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Abstract

Background: Segmental duplications (SDs) are long DNA sequences that are repeated in a genome and have high
sequence identity. In contrast to repetitive elements they are often unique and only sometimes havemultiple copies in
a genome. There are several well-studied mechanisms responsible for segmental duplications: non-allelic homologous
recombination, non-homologous end joining and replication slippage. Such duplications play an important role in
evolution, however, we do not have a full understanding of the dynamic properties of the duplication process.

Results: We study segmental duplications through a graph representation where nodes represent genomic regions
and edges represent duplications between them. The resulting network (the SD network) is quite complex and has
distinct features which allow us to make inference on the evolution of segmantal duplications. We come up with the
network growth model that explains features of the SD network thus giving us insights on dynamics of segmental
duplications in the human genome. Based on our analysis of genomes of other species the network growth model
seems to be applicable for multiple mammalian genomes.

Conclusions: Our analysis suggests that duplication rates of genomic loci grow linearly with the number of copies of
a duplicated region. Several scenarios explaining such a preferential duplication rates were suggested.
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Background
Segmental duplications (SDs) are conventionally defined
as long duplications of a genomic region (> 1 kbp) within
one genome and with a relatively high level of sequence
identity (> 90%). Segmental duplications should not be
confused with simple genomic repeats which are present
in higher copy number, are usually shorter, and have other
mechanisms of propagation in a genome (Sup. Figure 1).
In the human genome, the segmental duplications defined
this way mostly comprise recent events that happened
after the divergence of the New and Old World mon-
keys [1, 2]. The copied segments might be located on
the same chromosome (intrachromosomal) or different
chromosome (interchromosomal). Seminal studies found
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that about 5% of the human genome is actually part
of segmental duplications, however this fraction can be
even higher according to recent estimates [3–5]. Segmen-
tal duplications play an important evolutionary role by
being involved in gene duplication and changes in regula-
tory sequences of genes. There are several human-specific
duplicated genes, such as: ARHGAP11B and SRGAP2C
that were involved in human brain evolution [6, 7]. More-
over, it was shown that genomic loci that are duplicated
most frequently in SDs (core duplicons) are enriched with
genes rapidly evolving in the human and great ape lineages
[8–12]. Further, SDs are often involved in disease-causing
rearrangements and copy-number variations in human
population [1, 13].
The task of annotating SDs in a genome is not straight-

forward. There are two widely accepted methods for SDs
detection that were first used on the draft human genome
by Eichler’s group: whole-genome assembly comparison
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(WGAC) and whole-genome shotgun sequence detec-
tion (WSSD). In a nutshell, WGAC is a BLAST-based
method that identifies paralogous sequences in a ref-
erence genome [3]. However, misassembly errors which
might be attributed to SDs have to be taken into account,
and therefore an experimental validation is needed for
proper SD annotation. This problem is especially promi-
nent for non-human reference genomes because their
assemblies are often of a lower quality [14]. WSSD is
another method that identifies genomic regions of high
read coverage and relatively low mapping quality by align-
ing whole genome shotgun sequencing reads to the refer-
ence genome [4].
Segmental duplications are not uniformly distributed

in the genome; some regions are duplicated many times
while other are depleted of duplications. For example, the
genomic regions proximal to centromers and telomeres
are enriched with segmental duplications. Moreover, it
was observed that localization of segmental duplications
can be associated with other genomic features, such as:
simple genomic repeats (especially Alu ones), increased
GC content sequences, regions of lower recombination
rates, fragile DNA sites etc. [15–17]. Also segmental
duplications are often enriched with copy-number varia-
tions. This likely happens because of genomic instability
or reduced purifying selection acting on CNVs in those
regions [18, 19].
There are three main mechanisms responsible for seg-

mental duplications: non-allelic homologous recombina-
tion (NAHR), replication slippage (or template switching)
and non-homologous end joining (NHEJ). The mecha-
nisms of segmental duplications vary in different parts of
chromosomes. Subtelomeric SDs are enriched with inter-
chromosomal duplications and are mostly produced by
NHEJ [20]. Similarly, pericentromeric SDs are enriched
by interchromosomal duplications, but at least 30% of
all pericentromeric duplicated sequence can be traced
to ancestral duplication segments (duplicons) originat-
ing from other parts of chromosomes [21]. The two-step
model was proposed to explain such a mosaic structure of
pericentromeric SDs. Firstly, the donor loci interspersed
throughout the genome are transposed into one accep-
tor locus while in the second step, the acceptor locus is
copied partially or completely in mosaic blocks [22, 23].
The remaining SDs are called interstitial SDs and are
enriched with intrachromosomal and tandem duplica-
tions. Alu repeats are often observed in flanking regions
of those SDs. It was suggested that propagation of seg-
mental duplications in the ancestral human genome was
associated with the burst of Alu retroposition about 35–
40 million years ago [1, 15]. Later those SDs themselves
became the source of homology for further duplication
events [24, 25]. Non-allelic homologous recombination
was suggested as the major mechanism for interstitial

duplication events, however, later it was observed that
replication based mechanisms also play an important role
in SDs formation [26, 27]. Accurate prediction of a mech-
anism responsible for duplication events in a specific
locus is often a complicated task which involves accurate
inspection of local sequence features, such as: microin-
sertions/deletions, search for stretches of homology and
ancestral regions.
Even though a lot of attention has been paid to var-

ious scenarios of SDs formation and reconstruction of
complex duplication events in mosaic loci, not that many
attempts were made to study global dynamical aspects
of SDs propagation in the genome. There were several
attempts to study the past evolution of SDs in the human
genome using some mathematical approaches [5, 8, 17].
In one prominent example A-Bruijn graphs were used to
study segmental duplications as a set of duplication blocks
divided by breakpoints. Most actively duplicated blocks
(core duplicons) were predicted and studied in a context
of human evolution [8].
Our goal is to find a mathematical model for segmental

duplications propagation in the human genome to explain
the dynamical properties of this process. We based our
analysis on a network representation of SDs, which allows
us to make use of tools and concepts in network analysis.
For example we can study distributions of different net-
work characteristics, such as: node degrees, i.e. number of
edges that a node has or sizes of connected components,
i.e. isolated subgraphs where path between any pair of
nodes exists. We can simulate synthetic network growth
according to some predefined rules to suggest the model
of how the network of segmental duplications evolved.
Our aim is to find a “minimal model” which can reproduce
key network features of the observed SD network with
only a few simple rules of network growth. Through this
analysis we infer certain dynamical aspects of segmental
duplications propagation in a genome.
We start our analysis with a very simple model which

includes only a random copy-paste process with constant
duplication rate. As it turns out such a simple model can-
not explain certain features of the SD network and it
seems like duplication rates of genomic regions grow with
the number of copies of that region and some biological
explanation for this observation was suggested.

Results
Network construction
We based our analysis on segmental duplications (SDs) in
the human genome, which have been previously identified
and can be downloaded from the UCSC genome browser
[3]. Basically, we start from a list of pairwise local align-
ments longer than 1 kbpwith at least 90% identity between
different regions of the human reference genome. There
are 27348 autosomal alignments in this list. However, not
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every reported alignment refers to a unique segmental
duplication event, because, when a new duplication over-
laps with an older one, the new copy aligns not only to the
ancestral region, but also can be aligned to other copies
of the ancestral region. In general, we call such an align-
ment “secondary” when it appears as a result of an overlap
between a new duplication and an already duplicated
region.
To study this puzzling system of segmental duplications

(Sup. Figure 1) we generated a network of SDs in the fol-
lowing way: each node represents a genomic region that
is covered by (a maximal set of ) overlapping alignments.
Undirected edges link nodes if an alignment between two
regions exists (Fig. 1a). In the remainder of the text we will
denote genomic regions that correspond to nodes of the
SD network as duplicated regions and will associate net-
work characteristics to those regions directly, for example,
we consider a number of neighbors of a node as a node
degree of the corresponding duplicated region.

Network characteristics
The resulting SD network has 6656 nodes and 16042 edges
(Fig. 1b). The network can be decomposed into 1999 con-
nected components, i.e. isolated subgraphs where any pair
of nodes is connected by a path of edges. One distinc-
tive feature of the SD network is that it includes a giant
component with 1325 nodes (19.9% of all nodes) and 9678

edges (60.3% of all edges) that corresponds to multiple
overlapping duplication events enriched in some genomic
loci.
This network can be further described considering

topological network characteristics, for example the com-
ponent size distribution (Fig. 2a), which decreases follow-
ing a power-law distribution p(N) ∝ N−2.7 while the giant
component is well separated from this distribution. The
distribution of node degrees, i.e. the number of edges a
node has, has a mean of 4.8 and has an exponential tail
for large node degrees (Fig. 2b). Interestingly, the average
number of edges E in a component with N nodes follows
a power-law: E(N) ∝ N1.47 (Fig. 2c). Later we will come
back to this observation and give an interpretation of it.
Due to its size we can study the giant component in

more detail. The clustering coefficient of a node is the
number of edges between vertices in the neighborhood
of the node divided by the overall number of possible
edges between those vertices. The mean clustering coef-
ficient calculated over all nodes in the giant component
was equal to C = 0.57 in the SD network. The average
shortest path length l = 4.93. The modular structure of
the giant component was also investigated using the label
propagation algorithm [28]. It was found that the giant
component is enriched with “dense” clusters of nodes or
“modules”. A close inspection of these modules shows
that the majority of network modules were enriched with

Fig. 1 a. The scheme illustrates an example of several duplication events in the genome, the resulting alignments and the network constructed
based on those alignments. In every time step one duplication happens in the genome and a second copy is inserted in the genome nearby.
Alignments appear not only between a copied region and its copy as expected, but also when a duplication overlaps one of existing duplicated
regions (the second duplication event on the scheme). We call those alignments “secondary” alignments because they do not represent a
duplication event between aligning regions. For the network construction we grouped sets of overlapping alignments into separate duplicated
regions. Each duplicated region is represented with a node in the SD network. Edges are added if there exists an alignment between duplicated
regions. Number of edges that a node has (node degree) represents a number of copies of a corresponding duplicated region. b. The network
constructed based on SDs of the reference Human genome (SD network). The black circles and lines represent nodes and edges of the SD network.
There are 6656 nodes and 16042 edges in the SD network in total. One can see that the SD network includes multiple small connected components
and a distinctive giant component with 1325 nodes and 9678 edges in it
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Fig. 2 a. The SD network component size distribution plotted on a log-log scale using logarithmic binning (see “Methods” section). The number of
connected components decreases with their size comparable to a power-law distribution p(N) ∝ N−2.7 which is represented as a straight orange
line added as a guide to the eye. One distinctive feature of this distribution is the presence of a giant component which shows up as a single dot on
the right of the distribution. b. The node degree distribution of the SD network plotted on a log-linear scale. An exponential tail of the node degree
distribution is stressed with the orange guide to the eye line. c. For each component size observed in the SD network the average number of edges
in corresponding components is plotted on a log-log scale. An average number of edges in components grows as a power-law of a component
size: E(N) ∝ N1.47 dependence (orange line) was fitted with linear regression log(E) ∼ log(N)

intrachromosomal duplications (most of nodes in a mod-
ule belong to the same chromosome).
Even though the SD network can be described by gen-

eral topological features we want to remark that the
observed topology does not coincide with one of the
well-studied network topologies (like scale-free or ran-
dom networks) [29]. We therefore decided to simulate the
dynamics of a network growth based on some predefined
“rules” inspired by our knowledge on genome evolution to
see if such a synthetically generated network might reflect
the same network topology as the observed SD network.

Dynamical processes
In order to study dynamical aspects of the propagation
of SDs in the human genome we first constructed SD
network and then asked what dynamical process could
generate such a network. We decided to simulate possi-
ble network growth models that were inspired by copying
models [30]. Finding a simple network growth model that

would generate similar features and topology as the SD
network would shed light on the dynamical processes of
how the SD network evolved.
Our network growth model includes two processes:

• The first process represents novel duplications that
do not overlap any older ones. In the context of
network growth this results to the de novo addition
of a connected components C(2, 1) (i.e. with 2 nodes
and 1 edge) with rate π to the network (Fig. 3).

• The second process represents duplication events
that overlap existing duplicated regions and thus new
copies acquire not only alignments with the ancestral
duplicated regions, but can also give rise to secondary
alignments with the other copies of the duplicated
region (Fig. 1a). If the overlap is long enough we
expect it to be annotated as a segmental duplication
even though it corresponds to a secondary alignment.
In the context of network growth this process is
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Fig. 3 a. The scheme illustrates two processes of a network growth in our growth models. One can find a biological explanation for these two
processes in the main text. Process 1: The component C(2, 1) is added to a network with the rate π . Process 2: Each node i in the network can be
duplicated with the rate δi . We call the pre-existing to be duplicated node a “mother” node, while the new node is called a “daughter” node. A
“daughter” node gets at least one edge linked to a “mother” node by default and inherits connections from the “mother” node to its neighbors each
with the probability f. In other words, each neighbor of a “mother” node can become a neighbor of a “daughter” node with the probability f, while
the edge between “mother” and “daughter” nodes is always added. The difference between the Uniform Copying Model (UCM) and the Preferential
Copying Model (PCM) is in defining the duplication rates of nodes δi . In the UCM the node duplication rates are constant: δi = δ for all nodes, while
in the PCM the duplication rates are linearly proportional to a node degree of the corresponding node: δi = δki where ki is a node degree of the ith
node. b. We denote components with N nodes and E edges as C(N, E). This notation does not always correspond to a unique possible graph
topology, for example, there is only one topology for C(2, 1) while there are two for C(4, 3). Components with N nodes and any possible number of
edges are denoted as C(N, ∗) which is the same as all components of size N

represented by a duplication of an existing “mother”
node (that by definition has copies elsewhere in the
genome) and the new “daughter” node inheriting
some fraction of neighbors from the “mother” node
in addition to the edge between the “mother” and the
“daughter” nodes that is added by default (Fig. 3). In
our probabilistic model we added a parameter f that
represents the probability of each edge connected to
the “mother” node to be inherited by the “daughter”
node. After a duplication the node degree of a
“daughter” node kd ∈ 1, 2, . . . , km + 1 where km is the
node degree of a “mother” node (Fig. 3).
Node duplications happen with the rates
proportional to a second parameter δ. However, since
only the ratio of the two rate parameters δ/π matters
for simulations we assume π = 1 in the remainder of
the text (see “Methods” section).

The uniform copyingmodel (UCM)
The node duplication rate can be parameterized in mul-
tiple ways. In the simplest model, we assume that the
duplication rate for all nodes is the same, δi = δ. We
will further refer to this model as the Uniform Copying
Model or UCM (Fig. 3). The connected component size
distributions in networks grown using the UCM follows a
power-law distribution p(N) ∝ N−1. Although disguised

by finite-size effect in Fig. 4a, this can bemore clearly seen
in longer simulations in Sup. Figure 2. In the Supplemen-
tary text we also derive this behavior analytically. Since the
connected component size distributions of synthetic net-
works are different from the one of the SD network (the
power-law exponents are different and they lack promi-
nent giant components) we assume that the SD network
evolved according to another network growth model.

The preferential copyingmodel (PCM)
The UCM was not sufficient to explain the SD network
topology. This motivated us to study a different dynam-
ics of copying models. The next simplest copying model is
the one where a duplication rate of a node i depends lin-
early on the node degree ki: δi = δki. In this copyingmodel
highly connected nodes will be duplicated with preference
and we will further refer this model as the Preferential
Copying Model or PCM (Fig. 3).
Our analytical solution predicts the power-law distribu-

tion p(N) ∝ N−1−f for the connected component size
distribution. This behaviour is also observable in simu-
lations of the PCM. The power-law tail gets obvious for
pooled long simulations (see Sup. text, Sup. Figure 2).
There is no reason to reject the PCM based on the

connected component size distributions observed in syn-
thetic networks. In all the PCM simulations observed
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Fig. 4 The connected component size distributions observed in pooled (see “Methods” section) simulations of network growth based on UCM and
PCM growth models. In all cases we used the parameter f = 0.5 and δ values listed in the legend. An orange guide to the eye line is added to
illustrate the slope observed in the connected component size distribution of the SD network (p(N) ∝ N−2.7). a. The component size distributions
observed in the UCM simulations differ from the one observed in the SD network. Both slopes are different and no peaks that correspond to giant
components are observed in the UCM simulated networks. b. The component size distributions observed in the PCM simulated networks are similar
to the one of the SD network. All distributions independently of δ value follow a similar slope on a log-log scale to the one of the SD network for
component sizes observed in the SD network. Moreover, both the PCM synthetic networks and the SD network include giant components. It can be
seen as a peak at the right side of the component size distributions of the PCM simulated networks

component size distributions followed a similar slope on
a log-log scale to the one of the SD network (Fig. 4b).
Moreover, giant components were present in the PCM
simulated networks similarly to the SD network (Fig. 4b).

Estimation of the parameters for the PCM
Tomake further conclusions on relatedness of the PCM to
the evolution of the SD network, we inferred values for the
parameters f and δ such that a PCM generated network
matches the characteristics of the observed SD network.
The average fraction of neighbors f inherited from a

“mother” node was predicted using an interesting obser-
vation. We observed that the average number of edges E
in connected components generated by the PCM grows
with the number of nodes N according to E ∝ N1+f when
N → ∞. This is in contrast to a more complicated depen-
dence that can be analytically predicted for simpler UCM
(see Sup. text, Sup. Figure 3). We therefore used a linear
regression of log(E) ∼ log(N) to estimate the power-
law exponent and find that the power-law E ∝ N1.47

fits best to the observations, thus suggesting the value
freg = 0.47 (Fig. 2c). The parameter δ was predicted using
Approximate Bayesian Computation (ABC) to be equal to
δABC = 5.1 ∗ 10−4 with the 95% confidence interval for
the parameter value: δABC ∈[ 3 ∗ 10−4; 6.6 ∗ 10−4] (see
“Methods” section).
Independent of the above methods, an alternative

method was applied to infer the values of f and δ parame-
ters. Based on the PCMwe expect that when a duplication
happens in a component C(2, 1) we get either a com-
ponent C(3, 3) or C(3, 2) with probabilities f and 1 − f ,

respectively. Moreover, according to the PCM an over-
all rate of further duplications in C(3, 3) is 1.5 times
higher than in C(3, 2) components because the sum of
node degrees equals 6 and 4, respectively. All bigger com-
ponents C(> 3, ∗) appear as a result of one or more
duplications in C(3, ∗) components. New C(2, 1) com-
ponents appear with the rate π = 1. For a mathemat-
ical analysis of the temporal dynamics we will denote
the expected numbers of such components at time t as
nt(2, 1), nt(3, 2), nt(3, 3) and nt(> 3, ∗) respectively. As
described above their time dependence is given by the
following set of partial differential equations:

∂nt(2, 1)
∂t

= 1 − 2δnt(2, 1),

∂nt(3, 2)
∂t

= 2δ(1 − f )nt(2, 1) − 4δnt(3, 2),

∂nt(3, 3)
∂t

= 2δfnt(2, 1) − 6δnt(3, 3),

∂nt(>3, ∗)

∂t
= 4δnt(3, 2) + 6δnt(3, 3)

This system of equations leads to:

nt(2, 1) =
(
1 − e−2δt)

2δ
,

nt(3, 2) = (1 − f )
(
1 − 2e−2δt + e−4δt)

4δ
,

nt(3, 3) = f
(
1 − 1.5e−2δt + 0.5e−6δt)

6δ
,

nt(>3, ∗) = f − 9 + 3(4− f )e−2δt− 3(1− f )e−4δt− fe−6δt

12δ
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There are 4 equations and 3 unknown variables f , δ and
t in this system. Therefore the goal is to find f , δ, t values
that minimize a certain loss function. Here we used the
weighted city block distance L:

L =
4∑

i=1

|�nt,i − �nsd,i|
�nsd,i

between the following vectors:

�nt =

⎛

⎜
⎜
⎝

nt(2, 1)
nt(3, 2)
nt(3, 3)
nt(>3, ∗)

⎞

⎟
⎟
⎠ and �nsd =

⎛

⎜
⎜
⎝

nsd(2, 1)
nsd(3, 2)
nsd(3, 3)
nsd(>3, ∗)

⎞

⎟
⎟
⎠

where nsd(N ,E) is a number of components C(N ,E) in
the SD network. Minimization of a loss function L over
f , δ and t variables was performed with the Nelder–Mead
method which converged to its minimum at fmin =
0.52; δmin = 3.2 ∗ 10−4; tmin = 1320.

Both independent methods: regression/ABC and min-
imization result in consistent predictors of the model
parameters (freg = 0.47, δABC = 5.1 ∗ 10−4) and (fmin =
0.52, δmin = 3.2 ∗ 10−4). However, for future simulations
we will use only the f = freg = 0.47 and δ = δABC =
5.1 ∗ 10−4 values.
Different topological characteristics of the PCM simu-

lated network (f = 0.47; δ = 5.1 ∗ 10−4) were compared
with ones of the SD network (Fig. 5). Those networks
are very similar in both connected component size and
node degree distributions. Moreover, we have no reason
to reject the hypothesis that the giant component of the
SD network comes from the distribution of the biggest
components of the PCM synthetic networks (empirical
p-value = 0.21) (Sup. Figure 4).
Moreover, characteristics of the giant component in the

SD network were compared with other previously stud-
ied randomly generated networks, i.e. the configuration

Fig. 5 Different topological characteristics of the SD network (orange dots) and the PCM simulated networks with inferred parameters
f = 0.47, δ = 5.1 ∗ 10−4 (blue dots) are compared. Multiple PCM simulations were pooled together to get a better resolution for the distributions.
a. The node degree distribution is plotted on a log-linear scale with the linear binning. We can see that the exponential tail is observed in both
synthetic and the SD networks and the power of exponents is the same. b. The connected component size distributions plotted on a log-log scale
with the logarithmic binning. The slope observed in simulations is the same as the one of the SD network for all component sizes observed in it. The
peak that corresponds to the giant component is also present where expected. c. The average number of edges in components of different sizes is
plotted against a component size on a log-log scale. We can see that the average number of edges grows as a power-law of a component size:
E ∝ N1.47 (red line) in simulated and the SD networks
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model network (random network of a given degree
sequence), random graph, scale-free network and the
giant component of the PCM synthetic network. All these
networks were of the same or comparable size (number
of nodes and edges) as the SD network (see “Methods”
section). The giant component of the SD network is more
similar to the giant components observed in the PCM
simulations than to the other networks that we used in
comparison (Table 1).
Overall, we found convincing evidence that the PCM

growth results in networks topologically similar to the SD
network. This means that the probability of a duplicated
region to be duplicated again grows linearly with the num-
ber of copies (node degree) of that region. More precisely,
the duplication probability grows linearly with the num-
ber of loci that share long homologous sequences with the
region, including secondary alignments. There are several
possible explanations for such growth.

Reasons for the preferential copyingmodel
The length of duplicated regions could be a major factor
explaining why duplication rates grow linearly with node
degree. Wemay expect that the probability of a duplicated
region to overlap a new SD would grow with the length of
the duplicated region. We therefore studied the effect of
length on the duplication rates and the factors influencing
it. One of the ways to find such factors is to select those
variables (features of duplicated regions) that are impor-
tant in the prediction of a response variable, i.e. the length
of duplicated regions. By using the random forest regres-
sion and permutation tests we found that there are several
characteristics of duplicated regions that significantly (p-
value < 0.01) affect its length, such as: number of double
edges and self-loops in the unfiltered SD network, node
degree and mean copy-number of a duplicated region (see
“Methods” section for details).

Table 1 Different characteristics of Erdős–Rényi random graph,
scale-free network, configuration model network (the same node
degrees as in the giant component of the SD network) and the
giant components (GC) observed in the SD and PCM simulated
networks are compared

Type Clustering coefficient Shortest path

SD network GC 0.57 4.93

PCM network GC 0.18 3.5

Random network 0.012 2.95

Scale-free network 0.031 2.83

Configuration network 0.08 3.02

These characteristics include: a mean clustering coefficient and an average shortest
path length. All networks/components in our comparison were of the same size (see
“Methods” section). Among the networks we studied the PCM synthetic network is
the most similar to the SD network (even though these are rather distinct)

For these significant factors we can reason why they play
a role in our problem. With every new duplication of a
duplicated region (which effects its node degree andmean
copy-number) or duplication that “jumps” into an already
duplicated region (effects the number of self-loops and
double edges) we expect an increase of a duplicated region
length. So the length of a duplicated region is influenced
by the interplay of several factors, however, we can see that
the mean length of a duplicated region grows linearly with
the node degree of a duplicated region (Sup. Figure 5).
Thus we can assume a mechanistic explanation: the pref-
erential duplication rates appear because the probability
of a new SD to overlap a duplicated region is higher for
longer duplicated regions.
The node degree represents the number of long

sequences in other genomic loci homologous to a cor-
responding duplicated region. These stretches of long
homology increase the probability for genomic rear-
rangements (including duplications). Thus with growing
node degree the probability of a duplicated region to be
involved in homology-mediated genomic rearrangements
also grows and that might be another factor explaining the
preferential duplication rates of the PCM.
In the previous sections we studied only the SDs that

were fixed in the human genome. However, the fixa-
tion process of new duplications can also be affected
by the SDs that were duplicated before. To study this
effect copy-number variations (CNVs) observed in 2504
individuals were downloaded from the 1000 Genomes
project [31]. All autosomal CNVs were split into 3 groups
based on their frequency in the human population. There
were rare, medium and high frequency CNVs with cor-
responding minor allele counts (MACs) in three ranges:
[1; 3], [4; 15] and [16; 2504]. The duplicated regions
(nodes) were also split into 4 groups according to their
node degree in the SD network: [1; 1], [2; 5], [6; 30]
and [31; 140]. In both cases the intervals were chosen
such that the number of observations in each interval is
comparable. Since both distributions are highly skewed
towards small values the intervals get longer for larger
values.
For duplicated regions that belong to each group we

studied frequencies of all CNVs that overlap those regions
(Fig. 6). We can see that medium and high frequency
CNVs are enriched in duplicated regions in comparison
with the rest of the genome.Moreover, the fraction of high
frequency CNVs grows with a node degree of a duplicated
region, while the fraction of rare CNVs decreases. This
can result from interactions with multiple factors, such as:
the local duplication rates, recombination rates, reduced
purifying selection in highly duplicated regions etc. (see
“Discussion” section). However, it is likely that the prob-
ability of a CNV to be fixed in a population is higher if it
overlaps high node degree duplicated region. This might
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Fig. 6 The characteristics of CNVs that overlap different genomic regions. These genomic regions include duplicated sequences of different node
degrees (specified on x axis) and the remaining not duplicated parts of the genome. CNVs that overlap different genomic regions are split into 3
groups based on a frequency and their fractions are plotted in different colours. Rare CNVs (1 ≤ MAC ≤ 3), medium frequency CNVs (4 ≤ MAC
≤ 15) and high frequency CNVs (16 ≤ MAC ≤ 2504) are colored in blue, orange and green respectively. The fraction of high frequency CNVs is
higher in all duplicated regions than in the rest of the genome and this fraction grows with the node degree of duplicated regions

be another factor explaining the preferential duplication
rates of the PCM.

SD networks of other species
With more than 90% identity between copies the segmen-
tal duplications we detect today in our genome appeared
about 40 million years ago or later if we assume neural
evolution, roughly corresponding to the timeline after the
divergence of the New and Old World monkeys [1]. We
therefore got interested in the question whether the SD
networks of other species which evolved independently
from humans are similar to the human SD network or may
have resulted from other growth scenarios. We therefore
downloaded the latest reference genomes of 8 additional

species: gorilla (Gorilla gorilla gorilla), gibbon (Nomascus
leucogenys), mouse (Mus musculus), rat (Rattus norvegi-
cus), dog (Canis lupus familiaris), chicken (Gallus gallus),
zebrafish (Danio rerio) and worm (Caenorhabditis ele-
gans). The SEDEF tool was used to de novo annotate SDs
in the genomes of these species (see “Methods” section)
[32]. For comparison we also used the same tool for the
human genome. Based on the SDs identified by SEDEF
the SD networks were constructed for the above species
including human. The human SD network built from
SEDEF predicted SDs was compared with the original
one (Sup. Figure 6a). The SEDEF predicted SD network
is larger both in terms of the number of nodes and edges
(Table 2), however, almost all duplicated regions from

Table 2 Characteristics of the SD networks of different species

Human Gorilla Gibbon Mouse Rat Dog Chicken Zebrafish Worm

GS (109 bps) 2.88 2.78 2.65 2.46 2.62 2.2 0.96 1.35 0.083

Num. of nodes 12,579 30,935 29,376 14,766 35,919 18,438 3,169 34,445 1,572

Num. of edges 37,319 42,643 443,916 166,145 183,618 62,308 17,102 601,289 2,199

Intra- (%) 19 46 7 8 24 7 36 9 37

Tandem (%) 6 25 2 2 10 3 8 1 17

f value 0.48 0.43 0.57 0.42 0.42 0.33 0.29 0.35 0.32

These include: genome size (GS) excluding sex chromosomes, number of nodes, number of edges, fraction of intrachromosomal edges and tandem edges among all edges
of a network and regression-based predicted f values. An edge is denoted as tandem if both duplicated regions linked with the edge are located at the same chromosome at
the distance < 5 ∗ 105 bps
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the original SD network are present in it (see “Methods”
section). Moreover, the original and SEDEF predicted
human SD networks are similar in all topological char-
acteristics that we studied including the slope of the
connected component size distribution (Sup. Figure 6a).
The resulting SD networks of different species are quite

distinct in their sizes and other network characteristics
(Table 2). The component size distributions, on the other
hand, are similar both in terms of the slope of the distri-
butions and in the presence of a giant component (Fig. 7).
Similarly to the human SD network we also observed a
power-law growth of the average number of edges with

component size in all species. Corresponding regression-
based predicted values of the parameter f are listed in the
Table 2. When we calculated Bray-Curtis pairwise dissim-
ilarities between connected component size vectors we
found that the species cluster similarly to their phyloge-
netic relationships, for example, primate and mammalian
clusters are present (see “Methods” section) [33]. We note
that the shared common SDs cannot be responsible for
such similarities between the SD networks of relatively
distant species. Thus, based on our data, the topology
of an SD network seems to be reflective of phylogenetic
relationships among species (Fig. 7d) indicative of shared

Fig. 7 The connected component size distributions plotted for the SD networks of different species on a log-log scale. The red lines in panels (a)-(c)
represent the slope observed in the SD network of human. Observed distributions follow this slope on a log-log scale and a giant component is
observed in most species. a. The group of primate species that includes human, gorilla and gibbon. b. The group of other mammalian species that
includes rat, mouse and dog. c. The group of distinct species that do not belong to mammals: chicken, zebrafish and C. elegans. The SD network of
C. elegans is the smallest one, thus we do not see a prominent giant component as in other species. d. The heatmap of similarities (1− Bray-Curtis
dissimilarities) between connected component size vectors in all studied species. The dendrogram on top corresponds to hierarchical clustering of
the species according to their similarities. We can see that the dendrogram, to some extent, reflects phylogenetic relationships between species (for
example, presence of primate and mammalian branches)
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slowly evolving molecular mechanism responsible for the
continuous spread of segmental duplications.

Discussion
We made an effort to study the dynamics of a globally
acting propagation process for segmental duplications in
the human genome. To do this we came up with a math-
ematical formalization in terms of networks and network
growth processes. We generated the SD network from
annotated SDs; in this network nodes represent genomic
regions and edges indicate the presence of a segmental
duplication. This gave us the opportunity to investigate
several network growth models and reason about their
relevance in describing the naturally observed process.
The simplest copying model with equal probabilities of
node duplications (UCM) is not sufficient to explain the
SD network topology. However, a more complicated pref-
erentially copying model (PCM) with preferential node
duplication rates nicely fits all topological characteristics
of the SD network, especially if taking into account that
the growth model includes only 2 parameters (f and δ).
Based on the PCM the duplication rate of already dupli-
cated regions grows linearly with the number of copies of
those regions (more precisely, with the number of loci that
share long homologous sequences with those regions).
The PCM was accurate in predicting the SD network

characteristics even without inclusion of additional pro-
cesses that reflect real life events, such as: deletions of
duplicated regions (the loss of nodes in the SD net-
work), decrease of homology below the detection thresh-
old (the loss of edges), duplication where a new copy
jumps into an already duplicated region (emergence of
new edges between existing nodes). Moreover, we did
not include separate processes that correspond to dif-
ferent duplication mechanisms as they are described in
the literature (duplication dynamics is different in peri-
centromeric, subtelomeric and other genomic regions)
or different processes corresponding to intra- and iner-
chromosomal duplications (see “Background” section).
The explicit addition of such processes to the model
would make the parameterization heavier while biologi-
cal conclusions more vague. However, the two-step model
explaining the mosaic structure of pericentromeric SDs
assumes that genomic segments are first translocated into
one genomic locus (see “Background” section) and this
process is not included in the PCM. We found that exclu-
sion of pericentromeric SDs from the analysis does not
change the SD network topology substantially thus keep-
ing our predictions valid (Sup. Figure 6b). Moreover, the
topology of the SD network does not change significantly
if we try alternative strategies of the SD network construc-
tion or add new processes to network growth models (see
“Methods” section).

We suggested some interpretations of why the network
evolution of the SD network follows a model with prefer-
ential node attachment. A mechanistic explanation could
be that with growing node degree the length of the cor-
responding duplicated region also grows, thus the proba-
bility that the next duplication will overlap that duplicated
region also grows. Secondly, growing node degree of a
duplicated region is also associated with growing proba-
bility of genomic rearrangements (including duplications)
in that locus. Finally, we observed that the frequency of
copy-number variations in the human population grows
with the node degree of a duplicated region it overlaps
with. This might be attributed to different scenarios: over-
all genomic instability of a duplicated region that has mul-
tiple copies, recurrent duplications happening in unstable
genomic sites, decreased purifying selection against new
duplications in those regions or positive selection for ben-
eficial gene duplications and decreased recombination
rates that reduce an efficiency of the purifying selection.
In all such cases, CNVs in high node degree duplicated
regions are more likely to be fixed in human population.
This might explain the preferential duplication rates in
PCM.
It was found that the SD network topology is quite con-

sistent among relatively distant species, at least, in terms
of component size distribution. Moreover, a topology of
an SD network seems to be a biologically meaningful
characteristic of species that reflects phylogenetic rela-
tionships and can further be studied.
One more observation that comes from the PCM is that

the number of nodes in the network at some point starts to
grow hyperbolically and nodes accumulate almost exclu-
sively in the giant component. This means that in the
PCMwe do not have an equilibrium steady state. Thus the
overall length of duplicated regions in the genome should
also reach a hyperbolic growth at some point leading to
an “SDs explosion”. If this prediction is correct it is curi-
ous how this problem is addressed in natural evolution
of genomes without any notable signs of this effect in the
topology of the SD network. One possible scenario is that
selection might act only on high node degree duplicated
regions (very right tail of the node degree distribution)
by decreasing the probability for further duplications.
However, a constant rate of nodes/edges loss would slow
down but not prevent the hyperbolic growth. To stop this
growthmore complex scenarios have to be considered, for
instance a time dependent rate of duplications or loss.
After all, we think that the network formalization of SDs

is a good way to further study the evolution of SDs in
human or other species. Moreover, the SD network might
be useful in reconstructing (at first approximation) the
order of duplication events in the genome. Based on the
PCM the new “daughter” node inherits some fraction (f )
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of edges from its “mother” node, thus instead of a man-
ual reconstruction of events (usually very complicated
task) one could solve an algorithmic task of assigning
directionality to edges based on neighbors of a node.

Conclusions
We constructed the network of human segmental dupli-
cations and studied its characteristics. Through our math-
ematical considerations we were able to identify a model
(the preferential copying model or PCM) that can while
making minimal assumptions on the general dynamics
reproduce the network characteristics of the SD network.
The defining feature of this model is that the probabil-
ity of a duplicated region to be duplicated again grows
linearly with the number of its copies. We suggested
several biological mechanism that could be responsible
for such a behavior. Firstly, highly duplicating genomic
regions are longer thus more likely to overlap next dupli-
cation events; secondly, there is fixation bias for CNVs in
highly duplicated regions; and thirdly, duplicated regions
serve as hotspots for genomic rearrangements mediated
by additional duplications. Similar SD networks were sta-
bly reproduced for other species showing that preferential
duplication processes might be universal in vertebrates.
It is well understood that gene duplication is a major

force in evolution. The existence of a duplicated gene or
genomic region allows evolutionary changes in protein
function and regulatory circuitry otherwise not accessi-
ble [34]. Often this process is observed and analysed with
the focus on one gene or locus. Our consideration on the
implied network of segmental duplications allowed us to
draw more general conclusions on dynamical properties
of the duplication process.

Methods
Genomic data
We used already annotated segmental duplications (SDs)
in the reference human genome in our analysis [3].
A corresponding list of GRCh38 annotated SDs was
downloaded from the UCSC genome browser website
(https://genome.ucsc.edu). This list includes information
on the SDs, i.e. longmatching sequence segments between
different regions of the repeat masked reference human
genome and some other metadata as for example the
length of the sequences and their identity level. For our
analysis we disregard the sex chromosomes because we
expect different evolutionary forces to act on these chro-
mosomes.
For our analysis of non-human genomes the cor-

responding reference genomes were downloaded from
UCSC genome browsers. The list of reference genomes
includes: hg38 (human), gorGor4 (gorilla), nomLeu3 (gib-
bon), mm10 (mouse), rn6 (rat), canFam3 (dog), galGal6
(chicken), danRer11 (zebrafish), ce11 (C. elegans). We

used the SEDEF tool to predict SDs in these genomes
(autosomes) and to compare annotated SDs from UCSC
genome browser with predicted ones where possible [32].
The UCSC annotated SDs are almost entirely covered
with SEDEF predicted ones. In fact, the number of SEDEF
predicted SDs was always higher (Sup. Figure 6). This is
due to the fact that SEDEF allows reporting of SDs not
satisfying the criteria: > 1kbp and > 90% sequence iden-
tity and the usage of strict filtering criteria for UCSC
annotated SDs (agreement ofWGAC andWSSDmethods
predictions, FISH validation etc.) [3, 4].
The CNVs that were used to study a fixation pro-

cess were downloaded from the 1000 Genomes project
FTP server (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
phase3/integrated_sv_map/) [31]. We restrict ourselves to
the autosomal CNVs in our analysis.

Network analysis
As described in the “Results” section we generated a net-
work of SDs. Each node of the SD network represents a
duplicated region of the genome that covers a maximal
set of overlapping alignments. Undirected edges connect
nodes if an alignment between two duplicated regions
exists (Fig. 1a). In general we used this network after trim-
ming multiple edges between any pair of nodes (double
edges) and self-loop edges. Only once we used character-
istics of the untrimmed SD network as indicated in the
text.
We convinced ourselves that qualitative and to some

extend also quantitative properties of our network anal-
ysis stay invariant under slight changes of the used cut-
offs or considering uncertainties in the definition of the
exact borders of segmental duplication. For example, we
constructed the SD network based on duplications with
reduced length and sequence identity cut-offs (length >

500 bps, sequence identity > 70%) (Sup. Figure 7, Sup.
Table 1) [5]. Moreover, we parameterized the process of
merging SDs into duplicated regions to see if our SD
network is stable under different strategies of its con-
struction. To do this we considered padded SDs, i.e. we
increased the annotated length of SDs by P padding bps
on both sides. Negative or positive values of P resulted
in shorter or longer SDs, respectively., While P = 0
corresponds to our original merging process, considering
padded SDs will generate slightly different networks, since
SDs will overlap less or more often, respectively. We also
checked if our predictions about network growth models
are still valid if we add a process of edges loss to UCM
and PCM simulations (Sup. Figure 8). To do this, at each
time step of a network growth process we removed each
edge of a synthetic network with pre-defined probability r.
None of these factors affected our results substantially or
changed our conclusions about dynamics of duplication
process (Sup. Figure 7-9).

https://genome.ucsc.edu
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/
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All the steps of our network analysis are performed
using the LightGraphs.jl package in the Julia programming
language [35, 36]. Except for simple feature extraction
and modification of the SD network we used this package
to calculate the mean clustering coefficient, the average
shortest path length, study the modularity of the network,
use configurationmodel, generate randomnetworks using
the Erdős–Rényi model and scale-free networks using the
Barabási–Albert model [29, 37, 38].
To compare characteristics of different synthetically

generated networks with the giant component of the SD
network we considered networks of the same size (both
the same number of nodes and edges where possible).
There is no explicit way in the Barabási–Albert model to
specify the number of edges in a resulting synthetic net-
work. Thus we fitted the parameter value k (a number of
edges that a new node forms with a preferential linkage)
to get the size of a resulting network close to the size of
the SD network giant component; this was achieved by
choosing k = 7 [29].

Data visualization
When we plot distributions on a log-log scale logarithmic
binning is used to reduce stochastic noise in the heavy tail
of distributions. Bins are of the same size on a log-scale.
For each bin the value ni/(Nbi) is calculated and plotted
on log-scale, where ni is a number of observations in ith
bin, N is an overall number of observations, bi is the ith
bin length which grows exponentially with i.
To get a better statistics for distributions associated with

synthetic networks we run 500 simulations with the same
model, aggregated all networks and plotted distributions
of resulting pooled networks.
The network visualization is done with the GraphPlot.jl

package in Julia.

Network growthmodels
We construct our models of network growth based
on specific copying mechanism as described in the
“Results” section. There are two types of processes hap-
pening during the network growth: an addition of a new
connected component C(2, 1) to a network or duplica-
tion of an existing node and inheritance of some fraction
of its edges. Our assumption is that all genomic loci can
be duplicated independently of other duplication events.
Thus we used the Kinetic Monte Carlo (KMC) method to
run a simulation of network growth [39].
For a graph with N nodes and E edges at time point

t, a total of N + 1 possible processes have to be consid-
ered. First the addition of a new component C(2, 1), with
the rate π , and the duplications of any one of the existing
nodes, with rates δi. The rates of all possible processes are
represented as a vector �r(t) of length N + 1. For the UCM
we use δi = δ thus the rates vector:

�rUCM(t) =

⎛

⎜
⎜
⎜
⎝

π

δ
...
δ

⎞

⎟
⎟
⎟
⎠

For the PCM we use δi = δki where ki is a node degree of
node i thus the rates vector:

�rPCM(t) =

⎛

⎜⎜
⎜
⎝

π

δk1
...
δkN

⎞

⎟⎟
⎟
⎠

One ofN+1 possible processes at time point t is picked at
random with probabilities proportional to the given rates
�r(t). An average waiting time before this event happens
is exponentially distributed. It can be calculated as �t =
− ln(u)/

(∑
i �ri(t)

)
, where u is sampled randomly from the

(0, 1] interval. Since only relative rates matter in the KMC
we used π = 1 in all simulations and fitted only the δ

value.
All network growth simulations terminate when a num-

ber of nodes in a network reaches some predefined
threshold (often the number of nodes in the observed SD
network).

Feature importance prediction
At some point we analyzed the factors that affect the
length of duplicated regions. To do this we used the
random forest regression algorithm where the length of
duplicated regions (response variable) was predicted from
several characteristics of duplicated regions (predictor
variables) from the untrimmed SD network. These char-
acteristics include: the node degree, the size of a con-
nected component the node belongs to, the mean copy
number of the duplicated region, a fraction of intrachro-
mosomal edges from all edges of the node, the num-
ber of self-loop edges and the number of double edges.
The last two characteristics can only be retrieved from
the untrimmed SD network. The percent of variance
explained using 10-fold cross-validation was R2 ∼ 67%.
We were interested in finding characteristics of dupli-

cated regions that are important in its length prediction
using the random forest algorithm. Permutation based
importance values that are assigned to predictor vari-
ables by the random forest algorithm are usually affected
by a number of categories and a scale of a variable. To
overcome this problem the response variable was shuf-
fled 1000 times while keeping predictor variables intact.
Each time the random forest algorithmwas trained on this
data and all importance values for predictor variables were
measured. Then for each predictor variable i an empirical
p-value was calculated in the following way:
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p =
∑Np

j=1 I
(
imppj [ i] > impr[ i]

)

Np

where Np is the number of permutations, I() is an indi-
cator function, impp[ i] and impr[ i] are the ith feature
permutation based importance values observed with and
without the response variable shuffling respectively [40].
At significance level α = 0.01 the node degree, the mean
copy number of a region, the number of double edges
and self-loops are significant in a duplicated region length
prediction.

PCM parameters optimization
Approximate Bayesian Computation (ABC) is a Bayesian
method to approximately predict posterior parameter dis-
tributions when an analytical formula for a likelihood
function can’t be derived [41]. To apply ABC a rejection
criteria (specific distance measure) and a tolerance level
(distance threshold) are needed that allow to say if the
resulting outcome of a simulation is similar to a real obser-
vation or not. In our case we compared the connected
component size distributions in the SD and the PCM
simulated networks. As a rejection criterion we used the
Bray-Curtis dissimilarity [33].
The Bray-Curtis dissimilarity between a sorted arrays of

N biggest connected component sizes is calculated in the
following way:

DBC(X,Y ) =
∑N

i=1 |Xi − Yi|
∑N

i=1 (Xi − Yi)
.

We limited the number of components to N = 500
because the Bray-Curtis dissimilarity can only be calcu-
lated for arrays of the same length. This can’t be guaran-
teed in our simulations because network growth simula-
tions terminate when a number of nodes in simulated net-
work reaches the threshold independently of connected
components number. We used ABC method from the
ApproxBayes.jl Julia package to run 5000 simulations of
the PCMwith f = 0.47 and δ values taken uniformly from
the interval [ 5∗10−5; 9∗10−4]. The rejection criterion is
satisfied when the Bray-Curtis dissimilarity between com-
ponent size vectors of simulated and the SD networks
DBC (sim, SD) < 0.2 (tolerance level). Based on ABC the
parameter δ = 5.1 ∗ 10−4 with 95% confidence interval
being δ0.95 =[ 3 ∗ 10−4; 6.6 ∗ 10−4].
To estimate the PCM parameter values the loss func-

tion was minimized with respect to f , δ and t parameters.
The Nelder–Mead method was used from Optim.jl Julia
package for this purpose [42, 43].
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