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Abstract

Abstract
In various astrophysical observations, the n = 2 → 3 transitions of highly charged iron
appear in the soft x-ray region as an unresolved transition array (UTA). The structure
of the UTA is directly related to the ionization balance of the plasma and is therefore
of high astrophysical interest. The models used to analyse the astrophysical spectra are
highly sensitive to the input atomic data, which is mainly based on theoretical calcula-
tions. Therefore high precision laboratory measurements are needed for benchmarking
theory.
Within this thesis, a systematic measurement over the whole UTA energy range has
been conducted to determine the transition energies and rates for the thirteen-fold ion-
ized iron (Fe13+), an important constituent of the UTA. The ions of interest were pro-
duced by an electron beam ion trap and resonantly excited by the synchrotron radiation
of PETRA III. By utilizing an ion-extraction beamline, the radiative as well as the au-
toionization decay channels have been observed in parallel. 31 hitherto unexplored
transitions of the UTA have been resolved with a relative accuracy on the level of 40
parts-per million, serveral orders of magnitude higher than the accuracy obtained in
the astrophysical observations. An additional high resolution measurement lead to the
extraction of the natural linewidth, which has been used to determine the absolute ra-
diative and autoionization rates of two prominent lines of the UTA. A comparison with
state-of-the-art theory revealed a significant 80(7) meV offset in transition energies as
well as a three to four-fold smaller natural linewidth, leading to the question how reli-
able the astrophysical models are.
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Abstract

Kurzzusammenfassung
In verschiedenen astrophysikalischen Beobachtungen erscheinen die n = 2→ 3 Übergänge
von hochgeladenem Eisen im weichen Röntgenbereich als unaufgelöstes Übergangs-
feld (engl. unresolved transition array, UTA). Die Struktur des UTA steht in direktem
Zusammenhang mit der Ionisationsstruktur des Plasmas und ist daher astrophysikalisch
von hohem Interesse. Da die Modelle, die zur Analyse der astrophysikalischen Spektren
verwendet werden, sehr empfindlich auf die Atomstrukturdaten , welche hauptsächlich
aus theoretischen Berechnungen bestehen, reagieren, sind hochpräzise Labormessun-
gen zur Überprüfung der Theorie erforderlich.
Im Rahmen dieser Arbeit wurde eine systematische Messung über den gesamten UTA-
Energiebereich durchgeführt, um die Übergangsenergien und Übergangsraten für das
dreizehnfach ionisierte Fe13+, einen wichtigen Bestandteil des UTA, zu bestimmen. Die
Ionen wurden von einer Elektronenstrahl-Ionenfalle produziert und durch die Syn-
chrotronstrahlung von PETRA III resonant angeregt. Durch die Verwendung einer
Ionen-Extraktionsstrahlführung wurden sowohl die Radiativen- als auch die Autoion-
isationszerfallskanäle parallel beobachtet. 31 Übergänge der UTA wurden mit einer
relativen Genauigkeit von 40 ppm aufgelöst, mehrere Größenordnungen besser als die
Genauigkeit der astrophysikalischen Beobachtungen. Eine zusätzliche hochauflösende
Messung ermöglichte die Bestimmung der natürlichen Linienbreite, die zur Bestim-
mung der absoluten Radiativen- und Autoionisationsraten von zwei starken Linien des
UTA verwendet wurde. Ein Vergleich mit der aktuellen Theorie ergab einen signifikan-
ten 80(7) meV-Offset der Übergangsenergien sowie eine drei- bis viermal kleinere natür-
liche Linienbreite, wodurch die Zuverlässigkeit der astrophysikalischen Modelle in Frage
gestellt wird.
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1 Introduction

1 Introduction

Spectroscopy is the analysis of the interaction between electromagnetic waves and mat-
ter such as atoms or ions. It is the most important way to study the interaction of light
and matter. Each element exhibits an unique spectroscopic fingerprint and thus enables
insights into the internal structure of atoms by observation of the specific emitted or
absorbed wavelengths.
One of the most historically educational experiments is the observation of the spectrum
of the sun. In general it can be modelled as a continuous black body spectrum with an
effective temperature of 5780 K. Detailed analysis of the solar spectrum however reveals
distinct dark lines in the aforementioned continuous spectrum. First systematic studies
were conducted by Joseph von Fraunhofer in 1814 . In his analysis, more than 570 lines
were identified, now known as the Fraunhofer lines [1]. The most principal lines were
labelled with capital letters A to K. The origin of the Fraunhofer lines remained unex-
plained until half a century later Kirchhoff and Bunsen discovered that the characteristic
features in the sun’s spectrum coincide with emission lines of various elements. They
concluded that for example the nowadays well known „D-line“in the solar spectrum is
caused by the absorption of light by sodium [2].
Just like that spectroscopy has proven countless times in history to be a fundamental
tool for the analysis of matter. The Fraunhofer lines are assigned to the optical region
of the electromagnetic spectrum. These lines originate, just like the D-line, from lowly
ionized elements residing in the relatively cold outer sphere of the sun. Due to the
much higher inner temperature of the sun, most lighter elements are stripped all of
their bound electrons and are thus unable to emit or absorb light. Heavier elements can
keep some of their inner electrons because of the quadratic scaling law of the binding
energy. These systems are called highly charged ions [3]. The absorption lines of inter-
shell transitions produced by highly charged ions are usually in the soft x-ray regime or
even higher in energy.
Unfortunately the absorption properties of the atmosphere make earth based observa-
tions of radiation outside the optical spectral region inaccessible. However with the
advent of satellite-based space observatories equipped with spectrometers combined
with charged-coupled-devices, the hence unavailable spectral region has become acces-
sible for studies. NASA’s flagship mission CHANDRA and ESA’s XMM-Newton, which
have been launched in the late 90s, are still providing valuable spectra today [4, 5, 6].
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Figure 1: Absorption spectra obtained with the RGS of XMM-Newton (blue dots), with
the modeled power-law continuum (red) and power-law plus absorption feature
superimposed (black solid). The absorption feature in the center of the spectrum
belongs to the M-shell UTA of iron. Signatures of other elements such as Mg and Si can
also be seen. A more detailed analysis can be found here [7]. Raw data from [8].

One of the astrophysically most relevant elements is iron. It is a highly abundant el-
ement in the universe and therefore often found in extraterrestrial plasma [9]. Due to
its relatively high atomic number, iron is present in several charge states in low as well
as in high temperature plasma. Prominent spectral lines like Kα and Kβ or the contro-
versial 3C and 3D lines can be used as diagnostics [10, 11, 12]. The 3C and 3D-lines are
n = 2 −→ 3 transitions and originate from the Ne-like iron ion Fe16+. Since the involved
electrons are valence electrons, 3C and 3D fall into the category of valence transitions
of L-shell (Fe16+ to Fe23+) ions. If the L-shell is fully occupied, valence transitions be-
come inner-shell transitions in Fe15+ to Fe0+ ions. Following the nomenclature of Behar
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Figure 2: A simulated UTA absorbtion spectrum. The relative abundance of the ions is
varied between the upper and lower spectra. As a result the structure, but also the
center of gravity of the spectra change accordingly. Raw data adopted from [17].

et al.[13], they are from now on referred as Fe M-shell ions. The first astrophysical ob-
servation of absorbtion features caused by M-shell ions has been detected by Sako et
al. [14]. Using the Reflection Grating Spectrometer (RGS) of XMM-Newton, 2p–3d ab-
sorption features produced by M-shell iron ions have been observed in the form of an
unresolved transition array (UTA), a cluster of overlapping lines, which ca not be re-
solved. Similar absorption features have been observed in the soft x-ray spectrum of
the Seyfert 1 galaxy NGC 3783 [15] (fig. 1), also obtained with the RGS. Since the struc-
ture and shape of the UTA depend on the involved ionization stages (fig. 2), one can use
the UTA as a diagnostic tool. By properly modeling the observational data, the ioniza-
tion structure, column density, and outflow kinematics of the absorbing materials can
be determined.
So far these models were relying on ab initio atomic structure calculations since only
few experimental laboratory measurements have been done. As mentioned by Gu et al.
slight shifts in the calculated wavelengths can lead to drastic changes in the results of
the model [16].
In order to increase the confidence of the theories applied for modeling the astrophysical
plasma, theoretical results must be benchmarked by high precision experimental mea-
surements. With the upcoming launches of next generation observatories like XRISM,
which are equipped with modern microcalorimeter detectors, more precise laboratory
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measurements are urgently needed [18].
To experimentally measure spectral lines, laserspectroscopy is one of the the most acces-
sible and reliable methods. There are many table-top laser sources available, however
most of them lack in the necessary flux or photon energy. Nowadays synchrotron ra-
diation sources or free electron lasers are the only facilities able to provide such high
photon energies with also high flux. The inherent broadband spectrum of synchrotron
radiation, coming from an undulator, can be further narrowed down by utilizing a
monochromator. Using such monoenergetic synchrotron radiation one is able to excite
the transitions of interest in HCIs without contamination by other processes [19, 20].
Also in contrast to relying on energy resolving x-ray detectors like space observatories,
modern synchrotron beamlines provide a resolving power of more than 10−5, which al-
lows most UTA features to be resolved.
The goal of this thesis is to benchmark theoretical calculations with experimentally de-
termined transition energies and rates of the M-shell ion Fe13+. For that purpose the
PETRA III synchrotron radiation facility has been used to resonantly excite the highly
charged iron ions produced by a compact electron beam ion trap. Using an ion extrac-
tion beamline the abundance of each charge state of iron inside the trap can be observed
nearly simultaneously to the observed fluorescence. This technique allows also the ob-
servation of transitions, which are too weak in their radiative decay channel, since the
competing auger channel can be observed in the change of the ion charge-state distri-
bution.
The first chapter will introduce all theoretical concepts necessary for this thesis. The
following chapter will give a detailed description of the experimental set-up and equip-
ment. Here the emphasis will lie on the compact electron beam ion trap PolarX, which
has been completely reassembled and equipped with the above mentioned extraction
beamline. Basic components of the photon beamline of PETRA III will be briefly dis-
cussed. Following that, a broad overview of the experimental data will be presented.
High attention will be given to one specific measurement containing two lines of the
UTA. Utilizing a higher photon beam resolution the natural linewidth has been deter-
mined for those two lines. Since the natural linewidth of a line can give large insight
to the absolute rate of a transition, effort has been put into determining the absolute
transition rates.
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2 Theory

An atom that has a significant amount of electrons stripped away is called an highly
charged ion (HCI). These unique type of ions differ significantly from neutral or lowly
charged ions in both experimental but also theoretical aspects [3]. High efforts and spe-
cialized set-ups are required to produce HCIs in the laboratory. Also from a theoretical
perspective HCIs must be approached in a different way than neutral or lowly ionized
atoms. Various effects like the finestructure and Lamb-shift are significantly enhanced
in HCIs and must be included in the theoretical treatment.
Regarding the nomenclature, it is common to refer the charge state of a (highly charged)
ion by the element with the same number of electrons in its neutral state. For example
a neon atom with eight electrons removed would be called He-like neon. Another com-
mon practice in spectroscopy is to use roman numerals. Starting with the neutral state
as I. Thus He-like neon can also be represented by NeIX.
In this chapter, theoretical and experimental concepts necessary for the understanding
of spectra produced by HCIs will be discussed. Starting with a brief repetition of atomic
structure theory of many-electron systems, followed by an overview of electronic and
photonic processes. Finally a detour to astrophysics will take place with an emphasis
on transition arrays, which is the main topic of this work.

2.1 Atomic structure

In the classical picture the spectral lines, which are of interest in this work, are produced
by bound electrons changing their residing orbital due to an external influence. With the
development of quantum mechanics in the 20th century it was for the first time possible
to theoretically reconstruct these spectral lines. Centerpiece of this seminal theory is the
Schroedinger equation, which applies wavefunction to describe all involved electrons
along with the coupling structure of their internal and external angular momenta. The
dynamics of the atomic system are contained in the Hamiltonian. Only if the Hamilto-
nian and the necessary wavefunctions are known, energy levels and transition rates can
be determined.
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2.1.1 The Schroedinger equation

The Schroedinger equation in its general form is an equation of motion, which describes
the temporal evolution of a wavefunction ψ. It is given by

Ĥψ(r, t) = iδtψ(r, t). (1)

Ĥ is called the Hamiltonian operator or energy operator. It is usually given as a sum of
a kinetic term, potential term and an interaction term, which describes the interaction
of electrons with an external field. If one is only interested in stationary systems, the
space and time-dependency of the wavefunction can be separated

ψ(r, t) = ψ(r) · e−iE/h̄. (2)

The time dependent Schroedinger equation can then be reduced to the time-independent
Schroedinger equation

Ĥψ = Eψ. (3)

The time-independent Schroedinger equation can be seen as an eigenwert equation,
with the energy E corresponding to the eigenvalue of the Hamilton operator for a given
wavefunction.

2.1.2 The Hamiltonian

The most fundamental system discussed in atomic physics is the hydrogen atom. It con-
sists of only two bodies. A nucleus (one proton and possibly neutrons) and an electron.
For further simplification the discussion takes place in the rest frame of the nucleus. The
Hamiltonian is then given by

Ĥ = Ĥkin + Ĥpot = − 1

2me

−→
∇2 − e2 1

r
(4)

with electron mass me, electron charge e and the distance of the electron to the nucleus
given by r. Atoms and ions, which are discussed in this thesis, have multiple bound
electrons. To generalize the above Hamiltonian, the respective kinetic and potential
terms for all involved electrons have to be added. Additionally a term for the mutual
electrostatic repulsion between electrons, which depend on the distance rij = |ri − rj|,
needs to be taken into account. The generalized Hamiltonian is then given by

Ĥ =
N∑
i=1

(
− 1

2me

−→
∇2 − e2Z

r

)
+

N∑
i,j=1
i<j

c2

rij
. (5)

9



2 Theory

2.1.3 Spin-orbit interaction

Besides the electrostatic interaction between the electrons, an additional effect has been
neglected in the discussion so far, namely, the interaction between spin and orbital an-
gular momenta. This effect can be taken into account by adding an additional term to
the Hamiltonian. It is given by

Ĥs−o =
N∑
i=1

1

2mrij

dV (ri)

dri

#̂»

l i · #̂»s i. (6)

It describes for the i-th electron the interaction between the orbital angular momentum
li and its spin angular momentum si. The total Hamiltonian can finally be given as

Ĥ = Ĥ0 + Ĥelec−elec + Ĥs−o, (7)

with H0 as the sum of all single electron Hamiltonians and Helec−elec the electrostatic
interaction term (eq. 5).

2.1.4 Coupling schemes

How the angular momenta of each electron are coupled together depends highly on the
relation between Ĥelec−elec and Ĥs−o. The relative strength influences the order in which
the angular momenta are added to each other and as a result the energy eigenvalues
shift correspondingly. For accurate theoretical treatment of multi-electron systems the
right coupling scheme must be chosen. Figure 3 visualizes the gradual change in energy
levels of Be-like ions for varying Z. For heavier ions jj-coupling replaces the LS-coupling,
which has been valid for low Z.
LS-coupling. If spin-orbit effects are negligible relative to electrostatic effects (Ĥelec−elec >>

Ĥs−o), Ĥelec−elec remains as the only perturbing term in the Schroedinger equation. In
such a case the single electron angular momenta couple to form vectorial sums given by

#»

L =
N∑
i=1

#»

li ,
#»

S =
N∑
i=1

#»si . (8)

Both the total orbital angular momentum
#»

L and total spin angular momentum
#»

S couple
to a total angular momentum

#»

J . Any state can then be given by a set of quantum
numbers

S , L , J ,mJ . (9)
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Figure 3: Visualization of the transition from LS to jj-coupling for varying Z. Figure
adopted from [21].

Commonly the above quantum numbers are bundled as a term symbol

2S+1LJ . (10)

While the usage of term symbols can give quick insight, it has the downside that it is not
unique. In complex atoms many combinations of angular momenta for a given electron
configuration lead to the same term symbol. To uniquely identify and label a state or
level one needs to include the so called parental history of its coupling structure, where
term symbols are written successively for each electron starting from the most inner one.

(... (n1l
x1
1 (2S1+1L1) n2l

x2
2 (2S2+1L2)) 2S1&2+1L1&2) ... nml

xm
m (2Sm+1Lm)) S+1LJ . (11)

jj-coupling. If electrons are affected by a strong coulomb field the single electron terms
like

#»

li · #»si become more dominant and can even outweigh the contribution by the inter-
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electronic repulsion (see fig. 3). In such a case the angular momenta are added in jj-
coupling scheme, where the single electron angular momenta

#»

li and #»si couple to a total
single electron angular momentua

#»
ji , which then are vectorially add up to the total an-

gular momentum
#»

J of the whole system.

(
...
(
[n1l1±]x1j1 [n2l2±]x2j2

)
j1&2

... [nklk±]xkjk

)
J

(12)

Intermediate coupling. If the electrostatic repulsion term is comparable in strength to
the spin-orbit term, the full Hamiltonian matrix is not diagonal in the jj- or LS-coupling
scheme. The eigenvalues of the Hamiltonian must then be determined by a numerical
diagonalization.

2.1.5 Multi-electron wavefunction

An appropriate multi-electron wavefunction must contain information regarding all
spin and orbital angular momenta for each electron inside the atom. A common way
to construct such multi-electron wavefunction Ψ is to simply take the n-fold product of
one-electron wavefunctions ψ, also known as the Hartree-product

Ψ = ψ1(r1)ψ2(r2)ψ3(r3) · · · ψn(rn). (13)

Here each subscript is an abbreviation for the one-electron quantum numbers n, l,ml,ms.
While the Hartree-product satisfies the necessary orthonormality condition, it does not
satisfy the Pauli principle. For the electron-interchanged wavefunctions Ψa = ψ1(r1)ψ2(r2)

and Ψb = ψ1(r2)ψ2(r1) the Pauli principle states that, due to the physical indistinguisha-
bility of electrons, the probability density |Ψi|2 must be the same for the two wavefunc-
tions Ψa and Ψb. A direct consequence of this principle is the antisymmetry property of
the wavefunction under exchange of electrons

Ψa = −Ψb. (14)

An antisymmetrized wavefunction can be obtained by representing the Hartree product
in the form of a determinant, which is referred to as a Slater determinant

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) ψ3(r1) · · · ψn(r1)

ψ1(r2) ψ2(r2) ψ3(r2) · · · ψn(r2)
...

...
... . . . ...

ψ1(rn) ψ2(rn) ψ3(rn) · · · ψn(rn)

∣∣∣∣∣∣∣∣∣∣
. (15)
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Figure 4: The general form of the Hamiltonian for two involved configurations. The
Hamiltonian has been divided in four sub-matrices. c1, c2: energy matrix for one
configuration basis functions. c1, c2 : configuration interaction matrices.

2.1.6 Hartree-Fock method

Using Slater determinants as wavefunctions the Hartree-Fock method solves the time-
independent Schroedinger equation using a so called „self-consistent field method“.
Beginning with a trial wavefunction, the Schroedinger equation is interatively solved
by modifying the input wavefunction until the solution converges.
The Hartree-Fock method was developed in 1935 and is an revised version of the orig-
inal Hartree method, which does not consider antisymmetry of the wavefunction. This
procedure is ab initio. It uses no empirical data and solves the Schroedinger equation
only using fundamental physical principles.
There are improved versions of the Hartree-Fock method which are often called post-
Hartree-Fock methods. While small differences may exist, all include additionally the
electron correlation, which is neglected in the central-field approximation of its prede-
cessor. Modern methods also add relativistic effects into the equation or use the Dirac
equation instead of the Schroedinger equation.

2.1.7 Configuration interaction

In the theoretical approaches discussed in the previous chapter the wavefunction for
an atomic state k has been expanded by a set of single-electron basis functions ψ all
from a single configuration. By disbanding this restriction and including basis func-
tions of more than one configuration, a significant improvement in accuracy for the
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total wavefunction Ψ can be obtained. This effect is caused by the interaction between
configurations (CI). The most simple case, where CI can happen, is by including basis
functions of two configurations. In that case the hamiltonian matrix can be thought of as
being divided into several submatrix elements (fig. 4). The two matrices located on the
diagnonal c1 and c2 are the energy matrices. Both are the same as when considered sep-
arately. However off-diagonal "configuration interaction" matrices, which are in general
rectangular, appear inside the matrix. Mathematically the CI matrices are calculated the
same as for the energy matrices, except that the initial and final wavefunctions come
from different configurations. It can be seen that the existence of off-diagonal matrices
have an non-negligible influence on the eigenvalues of the matrix.
As a result, to gain accurate energy eigenvalues, one needs to implement all possible
configurations into the wavefunction, which is practically impossible to solve. How-
ever, most elements of the CI-matrices are negligibly small. This is due to selection
rules, which allow a heuristical approach in choosing the set of configurations involved
in the calculations.
First of all the Hamiltonian operator has even parity. As a result, the initial and final
functions must have the same parity to obtain a non-zero eigenvalue. Since the par-
ity of a wavefunction is given by its configuration, one must only consider additional
configurations with the same parity as the configuration of primary interest. Another
selection rule arises from the fact that only one or two-electron operators (repulsion and
and spin-orbit term) are involved in the Hamiltonian. Only configurations, which differ
by two orbitals at most lead to non-zero CI-elements.
A last qualitative selection rule can be formulated regarding the strength of CI. It has
been shown that CI effects tend to be largest for configurations with similar center-
of-gravity energies, since various wavefunctions tend to have large overlap under this
condition.
The accuracy of all CI based atomic structure codes (e.g. FAC) highly depends on the
input configurations. To save computational time for own calculations it is helpful to
grasp the underlying concepts and choose the set of configurations efficiently.

2.1.8 Terminology: Configuration, term, level and state

The word „state“is often interchangeably used with other terminologies like „term“or
„level“, which all have different physical definitions. To reduce possible confusion, brief
explanations will be given below. A schematic explanation is given in figure 5.
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Figure 5: Simplified diagram of the relation between "configuration", "term", "level"
and "state".

Configuration. An atom or ion consists of a nucleus and a given number of electrons.
All electrons can be labelled with a principal quantum number n and an orbital quan-
tum number l. The configuration determines the occupancy of orbitals for each electron,
e.g. the configuration for the groundstate of an lithium atom can be given as 1s22s1.
Term. As mentioned above, if the electrostatic repulsion term is included in the Hamil-
tonian additional „good“quantum numbers are introduced to define the system. The
total orbital angular momentum L and total spin angular momentum S. The combina-
tion of L and S is called a term. The term is usually given as a term symbol in the form
ML. With the multiplicity M = 2S + 1.
Level. The degeneracy in L is resolved by considering spin-orbit interaction. Including
the total angular momentum J to the term one obtains a level given by MLJ .
State. It is known that each level has an additional degeneracy given by its statistical
weight g = 2J + 1. To spectroscopically reveal this splitting a strong magnetic field
(Zeeman effect) or electric field is necessary (Stark effect). The state is fully defined by
the magnetic quantum number mJ and its corresponding level MLJ .

2.2 Electronic and photonic processes

2.2.1 Photoexcitation

A bound electron in an energy level 1 can be excited to an energetically higher level 2
by absorbing a photon with an energy matching the difference in energy between the
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Figure 6: Schematic representation of the decay processes following initial
photoexcitation (1). (2): An excited electron relaxes to the groundstate while its energy
is transferred to a secondary electron, which as a result is excited to a continuum state.
(3): The electron relaxes to the groundstate by emission of a photon.

two levels of interest (see fig.6).

Xq+ + γ → Xq+∗, Eγ = E2 − E1 (16)

Due to its resonant nature this process allows a selective excitation of energy levels. The
transition rate is proportional to the energy density ρω and is given by

W12 = B12ρω (17)

with the Einstein-coefficient for absorption B12 [22].

2.2.2 Auger decay

If an ion resides in a doubly excited state it can decay to an energetically lower state by
an Auger process (see fig.6) [23]. It is a non-radiative decay, where the released energy
is transferred to an bound electron. The electron is then emitted with a kinetic energy
Ekin = E21 − EB. With the binding energy EB of the emitted electron.

Xq+∗ → X(q+1)∗ + e−. (18)

The Auger process can only happen if the excitation energy of the doubly excited state
is higher than the ionisation energy of the ion in its groundstate.
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2.2.3 Spontaneous emission

An ion in an excited state can decay back to a lower energetic state by spontaneously
emitting a photon (see fig.6)

Xq+∗ → Xq+ + γ. (19)

The transition rate for this process is given by the Einstein-coefficient A21 [22], which
can be given as a function of the transition matrix-element M12 by

A12 =
16π3ν3

3g2ε0hc3
|M12|2 (20)

with the statistical weight g2, vacuum permitivity ε0 and the planck constant h. The
above mentioned matrix element is a measure for the strength of a transition. In the
dipole approximation, it can is given as

M12 =

∫
Ψ1rΨ

∗
2d

3r. (21)

Several selection rules can be deduced based on symmetry considerations.

∆L = ±1 (22)

∆M = 0 (for linear polarisation) (23)

∆M = ±1 (for circular polarisation) (24)

∆J = 0, ±1 (J1 = 0 to J2 = 0 is excluded) (25)

2.2.4 Transition arrays

In the 1970s the investigation of emission spectra of heavy, highly charged ions was a
fast moving research field. Various plasma, produced by tokamaks, vacuum sparks and
laser has been investigated since then [24, 25, 26]. The recorded spectra were highly
complex due to the superposition of many lines emitted by various charge states. An-
other reason which enhanced the complexity of the spectra were the usually large quan-
tum numbers of the outermost occupied subshells of the involved configurations (fre-
quently 3d, 4d or 4f). Those high angular momenta lead to large number of levels and
therefore to a even larger number of lines. For that reason many lines (broadened by
Doppler, Stark and collisional effects and the limited resolution of the instrumental re-
solving power) were recorded in a given energy band, which were in general unre-
solved and coalesce into a broad line structures. To describe the totality of lines resulting
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between two configurations Condon and Shortley defined the term „transition array“.
To interpret these transition arrays many attempts have been done to analyse the exper-
imental transition arrays by detailed computational methods. Since often times thou-
sands of lines are involved in a single array, the calculations were time consuming and
still ended up in inconclusive results due to the nearly structureless experimental data
([27]). In the late 1970 a new model has been introduced ([28]), which considered the
transition-array structure as a statistical distribution of intensities, where mean wave-
lengths, spectral widths and asymmetry were used to characterize the array. This model
of unresolved transition arrays emerged as a convenient tool to describe low resolution
x-ray spectra emitted by hot plasmas ([29]).

2.2.5 Unresolved transition arrays in astrophysical observations

Unresolved transition arrays have been observed not only in laboratory experiments,
but also in astrophysical plasma. For example by viewing at an active galactic nuclei
(AGN) directly towards the source a rich absorption spectrum can be obtained. The
absorption lines observed are in general slightly shifted to shorter wavelengths, which
is due to the outflowing wind. By determining the energetic shift of the absorption line
the velocity of the wind can be extracted[15]. One distinctive feature of the absorption
spectrum are the 2p −→ 3d inner-shell absorption lines of several iron charge states. Ini-
tially it has been observed in the x-ray spectrum of IRAS 13349+2438 obtained with the
Reflection Grating Spectrometer on board of XMM-Newton [30]. Many other discov-
eries of M-shell UTAs have been claimed thereafter. An detailed analysis of such UTA
absorption spectrum by Holczer et al.[15] using the atomic data provided by Behar et al.
[13] concluded that the low ionization stages of iron, which produce the UTA absorp-
tion feature, is contrarily to the initial assumption in fact not outflowing with the same
velocity as the rest of the wind. As stated by Holzer et al. the results of the analysis were
highly sensitive to the atomic data provided by Behar et al., which were calculated us-
ing the configuration interaction based HULLAC [31] code. Indeed a reanalysis of Gu et
al. using relativistic many body perturbation (MBPT) calculations showed an system-
atic deviation of 15 − 45mÅ (≈ 1.5 eV) to the HULLAC calculations [16].The theory of
Gu et al. has been checked for accuracy using one single laboratory measurement of Fe
xvi lines of Brown et al.[32].
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Figure 7: Working principle of the Electron Beam Ion Trap. Inside an homogeneous
magnetic field (vertical lines) ions are trapped in radial direction by the negative space
charge of the dense electron beam (yellow) and axially by a potential well produced by
a set of electrodes (not drawn) with voltages applied.

2.3 The Electron Beam Ion Trap

The first Electron Beam Ion Trap (EBIT) has been designed and build in the 1980s at
the Lawrence Livermore National Laboratory ([33]). Similarly to an Electron Beam Ion
Source (EBIS) it produces highly charged ions by electron impacts. The ions are sequen-
tially stripped off their electrons until the energy of the electron beam is insufficient to
produce higher charge states. To efficiently ionize the electrons the electron beam is
compressed by a high magnetic field, usually produced by a pair of (superconducting)
Helmholz coils. Guided by electrostatic lenses the electron beam reaches its highest
compression at the interaction zone with the ions. There the ions are axially trapped
by an electrostatic potential well and radially by the space charge of the electron beam.
Compared to other sources of HCIs (e.g. storage rings) the EBIT produces ions with
a mean velocity of zero. Further cooling is possible by evaporative methods, which
makes use of an EBIT for spectroscopy feasible. 40 years after its invention EBITs have
been build around the world. E.g. the Tokyo-EBIT, which can generate an electron beam
of up to 340 keV while maintaining a current of 250 mA. Such high specifications make
even the production of hydrogen-like uranium feasible [34].
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Figure 8: Principle of a semiconductor detector. Incident radiation produces a cascade
of electrons. The electrons are collected due to an applied voltage. The current pulse
enters a charge sensitive amplifier (preamplifier), which converts the current pulse to a
measurable voltage step. Finally a shaping amplifier produces a voltage pulse, whose
height is proportional to the height of the step function. Since the height is related to
the energy of the incident photon, pulse height analysis yields information regarding
the energy.

2.4 Semiconductor detectors

The principle of the semiconductor detector is very similar to that of the ionization
chamber. Instead of the gas cell a rectifying p-n junction is used, where a voltage is
applied to capture the electrons liberated by the incident ionizing radiation. Due to
the applied electric field, the electrons drift towards the electrodes and form a current
pulse. The current pulse is integrated and usually post-processed by a shaping ampli-
fier. Due to the high number of initially released electrons, the height of the produced
pulse can be determined accurately. The pulse height is directly related to the energy of
the incident photon energy (fig. 8).

2.4.1 Poissonian statistics and limited resolution

It is experimentally known that on average w = 3.62 eV [35] (at room temperature) are
necessary to produce an electron-hole pair in a solid state silicon wafer. The deviation of
this value from the band gap energy of approximately 1 eV indicates that most energy
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results in excitation of phonons. For an incident photon energy E the mean number of
electron-hole pairs can then be given as N̄ = E/w [36]. Even if all external parameters
are kept constant N̄ is subjected to a fluctuations. The amount of fluctuation or the
variance

σ2 = F · N̄ (26)

is of high interest since it does give an upper limit to the theoretically achievable resolu-
tion of the experiment. The so called Fano parameter F [37] [38] is a material dependent
parameter. It is equal to one if the number of ionizations is fully governed by a poisso-
nian statistic and zero if there is no fluctuation in N for given incident photon energy.
For silicon and germanium F is approximately equal to 0.1. Calculating the energy
resolution for a silicon detector leads to

∆N̄

N̄
=

√
F · N̄
N̄

=
∆E

E
(27)

∆E =
√
w · F ·

√
E ≈ 0.6 ·

√
E. (28)

For example the theoretical limit for the He-like oxygen Kα line at 574 eV would be a
FWHM of 33 eV at room temperature. Modern Silicon drift detectors reach an experi-
mental resolution very close to the theoretical limit of ≈ 60 eV.

2.5 Q/m determination: Time of flight

Many charge states of different elements can exist inside a plasma. The charge-to-mass
ratio q/m of an ion is a parameter, which is often used to label a given charge state
of an element. A very effective diagnostic tool for the identification of charge-to-mass
ratios is a time-of-flight mass spectrometer (fig. 9). The principle of such measurement
is explained below. A more indepth discussion can be found in various textbooks, e.g.
[39].
By accelerating a small volume of ions, whose mass is to be determined, to a kinetic
energy Ekin the sample achieves a velocity, which is given by

v =

√
2 · Ekin
m

. (29)

The kinetic energy is given by the acceleration voltage U and the charge state of the
ion q. The ions drift with constant speed through space and hit a detector placed at a
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Figure 9: A mixture of ions with varying mass and charge accelerated towards an
detector. The time at which a ion species hits the detector depends on its mass and
charge.

distance L. The time at which an ion hits the detector is given by

∆t = L ·
√

m

2Ekin
= L ·

√
m

2qU
. (30)

By reformulating above equation one yields an equation for q/m, which only depends
on the experimental parameters U , L and the time of flight ∆t

q

m
=

L2

2∆tU
. (31)

2.6 Angular distribution of fluorescence photons

If a two-step process is considered, starting with a photo-excitation of an initial state
to a intermediate state by a polarized light source ending with a radiative decay of the
intermediate state to a final state, the usual assumption of isotropic emission of photons
is in general not valid. In fact there is a strong dependency of the intensity of emission
on the direction of observation [40]. Within the dipole approximation one can quantify
the preference of emission as a function of the total angular momenta of the involved
states and the polarisation of the incident photon beam. A general equation for the
distribution of emitted photons can be given as

W (θ, φ) =
W0

4π

[
1− 3

√
2π

15
β
∑
q

ργ02qY2q(θ, φ)

]
(32)
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Table 1: The elements of the statistical tensor ρ are given in two different frames to
simplify further calculations.

ργkq S S’

ργ00
1√
3

1√
3

ργ10
P3√

2
0

ργ1±1 0 ∓P3

ργ20
1√
6

−(1+3P1)

2
√

6

ργ2±1 0 iP2

2

ργ2±2 − (P1∓iP2)
2

(1−P1)
4

with the spherical harmonics Ylm and the anisotropy parameter β defined as:

β = 3(−1)1+J0−Jf (2J + 1)

{
1 1 2

J J Jf

}{
1 1 2

J J J0.

}
(33)

The terms in the large curly brackets are the so called 6-J symbols. To circumvent tedious
calculations of the symbols, one can use the handy web-application of Anthony Stone
[41]. Notice that β only depends on the angular momenta of the involved states, not the
polarisation of the photon. The influence of the polarisation is included in the statistical
tensor ρ.

2.6.1 Linear polarisation

To simplify calculations a frame S’, varying from the usual laboratory frame, is chosen.
The relation of S’ to the laboratory frame is illustrated in figure 10. The advantage of
choosing this frame can be seen here: For linear polarisation the Stokes parameters are
P1 = 1, P2 = P3 = 0. Then the only non-zero term for the statistical tensor ρ2q in this
frame is ρ20 = −2√

6
(see table 1). Substitution of the statistical tensor into equation 32

leads to

W ′(θ, φ) =
W0

4π
(1 + βP2(cos θ)) . (34)

with the second order Legendre polynomial P2.

23



2 Theory

Figure 10: The modulus of angular distribution given as a function of θ and φ in
different frames (incident polarisation). The figures on the left side correspond to
circular polarisation and the figures on the right side to linear polarisation of incident
photon beam.

2.6.2 Circular polarisation

For circular polarisation the Stokes parameters are given by P1 = P2 = P3 = 0, P4 = 1.
It can be seen in table 1 that the statistical tensor is independent of P4. The theoretical
treatment is therefore the same as for unpolarized light. This time it is more convenient
to work in the S (laboratory) frame. Here the sum over the statistical tensor leaves one
term ρ20 = 1√

6
. The photon distribution can then be given as:

W (θ, φ) =
W0

4π

(
1− β

2
P2(cos θ)

)
(35)

24



2 Theory

frequency (a.u.)

In
te

ns
ity

 (a
.u

.)

D(50K)
D(200K)
D(1000K)

velocity (a.u.)

Pr
ob

. d
ist

rib
ut

io
n 

(a
.u

.)T=50K
T=200K
T=1000K

Figure 11: The effect of Doppler broadening is visualized for three different velocity
distributions (right). The shaded area correspond to the width of profile in the same
color.

2.6.3 The choice of frame of reference and the axis of symmetry

Choosing different frames can be helpful for the derivation of equation 34 and 35 but
might lead to confusion if the formula is applied to the actual experiment. For inci-
dent circularly polarized photons the angular distribution of emitted photons shows a
cylindrical symmetry with respect to the beam axis (fig. 10). However the symmetry
properties for linear polarisation are different. For horizontally aligned photon polar-
ization the laboratory frame x-axis becomes the axis of symmetry. Unlike for circular
polarisation this leads to a theta dependency for the angular distribution.

2.7 Gaussian, Lorentzian and the Voigt profile

As has been discussed in chapter 2.2.3 an excited state will decay after some time due
to interaction with the vacuum back to an energetically lower state. This characteristic
time is called the lifetime of an excited state. By applying Heisenberg’s principle

∆E ·∆τ ≥ h

4π
(36)

one can see that the lifetime ∆τ corresponds to an energy ∆E. The natural linewidth
∆E can be observed as the width of the Lorentzian

L(E) =
1

π

∆E

(E − E0)2 + ∆E2
, (37)

for a transition energy of E0. One has to emphasize that the natural linewidth takes
all possible decay channels into account. If a given excited state decays via several
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radiative transitions but also to continuum states through Auger processes the natural
linewidth corresponds to the sum of all radiative and Auger rates.

Γ = h̄ ·

(∑
i

Arad,i +
∑
j

Aauger,j

)
= h̄ · Atotal (38)

Experimentally the natural linewidth often refuses to be observed directly. Several ex-
perimental factors can overshadow the natural linewidth, due to its narrow nature.
Doppler broadening. If the target consists as an ensemble of ions in a small volume,
ions tend to heat up by collisions. If the system is in a thermal equilibrium the velocity
v of ions follow the Maxwell-Bolzmann distribution

P (v) dv = (
m

2πkT
)3/24πv2 exp

(
−mv

2

2kT

)
dv (39)

where m is the particle mass, k the Bolzmann constant and T the temperature in Kelvin.
Any velocity component vi is then given by a symmetric gaussian-like distribution

P (vi) dv =

√
m

2πkT
exp

(
−mv

2
i

2kT

)
dv (40)

By introducing the first order Doppler shift f = f0 ·(1+v/c) into the equation one yields
the formula for the Doppler broadened profile

P (f) dv =

√
m

2πkTf 2
0

exp

(
−mc

2(f − f0)2

2kTf 2
0

)
dv. (41)

The distribution follows a Gaussian profile with standard deviation σD =
√
kT/mc2 ·f0.

Instrument profile. Another important influence is given by the energy distribution of
the photonbeam, which is used to excite the target ions. Even the best monochromator
in the world cannot produce monochromatic light. The energy distribution is often es-
timated as gaussian-shaped. But in fact it depends on the entrance and exit slit width
and the resolution of the spectrometer.
The recorded spectrum is then given as the convolution of the real spectrum (convolu-
tion of Lorentzian and broadening effects) and the instrumental profile. The recorded
spectrum can then be modelled by a Voigt profile, which is the distribution obtained by
the convolution of a Lorentzian and Gaussian profile

V = G ∗ L =
Re(w(z))

σ
√

2π
, (42)

where w(z) is the Faddeeva function, evaluated for z = (E + i∆E)/(σ
√

2). The limiting
cases, σ = 0 and ∆E = 0, result in the Gaussian G and Lorentzian L, respectively.
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3 Experiment

3.1 The PolarX-EBIT

The PolarX-EBIT (fig. 12) is one of the Heidelberg compact electron beam ion traps
(HC-EBIT, [42]). Instead of the commonly used superconducting magnets, the magnetic
field of a HC-EBIT is produced by permanent magnets and guided by soft iron pieces
to the center of the trap, reaching a maximum at the center of the trap (approximately
900 mT). The electron beam is produced by a modified pierce-type „off-axis“electron
gun (see fig. 13). Unlike conventional electron guns, the off-axis gun employs a cath-
ode displaced from the main axis by an angle of 22 degrees, which allows direct optical
access to the center of the trap, where an external light source (e.g. synchrotron or laser
beam) can be put through. To allow such unconventional placement of the cathode, the
focus electrode as well as the anode electrode, which are used to steer and accelerate the
electron beam, are split in two. The focus electrodes are used to compensate the Lorentz
force, which acts on the electron beam, due to the displaced position of the cathode.
Compared to an usually employed on-axis electron gun, where the sole purpose of the
anode is the acceleration of the electrons, the anode of the off-axis electron gun has the
additional function of bending the electron beam to the main axis. This is accomplished
by creating a 35◦ plane between both parts of the split anode (see fig. 13).
The central chamber of the PolarX-EBIT encloses the drift tube assembly, consisting of
six individual cylindrical electrodes. The first two drift tubes are used for refocusing
and guiding the electron beam through the whole assembly. The third, fourth and fifth
electrodes are located in the central region of the trap. The purpose of these three drift
tubes is the axial confinement of the ions produced inside the fourth drift tube. Drift
tube six is used to steer the beam to the collector electrode, on which the electron beam
is dumped.
The central chamber has two open ports, which can be equipped with a variety of de-
tectors to analyze the photon emission of the ion cloud. For this experiment two silicon
drift detectors where mounted. Additionally, the rear part of the EBIT is connected to
an electrostatic extraction beamline, which allows the ejection of the trap content for
charge state analysis. To ensure optical access through the whole setup, the extraction
beamline is equipped with an electrostatic bender. Finally, a channeltron setup is used
to collect the ions. A schematic depiction of the whole setup can be seen in figure 16.
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Figure 12: CAD model of the PolarX-EBIT. The magnetic field is produced by
permanent magnets stacked inside cartridges. The off-axis design of the electron gun
allow a photon beam to pass through the main axis of the EBIT. Figure adopted from
[43].
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Figure 13: CAD model of the off-axis gun. The cathode (yellow) is located between the
carrier and the foci. The 22◦ tilt of the cathode enables the photon beam to pass
throught the gun. The split foci(blue) and anode(red and orange) steer the emitted
electron beam towards the main axis of the electrode gun. Figure adopted from [43].
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Figure 14: Transmission characteristics of a common beryllium window compared to
the aluminium filter used in this work.

3.2 Data acquisition system

The main data acquisition system of the experiment is the MPA4 „Multiparameter Mul-
tichannel Analyzer“of Fast ComTec company [44]. It is a multiparameter data aquisi-
tion system, which can be used to produce histograms using up to 8 ADCs as inputs
with a resolution of 16bit over a range between 0 to 10 V. Besides the MPA4 hard-
ware, a software called MPANT is also provided to allow live observation of one and
two dimensional histograms. Since the time-information is lost in the histograms made
with MPANT, the acquired data is additionally saved as a Lstfile, where each event is
stored with a timestamp. Furthermore coincidence conditions can be set in between any
ADC channels. While the MPA4 system is mainly used for the photon pulses and few
ADC channels, a Logfile is simultaneously written during the measurement, where all
relevant parameters are saved, e.g., pressure, photon energy, voltages applied on the
EBIT-electrodes.

3.2.1 The 7072 Dual Timing 500ns ADC (TADC)

The TADC, whose output is fed into the MPA4 system can be operated in three different
modi. Each modus is explained below.
Pulse height analysis mode (PHA). PHA is used to measure a given analogue pulse

height and to digitize and store its value. If the amplitude is proportional to the energy
of the initial photon or particle one can record an energy spectrum. Three important
parameters exist for PHA. The ADC threshhold, lower level discriminator (LLD) and
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Figure 15: Simplified design of the p04 beamline. An electron beam of roughly 100 mA

enters the undulator. The outgoing broadband synchrotron radiation is
monochromatized and focused to the experimental set-up.

upper level discriminator (ULD). If an voltage higher than the ADC threshold enters
the PHA device a measurement is triggered. The circuit determines the height of the
amplitude and verifies whether it is within the range spread by the LLD and ULD. If
true, the pulse height voltage is fed into an ADC circuit, which is used to assign the
analog voltage to a digital channel. The TADC divides a 10 V range into 8192 channels.
Sampled voltage analysis mode. SVA can be used to digitize analog voltages between
0 and 10 V. The voltage sampling is triggered by a TTL pulse fed into the ADC. SVA is
used to monitor time dependent parameters, which usually provide an analog voltage
as a measure (e.g. photon energy).
Time to digital converter. Another possible operation mode is TDC. It is used to mea-
sure the time difference of two digital pulses (START, STOP-pulses). This mode was not
used in this experiment.

3.2.2 Detection of x-rays

For the energy resolved detection of photons emitted by the trapped HCIs a silicon drift
detector (SDD) of the company KETEK is employed [45]. The principle of a SDD is
similar to the semiconductor detector explained in section 2.4 but with a geometry opti-
mized for maximal detection area and charge collection [46]. The SDD is welded onto a
vacuum flange with its standard Be-window removed. This allows a close placement of
the detector to the ion cloud, drastically increasing its solid angle. he Be-windows are
usually employed to shield the detector from the intense low energy radiation, which
can easily saturate the detector. The durability, which is obtained already with a few
microns of beryllium, makes Be-windows a good choice for most experiments. How-
ever the poor transmission characteristics of Be-windows in the soft x-ray regime make
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Figure 16: The measurement scheme. The photon beam is axially overlapped with
electron beam. Ions guided by an electrostatic bender hit the channeltron at a q/m
specific time of flight. The fluorescence is observed by an silicon drift detector.

its application not feasible for this work. Since the transmission characteristics of alu-
minium surpass those of the common tens of microns thick Be-windows in the soft x-ray
regime, a 500 nm aluminium filter has been mounted in front of the SDD to block UV
and visible light. A direct comparison of both transmission characteristics is visualized
in figure 14.
The output of the internal preamplifier of the SDD is fed into a spectroscopy amplifier
for further processing. PHA is then applied to digitize the output of the spectroscopy
amplifier.

3.2.3 Detection of extracted ions

The the central drift tube (DT4, section 3.1) is connected to two high voltage power sup-
plies. One applies an voltage Uinner to the central drift-tube to define the electron-beam
energy at the interaction zone between the electron beam and the plasma. The other
voltage Ukick is used to invert the trapping potential and extract the ions from the EBIT
(see figure 16). Using a fast high voltage transistor switching between these voltage val-
ues in nanosecond timescales is possible [47]. To initiate a switch of the voltages, a TTL
pulse produced by a function generator is fed to the input of the transistor. The acceler-
ation voltage is then given by the difference between the voltage Ukick and the voltage
applied on the extractor electrodes. After the ions transit the extraction beamline, the
ion yield is measured using a channeltron. The output of the pre-amplifier, which is
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connected to the channeltron, is fed directly to an oscilloscope.

3.3 PETRA III

The Positron-Elektron-Tandem-Ring-Anlage PETRA was initially constructed for par-
ticle physics research in the 1970s [48]. It is part of the german electron synchrotron
facility DESY, which is located in Hamburg, Germany. PETRA was able to accelerate
electrons and positrons up 19 GeV, which also led to the discovery of the gluon in 1979
[49]. In the following decades, the PETRA accelerator was used as a pre-accelerator for
HERA, a next generation particle accelerator. During that time PETRA was named PE-
TRA II. In 2007 parts of PETRA II were reconstructed and equipped with 14 undulators,
a device for efficient production of synchrotron radiation using permanent magnets.
Since then PETRA III has been one of the most brilliant synchrotron radiation sources
world wide.

3.3.1 P04 soft x-ray beamline

There are 25 beamlines installed at PETRA III, each beamline utilizes the high energy
electron beam provided by the storage ring to produce unique photon beams, varying
in energy as well as in characteristics optimized for various experiments. The P04 XUV-
beamline (fig. 15), which was used for this work, offers an exceptionally high photon
flux of more than 1012 photons per second in soft x-ray domain (250 eV − 3000 eV) [50].
The monochromator of P04 consists of a diffraction grating with variable line spacing
(VGS) and an exit slit. The broadband photon beam, produced by the undulator, im-
pinges on the grating at grazing incidence and is spatially dispersed. A selection of the
outgoing photon-beam energy is achieved by the exit slit. Further x-ray optics of P04
allow a precise focusing of the beam to the experimentally desired position. In total a
resolving power E/∆E, which is a measure for the energy distribution of the photons,
of over 10000 can be obtained at P04. These parameters allow precision spectroscopy of
highly charged ions of low to medium Z ions, where inter-shell transitions often lie in
the provided energy spectrum.

3.4 The experimental measurement scheme

In the following section, the experimental measurement scheme is explained.
The method used to investigate individual electronic transitions of HCIs is laser spec-
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troscopy. The highly monochromatic photon beam of the soft x-ray beamline P04 is
used to resonantly excite HCIs produced by the PolarX-EBIT. The two fluorescence de-
tectors record the number of photon-events for a given photon beam energy. Simul-
taneously the content of the trap is extracted and accelerated towards the extraction-
beamline in constant time intervals. While the ions move with constant speed, the vari-
ous charge states are separated according to their charge-to-mass ratio q/m. A channel-
tron mounted at the end of the extraction beamline is then used to measure the signal
produced by the different ion charge stages (see figure 16).
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4 Data analysis

4.1 Goal of the analysis

The goal of the measurement campaign was to resolve all transitions of the Fe13+ M-
shell unresolved transition array (UTA). Due to the nature of multi-electron systems,
excited levels in these systems usually exhibit significant autoionization channels com-
parable in strength and occasionally even dominating their competing radiative relax-
ation channels. The whole energy range of the Fe13+ M-shell UTA (760 eV-810 eV) has
been measured in successive small energy ranges. For each scan, two data files were
written by the data acquisition system: a list-file containing the fluorescence data and a
log-file, which contains the data arrays of the photoionization signal.
The autoionization channel is observed as a decreasing Fe13+ ion yield, while simulta-
neously the Fe14+ ion yield increases. The first part of the analysis focuses on the deter-
mination of transition energies of all measured resonances. As a second part absolute
autoionization and radiative transiton rates of two lines are determined, which were
measured at a higher resolution. The method has been developed by René Steinbrügge
during his Ph.D. thesis and was adapted for this thesis [51].

4.2 Fluorescence data

Fluorescence following the photo excitation of HCIs is detected by two SDDs. One is
placed horizontally, the other is placed vertically in the plane perpendicular to the pho-
ton beam. For each monochromator energy, the SDDs record an one dimensional decay
spectrum of the detected photons. That way, one obtains a two-dimensional spectrum
for every scan and detector (see fig. 17). By projecting an appropriate region of inter-
est to the x-axis, which corresponds to the monochromator energy, an one-dimensional
fluorescence spectrum is obtained, in which the resonances can be characterized. Fol-
lowing the discussion in section 2.6, in which the emission characteristics are discussed
for circularly polarized incident photons, it can be concluded that the fluorescence pho-
tons are emitted isotropically in the plane spanned by the two SDDs. Therefore, one
can sum both one-dimensional spectra to increase the signal-to-noise ratio as well as
the goodness of the fit.
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Figure 17: Comparison of two-dimensional spectra recorded with the mounted SDDs.
The white lines indicate the region of interest (ROI) over which the integration takes
place to obtain one dimensional projections (top).

4.3 Photoion data

After each step of the monochromator, a time-of-flight spectrum is recorded from which
the charge-state distribution of ions is determined. By concatenating all spectra, a two-
dimensional matrix can be formed (see fig. 19)). As has been explained in more detail
in section 2.5, the arrival time of a specific ion at the ion detector depends on the chosen
extraction voltage and its charge-to-mass ratio. To identify each peak one can relate the
time of flight ttof

ttof =

√
s2

2U
· m
q

+ t0 := A ·
√
m

q
+ t0 (43)

to a q/m ratio with the path length s, acceleration voltage U and the constant time-offset
t0. One can determine the parameters A and t0 by an educated guess of two tof peaks.
Equation 43 can then be used to identify other peaks in the tof spectrum (see fig. 18). If
the masses of the abundant isotopes of the injected element are known, one can relate
the charge-to-mass ratios directly to the charge states of the ions.

As one examines the two-dimensional tof-spectrum (figure 19), three dots with increased
intensity can be seen. These occur all at the same time of flight, but for different monochro-

37



4 Data analysis

2.6 2.8 3.09 3.2 3.6
Time of flight ( s)

5

10

15

Io
n 

sig
na

l (
a.

u.
)

56
Fe

14
+

54
Fe

13
+

56
Fe

13
+

56
Fe

12
+

56
Fe

11
+

56
Fe

10
+

56
Fe

9+

0.2

0.3

0.4

q/
m

Figure 18: A time-of-flight spectrum of ions extracted from the trap. Each observed
peak corresponds to a charge state of iron. The blue line depicts the charge to mass
ratio as a function of the time of flight of the ions, which has been calculated using the
experimental positions of the Fe13+ and Fe14+ peaks (red dots). The gray and black dots
mark the position of the charge states of 56Fe and 54Fe isotopes.
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Figure 19: Center: The tof spectra which are recorded after each step of the scan are
combined to one two-dimensional spectrum. The color intensity corresponds to the ion
yield. The projection of the data to the x-axis yields a tof-spectrum with three distinct
peaks. Each peak corresponds to a q/m value. A projection of the ROI onto the energy
axis reveals three resonances.
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Figure 20: Ion-yield spectrum of Fe13+. The raw ion signal (blue dots, left figure) is
affected by the electronic noise, which can be seen on the baseline of the ToF-signal
(grey). By normalizing the signal a „clean“signal is obtained (right figure).

mator energies. An one dimensional energy spectrum can be obtained by choosing a
ROI (shaded rectangle in figure 19) and project its content to the monochromator-energy
axis. These peaks correspond to the same resonances, which can be seen in the fluores-
cence spectrum but are additionally resolved in their charge state. Using equation 43,
these resonances can be directly related to the Fe14+ charge state. What is being ob-
served here is the increase in Fe14+ ions due to the Auger process, which transfers parts
of the Fe13+ population to the Fe14+ population. The reason why this is only observed
for specific photon energies is that Fe13+ must be first excited to a higher level, which
happens only at specific photon energies. This assumption is strengthened by the fact
that the predicted decrease in Fe13+ is also observable (see fig. 20 left).

During data analysis, it became clear that the off-resonance ion yield exhibited an en-
ergy dependent variation (fig. 20 grey dots). The origin of this variation of the back-
ground can be attributed to noise in the electronics, used for data acquisition. Since
no significant correlation between the background spectrum and the resonances in the
ion-yield spectrum could be determined, the background spectrum has been used to
normalize the ion yield. The resulting spectrum is depicted in figure 20. By applying
a non-linear least squares fit of multiple Gaussians, the centroids, amplitudes and the
widths of the resonances can be obtained.
For the above mentioned method of extracting one-dimensional spectra, the estimation
of the error on each data point is not trivial. In contrast to the fluorescence signal, where
the Poisson statistics can be used to estimate the error as the square root of the number
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Figure 21: Left: Section of tof-spectrum. Right: Fe13+ ion-yield spectrum. Each data
point in the right figure has been obtained by determining the area under the tof-signal
the Fe13+ signal. The statistical uncertainty resulting from the fit is used as the error for
the data point for the spectrum on the right side.

of events, this method relies on a voltage measurement, which is proportional to the
number of ions. In the following, we use a different approach. Instead of choosing a
ROI and projecting its content on the photon-energy axis, each tof-spectrum is modeled
separately by multiple Gaussians. The area within one tof-peak and its statistical uncer-
tainty is then used as a data point and its estimated error within the one dimensional
ion-yield spectrum (fig. 21). While the initial approach showed a strong correlation be-
tween the fit-results and the choice of ROI, this method turned out to not exhibit such a
systematic effect.

4.4 Calibration of the monochromator energy axis

During data acquisition, the nominal photonbeam energies, which were given by the
P04 control system have been used to set the energy ranges for the measurement. But
for the actual analysis these values are known to be quite inaccurate (± ≈ 100 meV).
To ensure proper calibration of the energy axis for the final analysis, one can use well
known transitions of simpler systems, for which theory and experiments are in good
agreement. For that reason several 1s −→ np transitions of He-like oxygen and neon
and H-like oxygen have been measured besides the transition array. He-like systems
are preferable due to the large abundance in the produced plasma and the high accu-
racy with which the transition energies are predicted by theory [52].

To facilitate a proper calibration, lines of higher order Rydberg series (Kζ to Kκ) of
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Figure 22: b) The linear calibration curve for the nominal monochromator energy. The
residuals are given in a). The datapoints are extracted from the spectra below. d)
Spectra of He-like oxygen Rydberg series, e) Lyβ of oxygen and f) w of He-like Neon.
The Gaussian profile in f) results from the model, which was used to describe the
asymmetric line shape. The w and Lyβ resonances are theoretically determined to very
high accuracy and can be used to calibrate the energy axis. c) As an additional point on
the calibration curve the ionization potential is determined for OVII. The experimental
transition energies determined from b) are given as a function of the principal
quantum number n of the upper state of the corresponding transition. The ionization
potential is then extracted as the asymptote.

He-like oxygen, Lyβ of H-like oxygen and 1s −→ 2p (w) of He-like Neon have been
measured (see fig. 22). Due to the high countrate, one can see that the measured line
shape of Ne w is asymmetric. It can be assumed that the large exit-slit, chosen for this
single measurement, lead to a misalignment of the photonbeam to the center of the
slit. Resulting in a not uniformly illuminated exit-slit. This could explain the observed
asymmetric instrument profile. As a consequence the usual approximation of a Gaus-
sian profile does not hold. To obtain the centroid of the measured signal the observed
profile has been modeled by a skewed slit function convoluted with Gaussian profile.
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The transition energy, which corresponds to the centroid of the convoluted Gaussian,
has been determined as E(New) = 922.2030(9) eV.
Theoretical values for the measured high-order Rydberg series transitions (figure 22 d)
are not available. To realize a comparison with theory, the ionization potential has been
determined using the available measurements. As can be seen in figure 22 c) the exper-
imentally determined nominal transition energies are plotted over the principal quan-
tum number of the excited state. Using these data points, it is possible to determine
the ionization potential of He-like O. A quantum-defect model based on the Rydberg
formula is used, with the Rydberg energy ER, the effective nuclear charge Zeff and the
quantum defect δn,l for principal n and orbital quantum number l, respectively:

En = Z2
effER

[
(1− δ1,s)

−2 − (n− δn,l)−2
]

= EIP − Z2
effER(n− δn,l)−2. (44)

To reduce uncertainty, results of a previous measurement done in 2019 will be included
in the following analysis. During that beamtime a dedicated measurement of the He-
like oxygen rydberg series has been conducted. Zeff and δn,l have been fixed by imple-
menting the results of that measurement [52]. Using this model, the ionization potential
has been determined as EIP = 739.5298(38) eV.
Another data point on the calibration curve has been obtained by the measurement of
the Neon Lyβ line at approximately 775 eV. Usually the observation of fluorescence of
photoexcited H-like ions in an EBIT is difficult. Since the electron beam energy, neces-
sary to produce H-like ions is larger than the energy of the photon beam, the observed
signal is dominated by background produced by direct electron-impact excitation. To
circumvent this problem a method has been applied, which allows background-reduced
measurement of such systems by implementing a two-part measurement process. Dur-
ing a „breeding time“, a significant amount of H-like ions are produced. After accu-
mulation of H-like ions the electron beam energy is switched instantly down to a value
below the ionization threshold. The following „detection time“is then used to record
the fluorescence [43].
Such a measurement procedure has been used to record a signal of the Lyβ transition
of H-like oxygen (see figure 22 e)). Due to limited time, only a weak signal could be
observed. However the present statistics allowed a determination of the line centroid
with a reasonable accuracy of E(Lyβ) = 774.8469(75) eV.
By comparing the nominal experimental transition energies with their theoretical coun-
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Figure 23: Time schedule of the whole UTA measurement campaign. UTA lines were
measured in two measurement series (blue) interrupted by a day of beamline
comissioning (yellow). During the second measurement series calibration lines (dark
blue) but also several UTA lines were measured.

terpart a calibration curve can be obtained (figure 22 a), b)). The linear fit revealed a
constant offset of nominal energies by 214(22) meV with a slope of 0.99998(2).

Additionally to the calibration curve, an analysis of possible systematic errors must be
conducted.
Energy drifts in time. The UTA measurement series was split into two parts conducted
over two days (see fig. 23). The two measurement series were interrupted by half a day
of beamline commissioning. Although the hutches of the photon beamline are tempera-
ture stabilized, slight shifts in temperature over the day can lead to measurable drifts of
the nominal energy. Since 12 hours passed in between both UTA measurement series,
but also a lot of beamline-parameter changes happened during commissioning, it was
not unlikely that significant changes in the nominal energies occurred.
To investigate this assumption, the transition energies of UTA lines, which were scanned
during both UTA measurement series are subtracted and plotted in figure 24. The
weighted average of

∆Emean = 0.0006(26) eV. (45)

has been determined. Considering that this value is compatible to a value of zero, it is
neglected in further analysis.
It can be also concluded, that the calibration lines obtained during UTA measurement
series 2 can in fact be used to calibrate the nominal photon energies of the day before, if
the error of ∆Emean is included in the final error budget.

Encoder interpolation error. Another known source of uncertainty arises from the
encoder of the P04 monochromator. In principle any requested photon energy corre-
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Figure 24: The difference of nominal transition energies of same lines acquired during
measurement series 1 and measurement series 2 after approximately 12 hours is
plotted. The weighted average (blue line) and its 1-sigma uncertainty(shaded) has
been determined to test if nominal energies have changed. The weighted average has
been determined by applying a linear fit with a fixed slope of zero.

sponds to an angle of the mirrors and grating placed inside the monochromator of the
P04 beamline. If changes in energy are required, the necessary change in the involved
angles are calculated and set accordingly. However this process has practical limits. A
requested change of e.g. 10 meV (as in this experiment) would correspond to a rotation
in the order of 10−5 degrees, which is significantly less than the reference marks on the
angular encoder. Interpolation functions are used to set such small changes in angles.
Previous experiments have shown that these interpolation functions are highly unreli-
able, resulting in fluctuations in the energy for given nominal values [43].
As a result, the relatively large error of ∆Emean might be caused by the encoder. How-
ever a definitive answer can not be given within the framework of this thesis.

4.5 Line identification

To proceed further, one has to identify the experimentally observed lines, i.e. which
initial and excited electronic levels correspond to each resonance. This assignment was
done by comparing the experimental spectra with simulated spectra. For that purpose,
we use relativistic MBPT calculations of Ming Feng Gu for the transition energies and
rates [53]. A comprehensive list of all theoretical lines can be found in appendix 6.2. The
theoretical spectrum can be produced by summing multiple Gaussian profiles, where
the center is determined by the theoretical transition energy and its amplitude by the
radiative transition rate, weighted by the branching ratio,Aγ ·Bi. The index i determines
the decay channel (radiative, auger). The width of the Gaussian is tuned to match the
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Figure 25: Comparison of experimental and theoretical spectra. Experimental and
theoretical transition energies are given as red lines. The shaded area mark the 1 sigma
uncertainty. Theoretical lines are convoluted with gaussian profiles to simulate the
experimental resolution.

experimental observation. Figure 25 depicts such theoretical spectra and experimen-
tal spectra for a small part of the UTA. In order to save space, only part of the UTA is
shown in detail. Further close-up spectra are listed in the appendix (chapter 6.1). Any
line observed in the ion-yield spectra can be directly associated to the UTA of Fe13+.
Since most resonances in the UTA are expected to have an auger-decay channel com-
parable or stronger than the respective radiative channel, the ion-yield spectra are used
to assign the experimentally observed lines to their theoretical counterparts. One can
see that most measured transitions can be associated with a single line in the theoreti-
cal spectra. This enables us to determine the coupling structure for each identified line.
The results are given in table 2. For highly blended lines, where multiple resonances are
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Figure 26: Overview of all experimentally determined lines. Top: Fluorescence
spectrum. Bottom: Ion-yield spectrum. Lines observed in the ion-yield spectrum can
be directly related to the Fe13+ UTA. Each identified line is labelled with a number
(same as in table 2). Several lines, which were observed in the fluorescence spectrum,
can be excluded from the Fe13+ UTA (labeled with roman numerals), since no
corresponding signal could be observed in the ion-yield spectrum.

merged into one structure (e.g. line 12), a comparison is done with the maximum of the
theoretical spectrum. These values are given in table 2 under the column „Blend“.
As can be seen in figure 25, some lines observed in the fluorescence spectrum cannot

be associated with a line in the theoretical spectrum. One can reason that these lines are
not part of the UTA produced by Fe13+ ion. Since these unidentified lines are mostly
located in the lower energy part of the spectrum (fig. 26), it can be assumed that they
are produced by a lower charge state of iron (i.e. Fe12+,Fe11+). Due to the lack of high
precision theoretical calculations, it has not been possible to verify this assumption yet.
A comparison of the calculated to the experimental energies is shown in figure 27. To

quantify the experimental result, the calibrated theoretical transition energies are sub-
tracted from the experimental energies to determine the residual for all measured UTA
lines. A weighted average of

Eres = 79.6(67) meV. (46)

was found. There are two possible explanations for this deviation. An unknown sys-
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Table 2: Comparison of experimentally determined transition energies of the Fe13+

M-shell UTA. Each idetified line is labelled with a number given in column one. The
next two columns contain the centroid values and the corresponding statistical
uncertainty. Column three contains the peak position of the theoretical spectrum.
These values are more suitable for the comparison of highly blended lines. The
remaining columns give the theoretical energies, the groundstate (GRD: 2P1/2, META:
2P3/2) and the excited level structure (column four and five). The energies are given in
eV.

No. Exp. Error Blend Theory Init Term J
(eV) (eV) (eV) (eV)

1 777.968 0.006 777.9037 777.9037 META ((2p53s23p)3D 3d) 4D 5/2
2 779.757 0.009 779.7430 779.7486 GRD ((2p53s23p)3D 3d) 4F 3/2
3 780.502 0.003 780.3400 780.3996 META ((2p53s23p)3P 3d) 4D 5/2
4 781.285 0.015 781.1981 781.1507 GRD (((2p53s)3P 3p3) 4S3) 4P 1/2

781.2329 META ((2p53s23p) 3S 3d) 2D 3/2
5 783.730 0.016 783.7364 783.5711 GRD ((2p53s23p) 3S 3d) 2D 3/2

783.7413 META ((2p53s23p) 3P 3d) 4P 1/2
6 784.124 0.003 784.0439 784.0430 GRD ((2p53s23p) 1D 3d) 2P 1/2
7 784.259 0.097 784.2614 784.2672 META (((2p53s) 3P 3p3) 2P1) 2D 3/2
8 784.933 0.005 784.8285 784.8290 META (((2p53s) 3P 3p3) 2D3) 2D 3/2
9 785.710 0.006 785.6311 785.6307 META (((2p53s) 3P 3p3) 4S3) 2P 3/2
10 786.595 0.005 786.4832 786.4817 META ((2p53s23p) 1P 3d) 2D 5/2
11 787.192 0.011 786.6053 GRD (((2p53s) 3P 3p3) 2P1) 2D 3/2
12 787.192 0.011 787.0457 786.9108 GRD (((2p53s) 3P 3p3) 4S3) 2P 1/2

787.0268 META ((2p53s23p) 3P 3d) 4P 1/2
787.1671 GRD (((2p53s) 3P 3p3) 2D3) 2D 3/2

13 789.036 0.002 788.9195 788.9197 META ((2p53s23p) 3P 3d) 2D 5/2
14 789.558 0.002 789.4640 789.4561 GRD ((2p53s23p) 3D 3d) 4F 3/2

789.4922 META (((2p53s) 3P 3p3)2P1) 2S 1/2
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Table 3: cont.

No. Exp. Error Blend Theory Init. Term J

15 790.736 0.013 790.7331 790.7438 META ((2p53s23p) 1D 3d) 2F 5/2
16 791.359 0.012 791.2957 791.2951 GRD ((2p53s23p) 3D 3d) 4D 3/2
17 791.801 0.003 791.7637 791.7580 META ((2p53s23p) 3P 3d) 4P 5/2
18 792.015 0.011 791.9363 791.9431 GRD ((2p53s23p) 1P 3d) 2P 3/2
19 793.079 0.001 793.0176 792.8987 META ((2p53s23p) 3D 3d) 2D 3/2

793.0194 GRD ((2p53s23p) 3P 3d) 2D 3/2
20 793.562 0.001 793.4833 793.4835 META ((2p53s23p) 1D 3d) 2D 5/2
21 794.331 0.001 794.2693 794.2692 GRD ((2p53s23p) 3D 3d) 4F 3/2
22 795.370 0.005 795.2370 795.2368 GRD ((2p53s23p) 3D 3d) 2D 3/2
23 795.654 0.002 795.5415 795.5416 META ((2p53s23p) 1D 3d) 2P 3/2
24 797.078 0.002 796.9937 796.9935 GRD ((2p53s23p) 1P 3d) 2P 1/2
25 797.778 0.002 797.6282 797.6275 META ((2p53s23p) 3D 3d) 2S 1/2
26 798.438 0.002 798.3693 798.3686 META ((2p53s23p) 1S 3d) 2D 5/2
27 799.852 0.002 799.7929 799.7928 META ((2p53s23p) 3P 3d) 2D 3/2
28 801.419 0.014 801.3430 801.3434 META ((2p53s23p) 3D 3d) 2P 1/2
29 802.214 0.022 802.1305 802.1310 META ((2p53s23p) 3P 3d) 2D 3/2
30 803.255 0.034 803.2466 803.2460 META ((2p53s23p) 1S 3d) 2D 5/2
31 803.748 0.001 803.6822 803.6815 GRD ((2p53s23p) 3D 3d) 2P 1/2

Table 4: cont.
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Figure 27: The theoretical transition energies are subtracted from their corresponding
experimental values. The systematic errors and the statistical error are added in
quadrature and used as weights for the data points. The horizontal line indicate the
weighted average and the shaded area its statistical uncertainty.

tematic effect in the experiment or an offset in theoretically calculated transition ener-
gies. Since the experimental transition energies were calibrated using theory, one must
again assume an offset in theory. Since the three theoretical values, which are used for
the calibration are benchmarked to experiments, or stem from simple systems, where
high deviations are unlikely, one can conclude that the 79.6(67) meV deviation comes
from the theory. A simple answer to the cause of the deviation in the calculated transi-
tion energies is difficult to provide, but one explanation could be a systematically lower
groundstate energy, possibly due to insufficient amount of input-configurations.

4.6 High-resolution scan

During the campaign most scans were measured with an exit slit of 100 µm. The result-
ing energy resolution is not sufficient to resolve the natural linewidths of the UTA lines,
which are in the order of≈ 10 meV. However one part of the transition array containing
the lines 19 and 20 (tab:2) was measured with a higher resolution, employing an exit slit
of 25 µm. The increased resolution allows a determination of the natural linewidth. In
the following section, we will utilize this single spectrum to obtain the absolute radia-
tive and autoionization rates of the two observed lines. The method has been developed
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Table 5: The coupling structure (in jj-notation) and statistical weights of the two lines,
analysed in this chapter 4.6.

No Label Initial Excited g (circ. pol)

19 Line 1 3p1/2 [[2p1/23p3/2]13d3/2]3/2 2
20 Line 2 3p3/2 [[2p1/23p3/2]23d5/2]5/2 4

by René Steinbrügge [51][54] and has been adapted for this work.

4.6.1 Extraction of absolute transition rates

There are multiple unknown variables (number of ions, detection efficiency, overlap
factor of photon beam with ions, etc.) involved in this measurement so that absolute
values are challenging to determine and one usually has to rely on theoretical values.
The idea of this procedure is to gain four independent equations out of which the four
transition rates Aγ,1, Aγ,2, AA,1, AA,2, can be calculated. The two lines, from now on re-
ferred to as „line 1“and „line 2“, are both 2p −→ 3d transitions within the Fe13+ M-shell
UTA. The following sections illustrate how absolute transition rates can be determined
from ratios of experimental values and the natural linewidth of line 1 and line 2.

4.6.2 The parameter c; the ratio of yields

The (baseline subtracted) signal yields (fluorescence: Yγ , Ions: YA) that are observed
with the detectors are proportional to the initial rate of excitation σNionNγ , the branch-
ing ratio B, the number of photons in the photon beam and the detector specific de-
tection efficiency P . For both detection methods we can formulate equations for the
experimental yields

Yγ = BγσNionNγPγ, (47)

YA = BAσNionNγPA. (48)

A value independent of the initial excitation process can be gained, by taking the ratio
of both yields for the same transition

c′ :=
Yγ
YA

=
Bγ

BA

· Pγ
PA

. (49)
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Figure 28: The photon yield and the ion yield of the two transitions can be determined
by modeling a Voigt profile to the data. a): Fluorescence, b): Ions.

Additionally the detection efficiencies Pγ and PA are in general unknown factors, which
contribute to a large systematic uncertainty. So instead of determining these values
directly we define a parameter c as the ratio of c′ for two different transitions of the
same charge state. This parameter is then independent of the detection efficiencies:

c :=
c′1
c′2

=
Bγ,1 ·BA,2

Bγ,2 ·BA,1

=
Aγ,1 · AA,2
Aγ,2 · AA,1

(50)

By measuring the four experimental yields Yγ,1, Yγ,2, YA,1, YA,2, a value purely dependent
on the Einstein coefficients can be gained. The yields can be determined by modelling
the experimental spectrum with Voigt profiles (fig. 28). Inserting the values from the fit
into equation 70 we end up with

c = 1.203± 0.095. (51)

4.6.3 The parameter d; linestrength ratio

Another parameter, which can be extracted from the same spectra is the line strength.
Experimentally it corresponds to the integral over the normalized signal:

Sexp =

∫
Y (E)

Nγ(E) ·NIon(E)
dE = B · P

∫
σ(E)dE = B · P · S = B · P · g2

g1

hc2

8πν2
· A. (52)

Since the line strength can be determined for both the fluorescence spectrum and the
ion spectrum, the indices have been omitted from the above equation. As can be seen in
equation 52 the yield has to be normalized by the photon flux and the number of ions.
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Figure 29: The experimental data must be normalized by the photon current (a) and the
ion yield (c) before linestrength is extracted from the data. b): Fluorescence, d): Ions.

To determine the photon flux the experiment is set up with a diode down stream of the
experiment, where the photon beam intensity is converted to a measurable electrical
current. Since this diode current Iγ is proportional to the photon flux Nγ , one can use
it for normalization (see fig. 29a). The number of ions depend for the most part on the
electron beam energy and electron beam current. Since the electron beam current can
be affected easily by environmental variables like pressure and vibrations, it is known
to have fluctuations over time and therefore it depends also on the photon energy. Here
we estimate Nion as the baseline of the Fe13+ ion yield (see fig.29c). To get rid of the
detection specific efficiency P in equation 52, the ratio of experimental line strength of
both lines is determined:

dγ =
Sexp,γ,1
Sexp,γ,2

=
A2
γ,1

A2
γ,2

· Atot,2
Atot,1

· E
2
2

E2
1

· g22

g21

, (53)

dA =
Sexp,A,1
Sexp,A,2

=
Aγ,1AA,1
Aγ,2AA,2

· Atot,2
Atot,1

· E
2
2

E2
1

· g22

g21

(54)

with the transition energy Ei, and statistical weight for the initial state gi,1 and the ex-
cited state gi,2. After the fluorescence and ion yields have been normalized, the fit results
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Figure 30: Extraction of decay spectra. ROI 1 (fluorescence signal) and ROI2
(background) are projected individually on the fluorescence energy axis. By
subtracting the projected spectra from each other one obtains the decay spectrum.

can be inserted in above equations to obtain the two d parameters:

dγ = 1.367± 0.068, dA = 1.136± 0.041. (55)

4.6.4 The natural linewidth

The natural linewidth γ can be determined from the same fit as in fig. 29. All four
resonances have been fitted as a single data set, sharing the Gaussian width for all lines.
As a result, the natural linewidths γ1 and γ2 have been determined as

γ1 = 23.12 meV ± 1.59 meV, γ2 = 22.07 meV ± 1.67 meV. (56)

The theoretical linewidths calculated by Gu et al are given for comparison below.

γ1,theo = 57.022 meV, γ2,theo = 82.88 meV. (57)

The natural linewidth is in direct relation with the total transition rate

Atot =
∑
i

(Aγi + AAi) =
γ

h̄
, (58)

which includes all radiative and non-radiative channels. Therefore the natural linewidth
is an essential parameter, which will be used to determine the total radiative and au-
toionization rates Aγ and AA.
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Figure 31: Result of the radiative BR analysis for line 1. Left: The various radiative
decay channels for the excited state are shown in an artificial spectrum (blue and black
lines) The experimental decay spectrum has been fitted to determine the subsidiary
decay cluster (red dotted line). The theoretical spectrum is shifted vertically. Right:
Theoretical radiative transition rates are plotted in a bar diagram for the most
prominent decay channels.

4.6.5 The influence of other decay channels

So far it has been assumed that there is only one radiative and one non-radiative decay
channel for the excited state. Which means that the branching ratios to the groundstate

B0
γ =

A0
γ∑

j A
j
γ

, B0
A =

A0
A∑

j A
j
A

(59)

are both equal to one. In general there are other states to which the excited state can de-
cay. This leads to a possible underestimation of the experimental yield and linestrength.
To determine the influence of other radiative decay channels, the decay spectra of the
investigated lines have to be analysed. As can be seen in fig. 30, the pure fluorescence
signal can be extracted by choosing two ROIs. One contains the fluorescence signal
(ROI 1) and the other contains only the background signal (ROI 2). By subtracting ROI
1 from ROI 2 one is left with a pure decay spectrum produced by fluorescence photons.
Due to the insufficient resolution of the SDD (60 eV FWHM), the subsidiary decay chan-
nels appear as a single unresolved feature. To determine the relative strength of the
main decay channel, the spectrum has been fitted by a model consisting of two Gaus-
sians (fig. 31 orange and red dashed lines) and a Sigmoid. The dominant Gaussian
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profile corresponds to the main decay channel. All other subsidiary decay channels
have been included in the smaller Gaussian profile. The Sigmoid is used to model the
response function of the detector. As a result one can estimate the branching ratios to
the groundstate as:

B0
γ,1,exp = 0.8266 (7), B0

γ,2,exp = 0.8254 (6). (60)

This parameter shows that approximately 83 % of the whole integrated signal corre-
sponds to photons of transitions to the groundstate.
To check if this simple model can be reproduced by theory an artificial decay spectrum
has been modeled for comparison (fig. 31 blue). For both transitions of interest we
determine all theoretical radiative decay channels. Decay channels with non-negligible
transition rates are to excited levels of the ground state configuration. As can be seen
in figure 31 most of them lie approximately 100 eV below the main decay channel. The
theoretical branching ratios have been determined to be

B0
γ,1,theo = 0.892, B0

γ,2,theo = 0.910. (61)

Other transition branching ratios have been tabulated in table 6. Since the experimen-
tally determined radiative branching ratio is in fact the unperturbed branching ratio
weighted by the corresponding photon distributions, which explains the apparent de-
viation between B0

γ,theo and B0
γ,exp. For further analysis the theoretical values for the

branching ratio will be used. This result has to be included into the d parameter. The
actual experimental line strength is then given by

S ′exp,γ = Sexp,γ ·B0
γ, (62)

S ′exp,A = Sexp,A ·B0
γ. (63)

The above modification of the linestrength introduces the radiative branching ratio into
the parameter dγ and dA:

dγ =
S ′exp,γ,1
S ′exp,γ,2

·
B0
γ,2

B0
γ,1

, (64)

dA =
S ′exp,A,1
S ′exp,A,2

·
B0
γ,2

B0
γ,1

. (65)

As mentioned above, the radiative transitions to states other than the ground state could
not be resolved in the experimental spectrum, determining dγ and dA with only experi-
mental data is for that reason not possible.
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Table 6: For the two lines of interest the involved angular momenta, anisotropy
parameter β, theoretical transitions rate and the radiative branching ratio are tabulated
for the six most significant decay channels.

Line 1 Line 2

No. J0 Ji Jf β Aγ,FAC Bγ J0 Ji Jf β Aγ,FAC Bγ
1 1/2 3/2 1/2 -1/2 5.3e12 0.892 3/2 5/2 3/2 -7/25 6.8e12 0.910
2 5/2 -1/10 1.6e11 0.027 3/2 -7/25 1.5e11 0.020
3 3/2 2/5 9.0e10 0.015 5/2 8/25 1.2e11 0.016
4 1/2 -1/2 8.7e10 0.015 7/2 -1/10 1.0e11 0.013
5 3/2 2/5 7.6e10 0.013 7/2 -1/10 7.3e10 0.010
6 3/2 2/5 5.8e10 0.010 3/2 8/25 5.1e10 0.007

4.6.6 The influence of the angular distribution of emitted photons

Another factor, which has to be analysed in detail is the angular distribution of pho-
tons. The effect of polarisation on the observed signal strength can be strong, since it
can even lead to complete cancellation if the detector is placed at a „wrong“position.
In this experiment the incoming photons were circularly polarized. Therefore the an-
gular distribution is isotropic in the plane perpendicular to the photon beam axis. This
allows the summation of both detector signals into one spectrum. While the enhanced
signal leads to a more accurate determination of all involved fit-parameters, it has a
disadvantage that one cannot access the information regarding the angular momenta
of the subsidiary decay channels. Since the excited states decay to states with various
total angular momenta, the angular distribution for the various channels have to be
superimposed

W (θ, φ) =
∑
i

Bi
γW

i(θ, φ). (66)

The above equation can then be calculated using the values in table 6 and equation 35.
Since for circular polarisation the photons are emitted isotropically for given angle θ,
the above equation reduces to a single number for each line:

W1 = 0.8626, W2 = 0.9122. (67)
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Figure 32: Modulus of the angular distribution in a polar representation. For both lines
of interest the theoretical angular distribution for all major decay channels have been
visualized (blue lines). Including the theoretical branching ratios, a weighted sum has
been calculated (yellow).

The effect of the superimposed angular distributions is visualized in figure 32. Since
each transition has a different angular distribution, the detection efficiency of the fluo-
rescence detector is transition dependent.

P ′γ,1 = Pγ ·W1 (68)

P ′γ,2 = Pγ ·W2. (69)

As a result the c and d parameters must be modified correspondingly

c =
Yγ,1 · YA,2
YA,1 · Yγ,2

· W2

W1

(70)

dγ =
S ′exp,γ,1
S ′exp,γ,2

·
B0
γ,2

B0
γ,1

· W2

W1

(71)

dA =
S ′exp,A,1
S ′exp,A,2

·
B0
γ,2

B0
γ,1

. (72)

By inserting the B0
γ,1, B

0
γ,2,W1,W2 into the equations above, the corrected values for the c

and d parameters can be gained:

c = 1.139± 0.090, dγ = 1.295± 0.039, dA = 1.136± 0.041. (73)
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Figure 33: Four additional measurements of the same lines have been used to decrease
uncertainty of the parameters c, dA and dγ . Furthermore the ion yield spectra of 56Fe

13+

and 54Fe
13+ are added. A weighted average has been determined for each data set. The

results are condensed in table 7.

4.6.7 Putting everything together

While only one scan has been conducted with enhanced resolution to obtain the natural
linewidth, one can use other „low“resolution scans of the lines 1 and 2 to decrease the
uncertainty of c, dγ and dA. Additionally to the 56Fe

14+ ion yield spectra, the ion yield
spectra produced by 56Fe

13+ and 54Fe
13+ have been used. For each set of data the dA and

c parameters have been calculated and a weighted average determined (see figure 33
and table 7). Since the datasets are independent a weighted average could be calculated.
Now that the parameters c, dγ ,dA and γ1, γ2 are available, it is possible to derive the four
transition ratesAγ,1, Aγ,2, AA,1, AA,2. Before the rates are determined, a. quick discussion
of the nature of this equation system will be done.
There are five experimentally determined equations and four rates to determine. It can
be shown that {dγ, dA, c} are not independent of each other, since by taking the ratio of

58



4 Data analysis

Table 7: The weighted averages and their errors for the three parameters c, dA and dγ

(see fig. 33). The weighted average over all data sets is given in the bottom row.

dA c dγ
Fe13+(Z = 56) 1.157(43) 1.135(35) -

Fe13+(Z = 54) 1.043(25) 1.187(68) -

Fe14+(Z = 56) 1.058(15) 1.247(20) -

Average: 1.060(12) 1.210(25) 1.327(14)

dγ and dA the parameter c is gained.

dγ
dA

=
Aγ,2AA,2
Aγ,1AA,1

·
A2
γ,1

A2
γ,2

=
Aγ,1AA,2
Aγ,2AA,1

= c (74)

Only four independent parameters are necessary to determine all transition rates, there-
fore three different sets of experimental parameters can be used to calculate the rates.
Which are: {dγ, c, Atot,1, Atot,2}, {dA, c, Atot,1, Atot,2}, {dγ, dA, Atot,1, Atot,2}. It will be shown
that the choice of the parameter set has an effect on the rates and especially on their un-
certainties.

4.6.8 Parameter set 1: {dγ, c, Atot,1, Atot,2}

By combining equations for dγ (eq.71), c (eq.70) and the two total transition rates Atot,1,
Atot,2 (eq.58) the four transition rates of interest can be determined.

AA,1 = Atot,1 − Aγ,1 (75)

AA,2 = Atot,2 − Aγ,2 (76)

Aγ,1 =

(
c · Atot,1 −

√
Atot,1Atot,2

g2,2

g2,1

g1,1

g1,2

· dγ ·
E1

E2

)
/(c− 1) (77)

Aγ,2 = Aγ,1
E2

E1

/

√
Atot,1
Atot,2

g2,2

g2,1

g1,1

g1,2

dγ (78)
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Figure 34: Parameter set 1:. Probability distribution for the four transition rates. The
black line indicates the expectation value, the grey shaded area the 1-sigma interval.

A Monte-Carlo-like procedure is used to determine the probability distribution of the
transition rates. For example to determine the distribution for Aγ , we produce a set of
input parameters { c′, d′, A′tot,1, A′tot,2, E ′1, E ′2 }. Each dashed parameter x’ is an element of
{ x−3 ·xerr, ..., x+ 3 ·xerr }. The probability that x’ is drawn is normally distributed with
the sigma given as xerr. Now for a large enough number of times Aγ is calculated with
randomly chosen sets of parameters. Since negative values for the transition rates are
physically impossible, an additional condition is set to prevent the calculation of such.
The result is then visualized as a histogram (figure 34). The expectation value and the
corresponding 1-sigma interval are marked by the black lines and shaded area, respec-
tively.
However taking equation 74 into account, one can expect a strong correlation between
the d parameters and c. A common way to quantify the strength of correlation is by
using the Pearson correlation coefficient. It is given by the covariance of two parame-
ters divided by the product of their standard deviations, resulting in a number between
[−1, 1]. A more visual interpretation of the correlation between two variables can be
gained by plotting a set of points e.g. (d′γ ,c′), with d′γ and c′ being an element of a
normally distributed set with sigma given by d′γerr and c′err. In such a depiction, the
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Figure 35: The strength of correlation is depicted for the three possible combinations of
the parameters dγ , dA and c. Due to the relation between the d and c parameters a
strong correlation can be observed in the first two figures. The statistical independence
of dγ and dA can be seen in the last figure.

correlation can be estimated on the basis of the shape of the data. A correlation of zero
corresponds to a cicle, strong correlation is depicted by a thin line at an angle of 45 de-
grees. The plotted data is visualized in figure 35. It can be seen, that the parameters dγ
and dA are statistically independent. For that reason, a significantly lower uncertainty
is expected for the third parameter set. This assumption will be tested in the following
sections.

4.6.9 Parameter set 2: {dA, c, Atot,1, Atot,2}

Instead of dγ the linestrength ratio of the ion yields dA is used to determine the four
rates:

Aγ,1 = Atot,1 − AA,1 (79)

Aγ,2 = Atot,2 − AA,2 (80)

AA,2 =

(
cAtot,2 −

√
Atot,1Atot,2

g2,1

g2,2

g1,2

g1,1

· c
dA
· E2

E1

)
/(c− 1) (81)

AA,1 = AA,2 ·
E1

E2

·

√
dA
c

Atot,1
Atot,2

g2,2

g2,1

g1,1

g1,2

(82)

Utilizing the same procedure, as described in section 4.6.8, the probability distributions
are calculated (see figure 36).
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Figure 36: Parameter set 2: Probability distribution for the four transition rates. The
black line indicates the expectation value, the grey shaded area the 1-sigma interval.

4.6.10 Parameter set 3: {dA, dγ, Atot,1, Atot,2}

By using equation 74 we can replace the c parameter with the ratio of dγ and dA. The
equation system of section 4.6.8 is used to determine the probability distributions (fig-
ure 37)).
The four transition rates obtained from three different parameter sets have been sum-
marized in table 8. While all results are in agreement with each other, a gradual decrease
in uncertainty can be observed with the choice of parameter set. As expected, due to the
low correlation between the d parameters, parameter set 3 exhibits a low relative uncer-
tainty of approximately 30% (figure 37). As already mentioned, the calculations of Gu
[53] predict natural linewidths of 57.0 meV and 82.9 meV for the lines 1 and line 2. The
radiative branching ratios are also given as Brad,1 = 0.123 and Brad,2 = 0.082, leading to
the rates given byAtheo

i = Γ
h̄
·Bi. The resulting theoretical rates are summarized in table 8.
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Figure 37: Parameter set 3: Probability distribution for the four transition rates. The
black line indicates the expectation value, the grey shaded area the 1-sigma interval.

4.6.11 Observed natural linewidth: Beamline contribution

A central part of the above analysis focused on the determination of the natural linewidth.
A Voigt model given by

Y (E) =

∫
Lion(τ)G(E − τ) dτ (83)

has been used to extract the natural linewidth from the de-convoluted Lorentzian Lion

profile. All broadening effects as well the instrument profile, which has been assumed as
gaussian-shaped, has been combined into one Gaussian model G. However, it has been
shown in the dissertation of Steffen Kühn [43] that the energy profile of the photons of

Table 8: The four transition rates, obtained from the three parameter sets and their
respective theoretical prediction are compared. The rates are given in 1012 1

s
.

Aγ,1 Atheo
γ,1 Aγ,2 Atheo

γ,2 AA,1 Atheo
A,1 AA,2 Atheo

A,2

Set 1 16.0(8.7) - 12.8(6.9) - 21.9(9.8) - 23.0(10.2) -
Set 2 17.8(9.1) - 14.7(7.5) - 19.3(8.9) - 20.8(9.6) -
Set 3 17.3(7.3) 10.7 13.8(5.3) 10.3 18.3(6.2) 75.9 20.2(7.5) 115.6
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Figure 38: The four absolute transition rates of the two lines of interest have been
calculated for varying Γbeamline.The shaded area indicate the area of 1 sigma
uncertainty.

the soft x-ray beamline P04 can be partially modeled by an Lorentzian profile. Following
that assumption, equation 84 must be rewritten as

Y (E) =

∫
Lion(τ)

(∫
Lbeamline(τ

′)G(E − τ ′) dτ ′
)

(E − τ) dτ, (84)

Y (E) =

∫
Lion+beamline(τ)G(E − τ) dτ. (85)

As can be seen, the invariance of Lorentzian profiles under convolution leads to a mis-
assignment of the natural linewidth Γnat to the experimentally determined linewidth
Γexp, which is in fact given by

Γexp = Γnat + Γbeamline. (86)

One has to conclude, that it is not possible to extract the unbiased natural linewidth Γnat

from the available data. However, the expected impact of Γbeamline can be estimated for
the four experimentally determined rates.
For that purpose the four rates have been re-calculated for varying Γbeamline (see figure
38). While one can see for all four rates a trend changing with Γbeamline, due to the
comparably large uncertainty, this effect can be considered as negligible.
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5 Discussion and Outlook

The primary goal of this thesis was the investigation of the M-shell transition array of
iron. While few works exist for high charge states of iron with few K and L-shell elec-
trons [20, 54], large scale measurements of iron in medium charge states were hitherto
missing. With increasing number of electrons, energy levels start to become more dense,
which makes high resolution x-ray sources like the P04 beamline necessary to experi-
mentally resolve all involved lines. Similar difficulties arise in the theoretical treatment.
The sheer number of electrons introduce strong electron correlation and thus high sen-
sitivity to the number of configurations included in the calculation.
Despite all difficulties, the iron M-shell UTA is used as diagnostic tool for various as-
trophysical plasma. The plasma models used for the analysis heavily rely on the results
of modern atomic structure codes like HULLAC, which is known to be accurate to few
tens of mÅ in the 10-20 Å regime ([32],[55]) (approx. 1 eV at 800 eV). To exacerbate the
situation even more, only few laboratory measurements of M-shell iron ions exist [56].
In order to systematically benchmark theory, an experimentally unexplored charge state
of iron, Fe13+, has been chosen for this work. Using the PETRA III synchrotron radiation,
31 transitions of the M-shell UTA have been resonantly excited and observed in both the
radiative and autoionization channels. The transition energies of most identified lines
have been determined with a statistical uncertainty of few meV already within a few
hours of measurement time and are dominated by systematic uncertainties of≈ 30 meV,
caused by the calibration error and the encoder interpolation.
However, a detailed comparison with state-of-the-art atomic structure theory [53] showed
a significant constant deviation of approximately 80 meV. Even larger deviations have
been observed in the works of Simon et al.[56], where three prominent lines of the UTA
complex of Fe+14 exhibited deviations of in the order of 100 meV.
Further analysis has been done to determine the absolute transition rates of two reso-

nances (line 19 and 20, see tab 2). These two lines have been recorded with increased
photon beam energy resolution, which enabled the determination of their natural linewidths.
The natural linewidth for line 19 deviated more than 30 meV, line 20 even more with
approximately 60 meV from their corresponding theoretical prediction. Including the
beamline contribution Γbeamline to the observed linewidth would enhance the apparent
disparity even more. Since the natural linewidth is directly related to the total transition
rate, these significant deviations foreshadow an inaccuracy in the calculated rates.
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Figure 39: The probability distribution of the four rates Aγ,1, Aγ,2, AA,1, AA,2 is
determined for total transition rates with three-fold decreased errors. For comparison,
the probability distributions with unperturbed error are given. The vertical line
indicates the expectation value, the shaded area the 1-sigma uncertainty.

To determine absolute rates in this work, it was necessary to use theoretical calculations
for the radiative branching ratios. The radiative relaxation of an excited state can oc-
cur to various energetically lower states with differing angular momenta and therefore
angular distributions. To determine the absolute rates independently of theory, it is nec-
essary to resolve all radiative channels, which was not possible in this work. The error
of the radiative branching ratios have been estimated as 5%. The four transition rates
have been determined with a approximately 30% to 40% uncertainty. An error analysis
showed that the uncertainty of the total transition rates are most influential parameters.
The result of a potential three-fold reduction is visualized in figure 39. A reduction of
the uncertainties of parameter c and d did not show such strong influence on the final
uncertainty. A comparison with the calculations of Gu [53] exhibit a good agreement
in the radiative rates, however a significant deviation can be observed in the autoion-
ization rates (see table 8). The calculations of Gu predict autoionization rates deviating
more than 10 times the experimental uncertainty. This apparent disparity leads to the
assumption that the autoionization channel might be posing a difficulty in the atomic
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Figure 40: ASPHERE is used to trace the energy difference between the actual and the
demanded monochromator energy (orange). By modeling the raw data (orange), an
extrapolation (blue) can be acquired. Figure adopted from [43].

structure calculations.

In this work three well known transitions have been used to calibrate the monochro-
mator energy. Since it was expected that the relative calibration of the P04 beamline
is linear across the energy range between 700 eV and 900 eV, a linear calibration curve
was applied. For further reduction of uncertainty due to calibration, adding more lines
of simple systems (H-like and He-like ions) in the range of 800 eV is necessary. Suit-
able transitions are Lyα1,2 and w of fluorine at 827.2, 827.5 and 737.3 eV respectively.
By measuring these calibration lines regularly in between UTA measurements, it can
be expected that the uncertainty due to the energy calibration is significantly reduced
and only dominated by the interpolation error of the encoder. It has been shown that
the encoder interpolation error can be traced using a photoelectron spectrometer like
ASPHERE[57]. The PolarX-EBIT allows such a set-up to be installed in series due to
its transparent main-axis design. With such a simultaneous operation of EBIT and AS-
PHERE, relative changes in photon energy can be recorded by the photoelectron spec-
trometer while HCIs, produced and stored in the EBIT, offer an unique absolute calibra-
tion in the order of dE/E = 10−7. Such a dedicated measurement campaign for more
precise determination of UTA transition energies of several iron charge states would
certainly be an important contribution to the astrophysics and atomic structure theory
community.
Regarding the absolute transition rates, the accuracy of the determined rates were lim-
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ited by statistics. As can be seen in figure 39, a decreased uncertainty of the natural
linewidth can lead to a major improvement in the final accuracy of the rates. For future
measurement campaigns, one has to gain control of the Lorentzian contribution to the
instrumental profile. This can be utilized by measuring the above mentioned calibra-
tion lines with the same settings as the UTA lines. Since the natural linewidth is few
orders of magnitude smaller for these system due to the missing Auger-decay channel,
they can be used to model the instrument profile of the photon beamline. Another lim-
iting factor is the radiative branching ratio. In principle, the radiative branching ratio
can be determined from observing the photon distribution [51]. However this approach
necessitates a linear polarisation of the incident photons, which is not available at the
P04 beamline. The radiative branching ratio can be also obtained by resolving the dif-
ferent energies of the fluorescence photons with a high resolution x-ray detector, e.g. a
microcalorimeter.
There are new proposals for synchrotron experiments, as well as EBIT equipped with
microcalorimeter experiments planned to investigate and deepen our understanding of
the astrophysically relevant M-shell UTA.
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6 Appendix

6.1 Line identification

In order to save space in the main text (section 4.5), the remaining spectra are provided
in this section.

Fluorescence (MBPT)

Fluorescence (exp.)

778 779 780 781 782 783

Auger (MBPT)

Fe14 ion yield (exp.)
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Fluorescence (MBPT) 6

8 9

10

12

Fluorescence (exp.)

5

6

VIII

8 9

10

IX

783 784 785 786 787 788
Calibrated monochromator energy (eV)

Auger (MBPT)

5

6

7

8
9

10

11
12

Fe14 ion yield (exp.)

5
6

7 8 9

10

11
12

Fluorescence (MBPT)

Fluorescence (exp.)

788 789 790 791 792 793

Auger (MBPT)

Fe14 ion yield (exp.)
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Fluorescence (MBPT)

Fluorescence (exp.)

792.75 793.00 793.25 793.50 793.75 794.00 794.25 794.50 794.75

Auger (MBPT)

Fe14 ion yield (exp.)

Fluorescence (MBPT)

Fluorescence (exp.)

795 796 797 798 799 800

Auger (MBPT)

Fe14 ion yield (exp.)
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Fluorescence (MBPT)

Fluorescence (exp.)

800 801 802 803 804 805

Auger (MBPT)

Fe14 ion yield (exp.)

73



6 Appendix

6.2 Theory

The results of the relativistic many-body-perturbation calculations of Gu [53] are tabu-
lated below. The columns are as follows:
i0: lower level index
(GRD: 3s2 3p 2P1/2, META: 3s2 3p 2P3/2),
i1: upper level index,
s1: upper level label in LS coupling,
p1: upper level parity,
j1: 2 · J of the upper level,
E: transition energy in eV,
W: HWHM of the line in eV,
gf : weighted oscillator strength of the transition,
Brad: radiative branching ratio.
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