνς#σ̃ ′ + 1

2e
−iνς#−1�G#

2 − 1
2e

−iνG#
2ς

#−1(ς#−1�ς#

+ i�ν − ε̃′ − ¯̊ε′ + ρ̃′ + ¯̊ρ′)
)

+ β̊ ′(e−iνς#(i�ν − ε̃′ − ¯̊ε′ + ρ̃′ + ¯̊ρ′) − 1
2e

iνG#
2ς

#−1σ̃ ′ − e−iν�ς#)
+ ε̊′(β̃ − η̄ε̃′ − 2η̄ ¯̊ε′ + η̄ρ̃′ + η̄ ¯̊ρ′ + ησ̃ ′ − τ̃ − ¯̊τ − �η̄). (3.34)

Using the background Ricci relations, transforming the foreground NP derivatives into
foreground GHP operators, and translating the metric coefficients to the G̃#

i variables
yield

þ′β̃ ′ = �̃3 + β̃ ′ρ̃′ + β̃ ′ ¯̊ρ′ − β̃σ̃ ′ + 1
2 e

iν G̃#
2ς

#ς−2ρ̊′τ̊ − σ̃ ′τ̊ − σ̃ ′τ̃ − ε̃′τ̃ − ε̃′ ¯̊τ + ð
′ε̃′

+ ε̊′(β̃ − β̃ ′ + η̄ε̃′ + η̄ε̃′ + η̄ρ̃′ + η̄ ¯̊ρ′ + ησ̃ ′ + 1
2 e

iν G̃#
2ς

#ς−2τ̊ − τ̃ − ¯̊τ + e−iνς# ¯̊τ − þ′η̄)

+ β̊ ′(e−iνς# ε̃′ − e−iνς# ε̃′ + e−iνς#ρ̃′ + 1
2 e

−iν G̃
#

2ς
#ς−2σ̃ ′ + ie−iνς# þ′ν − e−iν þ′ς#)

+ β̊
(−eiνς#σ̃ ′ + 1

2 e
iνς#ς−2 þ′G̃#

2 +
1
2 e

iν G̃#
2ς

−2 þ′ς# + 1
2 e

iν G̃#
2ς

#ς−2(ε̃′ − ε̃′ + ρ̊′ − ¯̊ρ′

− ρ̃′ + i þ′ν − 2ς−1 þ′ς)
)
. (3.35)

The evolution equations (3.18) together with the structure equations (3.19) and (3.20)
will reduce this to (3.30e). Observe that the equation (3.30e) is properly weighted even
though we started with a non-properly weighted equation. The other equations can be
derived in the same way. ��

3.7. Bianchi system.

Lemma 3.15 (Bianchi identities). Assume the vacuum, radiation-gauge hypotheses of
Definition 3.3 and frame-gauge hypotheses of Definition 3.12.

The Bianchi identities take the form

0 = (þ − 4ρ̊ − 4ρ̃)�̃1 − (ð′ − τ̊ ′ − τ̃ ′)�̃0 + 3(�̊2 + �̃2)κ̃, (3.36a)

0 = (þ − 3ρ̊ − 3ρ̃)�̃2 − (ð′ − 2τ̊ ′ − 2τ̃ ′)�̃1 + 2�̃3κ̃ − 3�̊2ρ̃

+ 3
2 (2ηη̄ + G#

0)�̊2ρ̊
′ − �̃0σ̃

′

− 3
(
G#

1 +
ηG#

2

2eiνς# − eiν η̄ς#
)
�̊2τ̊ − 3

(
G#

1 +
eiν η̄G#

2

2ς# − ης#

eiν

)
�̊2τ̊

′, (3.36b)

0 = (þ − 2ρ̊ − 2ρ̃)�̃3 − (ð′ − 3τ̊ ′ − 3τ̃ ′)�̃2 + �̃4κ̃ − 3η̄�̊2ρ̊
′ − 2�̃1σ̃

′ +
3G#

2�̊2τ̊

2eiνς#

+ 3
(
1 − ς#

eiν

)
�̊2τ̊

′ + 3�̊2τ̃
′, (3.36c)
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0 = (þ − ρ̊ − ρ̃)�̃4 − (ð′ − 4τ̊ ′ − 4τ̃ ′)�̃3 − 3(�̊2 + �̃2)σ̃
′, (3.36d)

0 = (þ′ − ρ̊′ − ρ̃′)�̃0 − (ð − 4τ̊ )�̃1 − 3(�̊2 + �̃2)σ̃ , (3.36e)

0 = (þ′ − 2ρ̊′ − 2ρ̃′)�̃1 − (ð − 3τ̊ )�̃2 − 3η�̊2ρ̊
′ − 2�̃3σ̃

+ 3(1 − eiνς#)�̊2τ̊ +
3eiνG#

2�̊2τ̊
′

2ς# , (3.36f)

0 = (þ′ − 3ρ̊′ − 3ρ̃′)�̃2 − (ð − 2τ̊ )�̃3 − 3�̊2ρ̃
′ − �̃4σ̃ , (3.36g)

0 = (þ′ − 4ρ̊′ − 4ρ̃′)�̃3 − (ð − τ̊ )�̃4. (3.36h)

Here G#
i can be interpreted in terms of G̃#

i via (3.14).

Proof. A direct translation of the standard GHP Bianchi identities in [16] to our differ-
ential variables gives the relations (3.36). Here we have also used the background type
D Bianchi identities to handle the derivatives of �̊2. ��
Remark 3.16. It is important to note that the full set of equations, i.e. the evolution equa-
tions for the differential Lorentz transformation variables (3.18), the structure equations
(3.19)(3.20)(D.1), the Ricci relations (3.30)(D.2) and the Bianchi identities (3.36), are
all properly weighted equations. This means that they make sense for the entire family
of background principal null tetrads.

Remark 3.17. From the Bianchi and Ricci equations, one can derive non-linear versions
of the Teukolsky master equations (TME) [35]

(
(þ′ − 4ρ̊′ − 4ρ̃′ − ρ̃′ − ¯̊ρ′)(þ − ρ̊ − ρ̃) − (ð′ − ¯̊τ − 4τ̊ ′ − 4τ̃ ′)(ð − τ̊ )

− 3(�̊2 + �̃2 + σ̃ σ̃ ′)
)
�̃4

= 4�̃3(ð − τ̃ ′ − ¯̊τ ′)σ̃ ′ + 4σ̃ ′
ð �̃3 − 10�̃3

2, (3.37a)(
(þ − 4ρ̊ − 4ρ̃ − ρ̃ − ¯̊ρ)(þ′ − ρ̊′ − ρ̃′) − (ð − 4τ̊ − τ̃ ′ − ¯̊τ ′)(ð′ − τ̊ ′ − τ̃ ′)
− 3(�̊2 + �̃2 + σ̃ σ̃ ′)

)
�̃0

= −4�̃1(þ′ − ρ̃′ − ¯̊ρ′)κ̃ + 4�̃1(ð
′ − ¯̊τ)σ̃ − 4κ̃ þ′�̃1 + 4σ̃ ð

′�̃1 − 10�̃1
2. (3.37b)

From the Bianchi equations, it follows that the differential curvatures satisfy the
evolution system given in the following corollary.

Corollary 3.18 (Evolution system for the differential curvature components). Assume
the vacuum, radiation-gauge hypotheses of Definition 3.3 and frame-gauge hypotheses
of Definition 3.12.

Let (t, x, y, z) be a real coordinate system such that constant t hypersurfaces are
spacelike.

The differential curvature components satisfy

Bt∂t

⎛
⎜⎜⎜⎜⎝

�̃0

�̃1

�̃2

�̃3

�̃4

⎞
⎟⎟⎟⎟⎠ = −

∑
i∈{x,y,z}

Bi∂i

⎛
⎜⎜⎜⎜⎝

�̃0

�̃1

�̃2

�̃3

�̃4

⎞
⎟⎟⎟⎟⎠ + F, (3.38a)
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where F = F(u) is a function of the geometric variables and

Bi =

⎛
⎜⎜⎜⎜⎝

nt 3ni −nt 3mi 0 0 0
−nt 3m̄i nt 3li + lt nt 2ni −lt nt 2mi 0 0

0 −lt nt 2m̄i lt nt 2li + lt 2ntni −lt 2ntmi 0
0 0 −lt 2nt m̄i lt 2nt li + lt 3ni −lt 3mi

0 0 0 −lt 3m̄i lt 3li

⎞
⎟⎟⎟⎟⎠ ∀ i ∈ {t, x, y, z}.

(3.38b)

Proof. Consider the components of the foreground frame in terms of the coordinate
co-frame, i.e. lt = la(dt)a etc. The spacelike nature of the hypersurfaces means that the
co-normal (dt)a is time-like, i.e. 0 < g#ab(dt)a(dt)b = 2lt nt − 2mtm̄t . In particular,
we get lt nt > mtm̄t ≥ 0. Furthermore as we assume that la and na are future pointing,
we get that lt > 0 and nt > 0.

We can write (3.36) in the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m̄t lt 0 0 0
0 −m̄t lt 0 0
0 0 −m̄t lt 0
0 0 0 −m̄t lt

nt −mt 0 0 0
0 nt −mt 0 0
0 0 nt −mt 0
0 0 0 nt −mt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂t

⎛
⎜⎜⎜⎜⎝

�̃0

�̃1

�̃2

�̃3

�̃4

⎞
⎟⎟⎟⎟⎠

=
∑

i∈{x,y,z}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̄i −li 0 0 0
0 m̄i −li 0 0
0 0 m̄i −li 0
0 0 0 m̄i −li

−ni mi 0 0 0
0 −ni mi 0 0
0 0 −ni mi 0
0 0 0 −ni mi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂i

⎛
⎜⎜⎜⎜⎝

�̃0

�̃1

�̃2

�̃3

�̃4

⎞
⎟⎟⎟⎟⎠ + l.o.

where l.o. denotes a function of the geometric variables u but not their derivatives. The
corollary follows from multiplying this by⎛

⎜⎜⎜⎜⎝

0 0 0 0 nt 3 0 0 0
nt 3 0 0 0 0 lt nt 2 0 0
0 lt nt 2 0 0 0 0 lt 2nt 0
0 0 lt 2nt 0 0 0 0 lt 3

0 0 0 lt 3 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

��

3.8. First-order symmetric-hyperbolicity.

Theorem 3.19 (First-order symmetric-hyperbolic system). Assume the vacuum, radiation-
gauge hypotheses of Definition 3.3 and frame-gauge hypotheses of Definition 3.12.

Assume g is a solution of the vacuum Einstein equation. Let (t, x, y, z) be a real
coordinate system such that constant t hypersurfaces are spacelike.
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The system (3.18), (3.19), (3.30), and (3.38) forms a first-order symmetric-hyperbolic
system for the geometric variables u, and where G̃i and /̃G are given in terms of the
geometric variables by Eqs. (3.14) and (3.13) and where ς and ς# are given by Eq. (3.9).

Proof. The goal is to show that, using the algebraic relations for G̃i and /̃G in (3.14) and
for ς and ς# in (3.9), the system (3.18), (3.19), (3.30), and (3.38) can be written in the
form

A(u)t∂tu =
∑

i∈{x,y,z}
A(u)i∂iu + F(u), (3.39)

where At and Ai are Hermitian matrices, where At is positive definite, and where At ,
each Ai , and F are functions of u and u. Note also that in this equation F(0) = 0, so
u = 0 is a solution of this system.

Since n is future-directed, for any ϕ ∈ u, any transport equation of the form þ′ϕ =
f1(u) can be written in coordinates as nt∂tϕ = −∑

i∈{x,y,z} ni∂iϕ + f2(u), where f2 is
constructed from f1 and from products of the connection coefficients appearing in þ′and
of ϕ. The equations (3.18), (3.19), and (3.30) are all of the form þ′ϕ = f (u). Therefore,
the right hand side of the entire transport system has a diagonal principal part. Since
n is real, these diagonal parts are trivially Hermitian. The spacelike nature of the slice
implies nt > 0, so the left hand side matrix is diagonal and positive definite. This gives
equations for differential Lorentzian transformations, the metric components, and the
spin components.

It remains to obtain equations for the curvature components. In equation (3.38), the
Bi are clearly symmetric. It remains to show Bt is positive definite. The determinant and
sub-determinants of Bt are 4lt 8nt 8(lt nt − mtm̄t )(2lt nt − mtm̄t ) > 0, lt 4nt 8

(
lt 2nt 2 +

6lt nt (lt nt−mtm̄t )+(lt nt−mtm̄t )2
)

> 0, lt 2nt 8
(
lt nt +3(lt nt−mtm̄t )

)
> 0, nt 6(2lt nt−

mtm̄t ) > 0, nt 4 > 0.Hence, Bt is positive definite. This gives equations for the curvature
components and hence all components of u. Thus, equations (3.18), (3.19), (3.30), and
(3.38) form a first-order symmetric-hyperbolic system for u. ��

3.9. Completing the proof of Theorem 1.4.

Proof of Theorem 1.4. The symmetric hyperbolicity in point (i) is proved in Theorem
3.19.

The geometric variables u include the foreground metric coefficients G̃#
i and /̃G

#

and the differential Lorentz transformations ν and η. From these, the components with
respect to the background metric G# and /G can be calculated using equations (3.13) and
(3.14). From these and the background tetrad (l̊, n̊, m̊, ¯̊m), the original metric gab can
be calculated. This completes the proof of point (ii).

Finally, suppose one has a set of initial data for the vacuumEinstein equation. Choose
also a set of initial data for ν and η. On the one hand, the initial data for the Einstein
equation launches a unique solution of the vacuum Einstein equation. From the results
in Sect. 2, coordinates can be chosen so that this metric satisfies the radiation gauge
condition. Let ν and η satisfy the evolution equations (3.18) from the frame-gauge hy-
potheses. The lemmas from this section give that the geometric variables constructed
from differential Lorentz transforms, the foreground metric, its connection coefficients,
and its curvature (and from the background quantities) satisfy the system (3.18), (3.19),
(3.30), and (3.38). Call this solution u1. On the other hand, the initial data for the vacuum
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Einstein equation, together with the choice of initial data for ν and η, launch a unique
solution of the system (3.18), (3.19), (3.30), and (3.38). Call this solution u2. Since u1
and u2 have the same initial data, since they satisfy the same system, and since there is
uniqueness of solutions to first-order symmetric-hyperbolic systems, it follows that u1
and u2 are the same. This means that the metric components coincide. In particular, the
metric constructed from the solution of the first-order symmetric-hyperbolic system u2
coincides with the solution of the vacuum Einstein equation launched from the corre-
sponding initial data. In particular, the solution of the first-order symmetric-hyperbolic
systemdetermines ametricwhich satisfies the vacuumEinstein equation. This completes
the proof of the final point in the theorem. ��

3.10. Initial data and residual gauge. Before concluding this section, we make a few
remarks about the initial data and the residual gauge.

Remark 3.20 (Propagation of constraints).With a coordinate system as in corollary 3.18,
one can interpret the equations (3.20), (D.1), (D.2) and the remaining Bianchi identities
as a set of constraint equations, by expressing the derivatives in terms of coordinate
derivatives and eliminating the time derivatives with (3.39). By applying a þ′derivative
to this set of equations, commuting the þ′inside, using the evolution equations, and again
the constraints, one finds that the constraints propagate.

Remark 3.21 (Initial data for spin coefficients). If one is given initial data only for the
metric coefficients, ν, and η, one can construct initial data for the differential spin
coefficients via the full set of structure equations. Initial data for the curvature can be
constructed from a subset of the Ricci relations. Note that the values for ν and η on the
initial slice are not constrained if we interpret (D.1) as equations giving initial data for
differential spin coefficients. The initial data for the metric coefficients are constrained
due to the fact that we are only considering vacuum perturbations.

Remark 3.22 (Residual gauge). In this section, we use the radiation gauge condition in
the open set on which we construct solutions. From the perspective of naive function
counting, these specify the four free functions that can be specified by a gauge choice
in an open set. This gives a unique solution for each choice of initial data. However,
there remains a residual gauge freedom that can be treated as a diffeomorphism of the
initial data. In the next section we will see that the diffeomorphism part of the initial
data gauge freedom can be partially fixed by making /̃G# small in an appropriate sense.
The initial data part of the differential frame gauge can be fixed by choosing the initial
data for ν and η. As discussed above, this can be done in an arbitrary way, but it is
convenient to choose the initial data for ν to be 0. As we will see below, ν will then stay
quadratically small. To also set the initial data for η to zero is also possible, but it will
not stay quadratically small during the evolution. An alternative is to set the initial data
for η so that the initial data for β̃ is quadratically small. This has the advantage that β̃

will stay quadratically small. For details see Sect. 5.3.

4. Imposing the Trace Condition

This section can be summarized as follows: Price-Shankar-Whiting [32] have shown
that, for the linearized Einstein equation, a linearized gauge transformation that satisfies
the linear radiation gauge condition can be further transformed to satisfy the linear trace
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condition and hence the full radiation gauge of Chrzanowski; we show that the same
result can be shown to quadratic order for the full Einstein equation.

The main result of this section is the following refinement of Theorem 1.3.

Theorem 4.1 (Enforceability of the trace condition to quadratic order). Assume the
vacuum, radiation-gauge hypotheses of Definition 3.3. Let k′ be a sufficiently large
integer and let (X,Y, I, J, h,U, V ) be as in Definition 1.2 for a diffeomorphism.

There exist ε0 > 0, k > k′, and K > 0 such that if gab is a symmetric (0, 2) tensor
gab satisfying the vacuum Einstein equation and |g − g̊|Ck (U ) < ε0, then:

(i) There is a Ck′
diffeomorphism gauge transform (U, V,	) such that |	−1∗ g −

g̊|Ck′ (h(Y ))
≤ K |g − g̊|Ck (h(X)), and 	−1∗ g satisfies the radiation gauge condition

on V .
(ii) Furthermore, 	 can be chosen such that

|g̊ab(	−1∗ g)ab − g̊abg̊ab|Ck′ (V )
≤ K |g − g̊|2Ck (U )

. (4.1)

Remark 4.2. In the proof of the above theorem, we use only the diffeomorphism gauge
and the background operators, independent of the choice of foreground frame gauge,
thus leaving the freedom of choosing a frame gauge. In particular, the statements in both
the well-posedness Theorem 1.4 and the above theorem 4.1 can simultaneously hold by
the above diffeomorphism gauge choice and the frame gauge choice in Definition 3.12.

4.1. Review of the linear radiation gauge condition from Price-Shankar-Whiting [32].
In this subsection, we review the results of [32] on the linear radiation gauge and linear
trace conditions as well as the ORG, which appear in Definition 1.5. The radiation gauge
in [32] is based on the vector field l, while ours is based on n. Therefore, many of the
formulas interchange primed and unprimed. We state the following result for a Kerr
background, although [32] show these results hold in the wider class of metrics.

To explain the linear theory, following [32], we introduce the Held integration tech-
nique first described in [20]. We have re-derived all equations and made slight modifi-
cations to make sure that all expressions are properly weighted. A spinor α is defined to
be a Held spinor if þ′α = 0. For a spinor α, the notation α◦ indicates that α is a Held
spinor. For a vector field X and a point p, define 	[X ](s)(p) to be the flow along X ,
i.e. such that for any p, the function 	[X ](s)(p) is the solution of d

ds	[X ](s)(p) = X
and 	[X ](0)(p) = p; for sets S and P of R and the manifold respectively, define
	[X ](S)(P) = ∪s∈S,p∈P	[X ](s)(p). For a spinor α defined on a hypersurface �

which is given as the graph of r as a function of (v, ω), there is a unique extension of α

as a Held spinor on 	[n](R)(�), which we will denote by α◦. For Held spinors defined
on an open set, the operators þ̊◦, ð̊◦, and ð̊

′◦ are defined to be

þ̊◦ϕ = − p�̊2ϕ

2ρ̊′ − q ¯̊
�2ϕ

2 ¯̊ρ′ + þ̊ϕ − τ̊ ′
ð̊ϕ

ρ̊′ −
¯̊τ ′
ð̊

′ϕ
¯̊ρ′ , (4.2a)

ð̊
◦ϕ = − p ¯̊τ ′ϕ

¯̊ρ′ +
ð̊ϕ

ρ̊′ , (4.2b)

ð̊
′◦ϕ = − q τ̊ ′ϕ

ρ̊′ +
ð̊

′ϕ
¯̊ρ′ . (4.2c)
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For a spinor α defined on �, the operator þ̊◦denotes the operator defined by extending
α to α◦, applying þ̊◦, and then restricting to � again. For a spinor α defined on �, the
operators ð̊◦ and ð̊

′◦ are defined analogously. Note that, when acting on Held spinors,
the operator þ′ commutes with þ̊◦, ð̊◦, and ð̊

′◦.
The following lemma encapsulates the key results of [32] regarding the linear radi-

ation gauge condition. Equations (4.3) and (4.4) correspond to equations (15) and (23)
of [32].

Lemma 4.3 (The linear radiation gauge condition [32]). Let 0 < r1 < r2 < ∞ and v1 <

v2. Let the backgroundhypotheses ofDefinition 3.3 holdwithU = (r1, r2)×(v1, v2)×S
2.

Let hab be a symmetric (0, 2) tensor that satisfies the linear radiation gauge condition
of Definition 1.5. Let ξ be a vector field.

(i) The tensor field hab + Lξ g̊ab satisfies the linear radiation gauge condition if

þ̊′ξl̊ = − ξm̊( ¯̊τ + τ̊ ′) − ξ ¯̊m(τ̊ + ¯̊τ ′) − þ̊ ξn̊, (4.3a)

þ̊′ξn̊ = 0, (4.3b)

þ̊′ξm̊ = − ξm̊ ρ̊′ − ξn̊ τ̊ − ð̊ ξn̊, (4.3c)

þ̊′ξ ¯̊m = − ξ ¯̊m ¯̊ρ′ − ξn̊
¯̊τ − ð̊

′ξn̊ . (4.3d)

(ii) The general solution of (4.3) is given in terms of arbitrary Held spinors ξ◦
l̊
, ξ◦

n̊ , ξ
◦
m̊ ,

ξ ◦̄
m̊
by

ξl̊ = ξ◦
l̊
+

ξ◦
m̊ τ̊ ′

ρ̊′2 +
ξ ◦̄
m̊

¯̊τ ′

¯̊ρ′2 + ξ◦
n̊

( �̊2

2ρ̊′2 +
¯̊
�2

2 ¯̊ρ′2 +
τ̊ ′ ¯̊τ ′

ρ̊′ ¯̊ρ′
)
+
1

2

( 1

ρ̊′ +
1
¯̊ρ′

) þ̊◦ξ◦
n̊

− τ̊ ′
ð̊

◦ξ◦
n̊

ρ̊′ −
¯̊τ ′
ð̊

′◦ξ◦
n̊

¯̊ρ′ , (4.4a)

ξn̊ = ξ◦
n̊, (4.4b)

ξm̊ = ξ◦
m̊

ρ̊′ +
ξ◦
n̊
¯̊τ ′

¯̊ρ′ − ð̊
◦ξ◦

n̊, (4.4c)

ξ ¯̊m =
ξ ◦̄
m̊
¯̊ρ′ +

ξ◦
n̊ τ̊

′

ρ̊′ − ð̊
′◦ξ◦

n̊ . (4.4d)

The approach of [32] to the full radiation gauge of Chrzanowski proceeds as follows.
Since the linear radiation gauge condition has already been treated, it remains to treat
the linear trace condition. In the linearization of the Einstein equation, the trace is the
linearization of /̃G#, so it satisfies a linearized version of (3.19b), the linearization of
which is a transport equation driven by the linearization of ρ̃′. In turn, ρ̃′ satisfies (3.30b),
the linearization of which is a homogeneous transport equation. Thus, the trace satisfies
a second-order ordinary differential equation, which has a general solution involving
two free parameters, denoted a◦ and b◦. If a linearized gauge transformation satisfies
the linearized radiation gauge, then a◦ and b◦ can be expressed in terms of ξ◦

l̊
, ξ◦

m̊ , ξ
◦̄
m̊
,

ξ◦
n̊ . Furthermore, ξ◦

l̊
, ξ◦

m̊ , ξ
◦̄
m̊
, ξ◦

n̊ can be chosen so that the linear trace condition holds.
It is convenient for us to take a slightly different perspective on imposing the linear

trace condition. This is based on considering the initial value problem for the second-
order ODE satisfied by the linearized trace, rather than analyzing the general solution in
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terms of a◦ and b◦. A linearized gauge transformation takes hab to hab + Lξ g̊ab. Thus,
to impose the trace condition, it is sufficient to be able to specify g̊ab∇̊(aξb). As noted
in [32], this trace is given by

g̊ab∇̊(aξb) = − ξn̊(ρ̊ + ¯̊ρ) − ξl̊(ρ̊
′ + ¯̊ρ′) − ð̊ ξ ¯̊m − ð̊

′ξm̊ . (4.5a)

Assuming that ξ satisfies (4.3), the derivative along n can be calculated as

þ̊′(g̊ab∇̊(aξb)) = ξn̊(�̊2 +
¯̊
�2 − 2ρ̊ ¯̊ρ′) − ξl̊(ρ̊

′2 + ¯̊ρ′2) + 2ξm̊ ρ̊′τ̊ ′ + 2ξ ¯̊m ¯̊ρ′ ¯̊τ ′

+ (ρ̊′ + ¯̊ρ′) þ̊ ξn̊ − (ρ̊′ − ¯̊ρ′) ð̊ ξ ¯̊m + ð̊ ð̊
′ξn̊ + (ρ̊′ − ¯̊ρ′) ð̊′ξm̊ + ð̊

′
ð̊ ξn̊ .

(4.5b)

Applying the general solution of the linear radiation gauge condition and further calcu-
lation leads to the pair of equations

− g̊ab∇̊(aξb)

4κ1κ̄1′
(κ1

2 + κ̄1′2) +
þ̊′(g̊ab∇̊(aξb))

4κ1ρ̊′ (κ1 + κ̄1′)

= þ̊◦ξ◦
n̊ +

1
2 ð̊

◦ξ ◦̄
m̊
+ 1

2 ð̊
′◦ξ◦

m̊, (4.6a)

(κ1 − κ̄1′)2 g̊ab∇̊(aξb)

4κ12κ̄1′ ρ̊′ (κ1 + κ̄1′) − þ̊′(g̊ab∇̊(aξb))

4κ12ρ̊′2 (κ1
2 + κ̄1′2)

= ξ◦
l̊

− 1
2 ð̊

◦
ð̊

′◦ξ◦
n̊ − 1

2 ð̊
′◦
ð̊

◦ξ◦
n̊ +

(κ1 − κ̄1′)

2κ1ρ̊′ (ð̊′◦ξ◦
m̊ − ð̊

◦ξ ◦̄
m̊
)

+
ξ◦
n̊

2ρ̊′2
( κ1

κ̄1′
�̊2 + �̊2 + 2ρ̊ρ̊′ − 2τ̊ τ̊ ′), (4.6b)

where the Killing spinor coefficient κ1 is given in equation (3.32). The right-hand sides
of these two equations loosely correspond to the quantities a◦ and b◦ from [32]. Set
ξ◦
m̊ = 0 and ξ ◦̄

m̊
= 0. Set ξ◦

n̊ to satisfy the analogue of (4.6a) where gab∇̊(aξb) and its þ̊′

derivative have been replaced by 1
2 g̊

abhab and its þ̊′derivative on an initial hypersurface
�. In a similar way, set ξ◦

l̊
to satisfy the analogue of (4.6b). From this choice of ξ◦,

set ξ to be the corresponding general solution of the linear radiation gauge condition.
This has been chosen so that the trace of hab + Lξ g̊ab and the þ̊′derivative of this trace
both vanish on the initial hypersurface �. From the second-order, linear ODE that it
satisfies, the trace remains zero. This imposes the linear trace condition, and hence the
full radiation gauge of Chrzanowski.

4.2. Proof of Theorem 4.1.

Proof of Theorem 4.1. Step 1: Preliminaries. Note that the first point of the theorem
is simply a restatement of Theorem 1.3. Thus, we may assume that a diffeomorphism
gauge has already been chosen to impose that result. Within the proof, we will impose
a pair of further diffeomorphism gauges. The first will impose the trace condition to
quadratic order while potentially violating the radiation gauge condition, and the second
will reimpose the radiation gauge condition while preserving the quadratic smallness of
the trace term.



L. Andersson, T. Bäckdahl, P. Blue, S. Ma

Weassume the hypotheses of the theoremand initially considerwhat can be uniformly
controlled. By taking k sufficiently large with respect to k′, there is a constant K such
that |Riem [g]−Riem [g̊]|Ck′ (U )

≤ K |g− g̊|Ck (U ). In this case, we can take k = k′ + 2,
but this illustrates that to control any quantity to desired regularity k′, we can choose k
sufficiently large. We will use the notation ε = |g − g̊|Ck (U ) and, for an exponent p, the
notation α = β +O(ε p) to indicate that there is a constant K , possibly depending on the
open sets and regularity constants k and k′, such that |α − β|Ck′ (V )

≤ K |g − g̊|p
Ck (U )

.
We use α is O(ε p) to mean α = 0 + O(ε p).

Within this proof, we shall use the “noncurvature quantities” to refer to the differential
Lorentz transforms, metric, and spin coefficient components. The geometric variables
as given before the diffeomorphism gauge is applied are called the geometric variables
in the original gauge; the geometric variables after the diffeomorphism gauge has been
applied are called the the regauged geometric variables.

There are three subtleties to address in this proof, all of which are resolved through
the use of the smallness of the norms. The first subtlety is that, when constructing the
diffeomorphisms, it is necessary that the image of V remains in U .

The first diffeomorphism is generated by the flow along a vector field, and the image
property is ensured by the ε smallness of this vector field. The second diffeomorphism
is generated using the argument from the geodesic flow from Sect. 2, and the image
property is ensured by ε smallness of the perturbation of the initial data in the geodesic
flow.

The second subtlety is that the domain V depends on the norm of the geometric
variables, but the Ck′

(V ) norm of the geometric variables depends on the choice of V .
The regauged noncurvature quantities satisfy transport equations that are driven by both
the regauged noncurvature quantities and the regauged �̃i ; the regauged noncurvature
quantities are determined by this evolution, while the �̃i can be viewed as being calcu-
lated from the curvatures Riem [g] and Riem [g̊] in the original diffeomorphism gauge
and from the regauged foreground tetrad, which is determined by the regauged differ-
ential Lorentz transformation variables. Since the curvatures in the original gauge are
already given on U , the regauged noncurvature quantities can be determined from the
transport equations from their initial data and from the curvature in the original gauge.
Since the regauged noncurvature quantities are ε small on the initial hypersurface, h(X),
it is possible to pass to a subset h(Y ) so that both the image under the transport equations
remains in V and the regauged noncurvature quantities remain ε small on V , provided
that the regauged �̃i remain ε small.

The third subtlety is that, a priori, the Ck(U ) norm of Riem [g] −Riem [g̊] need not
control the Ck(U ) of the �̃i because there is not an a priori bound on the lengths of
the foreground tetrad with respect to the reference Riemannian metric used to define
the Ck norms. This third subtlety is resolved by observing that as long as the Lorentz
transformation variables remain bounded, the norms of the regauged �̃i are controlled
by the corresponding norms of Riem [g] − Riem [g̊] and the norms of the Lorentz
transformation variables. Since the proof shows that the Lorentz transformation variables
remain ε small, we trivially recover the bootstrap assumption that they are bounded for
the third subtlety, which then provides the necessary conditions for the second and first
subtlety to be resolved.

Within this proof, we shall define a Held spinor to be a Held spinor with respect to
g̊ and again use the notation α◦ to denote that α is a Held spinor.
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Step 2: Define ξ . Set ξ◦
m = 0 and ξ ◦̄

m = 0. Set ξ◦
n to satisfy the analogue of (4.6a) where,

on the initial hypersurface h(X), the quantities gab∇̊(avb) and its þ′derivative have been
replaced by 1

2 g̊
abgab − 2 and its þ′ derivative respectively. In a similar way, set ξ◦

l to
satisfy the analogue of (4.6b). From this choice of ξ◦, set ξ to be the corresponding
general solution of the linear radiation gauge condition given in equation (4.4). This has
been chosen so that the trace of gab +Lξ g̊ab and the þ′derivative of this trace both vanish
on the initial hypersurface h(X). Note that from the smallness of g, the components of
ξ are O(ε).
Step 3: Construct an initial gauge transformation from the flow along ξ . Recall
	[ξ ](s)(p) denotes the flow along ξ , and that this defines a local diffeomorphism. For
simplicity, denote by 	1 the diffeomorphism such that 	1(p) = 	[ξ ](1)(p) for all p
for which this is defined. In particular, if ε is sufficiently small on a scale dictated by U
and V , then 	1 will define a bijection from V to a subset of U . Since ξ and g − g̊ are
O(ε), it follows that 	∗

1g is also O(ε).
Since ξ and g − g̊ are both O(ε), it follows that Lξ gab − Lξ g̊ab is O(ε2). From

the Price-Shankar-Whiting lemma on the linear theory, it follows that Lξ g̊ab satisfies
the linear radiation gauge condition, so naLξ gab is O(ε2). Similarly, on the initial
hypersurface h(X), the vector field ξ was chosen so that g̊abLξ (g − g̊)ab and its þ′
derivative vanish. Thus, on the image of h(X), they are O(ε2). From the transport
equations (3.19b) and (3.30b) satisfied by /̃G# and ρ̃′, it follows that the perturbed trace
/̃G# satisfies a second-order ODE in which all the terms that appear are either linear in
/̃G# or of size O(ε2). Since the initial data is O(ε2) on the image of h(X), this means

that /̃G
#
remains O(ε2). Thus, g̊ab	∗

1gab − 4 is also O(ε2).
Step 4: Reimpose the radiation gauge. From the enforceability of the radiation gauge
condition in theorem 1.3, it follows that there is a local diffeomorphism 	2 such that
	∗

2(	
∗
1g) satisfies the radiation gauge condition. From the previous step, we know that

	∗
1g is already very close to satisfying the radiation gauge condition. In particular,

following the proof of the enforceability of the radiation gauge condition in Sect. 2, one
observes that the size of 	∗

2(	
∗
1g) − 	∗

1g depends not on the size of all components of
	∗

1g − g̊, but only upon the size of the components of na(	∗
1g)ab. From this, it follows

that 	∗
2(	

∗
1g) − 	∗

1g is O(ε2). In particular, g̊ab(	∗
2	

∗
1g)ab − 4 is O(ε2). Defining

	∗ = 	∗
2 ◦	∗

1, one obtains a C
k′
diffeomorphism of V to a subset ofU . This completes

the proof. ��

5. Linearization

In this section, we begin by linearizing the results in this paper in Sect. 5.1, then compare
with our previous results in [1] in Sect. 5.2, and conclude with some further remarks
on how the initial data for the frame gauge can be used to set β̃ = 0 to linear order in
Sect. 5.3.

5.1. Linearization of results in this paper. The linearization of the systems considered
in Sect. 3 can now be computed. Dropping the nonlinear terms, one obtains the following
result.

Theorem 5.1 (Linearization of the equations of Sect. 3). Assume the background hy-
potheses of Definition 3.3.
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The linearization of the relations between the different versions of the metric compo-
nents yield

˙̃G#
2 = Ġ2 = − ˙̃G2 = −Ġ#

2, (5.1a)

˙̃G#
1 = Ġ1 = − ˙̃G1 = −Ġ#

1, (5.1b)

˙̃G#
0 = Ġ0 = − ˙̃G0 = −Ġ#

0, (5.1c)

˙̃
/G# = /̇G = − ˙̃

/G = − /̇G#. (5.1d)

Furthermore, the linearization of the system (3.18), (3.19), (3.30), and (3.36) consists
of

þ̊′ν̇ = 1
4 i /̇G(ρ̊′ − ¯̊ρ′), (5.2a)

þ̊′η̇ = ˙̃
β − ˙̃

β ′ + η̇ρ̊′ + i ν̇τ̊ − 1
4

/̇G τ̊ + 1
2 Ġ2 ¯̊τ, (5.2b)

þ̊′Ġ2 = − Ġ2ρ̊
′ + Ġ2

¯̊ρ′ + 2 ˙̃σ ′, (5.3a)

þ̊′ /̇G = − 2( ˙̃ρ′ + ˙̃ρ′), (5.3b)

þ̊′Ġ1 = − 2η̇ρ̊′ − 2Ġ1ρ̊
′ + Ġ1 ¯̊ρ′ − Ġ2τ̊ + 1

2
/̇G ¯̊τ + 2i ν̇τ̊ ′ + 2 ˙̃τ ′, (5.3c)

þ̊′Ġ0 = − 2 ˙̃ε − 2 ˙̃ε − 2Ġ1τ̊ − 2Ġ1 ¯̊τ − 2η̇τ̊ ′ − 2η̇ ¯̊τ ′, (5.3d)

þ̊′ ˙̃σ ′ = �̇4 + ρ̊′ ˙̃σ ′ + ¯̊ρ′ ˙̃σ ′, (5.4a)

þ̊′ ˙̃ρ′ = 2ρ̊′ ˙̃ρ′, (5.4b)

þ̊′ ˙̃τ ′ = �̇3 − ˙̃σ ′τ̊ − ˙̃ρ′ ¯̊τ + ˙̃ρ′τ̊ ′ + ρ̊′ ˙̃τ ′ + ˙̃σ ′ ¯̊τ ′, (5.4c)

þ̊′ ˙̃
β = ˙̃

βρ̊′ − i ν̇ρ̊′τ̊ + 1
4

/̇Gρ̊′τ̊ + ˙̃ρ′τ̊ , (5.4d)

þ̊′ ˙̃
β ′ = �̇3 +

˙̃
β ′ ¯̊ρ′ + 1

2 Ġ2ρ̊
′τ̊ − ˙̃σ ′τ̊ , (5.4e)

þ̊′ ˙̃ε = − �̇2 − η̇ρ̊′τ̊ − Ġ1ρ̊
′τ̊ + ˙̃

β(−¯̊τ + τ̊ ′) + τ̊ ˙̃τ ′ + ˙̃
β ′(τ̊ − ¯̊τ ′), (5.4f)

þ̊′ ˙̃ρ = − �̇2 + ρ̊ ˙̃ρ′ + ˙̃ρ ¯̊ρ′ + ˙̃
βτ̊ + ˙̃

β ′τ̊ + 2η̇ρ̊′τ̊ + 1
2 Ġ2τ̊

2

− i

8κ1
(4ν̇ − i /̇G)

(
�̊2κ1 − ¯̊

�2κ̄1′ + 2κ1(ρ̊ρ̊′ − ρ̊ ¯̊ρ′ + τ̊ τ̊ ′)
)
, (5.4g)

þ̊′ ˙̃σ = ρ̊′ ˙̃σ + ρ̊ ˙̃σ ′ − ˙̃
βτ̊ − ˙̃

β ′τ̊ + 2η̇ρ̊′τ̊ + i ν̇τ̊ 2 − 1
4

/̇Gτ̊ 2

+
Ġ2

4κ1

(
�̊2κ1 − ¯̊

�2κ̄1′ + 2κ1(ρ̊ρ̊′ − ρ̊ ¯̊ρ′ + τ̊ τ̊ ′)
)
, (5.4h)

þ̊′ ˙̃κ = − �̇1 − ˙̃ετ̊ + ˙̃ετ̊ − ˙̃ρτ̊ − Ġ0ρ̊
′τ̊ + η̇τ̊ 2 + Ġ1τ̊

2 + ˙̃σ(−¯̊τ + τ̊ ′)

+
1

2κ1
(η̇ + Ġ1)

(
�̊2κ1 − ¯̊

�2κ̄1′ + 2κ1(ρ̊ρ̊′ − ρ̊ ¯̊ρ′ + τ̊ τ̊ ′)
)
+ ρ̊ ˙̃τ ′ + ˙̃ρ ¯̊τ ′, (5.4i)
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þ̊ �̇1 − ð̊
′�̇0 = − 3�̊2 ˙̃κ + 4�̇1ρ̊ − �̇0τ̊

′, (5.5a)

þ̊ �̇2 − ð̊
′�̇1 = 3�̇2ρ̊ + 3�̊2 ˙̃ρ + 3

2 Ġ0�̊2ρ̊
′ − 3η̇�̊2τ̊

− 3Ġ1�̊2τ̊ − 3η̇�̊2τ̊
′ − 3Ġ1�̊2τ̊

′ − 2�̇1τ̊
′, (5.5b)

þ̊ �̇3 − ð̊
′�̇2 = 2�̇3ρ̊ + 3η̇�̊2ρ̊

′ + 3
2 Ġ2�̊2τ̊ − 3i ν̇�̊2τ̊

′ − 3
4

/̇G�̊2τ̊
′ − 3�̇2τ̊

′ − 3�̊2 ˙̃τ ′,
(5.5c)

þ̊ �̇4 − ð̊
′�̇3 = �̇4ρ̊ + 3�̊2 ˙̃σ ′ − 4�̇3τ̊

′, (5.5d)

þ̊′�̇0 − ð̊ �̇1 = �̇0ρ̊
′ + 3�̊2 ˙̃σ − 4�̇1τ̊ , (5.5e)

þ̊′�̇1 − ð̊ �̇2 = 3η̇�̊2ρ̊
′ + 2�̇1ρ̊

′ + 3i ν̇�̊2τ̊ − 3
4

/̇G�̊2τ̊ − 3�̇2τ̊ + 3
2 Ġ2�̊2τ̊

′, (5.5f)

þ̊′�̇2 − ð̊ �̇3 = 3�̇2ρ̊
′ + 3�̊2 ˙̃ρ′ − 2�̇3τ̊ , (5.5g)

þ̊′�̇3 − ð̊ �̇4 = 4�̇3ρ̊
′ − �̇4τ̊ . (5.5h)

Furthermore, the linearization of the constraint equations (3.20), (D.1), and (D.2)
are the linearized constraint equations (E.1) and (E.2).

One of the central goals for this paper is to construct a gauge condition for the Einstein
equation with the property that its linearization is the linear radiation gauge condition
and, furthermore, to make a more restrictive gauge choice with the property that its
linearization is the full radiation gauge of Chrzanowski, which has long been studied by,
for example, [10,32]. Linearizing the gauge conditions constructed in this paper, one
finds they have these desired properties, as stated in the following theorem.

Theorem 5.2 (Linearization of the radiation gauge and the trace condition). Assume the
background hypotheses of Definition 3.3.

(i) The linearization of the radiation gauge condition (1.3) for a metric g is the linear
radiation gauge condition (1.4a).

(ii) The linearization of the gauge transformation in Theorem 4.1 is the condition /̇G = 0.
(iii) The linearization of the combination of the radiation gauge condition (1.3) and

the residual gauge transformation in Theorem 4.1 is the full radiation gauge of
Chrzanowski of Definition 1.5.

From the evolution equations (5.4b) and (5.3b) for ˙̃ρ′ and /̇G and also from the
evolution equation (5.2a) for ν̇, one obtains the following result.

Theorem 5.3 (Invariant subspaces). Consider the linear system given in theorem 5.1.

(i) The set {( /̇G, ˙̃ρ′) = (0, 0)} is an invariant subspace.
(ii) The set {( /̇G, ˙̃ρ′, ν̇) = (0, 0, 0)} is an invariant subspace.
Remark 5.4. There is an alternative perspective on the first part of the previous theorem
based on linearizing the equations in Sect. 3 subject to the gauge transformation 4.1.
The previous theorem states that the set {( /̇G, ˙̃ρ′) = (0, 0)} is an invariant subspace
for the linearization of the evolution equations in Sect. 3. Alternatively, instead of first
linearizing and then restricting to a subspace, one can first restrict the nonlinear system in
Sect. 3 via the gauge transformation in Theorem 4.1 and then linearize. In the latter case,
one obtains from the linearization of the gauge condition in Theorem 4.1 that /̇G = 0
and hence, via equations (5.4b) and (3.20b), also ˙̃ρ′ = 0.
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The invariant subspaces {( /̇G, ˙̃ρ′) = (0, 0)} and {( /̇G, ˙̃ρ′, ν̇) = (0, 0, 0)} are also
stable, which can be seen by the following argument. The transport equations governing
/̇G and ˙̃ρ′ are

þ̊′ /̇G = − 2( ˙̃ρ′ + ˙̃ρ′), (5.6a)

þ̊′ ˙̃ρ′ = 2ρ̊′ ˙̃ρ′. (5.6b)

One can treat these ODEs using the method for proving decay of solutions of transport
equations that was introduced in [1]. Qualitatively, the argument proceeds as follows.
One works in Boyer-Lindquist coordinates and wishes to prove decay of a variable in
t for fixed r , assuming that the solution decays rapidly on the initial surface {t = 0} as
r → ∞. For a transport equation of the form þ′ϕ = 0, one has that the value of ϕ at
(t1, r1, ω1) is equal to the value of ϕ at the intersection of the initial hypersurface {t = 0}
with null geodesic tangent to n going through (t1, r1, ω1), which occurs at t0 = 0 and
r0 − r1 is bounded above and below by positive multiples of t1 for t1 > 1. Thus, |ϕ|
decays in t because the initial data decays in r . Similarly, for an equation of the formþ′ϕ = c1ρ̊′ϕ, one can introduce an integrating factor ρ̊′c2 , and the growth or decay
arising from the change in value of this integrating factor can be more than compensated
for if the decay of the initial data is sufficiently fast. Furthermore, for an inhomogeneous
equation of the form þ′ϕ = c1ρ̊′ϕ+ϑ , applying the integrating factor and integrating, the
contribution from integrating ϑ is like t (the length of the integration along the geodesic)
times the maximum of |ϑ | (the maximum on the geodesic), but if this also decays in
t + r , then the additional factor of t from the integration can be dominated by the decay
in t + r , although the decay of ϕ will be one power worse than that of ϑ . Applying
this method schematically, one sees that if ˙̃ρ′ decays rapidly as r → ∞ on the initial
hypersurface {t = 0}, then it will also decay rapidly as t → ∞ at fixed r . Integrating
the transport equation for /̇G, one obtains that /̇G also decays rapidly (although not quite
as rapidly). In future work, we will investigate the quantitative behaviour. In doing so,
we note that we will have at our disposal the diffeomorphism that allows us to set /̃G#

to vanish quadratically, which one might plausibly expect to allow one to show that
such a diffeomorphism could be chosen so that /̃G# and ρ̃′ vanish much more rapidly
than the other metric and connection coefficients. As shown in [1], these methods for
proving decay apply not only in Boyer-Lindquist coordinates at fixed r as t → ∞, but
also in hyperboloidal coordinates that allow for precise estimates near null infinity; such
estimates are likely to be crucial for controlling nonlinear terms in the Einstein equation.
The stability of the invariant subspace {( /̇G, ˙̃ρ′, ν̇) = (0, 0, 0)} follows from a similar
analysis of equation (5.2a).

5.2. Comparison with previous work. In this subsection, we compare the linearization
of the results in this paper to the results in [1].

This comparison is somewhat complicated by the different order in which certain op-
erations are performed. The Einstein equation is inherently a tensorial equation, whereas
the techniques we use in this paper to prove symmetric hyperbolicity and the techniques
used in [1] to prove decay are both for systems of scalars. Thus, by projecting on tetrads,
we convert from tensorial equations to systems of spin-weighted scalar equations, a pro-
cess which we refer to as scalarization. In this section, we are interested in linearization.
We are also interested in imposing either the nonlinear radiation gauge or its lineariza-
tion, and further imposing the residual gauge of theorem 4.1 or its linearization /̇G = 0.
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Table 1. Relation between linearized variables in [1] and in Sect. 5.1

[1] This paper
G00′ Ġ0
G10′ Ġ1
G20′ Ġ2

G01′ Ġ1

G02′ Ġ2

β̃
˙̃
β + η̇ρ̊′ + 1

2 Ġ1ρ̊
′

β̃ ′ ˙̃
β ′

ε̃ ˙̃ε + η̇τ̊ ′ + 1
2 Ġ1τ̊

′
κ̃ ˙̃κ − η̇ρ̊ − Ġ1ρ̊ + 1

2 Ġ0 τ̊ + þ̊ η̇ + 1
2 þ̊ Ġ1

ρ̃ ˙̃ρ − η̇τ̊ + ð̊
′η̇ + 1

2 ð̊
′Ġ1

σ̃ ˙̃σ − 1
2 Ġ2ρ̊ − η̇τ̊ + ð̊ η̇ + 1

2 ð̊ Ġ1
σ̃ ′ ˙̃σ ′ − 1

2 Ġ2ρ̊
′

τ̃ ′ ˙̃τ ′ − η̇ρ̊′ − Ġ1ρ̊
′

ϑ�4 �̇4
ϑ�3 �̇3
ϑ�2 �̇2

ϑ�1 �̇1 − 3η̇�̊2 − 3
2 Ġ1�̊2

ϑ�0 �̇0

Therefore, we are applying scalarization, linearization, the (nonlinear or linear) radia-
tion gauge, and the (nonlinear or linear) trace condition. So far, in this paper, we have
applied the radiation gauge first, scalarized second, and then linearized. (The comments
at the end of the previous subsection show that we obtain equivalent results whether we
linearize first and then restrict to /̇G = 0 or, alternatively, apply the gauge transformation
in Theorem 4.1 and then linearize.) In contrast, in [1] we linearize the Einstein equation
first, scalarize second, and then impose the linearized radiation gauge and the linearized
trace condition. Although it is possible to justify the switching of the order of imposing
linearization, scalarization, and the imposition of the gauge conditions, the following
theorem provides a more direct comparison. Because [1] linearizes before scalarizing,
there is no need to introduce a foreground frame, so the linearized differential Lorentz
transformations (η̇, ν̇) have no analogue in [1].

The following theorem provides a relation between the linearized equations in The-
orem 5.1 and those in [1].

Theorem 5.5 (Comparison with linearization in [1]) . Assume the background hypothe-
ses of Definition 3.3.

Using Table 1 to identify the linearized variables in [1] with the linear combination
of linearized variables from Sect. 5.1 restricted to the invariant subspace ( /̇G, ˙̃ρ′, ν̇) =
(0, 0, 0), we have that the full linearized sytem in Theorem 5.1 including the constraint
equations is equivalent to the system in [1, Lemma A.1] together with the transport
equation (F.2a) for η̇. In particular the system in Theorem 5.1 implies the system in [1,
Lemma A.1].

Proof. Under the change of variables given in Table 1 and applying the background
GHP commutators to eliminate all second-order derivatives on the right-hand side, the
system in Theorem 5.1 restricted to ( /̇G, ˙̃ρ′, ν̇) = (0, 0, 0) is equivalent to the system
(F.2)–(F.5). Using the relations (F.2a), (F.3) and (F.4) in the other equations one finds that
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the full system (F.2)–(F.5) is equivalent to the system consisting of (F.2a) for η̇ together
with the system in [1, Lemma A.1] for the linearized variables in [1]. ��
Remark 5.6. In principle, restricting to the subset ( /̇G, ˙̃ρ′) = (0, 0) would work too, but
this would make Table 1 more complicated. A non-zero ν̇ would just correspond to a
spin rotation of the foreground frame with respect to the background frame.

Remark 5.7. While the full system of evolution and constraint equations in Theorem
5.1 is equivalent to the full system of evolution and constraint equations in [1, Lemma
A.1], the evolution systems alone are not equivalent. This is due to the fact that different
combinations of the constraint equations were added to the evolution system. These
different combinations were added to get symmetric hyperbolicity in this paper and to
have a convenient hierarchy for proving decay estimates in [1].

Remark 5.8. It follows from the previous theorem and the results of [1] that the metric
coefficients (Ġ0, Ġ1, Ġ2) satisfy the decay estimates given in [1]. The decay of the
remaining connection and curvature components in [1] can be computed from the decay
of the metric coefficients.

Remark 5.8 gives decay for all the variables except η̇. As previously noted, the
quantity η̇ has no analogue in [1], but η̇ can be shown to converge to a limit. First,
observe that ς̇ = /̇G/4 and ς̇# = − /̇G/4, which can be treated as either being zero
in the invariant subspace or as converging rapidly to zero because of the stability of
the invariant subspace. Note that the background values of ς and ς# are both 1. The
linearization of equation (3.20c) is

˙̃
β − ˙̃

β ′ = − η̇ρ̊′ − Ġ1ρ̊
′ + η̇ ¯̊ρ′ + Ġ1 ¯̊ρ′ + 1

2 Ġ2τ̊
′ − ˙̃τ ′ + i ν̇ ¯̊τ ′ − 1

4
/̇G ¯̊τ ′. (5.7)

Substituting this formula into equation (5.2b), onefinds that the equations (5.2b) becomes

þ̊′η̇ = η̇ ¯̊ρ′ − Ġ1(ρ̊
′ − ¯̊ρ′) + 1

2 Ġ2( ¯̊τ + τ̊ ′) − ˙̃τ ′ + i ν̇(τ̊ + ¯̊τ ′) − 1
4

/̇G(τ̊ + ¯̊τ ′). (5.8)

Assuming all the other linearized quantities on the right of the transport equation decay,
then one obtains that η̇ also decays as explained at the end of Sect. 5.1. An alternative
treatment of η̇ appears in the following subsection.

5.3. Smallness of β̃. In this section, we show that it is possible to choose initial data for
η (or its linearization) so that β̃ vanishes to linear order in both the linear and nonlinear
settings. While it may seem natural to choose initial data with η̇ = 0, this does not
propagate, even when /̇G = 0.

First, consider the linearized setting. The previous subsection argues that we can
choose /̇G = 0, ˙̃ρ′ = 0 and ν̇ = 0. With these choices (5.4d) gives a homogeneous

evolution equation for ˙̃
β. Thus, if ˙̃

β can be chosen to be initially zero, it remains so.
Assuming that the linearized versions of equations (3.19c), (3.20c), and (D.1a) hold, it

follows that the vanishing of ˙̃
β is equivalent to each of the following

η̇ = − 1
4 ρ̊

′−1(þ̊′ + 3ρ̊′ − 2 ¯̊ρ′)Ġ1 + 1
4 ρ̊

′−1(ð̊′ − ¯̊τ + τ̊ ′)Ġ2, (5.9a)

˙̃τ ′ = Ġ1ρ̊
′ + ( 12 − 1

4κ1
−1κ̄1′)(þ̊′ − 2ρ̊′ − ¯̊ρ′)Ġ1 + 1

4κ1
−1κ̄1′(ð̊ − τ̊ − ¯̊τ ′)Ġ2, (5.9b)
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˙̃
β ′ = 1

4 (þ̊′ + 2ρ̊′ − ¯̊ρ′)Ġ1 + 1
4 (ð̊ + τ̊ − ¯̊τ ′)Ġ2. (5.9c)

From the first of these, we see that η̇ can be chosen initially so that ˙̃
β vanishes initially.

Recall that the initial data for the metric, spin coefficients, and curvature components
must satisfy constraint equations, so they cannot be all freely specified. Although equa-
tion (3.19c) is an evolution equation, equations (3.20c) and (D.1a) can be viewed as
constraints on the initial data, and these impose constraints in the linearization. Due to

the fact that the evolution equation for ˙̃
β is homogeneous, it follows that ˙̃

β will remain
zero, and hence that these three equations (5.9) will remain valid. Equation (5.9a) can
be used to estimate η̇.

Now consider the nonlinear case. In this case, given initial data for the metric and
its derivatives, one is free to choose initial data for ν and η in the frame gauge. Once
initial data for ν has been chosen, it is possible to compute σ̃ ′ and ρ̃′ via equation (3.23)
purely in terms of quantities defined with respect to the background tetrad and ν, without
having specified η. Thus, for example, one may choose the initial value for η so that

η = − 3G2G1ς
#3

4ς2ρ̊′ (ρ̊′ − ¯̊ρ′) + G1ς
#2

2ςρ̊′ (2 − 3ς#ς)(ρ̊′ − ¯̊ρ′) + G2ς
#2σ̃ ′

8ς3ρ̊′ (G2G1 + 2G1ς
2)

− ς#2σ̃ ′
4ςρ̊′ (G1G2 + 2G1ς

2) − G2ς
#

4ρ̊′ ( ¯̊τ − τ̊ ′) + 1

4ρ̊′ (2ς
#ς2 − ς# − ς)(τ̊ − ¯̊τ ′)

− ς#(þ̊′ + ρ̊′ + 2ρ̃′)G1

4ρ̊′ − ς#2
ð̊ /G

8ςρ̊′ (1 − 2ς#ς) +
G2ς

#2
ð̊G2

16ς3ρ̊′ (1 − 2ς#ς)

− G2ς
#2

ð̊G2

16ς3ρ̊′ (1 + 2ς#ς) − G2ς
#3

ð̊
′ /G

8ς2ρ̊′ +
ς#3

ð̊
′G2

4ρ̊′ +
G2

2ς#3
ð̊

′G2

16ς4ρ̊′ . (5.10)

With this choice, and trivial initial data for ν, it follows from equations (3.19c), (3.20c),
and (D.1a), that the initial data for β̃, τ̃ ′ and β̃ ′ takes the form

β̃ = − ηρ̃′ + η̄G2 ¯̊ρ′

2ς2 , (5.11a)

τ̃ ′ = η̄(ρ̊′ + ρ̃′) + ς#

4ς2 (G1G2 + 2G1ς
2)(ρ̊′ + 2ρ̃′) + 1

2G1ς
#(ρ̊′ − ¯̊ρ′)

+ ησ̃ ′ + ς#σ̃ ′

2ς2 (G2G1 + 2G1ς
2)

+
G2τ̊

4ς2 (ς# + ς) + 1
2 (ς# − ς) ¯̊τ − 1

2 (2 − ς# − ς)τ̊ ′

+
G2 ¯̊τ ′

4ς2 (ς# − ς) +
G2ς

# þ̊′G1

4ς2 + 1
2ς# þ̊′G1, (5.11b)

β̃ ′ = ηG2ρ̊
′

2ς2 − ς#2

2ς3 (G1G2 + 2G1ς
2)(ρ̊′ − ¯̊ρ′) − η̄(ρ̊′ + ρ̃′ − ¯̊ρ′) + (1 − ς#)τ̊ ′ + τ̃ ′ − G2ς

# ¯̊τ ′

2ς2 .

(5.11c)

In particular, β̃ vanishes quadratically. The choice of η is not unique, in that there are
other choices of η for which β̃ also vanishes quadratically. These equations will not
propagate under the evolution, although β̃ will remain quadratically small for evolution
under equation (3.30d).
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Appendix A. GHP Formalism as a Gauge or Principal Bundle Theory

To begin, we recall the definition of a tetrad.

Definition A.1. Let (M, g) be a 1 + 3 dimensional, Lorentzian manifold with an orien-
tation and time orientation.

A real null tetrad at each point is defined to consist of a pair of distinct null vectors
l and n satisfying g(l, n) = 1 and an orthonormal basis (e1, e2) for the plane orthogonal
to l and n. A complex null tetrad is defined to consist of a quadruple of elements of
the complexification of the tangent space (l, n,m, m̄) such that they are null vectors and
l, n, (m + m̄)/

√
2, (m − m̄)/(i

√
2) is a real null tetrad.

A real null tetrad is defined to be oriented if (l, n, e1, e2) is an oriented basis, and a
complex null tetrad is oriented if the corresponding real null tetrad is.

In this paper, unless otherwise specified, a tetrad is understood to mean an oriented
complex null tetrad.

Given an ordered pair of (distinct and future-pointing) null vectors (l̂, n̂) a tetrad (l, n,

m, m̄) is defined to be aligned with l̂ and n̂ if l is a positive multiple of l̂ and n is a
positive multiple of n̂ and defined to be constructed from l̂ and n̂ if l = l̂ and n = n̂.

A local tetrad is a smooth map from an open subset of M taking values, at each
point, in the set of null tetrads at that point.

An important aspect of the GHP formalism [16] is that it is designed specifically
to handle the situation where there is a pair of null directions that is naturally singled
out rather than a choice of global tetrad. This is particularly important where there is
a globally defined pair of ingoing and outgoing null vectors but there is no globally
defined tetrad that is aligned with this choice. The nonexistence of such a tetrad is
most clearly visible in the Schwarzschild space-time, where a hypothetical (m + m̄)/

√
2

and (m − m̄)/(i
√
2) would specify a global basis for the tangent space of the spheres

orthogonal to the radial ingoing and outgoing vectors, but no such global basis can exist,
since it is known that the 2-spheres do not have any globally non-vanishing vector fields.

Nonetheless, some specification of local tetrads is required, and, to explain this, it
is useful to use the language of principal-G bundles or, equivalently, gauge theory.

http://creativecommons.org/licenses/by/4.0/
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Regarding the patching of these local tetrads, since [31, p269] simply states “this idea
can be made mathematically more precise in the language of fiber bundles …, but we
need not elaborate on it here”, we briefly summarize the situation in this appendix.

We begin by considering sets of null tetrads. Consider a pair of null vectors at a point,
l and n that satisfy g(l, n) = 1. One can choose an oriented orthonormal basis (e1, e2)
for the plane orthogonal to the plane spanned by l and n. Any oriented real null tetrad
aligned with l and n is of the form (λl, λ−1n, cosϕe1 + sin ϕe2, cosϕe2 − sin ϕe1) with
λ ∈ (0,∞), ϕ ∈ R and hence uniquely specified by λeiϕ ∈ C

∗, the set of invertible
elements in C. Similarly, any oriented real null tetrad constructed from l and n is of the
form (l, n, cos ϕe1+sin ϕe2, cosϕe2−sin ϕe1)with ϕ ∈ R and hence uniquely specified
by eiϕ ∈ S

1. Real null tetrads are in one-to-one correspondence with (complex) null
tetrads, by taking m = 2−1/2(e1 + ie2). Now consider a pair of globally defined null
vector fields, also denoted l and n. In the language of principal-G bundles, the set of
tetrads aligned with l and n is a principal-C∗ bundle, and the set of tetrads constructed
from l and n is a principal-S1 bundle. In the language of gauge theory, these sets have
C

∗ and S
1 gauge groups respectively.

We now consider the notion of GHP scalar, which can be stated in various languages.
The GHP scalars that typically arise in this paper can be viewed asC-valued contractions
of a tensor with elements of a local null tetrad or their derivatives; hence, they can be
viewed as C-valued functions on the the bundle of null tetrads or the jet bundles over it.
An important type of GHP scalars are those that are properly weighted. In perhaps the
simplest language, a GHP scalar is defined to be properly weighted if there are scalars
(b, s) such that if the tetrad (l, n,m, m̄) is transformed to (λl, λ−1n, eiϕm, e−iϕm̄) then
theGHP scalar is transformed fromα toλbeisϕα. The exponents b and s are the boost and
spin weight. This definition can be expressed as being a function on the frame bundle and
transforming equivariantly, as being a section of an associated complex line bundle for
the null tetrad bundle, or as a gauge field associated with the set of null tetrads. Roughly
speaking, these different characterizations are like characterizing tensors, on the one
hand, by how their components transform under a change of basis, or, on the other hand,
as tensor products of copies of the tangent and cotangent space. The GHP scalars that are
not properly weighted but which arise in the standard presentation (that is β, β ′, ε, ε′)
can be viewed as connection coefficients for a connection on these associated complex
line bundles. For properly weighted scalars, it is conventional to use the (p, q) weights
such that b = 1

2 (p + q) and s = 1
2 (p − q).

Although it doesn’t arise in this paper, GHP spinors with noninteger boost and spin
weight can be defined by exploiting spinor structures instead of just tensorial structures.

Appendix B. GHP Commutators

With our gauge choice we have the following commutator relations for the foreground
operators acting on a field ϕ with weight (p, q) with respect to background spin and
boost transformations. These are verified using the definition of the operators in terms
of the background operators.

þ′þϕ = þ þ′ϕ − ( ¯̊τ − τ̊ ′ − τ̃ ′)ðϕ − (τ̊ − τ̃ ′ − ¯̊τ ′)ð′ϕ

−
(
p
(−�̊2 − �̃2 + τ̊ (τ̊ ′ + τ̃ ′)

)
+ q

(− ¯̊
�2 − �̃2 + ¯̊τ(τ̃ ′ + ¯̊τ ′)

))
ϕ, (B.1a)

þ′
ðϕ = ðþ′ϕ − τ̊ þ′ϕ + (ρ̊′ + ρ̃′)ðϕ + σ̃ ′ ð′ϕ +

(−p(ρ̊′ + ρ̃′)τ̊ + q(�̃3 − σ̃ ′ ¯̊τ)
)
ϕ,

(B.1b)
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þ′
ð

′ϕ = ð
′þ′ϕ − ¯̊τ þ′ϕ + σ̃ ′

ðϕ + (ρ̃′ + ¯̊ρ′)ð′ϕ +
(
p(�̃3 − σ̃ ′τ̊ ) − q(ρ̃′ + ¯̊ρ′) ¯̊τ)

ϕ,

(B.1c)

þðϕ = ð þϕ − (τ̃ ′ + ¯̊τ ′)þϕ − κ̃ þ′ϕ + (ρ̃ + ¯̊ρ)ðϕ + σ̃ ð
′ϕ

−
(
p
(
�̃1 + κ̃(ρ̊′ + ρ̃′) − σ̃ (τ̊ ′ + τ̃ ′)

)
+ q

(
κ̃ σ̃ ′ − (ρ̃ + ¯̊ρ)(τ̃ ′ + ¯̊τ ′)

))
ϕ,

(B.1d)

þð′ϕ = ð
′þϕ − (τ̊ ′ + τ̃ ′)þϕ − κ̃ þ′ϕ + σ̃ ðϕ + (ρ̊ + ρ̃)ð′ϕ

−
(
p
(
κ̃ σ̃ ′ − (ρ̊ + ρ̃)(τ̊ ′ + τ̃ ′)

)
+ q

(
�̃1 + κ̃(ρ̃′ + ¯̊ρ′) − σ̃ (τ̃ ′ + ¯̊τ ′)

))
ϕ,

(B.1e)

ð
′
ðϕ = ð ð

′ϕ − (−ρ̊′ − ρ̃′ + ρ̃′ + ¯̊ρ′)þϕ − (ρ̊ + ρ̃ − ρ̃ − ¯̊ρ)þ′ϕ

−
(
−p

(−�̊2 − �̃2 − (ρ̊ + ρ̃)(ρ̊′ + ρ̃′) + σ̃ σ̃ ′)

+ q
(− ¯̊

�2 − �̃2 − (ρ̃ + ¯̊ρ)(ρ̃′ + ¯̊ρ′) + σ̃ σ̃ ′))ϕ. (B.1f)

Appendix C. Expressions for the Differential Connection

The background frame components of the differential connection �̃a
bc are given by the

following expressions together with their complex conjugates.

�̃l̊
l̊ l̊ = G1(−¯̊τ + τ̊ ′) + G1(−τ̊ + ¯̊τ ′) − 1

2 þ̊′G0, (C.1a)

�̃l̊
l̊ n̊ = 0, (C.1b)

�̃l̊
l̊m̊ = − 1

2G2
¯̊τ + 1

2G2τ̊
′ + 1

4
/G (τ̊ − ¯̊τ ′) − 1

2 (þ̊′ − ρ̊′)G1, (C.1c)

�̃l̊
n̊n̊ = 0, (C.1d)

�̃l̊
n̊m̊ = 0, (C.1e)

�̃l̊
m̊m̊ = − 1

2 (þ̊′ − 2ρ̊′)G2, (C.1f)

�̃l̊
m̊ ¯̊m = 1

4 (þ̊′ − ρ̊′ − ¯̊ρ′) /G , (C.1g)

�̃n̊
l̊l̊ = 1

2G
#
1(−2(þ̊ − ¯̊ρ)G1 + (ð̊ − 2 ¯̊τ ′)G0) + 1

2G
#
1(−2(þ̊ − ρ̊)G1 + (ð̊′ − 2τ̊ ′)G0)

+ 1
2 þ̊G0 + G#

0

(
G1(−¯̊τ + τ̊ ′) + G1(−τ̊ + ¯̊τ ′) − 1

2 þ̊′G0
)
, (C.1h)

�̃n̊
l̊ n̊ = G1τ̊ + G1

¯̊τ + 1
4G

#
1

(−2G2( ¯̊τ + τ̊ ′) + /G (τ̊ + ¯̊τ ′) − 2(þ̊′ − ρ̊′)G1
)

+ 1
4G

#
1

(
/G ( ¯̊τ + τ̊ ′) − 2G2(τ̊ + ¯̊τ ′) − 2(þ̊′ − ¯̊ρ′)G1

)
+ 1

2 þ̊′G0, (C.1i)

�̃n̊
l̊m̊ = G1

¯̊ρ + 1
4G

#
0

(−2G2( ¯̊τ − τ̊ ′) + /G (τ̊ − ¯̊τ ′) − 2(þ̊′ − ρ̊′)G1
) − 1

2G
#
1(2G1

¯̊τ ′ + þ̊G2)

− 1
4G

#
1

(
2G0(ρ̊

′ − ¯̊ρ′) − (þ̊ − ρ̊ + ¯̊ρ) /G + 2(ð̊ + ¯̊τ ′)G1 − 2(ð̊′ − τ̊ ′)G1
)
+ 1

2 ð̊G0,

(C.1j)

�̃n̊
n̊n̊ = 0, (C.1k)

�̃n̊
n̊m̊ = 1

2G2( ¯̊τ − τ̊ ′) − 1
4

/G (τ̊ − ¯̊τ ′) + 1
2 (þ̊′ + ρ̊′)G1 + 1

4G
#
1(þ̊′ + ρ̊′ − ¯̊ρ′) /G − 1

2G
#
1 þ̊′G2,

(C.1l)

�̃n̊
m̊m̊ = − 1

2 (þ̊ − 2 ¯̊ρ)G2 − 1
2G

#
0(þ̊′ − 2ρ̊′)G2 + (ð̊ − ¯̊τ ′)G1 − 1

2G
#
1 ð̊G2

+ 1
2G

#
1

(
2G1(−ρ̊′ + ¯̊ρ′) + ð̊ /G + ð̊

′G2
)
, (C.1m)
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�̃n̊
m̊ ¯̊m = 1

2G0ρ̊
′ + 1

2G0
¯̊ρ′ + 1

4 (þ̊ − ρ̊ − ¯̊ρ) /G + 1
4G

#
0(þ̊′ − ρ̊′ − ¯̊ρ′) /G + 1

2 (ð̊ − ¯̊τ ′)G1

+ 1
2 (ð̊′ − τ̊ ′)G1 − 1

2G
#
1(2G1ρ̊

′ + ð̊G2) − 1
2G

#
1(2G1

¯̊ρ′ + ð̊
′G2), (C.1n)

�̃m̊
l̊l̊ = G1ρ̊ − G0τ̊

′ + G#
2((þ̊ − ¯̊ρ)G1 − 1

2 (ð̊ − 2 ¯̊τ ′)G0) − þ̊G1 + 1
2 ð̊

′G0

+ G#
1

(
G1( ¯̊τ − τ̊ ′) + G1(τ̊ − ¯̊τ ′) + 1

2 þ̊′G0
)
+ 1

4
/G#

(2G1ρ̊ − 2G0τ̊
′ − 2 þ̊G1 + ð̊

′G0),

(C.1o)

�̃m̊
l̊n̊ = − 1

2G2τ̊ + 1
4

/G ( ¯̊τ + τ̊ ′) − 1
2G2

¯̊τ ′ + 1
4G

#
2

(
2G2( ¯̊τ + τ̊ ′) − /G (τ̊ + ¯̊τ ′) + 2(þ̊′ − ρ̊′)G1

)
+ 1

8
/G#(2G1

¯̊ρ′ + /G ¯̊τ + /G τ̊ ′ − 2G2(τ̊ + ¯̊τ ′) − 2 þ̊′G1
) − 1

2 þ̊′G1 + 1
2G1

¯̊ρ′, (C.1p)

�̃m̊
l̊m̊ = − 1

4
/G (ρ̊ − ¯̊ρ) − 1

2G0ρ̊
′ + 1

2G0
¯̊ρ′ − 1

2G1τ̊
′ − 1

2G1
¯̊τ ′ − 1

2 ð̊G1 + 1
2 ð̊

′G1

+ 1
4G

#
1

(
2G2( ¯̊τ − τ̊ ′) + /G (−τ̊ + ¯̊τ ′) + 2(þ̊′ − ρ̊′)G1

)
+ 1

4 þ̊ /G + 1
2G

#
2(2G1

¯̊τ ′ + þ̊G2)

− 1
8

/G#( /G ρ̊ − /G ¯̊ρ + 2G0(ρ̊
′ − ¯̊ρ′) + 2G1τ̊

′ + 2G1
¯̊τ ′ − þ̊ /G + 2 ð̊G1 − 2 ð̊′G1

)
,

(C.1q)

�̃m̊
l̊ ¯̊m = − G1τ̊

′ + 1
4G

#
1

(
/G (−¯̊τ + τ̊ ′) + 2G2(τ̊ − ¯̊τ ′) + 2(þ̊′ − ¯̊ρ′)G1

) − 1
4

/G#
(2G1τ̊

′ + þ̊G2)

− 1
4G

#
2

(
2G0(ρ̊

′ − ¯̊ρ′) + (þ̊ + ρ̊ − ¯̊ρ) /G + 2(ð̊ − ¯̊τ ′)G1 − 2(ð̊′ + τ̊ ′)G1
) − 1

2 þ̊G2,

(C.1r)

�̃m̊
n̊n̊ = 0, (C.1s)

�̃m̊
n̊m̊ = 1

4
/G (ρ̊′ − ¯̊ρ′) + 1

4 þ̊′ /G + 1
8

/G#( /G (ρ̊′ − ¯̊ρ′) + þ̊′ /G
)
+ 1

2G
#
2 þ̊′G2, (C.1t)

�̃m̊
n̊ ¯̊m = − 1

4G
#
2(þ̊′ − ρ̊′ + ¯̊ρ′) /G − 1

2 þ̊′G2 − 1
4

/G# þ̊′G2, (C.1u)

�̃m̊
m̊m̊ = G1( ¯̊ρ′ − ρ̊′) + 1

2G
#
1(þ̊′ − 2ρ̊′)G2 + 1

2 ð̊
/G + 1

2G
#
2 ð̊G2 + 1

2 ð̊
′G2

+ 1
4

/G#(
ð̊ /G + ð̊

′G2 − 2G1(ρ̊
′ − ¯̊ρ′)

)
, (C.1v)

�̃m̊
m̊ ¯̊m = − G1ρ̊

′ − 1
4G

#
1(þ̊′ − ρ̊′ − ¯̊ρ′) /G − 1

2 ð̊G2 − 1
4

/G#
(2G1ρ̊

′ + ð̊G2)

+ 1
2G

#
2(2G1

¯̊ρ′ + ð̊
′G2), (C.1w)

�̃m̊ ¯̊m ¯̊m = 1
2G

#
1(þ̊′ − 2 ¯̊ρ′)G2 − 1

2G
#
2

(
2G1(ρ̊

′ − ¯̊ρ′) + ð̊G2 + ð̊
′ /G

) − 1
2 ð̊

′G2 − 1
4

/G#
ð̊

′G2.

(C.1x)

Appendix D. Constraint Equations Arising from the Structure and Ricci Relations

The remaining structure equations take the form

i ð ν = β̃ + β̃ ′ − G̃1(ρ̊
′ − ¯̊ρ′) − η ¯̊ρ′ + ς

2ς# (η̄G̃2 + 2ης#2)(ρ̊′ + ¯̊ρ′)

+
G̃2ς ð G̃2

4ς#3 +
ð ς#

ς# +
ς ð

′G̃2

2ς# , (D.1a)

i þ ν = ε̃ − ε̃ − /̃Gς

4ς# (ρ̊ + ρ̃ − ρ̃ − ¯̊ρ) − 1
2 G̃0(ρ̊

′ − ¯̊ρ′) − ς

2ς# (ηG̃1 − η̄G̃1)(ρ̊
′ + ¯̊ρ′)

+
ςτ̊ ′

4eiνς#2 (η̄G̃2 + 2ης#2) − eiνς ¯̊τ ′

4ς#2 (ηG̃2 + 2η̄ς#2) +
ης

2ς# (β̃ − β̃ ′ + τ̊ ′ + τ̃ ′)

− η̄ς

2ς# (β̃ − β̃ ′ + τ̃ ′ + ¯̊τ ′) − ς(ð − τ̃ ′ − ¯̊τ ′)G̃1

2ς# +
ς(ð′ − τ̊ ′ − τ̃ ′)G̃1

2ς#

+
G̃2ς þ G̃2

8ς#3 − G̃2ς þ G̃2

8ς#3 − G̃2ςσ̃

2ς# +
G̃2ςσ̃

2ς# , (D.1b)
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ð η = − 1
2 G̃2ρ̊ + G̃2ρ̃ + 1

2 G̃2
¯̊ρ +

ς

ς#

(
(η̄ − G̃1)(η − G̃1)G̃2

+ 1
2 (η − G̃1)

2(2 + /̃G)
)
(ρ̊′ − ¯̊ρ′) + G̃2ς

2

4ς#2

(
(η2 − G̃1

2
)G̃2 + (η̄2 − G̃1

2)G̃2

+ (ηη̄ − G̃1G̃1)(2 + /̃G) − G̃0ς
#2

ς2

)
(ρ̊′ + ¯̊ρ′) − 1

2 (2 + /̃G)σ̃

− ηG̃2

2eiνς# ( ¯̊τ − τ̊ ′) + eiνης#(τ̊ − ¯̊τ ′) + (η − G̃1)(τ̃ ′ + ¯̊τ ′) − 1
2 þ G̃2

+ ð G̃1 − ς2

4ς#2 (η̄ − G̃1)
(
(2 + /̃G)ð G̃2 − 2G̃2(ð /̃G + ð

′G̃2)
)

− ς2

4ς#2 (η − G̃1)
(
2G̃2 ð G̃2 − (2 + /̃G)(ð /̃G + ð

′G̃2)
)
, (D.1c)

ð
′η − ð η̄ = − ρ̃ + ρ̃ − 1

2eiνς# (η̄G̃2 + 2ης#2)( ¯̊τ + τ̊ ′) + eiν

2ς# (ηG̃2 + 2η̄ς#2)(τ̊ + ¯̊τ ′)

+
ς

2ς#

( G̃0ς
#2

ς2 + (G̃1
2 − η2)G̃2 + (G̃1

2 − η̄2)G̃2

+ (G̃1G̃1 − ηη̄)(2 + /̃G)
)
(ρ̊′ − ¯̊ρ′) +

(ς#

ς
− 1

)
(ρ̊ − ¯̊ρ) + η(τ̊ ′ + τ̃ ′) − η̄(τ̃ ′ + ¯̊τ ′),

(D.1d)

ð
′η + ð η̄ = − 1

2 (2 + /̃G)(ρ̃ + ρ̃) − ς

ς#

(
(η − G̃1)

2G̃2 − (η̄ − G̃1)
2G̃2

)
(ρ̊′ − ¯̊ρ′) + ς2

4ς#2 (2 + /̃G)

×
(
(G̃1

2 − η2)G̃2 + (G̃1
2 − η̄2)G̃2 + (G̃1G̃1 − ηη̄)(2 + /̃G) +

G̃0ς
#2

ς2

)
(ρ̊′ + ¯̊ρ′)

+ G̃2σ̃ + G̃2σ̃ + (η − G̃1)(τ̊
′ + τ̃ ′) + (η̄ − G̃1)(τ̃ ′ + ¯̊τ ′) + 1

2 þ /̃G + ð G̃1 + ð
′G̃1

+
ς2

ð G̃2

2ς#2

(
2(G̃1 − η̄)G̃2 + (G̃1 − η)(2 + /̃G)

)
+

1

2eiνς# (2ης#2 − η̄G̃2)( ¯̊τ − τ̊ ′)

+
ς2

ð
′G̃2

2ς#2

(
2(G̃1 − η)G̃2 + (G̃1 − η̄)(2 + /̃G)

)
+

eiν

2ς# (2η̄ς#2 − ηG̃2)(τ̊ − ¯̊τ ′),

(D.1e)

þ η = − ηε̃ − ηε̃ − κ̃ + G̃1ρ̃ − 1
2 G̃1(ρ̊ − ¯̊ρ) + 1

2η(ρ̊ + ¯̊ρ) + 1
4 G̃0(η − G̃1)(ρ̊

′ + ¯̊ρ′) + G̃1σ̃

+
(
(η − G̃1)

2G̃2 + (η̄ − G̃1)
2G̃2 + (η̄ − G̃1)(η − G̃1)(2 + /̃G)

)
(
eiνς2τ̊

2ς# − G̃2ς
2 ¯̊τ

4eiνς#3 )

− G̃0G̃2

4eiνς# ( ¯̊τ + τ̊ ′) + 1
2 e

iν G̃0ς
#(τ̊ + ¯̊τ ′) + 1

2 (ð−2τ̃ ′ − 2 ¯̊τ ′)G̃0

+
(
2(η̄ − G̃1)G̃2 + (η − G̃1)(2 + /̃G)

)( ς

4ς# (ρ̊ − ¯̊ρ) − 3G̃0ς

8ς# (ρ̊′ − ¯̊ρ′)

+
ς2

8ς#2

(
2G̃2σ̃ − 2G̃2σ̃ + (þ − ρ̊ − ρ̃ + ρ̃ + ¯̊ρ) /̃G − 2(ð − τ̃ ′ − ¯̊τ ′)G̃1

+ 2(ð′ − τ̊ ′ − τ̃ ′)G̃1
)) − ς2 þ G̃2

4ς#2

(
2(η − G̃1)G̃2 + (η̄ − G̃1)(2 + /̃G)

)

+
(
(η2 − G̃1

2
)G̃2 + (η̄2 − G̃1

2)G̃2 + (ηη̄ − G̃1G̃1)(2 + /̃G)
)
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×
( ς3

8ς#3

(
2(η̄ − G̃1)G̃2 + (η − G̃1)(2 + /̃G)

)
(ρ̊′ − ¯̊ρ′) + ς2

4ς#2 (G̃1 − η)(ρ̊′ + ¯̊ρ′)

+
G̃2ς

2τ̊ ′

4eiνς#3 − eiνς2 ¯̊τ ′

2ς#

)
. (D.1f)

The remaining Ricci relations take the form

ð
′ρ̃′ − ð σ̃ ′ = − �̃3 +

ς#ρ̊′

ς
(G̃#

1 − ηG̃#
2)(

¯̊ρ′ − ρ̊′) − η̄ρ̊′(2ς#ς(ρ̊′ − ¯̊ρ′) + ¯̊ρ′)

− eiν G̃#
2ς

# τ̊

2ς2 (2ρ̊′ − ¯̊ρ′)

+
(
2ρ̊′ + ρ̃′ − ρ̃′ − ¯̊ρ′ + ς#

eiν
(−2ρ̊′ + ¯̊ρ′)

)
τ̊ ′ + (2ρ̊′ + ρ̃′ − ρ̃′ − ¯̊ρ′)τ̃ ′, (D.2a)

þ σ̃ ′ − ð
′τ̃ ′ = (ρ̊′ + ρ̃′)σ̃ + (ρ̊ + ρ̃)σ̃ ′ −

(
1 − ς#

eiν

)
τ̊ ′2 + η̄ρ̊′(τ̊ ′

− ¯̊τ) − τ̃ ′2 − τ̊ ′(β̃ + β̃ ′ + 2τ̃ ′) +
eiν G̃#

2ς
#
ð̊

′
τ̊

2ς2 , (D.2b)

þ ρ̃′ − ð τ̃ ′ = − �̃2 − (ε̃ + ε̃ − ρ̃)ρ̊′ + 1
2

(
G̃#

0 + η2G̃#
2 + η̄2G̃

#

2 − ηη̄(2 + /̃G
#
)
)
ρ̊′2

+ (ρ̃ + ¯̊ρ)ρ̃′ + σ̃ σ̃ ′ + G̃
#

2ς
# τ̊ ′2

2eiνς2 − G̃
#

1ς
#ρ̊′(eiν G̃#

2 τ̊

ς2 +
1

eiν
( ¯̊τ + τ̊ ′)

)

− 1
2 G̃

#
1ς

#ρ̊′(4eiν τ̊ +
G̃

#

2

eiνς2 ( ¯̊τ + τ̊ ′)
)
+ 1

2 η̄ρ̊′(−2G̃
#

1ρ̊
′ − 4eiνς τ̊

+
G̃

#

2

eiνς
( ¯̊τ + τ̊ ′)

) − (1 − eiνς#)ð̊
′
τ̊ − τ̃ ′τ̃ ′ − τ̃ ′ ¯̊τ ′

+ ηρ̊′(−G̃#
1ρ̊

′ +
eiν G̃#

2 τ̊

ς
− ¯̊τ + τ̊ ′ − ς

eiν
( ¯̊τ + τ̊ ′)

)
+ τ̊ ′(β̃ + β̃ ′ − τ̃ ′), (D.2c)

þ ρ̃ − ð
′κ̃ = ε̃ρ̊ + ε̃ρ̊ + 2ρ̊ρ̃ + ρ̃2 + σ̃ σ̃ − κ̃ τ̊

− eiν τ̊

2ς2 (G̃
#

1G̃
#
2ς

# − ηG̃#
2ς + 2G̃#

1ς
#ς2 + 2η̄ς3)(ρ̊ − ¯̊ρ)

− ρ̊τ̊ ′

eiνς2 (G̃#
1G̃

#

2ς
# − η̄G̃

#

2ς + 2G̃
#

1ς
#ς2 + 2ης3) − κ̃(τ̊ ′ + τ̃ ′)

+ 1
2 (−2ηη̄ + G̃#

0 − 2ηG̃#
1 − 2η̄G̃

#

1 + η2G̃#
2 + η̄2G̃

#

2 − ηη̄ /̃G
#
) þ̊ ρ̊′, (D.2d)

þ σ̃ − ð κ̃ = �̃0 + (ρ̊ + ρ̃ + ρ̃ + ¯̊ρ)σ̃ − κ̃(τ̊ + τ̃ ′ + ¯̊τ ′), (D.2e)

þ β̃ − ð ε̃ = �̃1 − η�̊2 + β̃(ρ̃ + ¯̊ρ) + κ̃ ρ̊′ − ς#

ς
(η + G̃

#

1 − η̄G̃
#

2 +
1
2η /̃G

#
)(�̊2 + ρ̊ρ̊′) + κ̃ ρ̃′

+ 1
2 e

iν G̃#
0ς

#ρ̊′τ̊ +
G̃

#

2ς
#ρ̊τ̊ ′

2eiνς2 + ητ̊ τ̊ ′ − σ̃ (β̃ ′ + τ̊ ′ + τ̃ ′) − ε̃(τ̃ ′ + ¯̊τ ′)

+
eiν ρ̊′τ̊
2ς2

(
ηG̃

#

1G̃
#
2ς

# + η̄(η̄G̃
#

2 − 2G̃
#

1)ς
#ς2 − (1 − ς#ς)(η2G̃#

2ς − 4ηη̄ς3)
)
,

(D.2f)

þ β̃ ′ + ð
′ε̃ = η̄�̊2 + β̃ ′(ρ̊ + ρ̃) − ς#

ς
(η̄ + G̃#

1 − ηG̃#
2 +

1
2 η̄ /̃G

#
)(�̊2 + ρ̊ρ̊′) − β̃σ̃ − κ̃ σ̃ ′
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− eiν G̃#
0G̃

#
2ς

#ρ̊′τ̊
4ς2 +

eiνς#ρ̊′τ̊
4ς2 (ηG̃#

2 − 2η̄ς2)(2G̃#
1 − ηG̃#

2 + 2η̄ς2)

+
(
1 − ς#

eiν

)
ρ̊τ̊ ′ + ρ̃τ̊ ′ − η̄τ̊ τ̊ ′ + ρ̊τ̃ ′ + ρ̃τ̃ ′ + ε̃(τ̊ ′ + τ̃ ′), (D.2g)

ð β̃ ′ + ð
′β̃ = �̃2 + ρ̃ρ̊′ +

(
1 − ς#

ς

)
(�̊2 + ρ̊ρ̊′) + (ρ̊ + ρ̃)ρ̃′ + ς# ε̃

ς
(ρ̊′ − ¯̊ρ′) − σ̃ σ̃ ′

+
eiνς#ρ̊′τ̊

2ς2 (ηG̃#
2 − 2η̄ς2), (D.2h)

ð ρ̃ − ð
′σ̃ = − �̃1 + β̃ρ̊ − β̃ ′ρ̊ − κ̃(ρ̊′ + ρ̃′ − ρ̃′ − ¯̊ρ′) + (ρ̃ − ρ̃)τ̊ + (1 − eiνς#)(ρ̊ − ¯̊ρ)τ̊

− G̃
#

2ς
#ρ̊τ̊ ′

eiνς2 − η þ̊ ρ̊′, (D.2i)

where the background derivatives of background spin coefficients are given by (3.31)
and

þ̊ ρ̊′ = − 1
2 �̊2 −

¯̊
�2κ̄1′

2κ1
+ ρ̊ρ̊′ − τ̊ ¯̊τ + τ̊ τ̊ ′. (D.3)

Appendix E. Linearized Constraint Equations

The linearization of the constraint equations (3.20), (D.1) are equivalent to

˙̃κ ′ = 0, ˙̃ε′ = 0, ˙̃τ = 0, (E.1a)

˙̃ρ′ − ˙̃ρ′ = 1
2

/̇G(−ρ̊′ + ¯̊ρ′), (E.1b)

˙̃
β − ˙̃

β ′ = − η̇ρ̊′ − Ġ1ρ̊
′ + η̇ ¯̊ρ′ + Ġ1 ¯̊ρ′ + 1

2 Ġ2τ̊
′ − ˙̃τ ′ + i ν̇ ¯̊τ ′ − 1

4
/̇G ¯̊τ ′, (E.1c)

˙̃ρ − ˙̃ρ = − 1
2

/̇G(ρ̊ − ¯̊ρ) − 1
2 Ġ0(ρ̊

′ − ¯̊ρ′) + η̇τ̊ − η̇ ¯̊τ + ð̊ η̇ − ð̊
′η̇, (E.1d)

˙̃κ = η̇ρ̊ + Ġ1ρ̊ − Ġ1 ¯̊ρ − 1
2 Ġ0(τ̊ − ¯̊τ ′) − þ̊ η̇ − 1

2 ð̊ Ġ0, (E.1e)

˙̃ε − ˙̃ε = − 1
4

/̇G(ρ̊ − ¯̊ρ) − 1
2 Ġ0(ρ̊

′ − ¯̊ρ′) − η̇τ̊ ′ − 1
2 Ġ1τ̊

′ + η̇ ¯̊τ ′

+ 1
2 Ġ1 ¯̊τ ′ + i þ̊ ν̇ − 1

2 ð̊ Ġ1 + 1
2 ð̊

′Ġ1, (E.1f)

˙̃
β ′ = − 1

2 η̇ρ̊′ + 1
2 i ν̇τ̊ ′ + 1

8
/̇Gτ̊ ′ + 1

2
˙̃τ ′ − 1

4 Ġ2 ¯̊τ ′ + 1
4 ð̊ Ġ2 − 1

2 i ð̊
′ν̇ + 1

8 ð̊
′ /̇G,

(E.1g)

˙̃ρ = − 1
4

/̇G(ρ̊ − ¯̊ρ) − 1
2 Ġ0ρ̊

′ + η̇τ̊ + 1
2 Ġ1τ̊

′ + 1
2 Ġ1 ¯̊τ ′

− 1
4 þ̊ /̇G − 1

2 ð̊ Ġ1 − ð̊
′η̇ − 1

2 ð̊
′Ġ1, (E.1h)

˙̃σ = 1
2 Ġ2(ρ̊ − ¯̊ρ) + η̇τ̊ + Ġ1

¯̊τ ′ + 1
2 þ̊ Ġ2 − ð̊ η̇ − ð̊ Ġ1. (E.1i)

The linearization of the Ricci relations (D.2) are

ð̊
′ ˙̃ρ′ − ð̊ ˙̃σ ′ = − �̇3 − Ġ1ρ̊

′(ρ̊′ − ¯̊ρ′) − η̇ρ̊′(2ρ̊′ − ¯̊ρ′) − 1
2 Ġ2(2ρ̊

′ − ¯̊ρ′)τ̊ + ˙̃ρ′τ̊ ′ − ˙̃ρ′τ̊ ′

+ i ν̇(2ρ̊′ − ¯̊ρ′)τ̊ ′ + 1
4

/̇G(2ρ̊′ − ¯̊ρ′)τ̊ ′ + 2ρ̊′ ˙̃τ ′ − ¯̊ρ′ ˙̃τ ′, (E.2a)
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þ̊ ˙̃σ ′ − ð̊
′ ˙̃τ ′ = ρ̊′ ˙̃σ + ρ̊ ˙̃σ ′ − η̇ρ̊′( ¯̊τ − τ̊ ′) − ˙̃

βτ̊ ′ − ˙̃
β ′τ̊ ′ − i ν̇τ̊ ′2 − 1

4
/̇Gτ̊ ′2 − 2τ̊ ′ ˙̃τ ′ + 1

2 Ġ2 ð̊
′τ̊ ,

(E.2b)

þ̊ ˙̃ρ′ − ð̊ ˙̃τ ′ = − �̇2 − ˙̃ερ̊′ − ˙̃ερ̊′ + ˙̃ρρ̊′ + 1
2 Ġ0ρ̊

′2 + ¯̊ρ ˙̃ρ′ − 2η̇ρ̊′τ̊ − 2Ġ1ρ̊
′τ̊ − 2η̇ρ̊′ ¯̊τ

+ ˙̃
βτ̊ ′ + ˙̃

β ′τ̊ ′ + 1
2 Ġ2τ̊

′2 − Ġ1ρ̊
′( ¯̊τ + τ̊ ′) − τ̊ ′ ˙̃τ ′ − ˙̃τ ′ ¯̊τ ′ + i ν̇ ð̊′τ̊ − 1

4
/̇G ð̊

′τ̊ , (E.2c)

þ̊ ˙̃ρ − ð̊
′ ˙̃κ = ˙̃ερ̊ + ˙̃ερ̊ + 2ρ̊ ˙̃ρ − ˙̃κτ̊ − (η̇ + Ġ1)(ρ̊ − ¯̊ρ)τ̊ − ˙̃κτ̊ ′ − 2η̇ρ̊τ̊ ′ − 2Ġ1ρ̊τ̊ ′ + 1

2 Ġ0 þ̊ ρ̊′,
(E.2d)

þ̊ ˙̃σ − ð̊ ˙̃κ = �̇0 + ρ̊ ˙̃σ + ¯̊ρ ˙̃σ − ˙̃κ(τ̊ + ¯̊τ ′), (E.2e)

þ̊ ˙̃
β − ð̊ ˙̃ε = �̇1 +

˙̃
β ¯̊ρ + ˙̃κρ̊′ − Ġ1(�̊2 + ρ̊ρ̊′) + 1

2 Ġ0ρ̊
′τ̊ + 1

2 Ġ2ρ̊τ̊ ′ − ˙̃σ τ̊ ′ − η̇(2�̊2 + ρ̊ρ̊′ − τ̊ τ̊ ′)

− ˙̃ε ¯̊τ ′, (E.2f)

þ̊ ˙̃
β ′ + ð̊

′ ˙̃ε = ˙̃
β ′ρ̊ − Ġ1(�̊2 + ρ̊ρ̊′) + ˙̃ετ̊ ′ + i ν̇ρ̊τ̊ ′ + 1

4
/̇Gρ̊τ̊ ′ + ˙̃ρτ̊ ′ − η̇(ρ̊ρ̊′ + τ̊ τ̊ ′) + ρ̊ ˙̃τ ′, (E.2g)

ð̊
˙̃
β ′ + ð̊

′ ˙̃
β = �̇2 + ˙̃ρρ̊′ + 1

2
/̇G(�̊2 + ρ̊ρ̊′) + ρ̊ ˙̃ρ′ + ˙̃ε(ρ̊′ − ¯̊ρ′) − η̇ρ̊′τ̊ , (E.2h)

ð̊ ˙̃ρ − ð̊
′ ˙̃σ = − �̇1 +

˙̃
βρ̊ − ˙̃

β ′ρ̊ − ˙̃κ(ρ̊′ − ¯̊ρ′) + ˙̃ρτ̊ − ˙̃ρτ̊ + 1
4 (−4i ν̇ + /̇G)(ρ̊ − ¯̊ρ)τ̊ − Ġ2ρ̊τ̊ ′ − η̇ þ̊ ρ̊′.

(E.2i)

Appendix F. Translation Between this Paper and [1]

If we impose

/̇G = 0, ˙̃ρ′ = 0, ν̇ = 0, (F.1)

it is possible to translate to the variables in [1] using the relations in Table 1 as well
as background GHP commutator relations to eliminate all second-order derivatives. In
particular, equations (5.2b), (5.3), and (5.4) translate to

þ̊′η̇ = − β̃ ′ + β̃ − 1
2G01′ ρ̊′ + 1

2G02′ ¯̊τ, (F.2a)

þ̊′G20′ = G20′ ¯̊ρ′ + 2σ̃ ′, (F.2b)

þ̊′G10′ = G10′ ¯̊ρ′ − G20′ τ̊ + 2τ̃ ′, (F.2c)

þ̊′G00′ = − 2ε̃ − 2ε̃ − 2G10′ τ̊ − 2G01′ ¯̊τ + G01′ τ̊ ′ + G10′ ¯̊τ ′, (F.2d)

þ̊′σ̃ ′ = ϑ�4 + ¯̊ρ′σ̃ ′, (F.2e)

þ̊′τ̃ ′ = ϑ�3 + β̃ ′ρ̊′ − β̃ρ̊′ − 1
2G10′ ρ̊′ ¯̊ρ′ − σ̃ ′τ̊ + 1

2G20′ ρ̊′ ¯̊τ ′ + σ̃ ′ ¯̊τ ′ − ρ̊′τ̃ ′, (F.2f)

þ̊′β̃ ′ = ϑ�3 + β̃ ′ ¯̊ρ′ − σ̃ ′τ̊ , (F.2g)

þ̊′β̃ = − β̃ ′ρ̊′ + 2β̃ρ̊′ + ρ̊′τ̃ ′, (F.2h)

þ̊′ε̃ = − ϑ�2 + β̃ ′τ̊ − β̃ ¯̊τ − β̃ ′τ̊ ′ + 2β̃τ̊ ′ − β̃ ′ ¯̊τ ′ + τ̊ τ̃ ′ + τ̊ ′τ̃ ′, (F.2i)

þ̊′ρ̃ = − ϑ�2 + ¯̊ρ′ρ̃ + 2β̃ ′τ̊ + β̃ ′ ¯̊τ − β̃ ¯̊τ − ¯̊τ τ̃ ′ − ð̊
′β̃ ′ + ð̊

′β̃ + ð̊
′τ̃ ′, (F.2j)

þ̊′σ̃ = 1
2G02′�̊2 + ρ̊′σ̃ + β̃ ′τ̊ − 3β̃τ̊ − τ̊ τ̃ ′ − ð̊ β̃ ′ + ð̊ β̃ + ð̊ τ̃ ′, (F.2k)

þ̊′κ̃ = 1
2G01′�̊2 − ϑ�1 + β̃ ′ρ̊ − β̃ρ̊ − 1

2G01′ ρ̊ρ̊′ − 2ε̃τ̊ − ρ̃τ̊ − σ̃ ¯̊τ + 1
2G02′ ρ̊τ̊ ′

+ σ̃ τ̊ ′ + ρ̃ ¯̊τ ′ − ρ̊τ̃ ′ − þ̊ β̃ ′ + þ̊ β̃ + þ̊ τ̃ ′. (F.2l)
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The linearized structure equations (E.1) are equivalent to

κ̃ ′ = 0, ε̃′ = 0, (F.3a)

τ̃ = − 1
2G01′ ρ̊′ + 1

2G02′ τ̊ ′, (F.3b)

β̃ − β̃ ′ = − 1
2G01′ ρ̊′ + 1

2G02′ τ̊ ′ − τ̃ ′, (F.3c)

ρ̃ − ρ̃ = − 1
2G00′ ρ̊′ + 1

2G00′ ¯̊ρ′ − 1
2 ð̊G10′ + 1

2 ð̊
′G01′ , (F.3d)

κ̃ = − G01′ ¯̊ρ + 1
2G00′ ¯̊τ ′ + 1

2 þ̊G01′ − 1
2 ð̊G00′ , (F.3e)

ε̃ − ε̃ = − 1
2G00′ ρ̊′ + 1

2G00′ ¯̊ρ′ − 1
2 ð̊G10′ + 1

2 ð̊
′G01′ , (F.3f)

β̃ ′ = 1
2G10′ ρ̊′ − 1

4G20′ ¯̊τ ′ + 1
2 τ̃

′ + 1
4 ð̊G20′ , (F.3g)

ρ̃ = − 1
2G00′ ρ̊′ + 1

2G01′ τ̊ ′ + 1
2G10′ ¯̊τ ′ − 1

2 ð̊G10′ , (F.3h)

σ̃ = − 1
2G02′ ¯̊ρ + G01′ ¯̊τ ′ + 1

2 þ̊G02′ − 1
2 ð̊G01′ . (F.3i)

The linearized Ricci relations in equations (E.2) are equivalent to

ϑ�3 = 2ϑ�3 − G10′ ρ̊′2 − 1
2G20′ ¯̊ρ′τ̊ − 2ρ̊′τ̃ ′ + ¯̊ρ′τ̃ ′ − 1

2 ρ̊
′
ð̊G20′ − ð̊ σ̃ ′,

(F.4a)

ϑ�2 = − ε̃ρ̊′ − ε̃ρ̊′ + 1
2G00′ ρ̊′2 + ρ̊′ρ̃ + 1

2G10′ ¯̊ρ′τ̊ + β̃ ′τ̊ ′ + β̃τ̊ ′ − G01′ ρ̊′τ̊ ′

+ 1
2G02′ τ̊ ′2 − ¯̊τ ′τ̃ ′ − τ̊ ′τ̃ ′ + 1

2 ρ̊
′
ð̊G10′ + ð̊ τ̃ ′, (F.4b)

ϑ�2 = − ε̃ρ̊′ + ε̃ ¯̊ρ′ − ρ̊′ρ̃ + ð̊ β̃ ′ + ð̊
′β̃, (F.4c)

ϑ�1 = − β̃ ¯̊ρ − κ̃ ρ̊′ + σ̃ τ̊ ′ + ε̃ ¯̊τ ′ + þ̊ β̃ − ð̊ ε̃, (F.4d)

ϑ�0 = − 1
2G02′ ρ̊ ¯̊ρ − ρ̊σ̃ − ¯̊ρσ̃ + κ̃ τ̊ + κ̃ ¯̊τ ′ − 1

2G00′ τ̊ ¯̊τ ′ − 1
2 τ̊ þ̊G01′

+ 1
2 ρ̊ þ̊G02′ + þ̊ σ̃ + 1

2 τ̊ ð̊G00′ − 1
2 ρ̊ ð̊G01′ − ð̊ κ̃, (F.4e)

þ̊ σ̃ ′ − ð̊
′τ̃ ′ = ρ̊σ̃ ′ + ρ̊′σ̃ − β̃ ′τ̊ ′ − β̃τ̊ ′ − 1

2G10′(2ρ̊′ + ¯̊ρ′)τ̊ ′ + 1
2G20′(�̊2 + ρ̊ρ̊′ + τ̊ ′ ¯̊τ ′)

− 2τ̊ ′τ̃ ′ − 1
2 ρ̊

′ þ̊G20′ + 1
2 ρ̊

′
ð̊

′G10′ , (F.4f)

þ̊ ρ̃ − ð̊
′κ̃ = ε̃ρ̊ + ε̃ρ̊ + 2ρ̊ρ̃ − κ̃ τ̊ − 1

2G10′(2ρ̊ − ¯̊ρ)τ̊ − κ̃ τ̊ ′ − 1
2G01′ ρ̊τ̊ ′

− 1
2G00′(�̊2 − ¯̊ρρ̊′ − τ̊ τ̊ ′) + 1

2 τ̊ þ̊G10′ − 1
2 τ̊ ð̊

′G00′ + 1
2 ρ̊ ð̊

′G01′,
(F.4g)

þ̊ β̃ ′ + ð̊
′ε̃ = − G10′�̊2 + β̃ ′ρ̊ + ε̃τ̊ ′ + ρ̃τ̊ ′ + ρ̊τ̃ ′, (F.4h)

ð̊ ρ̃ − ð̊
′σ̃ = − ϑ�1 − β̃ ′ρ̊ + β̃ρ̊ − κ̃ ρ̊′ − 1

2G01′(�̊2 + ρ̊ρ̊′ − 2 ¯̊ρρ̊′) + κ̃ ¯̊ρ′

+ 1
2G00′(ρ̊′ − ¯̊ρ′)τ̊ + ρ̃τ̊ − ρ̃τ̊ + (ρ̊ − ¯̊ρ) þ̊′η̇

+ 1
2 (ρ̊ − ¯̊ρ) þ̊′G01′ + 1

2 τ̊ ð̊G10′ − 1
2 τ̊ ð̊

′G01′ + 1
2 ρ̊ ð̊

′G02′ . (F.4i)

The linearized Bianchi equations (5.5) translate to

þ̊ϑ�1 − ð̊
′ϑ�0 = − 3�̊2κ̃ − 3

2G01′�̊2ρ̊ + 4ϑ�1ρ̊ + 3
2G00′�̊2τ̊ − ϑ�0τ̊

′, (F.5a)

þ̊ϑ�2 − ð̊
′ϑ�1 = 3ϑ�2ρ̊+ 3

2G00′�̊2ρ̊
′+3�̊2ρ̃−3G10′�̊2τ̊ − 3

2G01′�̊2τ̊
′ − 2ϑ�1τ̊

′,
(F.5b)
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þ̊ϑ�3 − ð̊
′ϑ�2 = 2ϑ�3ρ̊ − 3G10′�̊2ρ̊

′ + 3
2G20′�̊2τ̊ − 3ϑ�2τ̊

′ − 3�̊2τ̃
′, (F.5c)

þ̊ϑ�4 − ð̊
′ϑ�3 = ϑ�4ρ̊ + 3

2G20′�̊2ρ̊
′ + 3�̊2σ̃

′ − 4ϑ�3τ̊
′, (F.5d)

þ̊′ϑ�0 − ð̊ϑ�1 = 3
2G02′�̊2ρ̊ + ϑ�0ρ̊

′ + 3�̊2σ̃ − 3
2G01′�̊2τ̊ − 4ϑ�1τ̊ , (F.5e)

þ̊′ϑ�1 − ð̊ϑ�2 = − 3
2G01′�̊2ρ̊

′ + 2ϑ�1ρ̊
′ − 3ϑ�2τ̊ + 3

2G02′�̊2τ̊
′

− 3�̊2 þ̊′η̇ − 3
2 �̊2 þ̊′G01′ , (F.5f)

þ̊′ϑ�2 − ð̊ϑ�3 = 3ϑ�2ρ̊
′ − 2ϑ�3τ̊ , (F.5g)

þ̊′ϑ�3 − ð̊ϑ�4 = 4ϑ�3ρ̊
′ − ϑ�4τ̊ . (F.5h)

Observe that the η̇ dependence of the equations (F.4) and (F.5) can be eliminated by
using (F.2a).
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