
44

Context-Bounded Verification of Liveness Properties for
Multithreaded Shared-Memory Programs

PASCAL BAUMANN,Max Planck Institute for Software Systems (MPI-SWS), Germany

RUPAK MAJUMDAR,Max Planck Institute for Software Systems (MPI-SWS), Germany

RAMANATHAN S. THINNIYAM,Max Planck Institute for Software Systems (MPI-SWS), Germany

GEORG ZETZSCHE,Max Planck Institute for Software Systems (MPI-SWS), Germany

We study context-bounded verification of liveness properties of multi-threaded, shared-memory programs,
where each thread can spawn additional threads. Our main result shows that context-bounded fair termination
is decidable for the model; context-bounded implies that each spawned thread can be context switched
a fixed constant number of times. Our proof is technical, since fair termination requires reasoning about
the composition of unboundedly many threads each with unboundedly large stacks. In fact, techniques for
related problems, which depend crucially on replacing the pushdown threads with finite-state threads, are not
applicable. Instead, we introduce an extension of vector addition systems with states (VASS), called VASS with
balloons (VASSB), as an intermediate model; it is an infinite-state model of independent interest. A VASSB
allows tokens that are themselves markings (balloons). We show that context bounded fair termination reduces
to fair termination for VASSB. We show the latter problem is decidable by showing a series of reductions:
from fair termination to configuration reachability for VASSB and thence to the reachability problem for VASS.
For a lower bound, fair termination is known to be non-elementary already in the special case where threads
run to completion (no context switches).

We also show that the simpler problem of context-bounded termination is 2EXPSPACE-complete, matching
the complexity boundÐand indeed the techniquesÐfor safety verification. Additionally, we show the related
problem of fair starvation, which checks if some thread can be starved along a fair run, is also decidable in the
context-bounded case. The decidability employs an intricate reduction from fair starvation to fair termination.
Like fair termination, this problem is also non-elementary.

CCS Concepts: · Theory of computation→ Concurrency; · Software and its engineering→ Software

verification.

Additional Key Words and Phrases: verification, liveness, multithreaded programs, decidability, computational

complexity

ACM Reference Format:

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2021. Context-Bounded
Verification of Liveness Properties for Multithreaded Shared-Memory Programs. Proc. ACM Program. Lang. 5,
POPL, Article 44 (January 2021), 31 pages. https://doi.org/10.1145/3434325

Authors’ addresses: Pascal Baumann, Max Planck Institute for Software Systems (MPI-SWS), Paul-Ehrlich-Straße, Building
G26, Kaiserslautern, 67663, Germany, pbaumann@mpi-sws.org; Rupak Majumdar, Max Planck Institute for Software
Systems (MPI-SWS), Paul-Ehrlich-Straße, Building G26, Kaiserslautern, 67663, Germany, rupak@mpi-sws.org; Ramanathan
S. Thinniyam, Max Planck Institute for Software Systems (MPI-SWS), Paul-Ehrlich-Straße, Building G26, Kaiserslautern,
67663, Germany, thinniyam@mpi-sws.org; Georg Zetzsche, Max Planck Institute for Software Systems (MPI-SWS), Paul-
Ehrlich-Straße, Building G26, Kaiserslautern, 67663, Germany, georg@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART44
https://doi.org/10.1145/3434325

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3434325
https://doi.org/10.1145/3434325

44:2 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

1 INTRODUCTION

We study decision problems related to liveness verification of shared-memory multithreaded
programs. In a shared-memory multithreaded program, a number of threads execute concurrently.
Each thread executes possibly recursive sequential code, and can spawn new threads for concurrent
execution. The threads communicate through shared global variables that they can read and write.
The execution of the program is guided by a non-deterministic scheduler that picks one of the
spawned threads to execute in each time step. If the scheduler replaces the currently executing
thread with a different one, we say the current active thread is context switched.
Shared-memory multithreaded programming is ubiquitous and static verification of safety or

liveness properties of such programs is a cornerstone of formal verification research. Indeed, there is
a vast research literature on the problemÐfrom a foundational understanding of the computability
and complexity of (subclasses of) models, to program logics, and to efficient tools for analysis of
real systems.
In this paper, we focus on decidability issues for liveness verification for multithreaded shared

memory programs with the ability to spawn threads. Liveness properties, intuitively, specify that
łsomething goodž happens when a program executes. A simple example of a liveness property is
termination: the property that a program eventually terminates. In fact, termination is a łcanonicalž
liveness property: for a very general class of liveness properties, through monitor constructions,
verifying liveness properties reduces to verifying termination [Apt and Olderog 1991; Vardi 1991].

Unfortunately, under the usual notion of non-deterministic schedulers, some programs may fail
to terminate for uninteresting reasons. Consider the following program:

1 global bit := 1;

2 main() { spawn foo; spawn bar; }

3 foo() { if bit = 1 then spawn foo; }

4 bar() { bit := 0; }

A main thread spawns two additional threads foo and bar. The thread foo checks if a global bit
is set and, if so, re-spawns itself. The thread bar resets the global bit. There is a non-terminating
execution of this program in which bar is never scheduled. However, a scheduler that never
schedules a thread that is ready to run would be considered unfair. Instead, one formulates the
problem of fair termination: termination under a fair non-deterministic scheduler. We abstract
away from the exact mechanism of the scheduler, and only require that every spawned thread that
is infinitely often ready to run is eventually scheduled. Then, every fair run of the above program
is terminating: eventually bar is scheduled, after which foo does not spawn a new thread.
Fair termination of concurrent programs is highly undecidable. A celebrated result by Harel

[1986] shows that fair termination is Π1
1-complete; in fact, the problem is already Π

1
1-complete

when the global state is finite and there are a finite number of recursive threads.1 In contrast, safety
verification, modeled as state reachability, is merely Σ

0
1-complete.

Since the high undecidability relies on an unbounded exchange of information among threads,
a recent and apposite approach to verifying concurrent recursive programs is to explore only a
representative subset of program behaviors by limiting the number of inter-thread interactions
[Musuvathi and Qadeer 2007; Qadeer and Rehof 2005]. This approach, called context bounding
by Qadeer and Rehof [2005], considers the verification problem as a family of problems, one for
each 𝐾 . The 𝐾-context bounded instance, for any fixed 𝐾 ≥ 0, considers only those executions
where each thread is context switched at most 𝐾 times by the scheduler. In the limit as 𝐾 → ∞,
the 𝐾-bounded approach explores all behaviors where each thread runs a finite number of times.

1Recall that the class Π1
1 in the analytic hierarchy is the class of all relations on N that can be defined by a universal

second-order number-theoretic formula.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:3

In practice, bounded explorations with small values of 𝐾 have proved to be effective to uncover
many safety and liveness bugs in real systems.

In this paper, we prove the following results. We first show that 𝐾-context bounded termination
for multithreaded recursive programs with spawns is decidable and 2EXPSPACE-complete when
𝐾 ≥ 1. Then, we show that 𝐾-context bounded fair termination is decidable but non-elementary.
Our result implies fair termination is Π0

1-complete when each thread is context-switched a finite
number of times. (Note that this does not contradict the Π1

1-completeness of the general problem,
in which a thread can be context switched infinitely often.) We also study a stronger notion of
fairness called fair non-starvation, where threads are given unique identities in order to distinguish
threads with the same local configuration, and show that fair non-starvation is also decidable.
Our results generalize the special case of 𝐾 = 0 studied by Ganty and Majumdar [2012] as

asynchronous programs. When 𝐾 = 0, each thread executes to completion without being interrupted
in the middle. Ganty and Majumdar show the decidability of safety and liveness verification for
this model. In particular, they prove safety and termination are both EXPSPACE-complete and
fair termination and fair starvation are decidable but non-elementary.2 Their proof depends on
the observation that, since threads are not interrupted, one can replace the pushdown automata
for each thread by finite automata that accept Parikh-equivalent languages. Unfortunately, their
technique does not generalize when context switches are allowed.
For 𝐾 ≥ 1, Atig et al. [2009] showed that the safety verification problem is decidable in

2EXPSPACE. Ten years later, a matching lower bound was shown by Baumann et al. [2020a].
The key observation in the decision procedure is that safety is preserved under downward clo-
sures: one can analyze a related program where some spawned threads are łforgotten.ž Since the
downward closure of a context free language is effectively regular, one can replace the pushdown
automaton for each thread by a finite automaton accepting the downward closure. In fact, our
proof of termination also follows easily from this observation, as termination is also preserved by
downward closures.
Unfortunately, fair termination and fair non-starvation are not preserved under downward

closures. Thus, we cannot apply the preceding techniques to replace pushdown automata by finite
automata in our construction. Thus, our proof is more intricate and requires several insights into
the computational model.

The key difficulty in our decision procedure is to maintain a finite representation for unboundedly
many active threads, each with unboundedly large local stacks and potentially spawning unbound-

edly many new threads, and to compose their context-switched executions into a global execution.
In order to maintain and compose such configurations, we introduce a new model, called VASS with
balloons (VASSB), that extends the usual model of a vector addition systems with states (VASS)
with łballoonsž: a token in a VASSB can be a usual VASS token or a balloon token that is itself a
vector. Intuitively, balloon tokens represent the possible new threads a thread can spawn along one
of its execution segments.
We show through a series of constructions that the fair termination problem reduces to the

fair termination problem for VASSB, and thence to the configuration reachability problem for
VASSB. Finally, we show that configuration reachability for VASSB is decidable by a reduction to
the reachability problem for VASS. This puts VASSB in the rare class of infinite-state systems which
generalize VASS and yet maintain a decidable reachability (not just coverability!) problem.

2Their result shows a polynomial-time equivalence between fair termination and reachability in vector addition systems
with states (VASS, a.k.a. Petri nets). The complexity bounds follow from our current knowledge of the complexity of VASS
reachability [Czerwiński et al. 2019].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:4 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Finally, we show a reduction from the fair starvation problem to fair termination. The reduction
relies on two combinatorial insights. The first is that if a program has an infinite fair run, then
it has one in which there exists a bound on the number of threads spawned by each thread. The
second is a novel pumping argument based on Ramsey’s theorem; it implies that it suffices to track
a finite amount of data about each thread to determine whether some thread can be starved.
In conclusion, we prove decidability of liveness verification for multithreaded shared memory

programs with the ability to dynamically spawn threads, an extremely expressive model of multi-
threaded programming. This model sits at the boundary of decidability and subsumes many other
models studied before.
For space reasons, the detailed proofs be found in the full version of the paper [Baumann et al.

2020b].

Related Work. Safety verification for concurrent recursive programs is already undecidable with
just two threads and finite global store [Ramalingam 2000]. Many results on context-bounded safety
verification consider a model with a fixed number of threads, without spawns. The complexity of
safety verification for this model is well understood at this point. The key idea underlying the best
algorithms reduce the problem to analyzing a sequential pushdown system [Lal and Reps 2009] by
guessing the bounded sequences of context switches for each thread and using the finite state to
ensure the sequential runs can be stitched together.
When the model allows spawning of new threads, as ours does, existing decision procedures

are significantly more complex, both in their technicalities and in computational cost. There are
relatively few results on decidability of liveness properties of infinite-state systems. Atig et al.
[2012a] show a sufficient condition for fair termination for context-bounded executions of a fixed
number of threads, where they look for ultimately periodic executions, in which each thread is
context switched at most 𝐾 times in the loop. They show that the search for such ultimately
periodic executions can be reduced to safety verification. In our model, fair infinite runs may
involve unboundedly many threads with unbounded stacks and need not be periodicÐfor example,
there can always be more and more newly spawned threads.

Multi-pushdown systems model multithreaded programs with a fixed number of threads. Many
decision procedures are known when the executions of such systems are restricted through different
bounds such as context, scope, or phase [Atig et al. 2012b, 2017; Torre et al. 2016], and also through
limitations on communication patterns [Lal et al. 2008]. These problems are orthogonal to us, either
in the modeling capabilities or in the properties verified.
Decidability of linear temporal logic is known for weaker models of multithreaded recursive

programs, such as symmetric parameterized programs [Kahlon 2008] or leader-follower programs
with non-atomic reads and writes [Durand-Gasselin et al. 2017; Fortin et al. 2017; Muscholl et al.
2017]. These programs cannot perform compare-and-swap operations, and therefore, their compu-
tational power is quite limited (in fact, LTL model checking is PSPACE-complete). A number of
heuristic approaches to fair termination of multithreaded programs provide sound but incomplete
algorithms, but for a more general class of programs involving infinite-state data variables [Cook
et al. 2007, 2011; Farzan et al. 2016; Kragl et al. 2020; Padon et al. 2018]. The goal there is to provide
a sound proof rule for verification but not to prove a decidability result.

In terms of fair termination problems for VASS, the theme of computational hardness continues.
For example, the classical notion of fair runs, in which an infinitely activated transition has to be
fired infinitely often, leads to undecidability [Carstensen 1987] and even Σ

1
1-completeness [Howell

et al. 1991]. However, weakly fair termination, where only those transitions that are almost always
activated have to be fired infinitely often, is decidable [Jančar 1990]. A rich taxonomy of fairness

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:5

notions with corresponding decidability results can be found in [Howell et al. 1991]. However, all
of these notions appear to be incomparable with our fairness notion for VASSB.

Our model of VASSB treads the boundary of models that generalize VASS for which reachability
can be proved to be decidable. We note that there are several closely related models, VASS with
a stack [Leroux et al. 2015] and branching VASS [Verma and Goubault-Larrecq 2005], for which
decidability of reachability is a long-standing open problem, and others, nested Petri nets [Lomazova
and Schnoebelen 1999], for which reachability is undecidable.

2 DYNAMIC NETWORKS OF CONCURRENT PUSHDOWN SYSTEMS (DCPS)

2.1 Preliminary Definitions

Multisets. A multiset m : 𝑆 → N over a set 𝑆 maps each element of 𝑆 to a natural number. LetM[𝑆]

be the set of all multisets over 𝑆 . We treat sets as a special case of multisets where each element
is mapped onto 0 or 1. We sometimes write m = [[𝑎1, 𝑎1, 𝑎3]] for the multiset m ∈ M[𝑆] such that
m(𝑎1) = 2, m(𝑎3) = 1, and m(𝑎) = 0 for each 𝑎 ∈ 𝑆\{𝑎1, 𝑎3}. The empty multiset is denoted ∅. The
size of a multiset m, denoted |m|, is given by

∑
𝑎∈𝑆 m(𝑎). This definition applies to sets as well.

Given two multisets m,m′ ∈ M[𝑆] we define m +m
′ ∈ M[𝑆] to be a multiset such that for all

𝑎 ∈ 𝑆 , we have (m +m
′) (𝑎) = m(𝑎) + m

′(𝑎). For 𝑐 ∈ N, we define 𝑐m as the multiset that maps
each 𝑎 ∈ 𝑆 to 𝑐 · m(𝑎). We also define the natural order ⪯ on M[𝑆] as follows: m ⪯ m

′ iff there
exists mΔ ∈ M[𝑆] such that m +m

Δ = m
′. We also define m −m

′ for m′ ⪯ m analogously: for all
𝑎 ∈ 𝑆 , we have (m −m

′) (𝑎) = m(𝑎) −m
′(𝑎).

Pushdown Automata. A pushdown automaton (PDA) P(𝑔,𝛾) = (𝑄, Σ, Γ, 𝐸, 𝑞0, 𝛾0, 𝑄𝐹) consists of a
finite set of states 𝑄 , a finite input alphabet Σ, a finite alphabet of stack symbols Γ, an initial state

𝑞0 ∈ 𝑄 , an initial stack symbol 𝛾0 ∈ Γ, a set of final states 𝑄𝐹 ⊆ 𝑄 , and a transition relation
𝐸 ⊆ (𝑄 × Γ) ×Σ𝜀 × (𝑄 × Γ

≤2), where Σ𝜀 = Σ∪ {𝜀} and Γ≤2 = {𝜀} ∪ Γ∪ Γ
2. For ((𝑞,𝛾), 𝑎, (𝑞′,𝑤)) ∈ 𝐸

we also write 𝑞
𝑎 |𝛾/𝑤
−−−−→ 𝑞′.

The set of configurations of P is 𝑄 × Γ
∗. The initial configuration is (𝑞0, 𝛾0). The set of final

configurations is 𝑄𝐹 × Γ
∗. For each 𝑎 ∈ Σ ∪ {𝜀}, the relation

𝑎
=⇒ on configurations of P is defined as

follows: (𝑞,𝛾𝑤)
𝑎
=⇒ (𝑞′,𝑤 ′𝑤) for all𝑤 ∈ Γ

∗ iff (1) there is a transition 𝑞
𝑎 |𝛾/𝑤′

−−−−−→ 𝑞′ ∈ 𝐸, or (2) there

is a transition 𝑞
𝑎 |𝜀
−−→ 𝑞′ ∈ 𝐸 and 𝛾 = 𝑤 ′ = 𝜀.

For two configurations 𝑐, 𝑐 ′ of P, we write 𝑐 ⇒ 𝑐 ′ if 𝑐
𝑎
=⇒ 𝑐 ′ for some 𝑎. Furthermore, we write

𝑐
𝑢
=⇒

∗
𝑐 ′ for some 𝑢 ∈ Σ

∗ if there is a sequence of configurations 𝑐0 to 𝑐𝑛 with

𝑐 = 𝑐0
𝑎1
==⇒ 𝑐1

𝑎1
==⇒ 𝑐2 · · · 𝑐𝑛−1

𝑎𝑛
==⇒ 𝑐𝑛 = 𝑐 ′,

such that 𝑎1 . . . 𝑎𝑛 = 𝑢. We then call this sequence a run of P over 𝑢. We also write 𝑐 ⇒∗ 𝑐 ′ if the
word 𝑢 does not matter. A run of P is accepting if 𝑐 is initial and 𝑐 ′ is final. The language accepted
by P, denoted 𝐿(P) is the set of words ∈ Σ

∗, over which there is an accepting run of P.
Given two configurations 𝑐, 𝑐 ′ of P with 𝑐 ⇒∗ 𝑐 ′, we say that 𝑐 ′ is reachable from 𝑐 and that 𝑐 is

backwards-reachable from 𝑐 ′. If 𝑐 is the initial configuration, we simply say that 𝑐 ′ is reachable.

Parikh Images and Semi-linear Sets. The Parikh image of a word 𝑢 ∈ Σ
∗ is a function Parikh(𝑢) :

Σ → N such that, for every 𝑎 ∈ Σ, we have Parikh(𝑢) (𝑎) = |𝑢 |𝑎 , where |𝑢 |𝑎 denotes the number
of occurrences of 𝑎 in 𝑢. We extend the definition to the Parikh image of a language 𝐿 ⊆ Σ

∗:
Parikh(𝐿) = {Parikh(𝑢) | 𝑢 ∈ 𝐿}. We associate the natural isomorphism between NΣ and N |Σ | and
consider the functions as vectors of natural numbers.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:6 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

A subset ofM[𝑆] is linear if it is of the form {m0 + 𝑡1m1 + . . . + 𝑡𝑛m𝑛 | 𝑡1, . . . , 𝑡𝑛 ∈ N} for some
multisets m0,m1, . . . ,m𝑛 ∈ M[𝑆]. We call m0 the base vector and m1, . . . ,m𝑛 the period vectors. A
linear set has a finite representation based on its base and period vectors. A semi-linear set is a
finite union of linear sets.

Theorem 2.1 ([Parikh 1966]). For any context-free language 𝐿, the set Parikh(𝐿) is semi-linear. A

representation of the semi-linear set Parikh(𝐿) can be effectively constructed from a PDA for 𝐿.

2.2 Dynamic Networks of Concurrent Pushdown Systems

A Dynamic Network of Concurrent Pushdown Systems (DCPS) A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) consists of a
finite set of (global) states 𝐺 , a finite alphabet of stack symbols Γ, an initial state 𝑔0 ∈ 𝐺 , an initial

stack symbol 𝛾0 ∈ Γ, and a finite set of transition rules Δ. The set of transition rules Δ is partitioned
into four kinds of rules: creation rules Δc, interruption rules Δi, resumption rules Δr, and termination

rules Δt. Elements of Δc have one of two forms: (1) 𝑔 |𝛾 ↩→ 𝑔′ |𝑤 ′, or (2) 𝑔 |𝛾 ↩→ 𝑔′ |𝑤 ′
⊲ 𝛾 ′, where

𝑔,𝑔′ ∈ 𝐺 , 𝛾,𝛾 ′ ∈ Γ,𝑤 ′ ∈ Γ
∗, and |𝑤 ′ | ≤ 2. Rules of type (1) allow the DCPS to take a single step in

one of its threads. Rules of type (2) additionally spawn a new thread with top of stack 𝛾 ′. Elements
of Δi have the form 𝑔 |𝛾 ↦→ 𝑔′ |𝑤 ′, where 𝑔,𝑔′ ∈ 𝐺 , 𝛾 ∈ Γ, and𝑤 ′ ∈ Γ

∗ with 1 ≤ |𝑤 ′ | ≤ 2. Elements
of Δr have the form 𝑔 ↦→ 𝑔′ ◁ 𝛾 , where 𝑔,𝑔′ ∈ 𝐺 and 𝛾 ∈ Γ. Elements of Δt have the form 𝑔 ↦→ 𝑔′,
where 𝑔,𝑔′ ∈ 𝐺 .

The size |A| of A is defined as |𝐺 | + |Γ | + |Δ|: the number of symbols needed to describe the
global states, the stack alphabet, and the transition rules.
The set of configurations of A is 𝐺 ×

(
(Γ∗ × N) ∪ {#}

)
× M[Γ∗ × N]. Given a configuration

⟨𝑔, (𝑤, 𝑖),m⟩, we call 𝑔 the (global) state, (𝑤, 𝑖) the local configuration of the active thread, and m

the multiset of the local configurations of the inactive threads. In a configuration ⟨𝑔, #,m⟩, we call #
a schedule point.

The initial configuration of A is ⟨𝑔0, #, [[(𝛾0, 0)]]⟩. For a configuration 𝑐 of A, we will sometimes
write 𝑐.𝑔 for the state of 𝑐 and 𝑐.m for the multiset of threads of 𝑐 (both active and inactive). The
size of a configuration 𝑐 = ⟨𝑔, (𝑤, 𝑖),m⟩ is defined as |𝑐 | = |𝑤 | +

∑
(𝑤′, 𝑗) ∈m |𝑤 ′ |.

Intuitively, a DCPS represents a multi-threaded, shared memory program. The global states 𝐺
represent the shared memory. Each thread is potentially recursive. It maintains its own stack𝑤
over the stack alphabet Γ and uses the transition rules in Δc to manipulate the global state and its
stack. It can additionally spawn new threads using rules of type (2) in Δc. In a local configuration,
the natural number 𝑖 keeps track of how many times a thread has already been context switched
by the underlying scheduler. Any newly spawned thread has its context switch number set to 0.
The steps of a single thread defines the following thread step relation → on configurations of

A: we have ⟨𝑔, (𝛾𝑤, 𝑖),m⟩ → ⟨𝑔′, (𝑤 ′𝑤, 𝑖),m′⟩ for all𝑤 ∈ Γ
∗ iff (1) there is a rule 𝑔 |𝛾 ↩→ 𝑔′ |𝑤 ′ in

Δc and m
′ = m or (2) there is a rule 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′

⊲ 𝛾 ′ in Δc and m
′ = m + [[(𝛾 ′, 0)]]. We extend

the thread step relation→+ to be the irreflexive-transitive closure of→; thus 𝑐 →+ 𝑐 ′ if there is a
sequence 𝑐 → 𝑐1 → . . . 𝑐𝑘 → 𝑐 ′ for some 𝑘 ≥ 0.
A non-deterministic scheduler switches between concurrent threads. The active thread is the

one currently being executed and the multiset m keeps all other partially executed threads in the
system. Any spawned thread is put inm for future execution with an initial context switch number
0. The scheduler may interrupt a thread based on the interruption rules and non-deterministically
resume a thread based on the resumption rules.
The actions of the scheduler define the scheduler step relation ↦→ on configurations of A:

Swap
𝑔|𝛾 ↦→ 𝑔′ |𝑤 ′ ∈ Δi

⟨𝑔, (𝛾𝑤, 𝑖),m⟩ ↦→ ⟨𝑔′, #,m + [[𝑤 ′𝑤, 𝑖 + 1]]⟩

Resume
𝑔 ↦→ 𝑔′ ◁ 𝛾 ∈ Δr

⟨𝑔, #,m + [[𝛾𝑤, 𝑖]]⟩ ↦→ ⟨𝑔′, (𝛾𝑤, 𝑖),m⟩

Term
𝑔 ↦→ 𝑔′ ∈ Δt

⟨𝑔, (𝜀, 𝑖),m⟩ ↦→ ⟨𝑔′, #,m⟩

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:7

If a thread can be interrupted, then Swap swaps it out and increases the context switch number of
the thread. The rule Resume picks a thread that is ready to run based on the current global state
and its top of stack symbol and makes it active. The rule Term removes a thread on termination
(empty stack).

A run of a DCPS is a finite or infinite sequence of alternating thread execution and scheduler
step relations

𝑐0 →
+ 𝑐 ′0 ↦→ 𝑐1 →

+ 𝑐 ′1 ↦→ . . .

such that 𝑐0 is the initial configuration. The run is 𝐾-context switch bounded if, moreover, for each
𝑗 ≥ 0, the configuration 𝑐 𝑗 = (𝑔, (𝑤, 𝑖),m) satisfies 𝑖 ≤ 𝐾 . In a 𝐾-context switch bounded run, each
thread is context switched at most 𝐾 times and the scheduler never schedules a thread that has
already been context switched 𝐾 + 1 times. When the distinction between thread and scheduler
steps is not important, we write a run as a sequence 𝑐0 ⇒ 𝑐1

2.3 Identifiers and the Run of a Thread

Our definition of DCPS does not have thread identifiers associated with a thread. However, it
is convenient to be able to identify the run of a single thread along the execution. This can be
done by decorating local configurations with unique identifiers and modifying the thread step
for 𝑔 |𝛾 ↩→ 𝑔′ |𝑤 ⊲ 𝛾 ′ to add a thread (ℓ, 𝛾 ′, 0) to the multiset of inactive threads, where ℓ is a fresh
identifier. By decorating any run with identifiers, we can freely talk about the run of a single thread,
the multiset of threads spawned by a thread, etc.
Let us focus on the run of a specific thread, that starts executing from some global state 𝑔 with

an initial stack symbol 𝛾 . In the course of its run, the thread updates its own local stack and spawns
new threads, but it also gets swapped out and swapped back in.
We show that the run of a thread corresponds to the run of an associated PDA that can be

extracted from A. This PDA updates the global state and the stack based on the rules in Δc, but
additionally (1) makes visible as the input alphabet the initial symbols (from Γ) of the spawned
threads, and (2) non-deterministically guesses jumps between global states corresponding to the
effect of context switches. There are two kinds of jumps. A jump (𝑔1, 𝛾, 𝑔2) in the PDA corresponds
to the thread being switched out leading to global state 𝑔1 and later resuming at global state 𝑔2 with
𝛾 on top of its stack (without being active in the interim). A jump (𝑔,⊥) corresponds to the last
time the PDA is swapped out (leading to global state 𝑔). We also make these guessed jumps visible
as part of the input alphabet. Thus, the input alphabet of the PDA is Γ ∪𝐺 × Γ ×𝐺 ∪𝐺 × {⊥}.
For any 𝑔 ∈ 𝐺 and 𝛾 ∈ Γ, we define the PDA P(𝑔,𝛾) = (𝑄, Σ, Γ⊥, 𝐸, init,⊥, {init, end}), where

𝑄 = 𝐺 ∪𝐺 × Γ ∪ {init, end}, Γ⊥ = Γ ∪ {⊥}, Σ = Γ ∪𝐺 × Γ ×𝐺 ∪𝐺 × {⊥}, 𝐸 is the smallest transition
relation such that

(1) There is a transition init
𝜀 |⊥/𝛾⊥
−−−−−→ 𝑔 in 𝐸,

(2) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ∈ Δc there is a transition 𝑔1
𝜀 |𝛾1/𝑤
−−−−−→ 𝑔2 in 𝐸,

(3) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ⊲ 𝛾2 ∈ Δc there is a transition 𝑔1
𝛾2 |𝛾1/𝑤
−−−−−−→ 𝑔2 in 𝐸,

(4) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ∈ Δi, 𝑔3 ∈ 𝐺 , and 𝛾2 ∈ Γ there is a transition 𝑔1
(𝑔2,𝛾2,𝑔3) |𝛾1/𝑤
−−−−−−−−−−−→ (𝑔3, 𝛾2),

and a transition (𝑔3, 𝛾2)
𝜀 |𝛾2/𝛾2
−−−−−→ 𝑔3 in 𝐸,

(5) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ∈ Δi and every 𝛾2 ∈ Γ⊥ there is a transition 𝑔1
𝜀 |𝛾1/𝑤
−−−−−→ (𝑔2,⊥), and a

transition (𝑔2,⊥)
(𝑔2,⊥) |𝛾2/𝛾2
−−−−−−−−−→ end in 𝐸,

(6) For every 𝑔1 ↩→ 𝑔2 ∈ Δt there is a transition 𝑔1
(𝑔2,⊥) |⊥/⊥
−−−−−−−−→ end in 𝐸.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:8 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

The set of behaviors of the PDA P(𝑔,𝛾) which correspond to a thread execution with precisely 𝑖
(𝑖 ≤ 𝐾 + 1) context switches is given by the following language:

𝐿
(𝑖)

(𝑔,𝛾)
= 𝐿(P(𝑔,𝛾)) ∩ ((Γ∗ ·𝐺 × Γ ×𝐺)𝑖−1 (Γ∗ ·𝐺 × {⊥}))

The language 𝐿 (𝑖)
(𝑔,𝛾)

is a context-free language. In the definition, we use the end of stack symbol ⊥

to recognize when the stack is empty.

2.4 Decision Problems and Main Results

Previous Work: Safety. The reachability problem for DCPS asks, given a global state 𝑔 of A, if there
is a run 𝑐0 ⇒ 𝑐1 . . . ⇒ 𝑐𝑛 such that 𝑐𝑛 .𝑔 = 𝑔. It is well-known that reachability is undecidable (e.g.,
one can reduce the emptiness problem for intersection of context free languages). Therefore, it is
customary to consider context-switch bounded decision questions. Given 𝐾 ∈ N, a state 𝑔 of A is
𝐾-context switch bounded reachable if there is a 𝐾-context switch bounded run 𝑐0 ⇒ . . . ⇒ 𝑐𝑛
with 𝑐𝑛 .𝑔 = 𝑔. For a fixed 𝐾 , the 𝐾-bounded state reachability problem (SRP[𝐾]) for a DCPS is
defined as follows:

Given A DCPS A and a global state 𝑔
Question Is 𝑔 𝐾-context switch bounded reachable in A?

This problem is known to be decidable; the 2EXPSPACE upper bound for each 𝐾 was proved by
Atig et al. [2009] and a matching lower bound for 𝐾 ≥ 1 by Baumann et al. [2020a]. In case 𝐾 = 0,
the problem is known to be EXPSPACE-complete [Ganty and Majumdar 2012].

This Paper: Liveness. We now turn to context-bounded liveness specifications. The simplest liveness
specification is (non-)termination: does a program halt? For a fixed 𝐾 ∈ N, the 𝐾-bounded non-

termination problem NTERM[𝐾] is defined as follows:

Given A DCPS A.
Question Is there an infinite 𝐾-context switch bounded run?

When 𝐾 = 0, the non-termination problem is known to be EXPSPACE-complete [Ganty and
Majumdar 2012]. We show the following result.

Theorem 2.2 (Termination). For each 𝐾 ≥ 1, the problem NTERM[𝐾] is 2EXPSPACE-complete.

Fairness. An infinite run is fair if, intuitively, any thread that can be executed is eventually executed
by the scheduler. Fairness is used as a way to rule out non-termination due to uninteresting
scheduler choices.
We say a thread 𝑡 = (𝛾𝑤, 𝑖) is ready at a configuration 𝑐 = (𝑔, #,m) if 𝑡 ∈ m and there is some

rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 in Δr. A thread 𝑡 is scheduled at 𝑐 if the scheduler step makes 𝑡 the active thread. A
run is unfair to thread 𝑡 if it is ready infinitely often but never scheduled. A fair run 𝜌 is one which
is not unfair to any thread. Restricting our attention to 𝐾-context switch bounded runs gives us
the corresponding notion of fair 𝐾-context switch bounded runs.
For fixed 𝐾 ∈ N, the 𝐾-context bounded fair non-termination problem FNTERM[𝐾] asks:

Given A DCPS A.
Question Is there an infinite, fair 𝐾-context switch bounded run?

Note that since our model does not have individual thread identifiers, fairness is defined only over
equivalence classes of threads that have the same stack𝑤 and the same context switch number 𝑖 .
The reason for our taking into account stacks and context switch numbers is the following. It is
a simple observation that there exists an infinite fair run in our sense if and only if there exists
a run in the corresponding system with thread identifiersśthat is fair to each individual thread.
This is because an angelic scheduler could always pick the earliest spawned thread among those

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:9

with the same stack and context switch number. Therefore, our results allow us to reason about
multi-threaded systems with identifiers.
This raises the question of whether there are runs that are fair in our sense, but where a non-

angelic scheduler would still yield unfairness for some thread identity. In other words, is it possible
that a fair run starves a specific thread. For example, consider a program in which the main thread
spawns two copies of a thread foo. Each thread foo, when scheduled, simply spawns another
copy of foo and terminates. Here is a fair run of the program (we omit the global state as it is not
relevant), where we have decorated the threads with identifiers:

(#, [[(main, 0)0]])
∗
=⇒((main, 0)0, [[]])

∗
=⇒ (#, [[(foo, 0)1, (foo, 0)2]])

∗
=⇒ ((foo, 0)2, [[(foo, 0)1]])

∗
=⇒

(#, [[(foo, 0)1, (foo, 0)3]])
∗
=⇒ ((foo, 0)3, [[(foo, 0)1]])

∗
=⇒ . . .

The run is fair, but a specific thread marked with identifier 1 is never picked.
Formally, a thread 𝑡 = (𝑤, 𝑖) is starved in an infinite fair run 𝜌 = 𝑐0 ⇒ 𝑐1 ⇒ . . . iff there is some

𝑗 such that 𝑐𝑖 .m(𝑡) ≥ 1 for all 𝑖 ≥ 𝑗 and whenever 𝑡 is resumed at 𝑐𝑘 for 𝑘 ≥ 𝑗 , we have 𝑐.m(𝑡) ≥ 2.
For fixed 𝐾 ∈ N, the 𝐾-bounded fair starvation problem STARV[𝐾] is defined as follows:

Given A DCPS A.
Question Is there an infinite, fair 𝐾-context switch bounded run that starves some thread?

We show the following results.

Theorem 2.3 (Fair Non-Termination). For each 𝐾 ∈ N, the problem FNTERM[𝐾] is decidable.

Theorem 2.4 (Fair Starvation). For each 𝐾 ∈ N, the problem STARV[𝐾] is decidable.

Previously, decidability results were only known when 𝐾 = 0 [Ganty and Majumdar 2012].
Recall that a decision problem is nonelementary if it is not in

⋃
𝑘≥0 𝑘-EXPTIME. Our algorithms

are nonelementary: they involve an (elementary) reduction to the reachability problem for vector
addition systems with states (VASS). This is unavoidable: already for𝐾 = 0, the fair non-termination
and fair starvation problems are non-elementary, because there is a reduction from the reachability
problem for VASS [Ganty and Majumdar 2012], which is non-elementary [Czerwiński et al. 2019].
In the rest of the paper, we prove Theorems 2.2, 2.3, and 2.4.

3 WARM-UP: NON-TERMINATION

In this section, we prove Theorem 2.2. The theorem follows easily from previous results for safety
verification [Atig et al. 2011; Baumann et al. 2020a]. We recall the main ideas as a step toward the
more complex proof for fair termination.

3.1 Downward Closures: From DCPS to DCFS

A DCPS A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) is called a dynamic network of concurrent finite systems (DCFS) if in
each transition rule in Δc ∪ Δi, we have |𝑤 ′ | ≤ 1. Intuitively, a DCFS corresponds to the special
case where each thread is a finite-state process (and each stack is bounded by 1).

We reduce the 𝐾-bounded non-termination problem for DCPS to the non-termination problem
for DCFS. Fix 𝐾 ∈ N and a DCPS A = (𝐺, Γ,Δ, 𝑔0, 𝛾0). The crucial observation of Atig et al. [2011]
is that answer to the 𝐾-bounded reachability problem remains unchanged if we allow threads to
łdropž some spawned threads. That is, for every 𝑔 |𝛾 ↩→ 𝑔′ |𝑤 ′

⊲𝛾 ′, we also add the rule 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′

to Δc. Informally, the łforgottenž spawned thread 𝛾 ′ is never scheduled. Clearly, a global state is
reachable in the original DCPS iff it is reachable in the new DCPS.
We observe that this transformation also preserves non-termination: if there is a (𝐾-bounded)

non-terminating run in the original DCPS, there is one in the new one.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:10 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

The ability to forget spawned tasks allows us to transform the language 𝐿 (𝑖)
(𝑔,𝛾)

of each thread

into a regular language by taking downward closures.
We need some definitions. For any alphabet Σ, define the subword relation ⊑⊆ Σ

∗×Σ
∗ as follows:

for every 𝑢, 𝑣 ∈ Σ
∗, we have 𝑢 ⊑ 𝑣 iff 𝑢 can be obtained from 𝑣 by deleting some letters from

𝑣 . For example, 𝑎𝑐𝑏𝑏𝑎 ⊑ 𝑏𝑎𝑐𝑏𝑎𝑐𝑏𝑎𝑐 but 𝑎𝑏𝑏𝑎 ̸⊑ 𝑏𝑎𝑏𝑎. The downward closure 𝑤↓ with respect to
the subword order of a word 𝑤 ∈ Σ

∗ is defined as 𝑤↓ := {𝑤 ′ ∈ Σ
∗ | 𝑤 ′ ⊑ 𝑤}. The downward

closure 𝐿↓ of a language 𝐿 ⊆ Σ
∗ is given by 𝐿↓ := {𝑤 ′ ∈ Σ

∗ | ∃𝑤 ∈ 𝐿 : 𝑤 ′ ⊑ 𝑤}. Recall that
the downward closure 𝐿↓ of any language 𝐿 is a regular language [Haines 1969]. Moreover, a
finite automaton accepting the downward closure of a context-free language can be effectively
constructed [Courcelle 1991]. The size of the resulting automaton is at most exponential in the size
of the PDA for the context-free language [Bachmeier et al. 2015].
Now consider the following language:

𝐿̂(𝑔,𝛾) =

𝐾+1⋃

𝑖=1

(
𝐿
(𝑖)

(𝑔,𝛾)
↓ ∩

((
Γ
∗ · (𝐺 × Γ ×𝐺)

)𝑖−1
(Γ∗ ·𝐺 × {⊥})

))

This language is regular and can be effectively constructed from the PDA P(𝑔,𝛾) . It accepts all
behaviors of a thread that is context switched at most 𝐾 + 1 times such that, by adding additional
spawned tasks, one gets back a run of the original thread in A.
The DCFS simulates the downward closure of the DCPS by simulating the composition of the

automata for each downward closure. The construction is identical to [Atig et al. 2011, Lemma 5.3].
Thus, we can conclude with the following lemma.

Lemma 3.1. The 𝐾-bounded non-termination problem for DCPS can be reduced in exponential time

to the non-termination problem for DCFS. The resulting DCFS is of size at most exponential in the

size of the DCPS.

3.2 From DCFS Non-Termination to VASS Non-Termination

A vector addition system with states (VASS) is a tuple𝑉 = (𝑄, 𝑃, 𝐸) where𝑄 is a finite set of states, 𝑃

is a finite set of places, and 𝐸 is a finite set of edges of the form 𝑞
𝛿
−→ 𝑞′ where 𝛿 ∈ Z𝑃 . A configuration

of the VASS is a pair (𝑞,𝑢) ∈ 𝑄×M[𝑃]. The edges in 𝐸 induce a transition relation on configurations:

there is a transition (𝑞,𝑢)
𝛿
−→ (𝑞′, 𝑢 ′) if there is an edge 𝑞

𝛿
−→ 𝑞′ in 𝐸 such that 𝑢 ′(𝑝) = 𝑢 (𝑝) + 𝛿 (𝑝)

for all 𝑝 ∈ 𝑃 . A run of the VASS is a finite or infinite sequence of configurations 𝑐0
𝛿0
−→ 𝑐1

𝛿1
−→

The non-termination problem for VASS asks, given a VASS and an initial configuration 𝑐0, is there
an infinite run starting from 𝑐0.

Lemma 3.2. The 𝐾-context bounded non-termination problem for DCFS can be reduced in polyno-

mial time to non-termination problem for VASS.

Proof. Let A = (𝐺, Γ, 𝛿, 𝑔0, 𝛾0) be a DCFS. We define a VASS 𝑉 (A) = (𝐺 × (Γ × {0, . . . , 𝐾} ∪

{#}), (Γ ∪ {𝜀}) × {0, . . . , 𝐾 + 1}, 𝐸). Intuitively, a configuration ((𝑔,𝛾, 𝑖), 𝑢) of the VASS represents
a configuration of the DCFS where the global state is 𝑔, the active thread has stack 𝛾 and has been
previously context switched 𝑖 times, and for each 𝛾 ′ ∈ Γ and 𝑖 ∈ {0, . . . , 𝐾 + 1}, the value 𝑢 (𝛾 ′, 𝑖)
represents the number of pending threads with stack 𝛾 ′ which have each been context switched 𝑖
times. A global state (𝑔, #) indicates a state where the scheduler picks a new thread. The edges in 𝐸
update the configurations to simulate the steps of the DCFS.

For each transition 𝑔 |𝛾 ↩→ 𝑔′ |𝛾 ′ ∈ Δc and for each 𝑖 ∈ {0, . . . , 𝐾}, the VASS has a transition that
changes (𝑔,𝛾, 𝑖) to (𝑔′, 𝛾 ′, 𝑖). For each transition 𝑔|𝛾 ↩→ 𝑔′ |𝛾 ′ ⊲ 𝛾 ′′ ∈ Δc and for each 𝑖 ∈ {0, . . . , 𝐾},
the VASS has a transition that changes (𝑔,𝛾, 𝑖) to (𝑔′, 𝛾 ′, 𝑖) and puts a token in (𝛾 ′′, 0). For each

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:11

transition 𝑔|𝛾 ↦→ 𝑔′ |𝛾 ′ ∈ Δi and for each 𝑖 ∈ {0, . . . , 𝐾}, the VASS has a transition that changes 𝑔 to
(𝑔′, #) while putting a token into (𝛾 ′, 𝑖 + 1). For each 𝑔 ↦→ 𝑔′ ◁ 𝛾 ∈ Δr, there is a transition (𝑔, #) to
(𝑔′, 𝛾, 𝑖) that takes a token from (𝛾, 𝑖). For each 𝑔 ↦→ 𝑔′ ∈ Δt, there is a transition (𝑔, 𝜀, 𝑖) to (𝑔′, #).
Clearly, there is a bijection between the runs ofA and the runs of the VASS from ((𝑔0, #), [[𝛾0, 0]]).

Thus, there is an infinite run in A iff there is an infinite run in 𝑉 (A) from ((𝑔0, #), [[𝛾0, 0]]).

3.3 Proof of Theorem 2.2

The 2EXPSPACE upper bound follows by combining Lemmas 3.1, 3.2, and the EXPSPACE upper
bound for the non-termination problem for VASS [Rackoff 1978].
The 2EXPSPACE lower bound follows from the observation made already in [Baumann et al.

2020a] that the 2EXPSPACE-hardness of 𝐾-bounded reachability already holds for terminating

DCPS, in which every run is terminating. It is now a simple reduction to take an instance of the
𝐾-bounded state reachability problem for a terminating DCPS and add a łgadgetž that produces an
infinite run whenever the target global state is reached.

4 FAIR NON-TERMINATION

We now turn to proving Theorem 2.3. Unfortunately, fair termination is not preserved under
downward closure. The example in Section 1 has no fair infinite run, since eventually (under
fairness), bit is set to 1 by the instance of bar and the program terminates. However, the downward
closure that omits bar has a fair infinite run. Thus, we cannot replace the PDAs for each thread
with finite-state automata and there is no obvious reduction to VASS.

Our proof is more complicated. First, we introduce an extension, VASS with balloons (VASSB),
of VASS (Section 4.1). A VASSB extends a VASS with balloon states and balloon places, and allows
keeping multisets of state-vector pairs over balloons. We can use this additional power to store
spawned threads. As we shall see (Section 4.2), we can reduce DCPS to VASSB. Later, we shall show
decidability of fair infinite behaviors for VASSB, completing the proof.

4.1 VASS with Balloons

A VASS with balloons (VASSB) is a tuple V = (𝑄, 𝑃,Ω,Φ, 𝐸), where 𝑄 is a finite set of states, 𝑃 is
a finite set of places, Ω is a finite set of balloon states, Φ is a finite set of balloon places, and 𝐸 is

a finite set of edges of the form 𝑞
op
−→ 𝑞′, where op is one of a finite set OP of operations of the

following form:

(1) op = 𝛿 with 𝛿 ∈ Z𝑃 ,
(2) op = inflate(𝜎, 𝑆), where 𝜎 ∈ Ω and 𝑆 ⊆ NΦ is a semi-linear subset of NΦ.
(3) op = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝), where 𝜎, 𝜎 ′ ∈ Ω, 𝜋 ∈ Φ, 𝑝 ∈ 𝑃 .
(4) op = burst(𝜎), where 𝜎 ∈ Ω.

A configuration of a VASSB is an element of 𝑄 ×M[𝑃] ×M[Ω ×M[Φ]]. That is, a configuration
𝑐 = (𝑞,m, n) consists of a state 𝑞 ∈ 𝑄 , a multiset m ∈ M[𝑃], and a multiset n ∈ M[Ω ×M[Φ]]

of balloons. We assume n has finite support. A semiconfiguration is a configuration (𝑞,m, ∅). For
semiconfigurations, we simply write (𝑞,m) ∈ 𝑄 ×M[𝑃]. For a configuration 𝑐 , we write 𝑐.𝑞, 𝑐.m,
and 𝑐.n to denote the components of 𝑐 . For a balloon 𝑏 ∈ Ω×M[Φ], we write 𝑏.𝜎 and 𝑏.k to indicate
its balloon state and contents respectively and write 𝑐.n(𝑏) for the number of balloons 𝑏 in 𝑐 .

The edges in 𝐸 define a transition relation on configurations. For an edge 𝑞
op
−→ 𝑞′, and configu-

rations 𝑐 = (𝑞,m, n) and 𝑐 ′ = (𝑞′,m′, n′), we define 𝑐
op
−→ 𝑐 ′ iff one of the following is true:

(1) If op = 𝛿 ∈ Z𝑃 and m
′ = m + 𝛿 and n

′ = n.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:12 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

(2) If op = inflate(𝜎, 𝑆) and m
′ = m and n

′ = n + [[(𝜎, k)]] for some k ∈ 𝑆 . That is, we create a
new balloon with state 𝜎 and multiset k for some k ∈ 𝑆 .

(3) If op = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) and there is a balloon 𝑏 = (𝜎, k) ∈ Ω ×M[Φ] with n(𝑏) ≥ 1 and
m

′ = m + k(𝜋) · [[𝑝]] and n
′ = (n − [[𝑏]]) + [[(𝜎 ′, k′)]], where k′(𝜋) = 0 and k

′(𝜋 ′) = k(𝜋 ′)

for all 𝜋 ′ ∈ Φ \ {𝜋}. That is, we pick a balloon (𝜎, k) from n, transfer the contents in place 𝜋
from k to place 𝑝 in m, and update the balloon state 𝜎 to 𝜎 ′. Here we say the balloon (𝜎, k)

was deflated.
(4) If op = burst(𝜎) and there is a balloon 𝑏 = (𝜎, k) ∈ Ω ×M[Φ] with n(𝑏) ≥ 1 and m

′ = m

and n
′ = n − [[𝑏]]. This means we pick some balloon 𝑏 with state 𝜎 from our multiset n of

balloons and remove it, making any tokens still contained in its balloon places disappear as
well. Here we say the balloon 𝑏 is burst.

The edge set 𝐸 is the disjoint union of the sets 𝐸𝑝 , 𝐸𝑛, 𝐸𝑑 , 𝐸𝑏 which stand for the edges with

operations from (1),(2),(3),(4) respectively. We write 𝑐 −→ 𝑐 ′ if 𝑐
op
−→ 𝑐 ′ for some edge 𝑞

op
−→ 𝑞′ in 𝐸.

A run 𝜌 = 𝑐0
op0
−−→ 𝑐1

op1
−−→ 𝑐2

op2
−−→ · · · is a finite or infinite sequence of configurations. The size of

V = (𝑄, 𝑃,Ω,Φ, 𝐸) is given by |V| = |𝑄 | + |𝑃 | + |Ω | + |Φ| + |𝐸 |.
An infinite run 𝜌 is progressive iff the following holds:

(1) For every configuration 𝑐𝑖 = (𝑞𝑖 ,m𝑖 , n𝑖) and every balloon 𝑏 = (𝜎, k) ∈ Ω × M[Φ] with
n𝑖 (𝑏) ≥ 1 there is a 𝑐 𝑗 , 𝑗 > 𝑖 , such that op 𝑗 either bursts or deflates 𝑏.

(2) Moreover, for every configuration 𝑐𝑖 = (𝑞𝑖 ,m𝑖 , n𝑖) and every place 𝑝 ∈ 𝑃 with m𝑖 (𝑝) ≥ 1

there is a 𝑐 𝑗 , 𝑗 > 𝑖 , such that a token is removed from 𝑝; that is, op 𝑗 ≡ 𝛿 with 𝛿 (𝑝) < 0.

We define the balloon-norm of a configuration 𝑐 = (𝑞,m, n) as ||𝑐 || =

max{
∑
𝑝∈Φ k(𝑝) | ∃𝜎 n(𝜎, k) > 0}. A progressive run is shallow if there is a number 𝐵 ∈ N

such that ||𝑐 𝑗 || ≤ 𝐵 for all 𝑗 ≥ 0. In other words, shallowness of a run means that each balloon in
every configuration on the run contains at most 𝐵 tokens in the balloon places. Note that this does
not mean the size of the configurations become bounded: the number of balloons and the number
of tokens in 𝑃 can still be unbounded.
The progressive run problem for VASSB is the following:

Given A VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸) and an initial semiconfiguration 𝑐0.
Question DoesV have an infinite progressive run starting from 𝑐0?

In Section 5, we shall prove the following theorems.

Theorem 4.1. The progressive run problem for VASSB is decidable.

The following is a by-product of the proof of Theorem 4.1, which will be used in Section 6.

Theorem 4.2. A VASSBV has a progressive run iff it has a shallow progressive run.

4.2 From DCPS to VASSB

Instead of reducing fairness for DCPS to VASSB, we would like to use a stronger notion, which
simplifies many of our proofs. To this end, we introduce the notion of progressiveness that we
already defined for VASSB now for DCPS as well: given a bound 𝐾 ∈ N, an infinite run 𝜌 of a DCPS
is called progressive if the rule Term is only ever applied when the active thread is at 𝐾 context
switches, and for every local configuration (𝑤, 𝑖) of an inactive thread in a configuration of 𝜌 , there
is a future point in 𝜌 where the rule Resume is applied to (𝑤, 𝑖), making it the local configuration
of the active thread.

Intuitively, no type of thread can stay around infinitely long in a progressive run without being
resumed, and every thread that terminates does so after exactly 𝐾 context switches. Note that
progressiveness is a stronger condition than fairness, because it does not allow threads to łget stuckž

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:13

or go above the context switch bound𝐾 . However, we can always transform aDCPSwhere we want
to consider fair runs into one where we can consider progressive runs instead. The transformation
is formalized by the following lemma.

Lemma 4.3. Given a bound 𝐾 ∈ N and a DCPS A, we can construct a DCPS Ã such that:

• A has an infinite fair 𝐾-context switch bounded run iff Ã has an infinite progressive 𝐾-context

switch bounded run.

• A has an infinite fair 𝐾-context switch bounded run that starves a thread iff Ã has an infinite

progressive 𝐾-context switch bounded run that starves a thread.

Idea. To prove Lemma 4.3 we modify the DCPSA by giving every thread a bottom of stack symbol
⊥ and saving its context switch number in its top of stack symbol. We also save this number in
the global state whenever a thread is active. This way we can still swap a thread out and back in
again once it has emptied its stack, and we also can keep track of how often we need to repeat that,
before we reach 𝐾 context switches and allow it to terminate.

Furthermore, we also keep a subset 𝐺 ′ of the global states of A in our new global states, which
restricts the states that can appear when no thread is active. This way we can guess that a thread
will be łstuckž in the future, upon which we terminate it instead (going up to 𝐾 context switches
first) and also spawn a new thread keeping track of its top of stack symbol in the bag. Then later
we restrict the subset 𝐺 ′ to only those global states that do not have Resume rules for the top of
stack symbols we saved in the bag. This then verifies our guess of łbeing stuckž. The second part
of the lemma is used in Section 6, where we reason about starvation.
We now state the main reduction to VASSB.

Theorem 4.4. Given a bound 𝐾 ∈ N and a DCPS A we can construct a VASSB V with a state 𝑞0
such that A has an infinite progressive 𝐾-context switch bounded run iffV has an infinite progressive

run from (𝑞0, ∅, ∅).

Idea. One of the main insights regarding the behavior of DCPS is that the order of the spawns of
a thread during one round of being active does not matter. None of the spawned threads during
one such segment can influence the run until the active thread changes. Thus we only need to
look at the semi-linear Parikh image of the language of spawns for each segment. One can then
identify a thread with the state changes and spawns it makes during segments 0 through 𝐾 . The
state changes can be stored in a balloon state and the spawns for each segment in balloon places
that correspond to 𝐾 + 1 copies of the stack alphabet. The inflate operation then basically guesses
the exact multiset of spawns of the corresponding thread.
Representing threads by balloons in this way does not keep track of stack contents, which was

important for ensuring the progressiveness of a DCPS run. However, starting from a progressive
DCPS run we can always construct a progressive run for the VASSB by always continuing with the
oldest thread in a configuration if given multiple choices, and then building the balloons accordingly.
Always picking the oldest balloon also works for the reverse direction.

Now let us argue about the construction in more detail. Given a DCPS with stack alphabet Γ and
a context switch bound 𝐾 , construct a VASSB whose configurations mirror the ones of the DCPS
in the following way. The set of places is Γ and it is used to capture threads that have not been
scheduled yet and therefore only carry a single stack symbol. Formally each thread with context
switch number 0 and stack content 𝛾 ∈ Γ is represented by a token on place 𝛾 . The set of balloon
places is Γ × {0, . . . , 𝐾} and they are supposed to carry the future spawns of any given thread
during segments 0 to 𝐾 . Every thread 𝑡 with context switch number ≥ 1 is then represented by a
balloon where the number of tokens on balloon place (𝛾, 𝑖) is equal to the number of threads with
stack content 𝛾 that 𝑡 will spawn during its 𝑖th segment. The spawns for segment 0 are transferred

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:14 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

to the place set Γ immediately after such a balloon is created, since the represented thread is now
supposed to have made its first context switch. Furthermore, each balloon state consists of the
context switch sequence and context switch number of its corresponding thread 𝑡 . The set of states
of the VASSB mirrors the global states of the DCPS.

For this idea to work, we need to compute the semi-linear set of spawns that each type of thread
can make, so that we can correctly inflate the corresponding balloon using this set. Here, the type
of a terminating thread consists of the stack symbol 𝛾 it spawns with, the global state 𝑔 in which it
first becomes active, the sequence of context switches it makes, and the state in which it terminates.
Given a DCPS A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) and a context switch bound 𝐾 , the formal definition of the set
of thread types is

T (A, 𝐾) ≔ 𝐺 × Γ × (𝐺 × Γ ×𝐺)𝐾 ×𝐺.

Since we want to decide existence of an infinite progressive run of A, we can restrict ourselves to
threads that make exactly𝐾 context switches. Now let 𝑡 = (𝑔′0, 𝛾

′
0, (𝑔1, 𝛾1, 𝑔

′
1) . . . (𝑔𝐾 , 𝛾𝐾 , 𝑔

′
𝐾), 𝑔𝐾+1) ∈

T (A, 𝐾) be a thread type. We want to use P(𝑔′0,𝛾
′
0)
, the PDA of a thread of this type, to accept the

language of spawns such a thread can make. However, we have two requirements on this language,
that the PDA does not yet fulfill. Firstly, in the spirit of progressiveness, we only want to consider
threads that reach the empty stack and terminate. Secondly, we want the spawns during each
segment of the thread execution to be viewed separately from one another.
For the first requirement, we modify the transition relation of P(𝑔′0,𝛾

′
0)
, such that transitions of

the form (𝑔2,⊥)
(𝑔2,⊥) |𝛾2/𝛾2
−−−−−−−−−→ end defined in (5) are only kept in the relation for 𝛾2 = ⊥. This ensures

that the PDA no longer considers thread executions that do not reach the empty stack.
Regarding the second requirement, we can simply introduce 𝐾 + 1 copies of Γ to the input

alphabet of P(𝑔′0,𝛾
′
0)
. It is then redefined as Σ = Γ × {0, . . . , 𝐾} ∪𝐺 × Γ ×𝐺 ∪𝐺 × {⊥}, while the

stack alphabet and states stay the same. Any transition previously defined on input 𝛾 ∈ Γ is now
copied for inputs (𝛾, 0) to (𝛾, 𝑘).

Let P̃(𝑔′0,𝛾
′
0)
be the PDA these changes result in. Then the context-free language that characterizes

the possible spawns of a thread of type 𝑡 is given by the following:

𝐿𝑡 ≔ 𝐿(P̃(𝑔′0,𝛾
′
0)
) ∩ (Γ × 0)∗ · (𝑔1, 𝛾1, 𝑔

′
1) · (Γ × 1)∗ · · · (𝑔𝐾 , 𝛾𝐾 , 𝑔

′
𝐾) · (Γ × 𝐾)∗ · (𝑔𝐾+1,⊥)

Here we intersect the language of the PDA with a regular language, which forces it to adhere to
the type 𝑡 and groups the spawns correctly. If the language 𝐿𝑡 is nonempty, using Parikh’s theorem
(Theorem 2.1), we can compute the semi-linear set characterizing the Parikh-image of this language
projected to Γ × {0, . . . , 𝐾}, which we denote sl(𝑡). We also define the set of all semi-linear sets that
arise in this way as SL(A, 𝐾) ≔ {sl(𝑡) | 𝑡 ∈ T (A, 𝐾), 𝐿𝑡 ≠ ∅}.
Now we can construct a VASSB whose configurations correspond to the ones of the DCPS in

the way we mentioned earlier. From (𝑞0, ∅, ∅) we put a token on 𝛾0 to simulate spawning the initial
thread and thus begin the simulation of the DCPS. We can then construct a progressive run of
the VASSB from a progressive run of the DCPS by constructing the individual balloons as if the
scheduler always picked the oldest thread out of all choices with the same local configuration. The
converse direction works for similar reasons by always picking the oldest balloon to continue with.

The proof also allows us to reason about shallow progressive runs of DCPS. Following the same
notion for VASSB, we call a run of a DCPS shallow if there is a bound 𝐵 ∈ N such that each
thread on that run spawns at most 𝐵 threads. Obverse that in the VASSB construction of this
section the spawns of DCPS threads are mapped to the contents of balloons, which is how the
two notions of shallowness correspond to each other. Thus we can go from progressive DCPS-run
to progressive VASSB-run by Theorem 4.4, to shallow progressive VASSB-run by Theorem 4.2, to

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:15

shallow progressive DCPS run by Theorem 4.4 combined with the observation on the two notions
of shallowness. This is formalized in the following:

Corollary 4.5. A DCPS A has a progressive run iff it has a shallow progressive run.

5 FROM PROGRESSIVE RUNS FOR VASSB TO REACHABILITY

In this section, we prove Theorems 4.1 and 4.2. We outline the main ideas and technical lemmas
used to obtain the proofs. The formal proofs can be found in the full version of the paper [Baumann
et al. 2020b].
We first establish that finite witnesses exist for infinite progressive runs. As a byproduct, this

yields Theorem 4.2. Then, we show that finding finite witnesses for progressive runs reduces to
reachability in VASSB. Finally, we prove that reachability is decidable for VASSB.

5.1 From Progressive Runs to Shallow Progressive Runs

Fix a VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸). A pseudoconfiguration p(𝑐) = (𝑞,m, 𝜕n) ∈ 𝑄 ×M[𝑃] ×M[Ω] of a
configuration 𝑐 = (𝑞,m, n) is given by 𝜕n(𝜎) =

∑
k∈M[Φ] n(𝜎, k). That is, a pseudoconfiguration is

obtained by counting the number of balloons in a given state 𝜎 ∈ Ω but ignoring the contents. The
support supp(m) of a multisetm is the set of places {𝑝 | m(𝑝) > 0} wherem takes non-zero values.
For configurations 𝑐 = (𝑞,m, n) and 𝑐 ′ = (𝑞′,m′, n′), we write 𝑐 ≤ 𝑐 ′ if 𝑞 = 𝑞′, m ⪯ m

′, and
n ⪯ n

′. Moreover, we write p(𝑐) ≤p p(𝑐 ′) if 𝑞 = 𝑞′, m ⪯ m
′, and 𝜕n ⪯ 𝜕n′. Both ≤ and ≤p are

well-quasi orders (wqo), that is, any infinite sequence of configurations (resp. pseudoconfigurations)
has an infinite increasing subsequence with respect to ≤ (resp. ≤p) (see, e.g., [Abdulla et al. 1996;
Finkel and Schnoebelen 2001] for details). This follows because wqos are closed under multiset
embeddings. Moreover,V is monotonic w.r.t. ≤: if 𝑐1 → 𝑐 ′1 and 𝑐1 ≤ 𝑐2, then there is some 𝑐 ′2 such
that 𝑐 ′1 ≤ 𝑐

′
2 and 𝑐2 → 𝑐 ′2.

In analogy with algorithms for finding infinite runs in VASS (in particular the procedure for
checking fair termination in the case 𝐾 = 0 in [Ganty and Majumdar 2012]), one might try to find a
self-covering run w.r.t. the ordering ≤. However, checking for such a run would require comparing
an unbounded collection of pairs of balloons. In order to overcome this issue, we use a token-shifting
surgery which moves tokens from one balloon to another. The surgery is performed on the given
progressive run 𝜌 , converting it into a progressive run 𝜌 ′ with a special property: there exist
infinitely many configurations in 𝜌 ′ which contain only empty balloons. By restricting ourselves to
such configurations, we are able to show the existence of a special kind of self-covering run where
the cover and the original configuration only contain empty balloons and thus it suffices to compare
them using the ordering ≤p. First, we need the following notion of a witness for progressiveness.

For 𝐴 ⊆ 𝑃, 𝐵 ⊆ Ω, a run 𝜌𝐴,𝐵 = 𝑐0
∗
−→ 𝑐

∗
−→ 𝑐 ′ is called an 𝐴, 𝐵-witness for progressiveness if it

satisfies the following properties:

(1) For any 𝑐 ′′ occurring between 𝑐 and 𝑐 ′, we have supp(𝑐 ′′.m) ⊆ 𝐴,
(2) for each 𝑝 ∈ 𝐴, there exists op between 𝑐 and 𝑐 ′ in 𝜌𝐴,𝐵 such that op = 𝛿 where 𝛿 (𝑝) < 0,
(3) for any balloon 𝑏, we have 𝑐.n(𝑏) ≥ 1 iff 𝑐 ′.n(𝑏) ≥ 1 iff (𝑏.k = ∅ and 𝑏.𝜎 ∈ 𝐵),
(4) for any 𝜎 ∈ 𝐵, there exists op occurring between 𝑐 and 𝑐 ′ such that op = deflate(𝜎, ·, ·, ·) or

op = burst(𝜎) is applied to an empty balloon with state 𝜎 , and
(5) p(𝑐) ≤p p(𝑐

′) and supp(𝑐.m) = supp(𝑐 ′.m).

In order to formalize the idea of a token-shifting surgery, we associate a unique identity with
each balloon. In particular, we may associate the unique number 𝑖 ∈ N with the balloon 𝑏 which

is inflated by the 𝑖𝑡ℎ operation op𝑖 in a run 𝜌 = 𝑐0
op1
−−→ 𝑐1

op2
−−→ 𝑐2 · · · , giving us a balloon-with-id

(𝑏, 𝑖). The id of a balloon is preserved on application of deflate and burst operations and thus we

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:16 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

can speak of the balloon 𝑖 and the sequence of operations seq𝑖 that it undergoes. Given a run 𝜌 ,
we produce a corresponding canonical run-with-id 𝜏 inductively as follows: the balloon identities
are assigned as above and the balloon with least id is chosen for execution every time. Extending
the notion of a balloon-with-id to a configuration-with-id 𝑑 (where every balloon has an id) and
a run-with-id 𝜏 (which consist of sequences of configurations-with-id), we define the notion of a
progressive run-with-id 𝜏 , which is one such that the sequence seq𝑖 associated with any id 𝑖 in 𝜏 is
either infinite, or seq𝑖 is finite with the last operation being a burst. If every id 𝑖 undergoes a burst
operation in a run-with-id 𝜏 , we say ł𝜏 bursts every balloon.ž We abuse terminology by saying ł𝜌
bursts every balloonž for a run 𝜌 to mean that there is a corresponding run-with-id 𝜏 which bursts
every balloon. It is easy to see that the canonical run-with-id 𝜏 associated with a progressive run
𝜌 is łalmostž progressive. By always picking the id which has been idle for the longest time, we
can convert 𝜏 into a progressive run-with-id. Thus there exists a progressive run if and only if
there exists a progressive run-with-id, but the latter retains more information, allowing us to argue
formally in proofs. With these notions in hand, we prove the following lemma:

Lemma 5.1. Given a VASSB V and a semiconfiguration 𝑠 ofV , one can construct a VASSB V ′ =

(𝑄 ′, 𝑃 ′,Ω′,Φ′, 𝐸 ′) and a semiconfiguration 𝑠 ′ ofV ′ such that the following are equivalent:

(1) V has a progressive run from 𝑠 ,

(2) V ′ has a progressive run from 𝑠 ′ that bursts every balloon, and

(3) V ′ has an 𝐴, 𝐵-witness for some 𝐴 ⊆ 𝑃 ′ and 𝐵 ⊆ Ω
′.

The remainder of this subsection is devoted to the proof of Lemma 5.1. The lemma is proved
in two steps: first we show (1) ⇐⇒ (2), then we show (2) ⇐⇒ (3). We do some preprocessing
before (1) ⇐⇒ (2), by showing that one can convert V into a VASSB V ′ with two special
properties: (i) the zero-base property, by which every linear set ofV ′ has base vector equal to 0,
and (ii) the property of being typed, which means that we guess and verify the sequence of deflates
performed by a balloon 𝑏 that could potentially transfer a non-zero number of tokens by including
this information in its balloon state 𝑏.𝜎 . A deflate operation which transfers a non-zero number
of tokens is called a non-trivial deflate. The type 𝑡 = (𝐿, 𝑆) of a balloon 𝑖 consists of the linear set
𝐿 used during its inflation, along with the sequence 𝑆 = (𝜋1, 𝑝1), (𝜋2, 𝑝2), · · · , (𝜋𝑛, 𝑝𝑛) of deflate
operations on 𝑖 , such that for each 𝑗 ∈ {1, · · · , 𝑛}, the first deflate operation acting on the balloon
place 𝜋 𝑗 sends tokens to the place 𝑝 𝑗 .

Lemma 5.2. Given a VASSBV along with its semiconfigurations 𝑠0, 𝑠1, we can construct a zero-base,

typed VASSBV ′ and its semiconfigurations 𝑠 ′0, 𝑠
′
1 such that:

(1) There is a progressive run of V from 𝑠0 iff there is a progressive run of V ′ from 𝑠 ′0.

(2) There is a run 𝑠0
∗
−→ 𝑠1 in V iff there is a run 𝑠 ′0

∗
−→ 𝑠 ′1 inV ′.

The zero-base property is easily obtained by making sure that the portion of tokens transferred
which correspond to the base vector are separately transferred using 𝐸𝑝-edges. The addition of
the types into the global state can be done by expanding the set of balloon states exponentially. A
proof of the lemma is given in the full version [Baumann et al. 2020b].

We return to the proof of Lemma 5.1. The direction (1)⇒ (2) requires us to show thatV ′ can be
assumed to łburst every balloonž in a progressive run-with-id. Consider a balloon 𝑖 occurring in
an arbitrary progressive run-with-id 𝜏 ′′. In order to convert the given 𝜏 ′′ into a progressive 𝜏 ′ in
which every balloon is burst, we need to burst those id’s 𝑖 such that seq𝑖 is infinite in 𝜏

′′. Since only
a finite number of non-trivial deflates can be performed by a given balloon 𝑖 , this implies that seq𝑖
consists of a finite prefix in which non-trivial deflates are performed, followed by an infinite suffix
of trivial deflates. Every such balloon 𝑖 can then be burst and replaced by a special VASS token. The

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:17

𝜏

𝑖0 𝑖1

(𝜋1, 𝑝1)

𝑖2

(𝜋2, 𝑝2)

𝑖3

(𝜋3, 𝑝3)

𝑗0 𝑗1

(𝜋1, 𝑝1)

𝑗2

(𝜋2, 𝑝2)

𝑗′2

(𝜋2, 𝑝
′
2)

𝑗3

(𝜋3, 𝑝3)

𝜏′

𝑖0 𝑖1

(𝜋1, 𝑝1)

𝑖2

(𝜋2, 𝑝2)

𝑖3

(𝜋3, 𝑝3)

𝑗0 𝑗1

(𝜋1, 𝑝1)

𝑗2

(𝜋2, 𝑝2)

𝑗′2

(𝜋2, 𝑝
′
2)

𝑗3

(𝜋3, 𝑝3)

Fig. 1. Top: Initial run 𝜏 with two non-empty balloons which perform the same sequence of three non-trivial

deflates (𝜋1, 𝑝1), (𝜋2, 𝑝2), (𝜋3, 𝑝3). Bottom: Modified run 𝜏 ′ after shifting tokens from the cyan balloon inflated

at 𝑗0 to the red balloon inflated at 𝑖0.

infinite trivial suffix is then simulated by using addition and subtraction operations of these special
tokens using additional places, since any such balloon 𝑖 will not transfer any more tokens. The
converse direction (1)⇐ (2) is a reversal of the construction where we replace the special VASS
tokens with infinite sequences of trivial deflate operations.

Token-Shifting. We move on to show (2) ⇐⇒ (3). The key idea is a token-shifting surgery.
A token-shifting surgery creates a run 𝜏 ′ from a run 𝜏 as depicted in Figure 1. We start with the

run-with-id 𝜏 = 𝑑0
op1
−−→ 𝑑1

op2
−−→ 𝑑2 · · · in which two balloons have the same type 𝑡 = (𝐿, 𝑆) with

𝑆 = (𝜋1, 𝑝1), (𝜋2, 𝑝2), (𝜋3, 𝑝3) being the sequence of (potentially) non-trivial deflates. Recall that an
index 𝑖 relates to the operation op𝑖 in 𝜏 . The region of a balloon which is shaded grey visualizes
the total number of tokens contained in the balloon. This number is seen to decrease after each
non-trivial deflate operation. An empty balloon is white in color. Balloons having the same identity
have the same outline color: red for the balloon 𝑏1 inflated at 𝑖0 and cyan for the balloon 𝑏2 inflated
at 𝑗0. At 𝑖3 (resp. 𝑗3) all tokens have been transferred and the red balloon (resp. cyan balloon) is
empty. The crucial property satisfied is that 𝑖𝑘 < 𝑗𝑘 for 𝑘 ∈ {1, 2, 3}, i.e., every deflate from 𝑆 of
the red balloon occurs before the corresponding deflate of the cyan balloon. In the modified run
𝜏 ′, we have the inflation of an empty cyan balloon and the inflation of the red balloon with the
sum of the tokens of both red and cyan balloons in 𝜏 . We require the zero-base property in order
to be able to shift the tokens in this manner: observe that a linear set with zero base vector is
closed under addition. Note that the cyan balloon undergoes a trivial deflate at 𝑗 ′2 where no tokens
are transferred: this deflate is not part of 𝑆 and is not relevant for the token-shifting. Thus the
run-with-id 𝜏 may be modified to give a valid run-with-id 𝜏 ′. Note that the configurations-with-id
𝑑 ′𝑗 of 𝜏

′ satisfy 𝑑 ′𝑗 ≥ 𝑑 𝑗 for each 𝑗 and so by monotonicity every operation that is applied at 𝑑 𝑗 can
be applied at 𝑑 ′𝑗 .
We now show how token-shifting is applied to prove (2) ⇐⇒ (3) in Lemma 5.1. First, from a

progressive run 𝜏 of V ′ such that every balloon is burst, we produce a run 𝜏 ′ of V ′ from which it
will be easy to extract an 𝐴, 𝐵-witness. Let 𝑇∞ be the set of types of balloons which occur infinitely
often in 𝜏 . Since every balloon is eventually burst in 𝜏 , there has to be a configuration 𝑑0 such
that after 𝑑0, every occurring balloon has a type in 𝑇∞. We now inductively pick a sequence of

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:18 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

configurations 𝑑1, 𝑑2, · · · and a sequence of sets of balloons 𝐼1, 𝐼2, · · · with the following properties,
for each 𝑘 ≥ 1:

(1) 𝐼𝑘 contains exactly one balloon inflated after 𝑑𝑘−1 for each type in 𝑇∞ and
(2) every balloon in 𝐼𝑘 is burst before 𝑑𝑘 .

For every balloon 𝑖 not in any of the sets 𝐼1, 𝐼2, · · · , which is inflated between 𝑑𝑘 and 𝑑𝑘+1 for
𝑘 ≥ 1, we shift its tokens to the corresponding balloon 𝑗 in 𝐼𝑘 of the same type as 𝑖 . Clearly this
is allowed since all of the deflate operations of 𝑗 occur before 𝑖 is inflated. Thus we obtain the

run 𝜏 ′ = 𝑑 ′′0
∗
−→ 𝑑 ′0

∗
−→ 𝑑 ′1

∗
−→ 𝑑 ′2 . . . from 𝜏 . The prefix 𝑑 ′′0

∗
−→ 𝑑 ′0 of the modified run 𝜏 ′ may contain

balloons of arbitrary type. Between 𝑑 ′0 and 𝑑
′
1, there are only balloons in 𝑇∞. After 𝑑 ′2, we have an

infinite suffix where all balloons are of a type from 𝑇∞ and the only non-empty balloons are those
belonging to 𝐼𝑘 for some 𝑘 ≥ 2. This means that the configurations-with-id 𝑑 ′

𝑘
for each 𝑘 ≥ 2 only

contain empty balloons. Since ≤p is a well-quasi-ordering, the sequence 𝑑 ′2, 𝑑
′
3, . . . must contain

configurations 𝑑 ′
𝑙
and 𝑑 ′𝑚 with 𝑑 ′

𝑙
≤p 𝑑

′
𝑚 . We obtain an 𝐴, 𝐵-witness as follows. We choose the set

𝑃∞ which is the set of places which are non-empty infinitely often along 𝜏 ′ for the set 𝐴. Since the
set of possible balloon states and places in a given configuration is finite, by Pigeonhole Principle,
we may assume that 𝑑 ′

𝑙
and 𝑑 ′𝑚 have the same set of non-empty places 𝐴 ⊆ 𝑃 ′ and balloon states

𝐵 ⊆ Ω. We may also assume that progressiveness checks (2) and (4) corresponding to 𝐴 and 𝐵
occur between 𝑑 ′

𝑙
and 𝑑 ′𝑚 .

Conversely, an (𝐴, 𝐵)-witness 𝜌𝐴,𝐵 can be łunrolledž to give a progressive run 𝜏 ′′ ofV ′. Further-
more, since the unrolling 𝜏 ′′ only contains balloons with contents present in the finite run 𝜌𝐴,𝐵 ,
giving us a shallow progressive run as stated in Theorem 4.2.

5.2 Reduction to Reachability

The reachability problem REACH for VASSB asks:

Given A VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸) and two semiconfigurations 𝑐0 and 𝑐 .

Question Is there a run 𝑐0
∗
−→ 𝑐 ?

The more general version of the problem, where 𝑐0 and 𝑐 can be arbitrary configurations (i.e., with
balloon contents), easily reduces to this problem. However, the exposition is simpler if we restrict to
semiconfigurations here. In this subsection, we shall reduce the progressive run problem for VASSB
to the reachability problem for VASSB. In the next subsection, we shall reduce the reachability
problem to the reachability problem for VASS, which is known to be decidable [Kosaraju 1982;
Mayr 1981].

Lemma 5.3. The progressive run problem for VASSB reduces to the problem REACH for VASSB.

Fix a VASSB V . Using Lemma 5.1, we look for progressive witnesses. Let 𝐴 ⊆ 𝑃 and 𝐵 ⊆ Ω.
We shall iterate over the finitely many choices for 𝑇 = (𝐴, 𝐵) and check that V has an infinite
progressive run with a 𝐴, 𝐵-witness by reducing to the configuration reachability problem for an
associated VASSBV(𝑇).

The VASSB V(𝑇) simulates V and guesses the two configurations 𝑐1 and 𝑐2 such that 𝑐0
∗
−→

𝑐1
∗
−→ 𝑐2 satisfies the conditions for a progressive witness. It operates in five total stages, with three

main stages and two auxiliary ones sandwiched between the main stages. In the first main stage, it
simulates two identical copies of the run ofV starting from 𝑐0. The global state is shared by the
two copies while we have separate sets of places. We cannot maintain separate sets of balloons
for each copy since the inflate operation is inherently non-deterministic and hence the balloon
contents may be different in the two balloons produced. The trick to maintaining two copies of the
same balloon is to in fact only inflate a single instance of a łdoubledž balloon which uses łdoubledž

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:19

vectors and two copies of balloon places. Deflate operations are then performed twice on each
doubled balloon, moving tokens to the corresponding copies of places.

The VASSBV(𝑇) also tracks the number of balloons in each balloon state (independent of their
contents), for each copy of the run. At some point, it guesses that the current configuration is 𝑐1 (in
both copies) and moves to the first auxiliary stage. The first auxiliary stage checks whether all the
balloons in 𝑐1 are empty. Control is then passed to the second main stage.

In the second main stage, the first copy of the run is frozen to preserve p(𝑐1) andV(𝑇) continues
to simulateV on the second copy. This is implemented by producing only łsinglež balloons during
this stage and only deflating the second copy of the places in the łdoublež balloons which were
produced in the first main stage. While simulatingV on the second copy,V(𝑇) additionally checks
the progressiveness constraints (2) and (4) corresponding to an 𝐴, 𝐵-witness in its global state. The
second main stage non-deterministically guesses when the second copy reaches 𝑐2 (and ensures
all progress constraints have been met) and moves on to the second auxiliary stage. Here the
fact that all the balloons in 𝑐2 are empty is checked and then control passes to the third main
stage. In the third main stage, V(𝑇) verifies that the two configurations 𝑐1 and 𝑐2 also satisfy
conditions (1), (3), and (5) for an 𝐴, 𝐵-witness. A successful verification puts V(𝑇) in a specific
final semi-configuration.

5.3 From Reachability in VASSB to Reachability in VASS

In this subsection, we show that reachability for VASSB reduces to reachability in ordinary VASS.
We write exp𝑘 (𝑥) for the 𝑘-fold exponential function i.e. exp1 (𝑥) is 2

𝑥 , exp2 (𝑥) is 2
2𝑥 etc.

A run 𝜌 = 𝑠1
∗
−→ 𝑠2 of a VASSBV between two semiconfigurations is said to be𝑁 -balloon-bounded

for some 𝑁 ∈ N if there exist at most 𝑁 non-empty balloons which are inflated in 𝜌 . The following
lemma is the crucial observation for our reduction.

Lemma 5.4. Given any VASSB V = (𝑄, 𝑃,Ω,Φ, 𝐸), there exists 𝑁 ∈ N with 𝑁 ≤ 𝑂 (exp4 (|V|))

such that for any two semiconfigurations 𝑠1, 𝑠2, if (V, 𝑠1, 𝑠2) ∈ REACH, then there exists a run

𝜌 = 𝑠1
∗
−→ 𝑠2 ofV that is 𝑁 -balloon-bounded.

Before we prove Lemma 5.4, let us see how it allows us to reduce reachability in VASSB to
reachability in VASS.

Lemma 5.5. The problem REACH for VASSB reduces to the problem REACH for VASS.

From a given VASSBV , we construct a VASSV ′ which has extra places Ω × {1, · · · , 𝑁 } × Φ for
storing the contents of all the non-empty balloons, as well as extra places Ω that store the number
of balloons which were created empty for each balloon state 𝜎 of V . The global state of V ′ is used
to keep track of the total number of non-empty balloons created as well as their state changes.
Deflate and burst operations are replaced by appropriate token transfers such that there is only
one opportunity forV ′ to transfer tokens of any non-empty balloon by using the global state. This
results in a faithful simulation in the forward direction, as well as the easy extraction of a run ofV
from a run ofV ′ in the converse direction.

Proof of Lemma 5.4. We now prove Lemma 5.4, which will complete the proof of Theorem 4.1.
We observe that if, for every balloon state 𝜎 , the number of balloons that are inflated in 𝜌 with

state 𝜎 is bounded by 𝑁 , this implies a bound of |Ω |𝑁 on the total number of balloons inflated in 𝜌 .
Hence, we can equivalently show the former bound assuming a particular balloon state. We assume
that V is both zero-base and typed while preserving reachability by Lemma 5.2. This implies that
the type information is contained in the state of a balloon. The lemma is then proved by showing

that if more than 𝑁 non-empty balloons of a particular state 𝜎 are inflated in a run 𝜌 = 𝑠1
∗
−→ 𝑠2,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:20 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

𝜏

𝑖0 𝑗0 𝑖1 𝑗1 𝑗2

𝑖0 .𝜎 . = 𝑗0 .𝜎

𝑖2 𝑗3 𝑖3

𝑖0 .𝜎 = 𝑗0 .𝜎

𝑖4 𝑗4

𝑖0 𝑗0 𝑖1 𝑗1 𝑖2 𝑗2 𝑖3 𝑗3 𝑖4 𝑗4

𝜏′

𝑖0 𝑗0 𝑖1 𝑗1 𝑖2 𝑗2 𝑖3 𝑗3 𝑖4 𝑗4

Fig. 2. Top: Initial run 𝜏 with two non-empty balloons of the same type: cyan balloon inflated at 𝑖0 and orange

balloon inflated at 𝑗0. Middle: Switching cyan and orange balloons in the part of 𝜏 between 𝑗2 and 𝑖3. Bottom:

Modified run 𝜏 ′ obtained by shifting token from orange balloon to cyan balloon.

then it is possible to perform an id-switching surgery, resulting in a run 𝜌 ′ = 𝑠1
∗
−→ 𝑠2 which creates

one less non-empty balloon with state 𝜎 .
The id-switching surgery is depicted in Figure 2 . The formal proof of correctness uses runs-with-

id. Fix a run-with-id 𝜏 = 𝑑0
op1
−−→ 𝑑1

op2
−−→ 𝑑2 · · · . Suppose the cyan and orange balloons are inflated

at 𝑖0 and 𝑗0 respectively with the same balloon state. Since the type information is included in the
balloon state, this implies that they are also of the same type 𝑡 = (𝐿𝑡 , 𝑆𝑡). The points marked with
indices 𝑖1, 𝑖2, 𝑖3, 𝑖4 (resp. 𝑗1, 𝑗2, 𝑗3, 𝑗4) are those at which the cyan (resp. orange) balloon undergoes a
deflate from 𝑆𝑡 . While 𝑖1 < 𝑗1 and 𝑖4 < 𝑗4, we have 𝑗2 < 𝑖2 and 𝑗3 < 𝑖3; therefore token-shifting is
not possible. However, let us assume that the state of the cyan and orange balloons is the same at
𝑑 𝑗2−1 and 𝑑𝑖3 of 𝜏 . This implies that the operations performed on the two balloons in 𝜏 [𝑗2, 𝑖3] can be
switched as shown in the middle of Figure 2. Note that this need not be a valid run as the number
of tokens transferred by the orange at 𝑗2 may exceed that transferred by the cyan balloon at 𝑖2 and
the extra tokens may be required for the run 𝜏 [𝑗2, 𝑖2] to be valid. However, the id-switching now
enables a token-shifting operation since 𝑗𝑘 < 𝑖𝑘 for each 𝑘 ∈ {0, 1, . . . , 4}. Thus, combining the
switch with a token-shifting operation which moves all tokens from orange to cyan results in the
valid run 𝜏 ′ shown at the bottom of Figure 2, which contains one less non-empty balloon of type 𝑡
than 𝜏 . It remains to show that such an id-switching surgery is always possible in a run 𝜏 when the
number of non-empty balloons of a type 𝑡 exceeds the bound 𝑁 given in the lemma.

Ramsey’s Theorem. To this end, we employ the well-known (finite) Ramsey’s theorem [Ramsey
1930, Theorem B], which we recall first. For a set 𝑆 and 𝑘 ∈ N, we denote by P𝑘 (𝑆) the set of all
𝑘-element subsets of 𝑆 . An 𝑟 -colored (complete) graph is a tuple (𝑉 , 𝐸1, . . . , 𝐸𝑟), where𝑉 is a finite set
of vertices and the sets 𝐸1, . . . , 𝐸𝑟 form a partition of all possible edges (i.e. two-element subsets), i.e.
P2 (𝑉) = 𝐸1 ¤∪ · · · ¤∪𝐸𝑟 . A subset𝑈 ⊆ 𝑉 of vertices is monochromatic if all edges between members
of𝑈 have the same color, in other words, if P2 (𝑈) ⊆ 𝐸 𝑗 for some 𝑗 ∈ [1, 𝑟]. Ramsey’s theorem says
that for each 𝑟, 𝑛 ∈ N, there is a number 𝑅(𝑟 ;𝑛) such that any 𝑟 -colored graph with at least 𝑅(𝑟 ;𝑛)
vertices contains a monochromatic subset of size 𝑛. It is a classical result by Erdős and Rado [Erdős
and Rado 1952, Theorem 1] that 𝑅(𝑟 ;𝑛) ≤ 𝑟𝑟 (𝑛−2)+1.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:21

𝜏
𝑖0 𝑗0 𝑘0 𝑙0 𝑖1 𝑗1 𝑘1 𝑙1 𝑙2

𝑖0 .𝜎 . = 𝑗0 .𝜎

𝑘2 𝑗2 𝑖2 𝑙3 𝑘3 𝑗3 𝑖3

𝑖0 .𝜎 . = 𝑗0 .𝜎

𝑖4 𝑗4 𝑘4 𝑙4

𝑖0

𝑗0

𝑘0𝑙0

𝐺𝑡

𝑖0

𝑗0

𝑘0𝑙0

𝐺 ′
𝑡

Ramsey
𝑖0

𝑗0

Pigeonhole

Fig. 3. Above:Four balloons inflated at 𝑖0 < 𝑗0 < 𝑘0 < 𝑙0 of the same type 𝑡 performing four deflate operations

(subscripts denote deflate operations of the same balloon). Note that the ordering relationship of deflate

operations between any pair of the four balloons is the same: between balloons 𝑖0 and 𝑗0, their deflate

sequences are related as 𝑖1 < 𝑗1, 𝑗2 < 𝑖2, 𝑗3 < 𝑖3, 𝑖4 < 𝑗4, which is represented by the string 0110. The edge-
color red is used to represent 0110 in the figure. The balloons 𝑖0 and 𝑗0 share the same states at configurations

𝑑𝑙2 − 1 and 𝑑𝑖3 of 𝜏 .
Below: The same four balloons inflated at 𝑖0 < 𝑗0 < 𝑘0 < 𝑙0 shown as forming a monochromatic subgraph 𝐺 ′

𝑡
in the graph 𝐺𝑡 . For large enough |𝐺 ′

𝑡 |, by Pigeonhole Principle we find 𝑖0, 𝑗0 which share the same states.

The application of Ramsey’s Theorem is shown in Figure 3. The bottom half of the figure depicts
the construction of a graph 𝐺𝑡 whose vertices are balloons, on which Ramsey’s theorem is applied.
This results in the identification of a monochromatic clique with vertices 𝑖0, 𝑗0, 𝑘0, 𝑙0. The top half
of the figure shows the deflate operations on the balloons inflated at 𝑖0, 𝑗0, 𝑘0, 𝑙0 in the run 𝜏 .

Formally, we construct a graph𝐺𝑡 with vertex set𝑉𝑡 of all id’s in 𝜏 of a fixed type 𝑡 . By assumption,
|𝑉𝑡 | ≥ 𝑁 . For id’s 𝑖, 𝑗 ∈ 𝑉𝑡 with 𝑖 < 𝑗 and 𝑆 = (𝜋1, 𝑝1), · · · , (𝜋𝑛, 𝑝𝑛), define a sequence 𝑠𝑖, 𝑗 ∈ {0, 1} |𝑆 |

by 𝑠𝑖, 𝑗 (𝑘) = 0 if and only if 𝑖 undergoes the deflate transferring tokens from 𝜋𝑘 to 𝑝𝑘 before 𝑗 does.

In Figure 3, assuming that |𝑆 | = 4, we have 𝑠𝑖0, 𝑗0 = 0110. Interpreting each word from {0, 1} |𝑆 | as
a color, we obtain a finite coloring of the edges of 𝐺𝑡 . Red colored edges in 𝐺𝑡 are to be interpreted
as the string 0110, with other colors representing other strings. For a large enough value of 𝑁 ,
Ramsey’s Theorem gives us a monochromatic subgraph𝐺 ′

𝑡 of𝐺𝑡 induced by a set of vertices 𝑉 ′
𝑡 .

As shown in the figure, any pair of balloons chosen from the cyan, orange, green and magenta
balloons inflated at 𝑖0, 𝑗0, 𝑘0, 𝑙0 respectively, behave in the same way with respect to their order of
deflates and thus form a monochromatic subgraph 𝐺 ′

𝑡 colored red.
Let a maximal contiguous sequence of 1’s in 𝑠𝑖, 𝑗 be called a 1-block. Since the number of balloon

states is finite, this implies that for a large enough value of |𝑉 ′
𝑡 |, there will exist two id’s 𝑖0, 𝑗0 ∈

|𝑉 ′
𝑡 | (represented by the cyan and orange balloons respectively) which share the same states

at configurations at the beginning and end of every 1-block by the Pigeonhole Principle. The id-
switching surgery can be performed on the cyan and orange balloons, which are the ones considered
in the id-switching surgery of Figure 2. While Ramsey’s Theorem gives a double-exponential bound
on𝑁 in order to obtain a large monochromatic subgraph, the second condition requiring same states
at the beginning and end of 1-blocks further increases our requirement to exp4 for id-switching to
be enabled.
This concludes the proof of Lemma 5.4 as well as Theorem 4.1.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:22 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

6 STARVATION

We now prove Theorem 2.4. Let us first explain the additional difficulty of the starvation problem.
For deciding progressive termination, we observed that each thread execution can be abstracted
by its type and the threads it spawns. (In other words, two executions that agree in these data are
interchangeable without affecting progressiveness of a run.) However, for starvation of a thread, it
is also important whether each thread visits some stack content𝑤 after 𝑖 context switches. Here,𝑤
is not known in advance and has to be agreed upon by an infinite sequence of threads.
Very roughly speaking, we reduce starvation to progressive termination as follows. For each

thread, we track its spawned multiset up to some bound 𝐵. Using Ramsey’s theorem [Ramsey 1930,
Theorem B], we show that if we choose 𝐵 high enough, then this abstraction already determines
whether a sequence of thread executions can be replaced with different executions that actually
visit some agreed upon stack content𝑤 after 𝑖 context switches. The latter condition permitting
replacement of threads will be called łconsistency.ž

A further subtlety is that consistency of the abstractions up to 𝐵 only guarantees consistency of
the (unabstracted) executions if the run is shallow. Here, Corollary 4.5 will yield a shallow run, so
that we may conclude consistency of the unabstracted executions.

6.1 Terminology

In our terminology, a thread is a pair (𝑤, 𝑖), where𝑤 is a stack content and 𝑖 is a context switch
number. To argue about starvation, it is convenient to talk about how a thread evolves over time.
By a (thread) execution we refer to the sequence of (pushdown and swap) instructions that belong
to a single thread, from its creation via spawn until its termination. A thread execution can spawn
new threads during each of its segments. We say that a thread execution 𝑒 produces the multiset
m ∈ M[Λ], where Λ = Γ × {0, . . . , 𝐾} if the following holds: For each 𝑖 ∈ {0, . . . , 𝐾} and 𝛾 ∈ Γ, the
thread execution 𝑒 spawns m((𝛾, 𝑖)) new threads with top of stack 𝛾 in segment 𝑖 . In this case, we
also call m the production of 𝑒 .
According to Lemma 4.3, in order to decide STARV[𝐾], it suffices to decide whether in a given

DCPS A, there exists a progressive run that starves some thread (𝑤, 𝑖). Therefore, we say that a
run 𝜌 is starving if it is progressive and starves some thread (𝑤, 𝑖). Let us first formulate starvation
in terms of thread executions. We observe that a progressive run 𝜌 starves a thread (𝑤, 𝑖) if and
only if there are configurations 𝑐1, 𝑐2, . . . and executions 𝑒1, 𝑒2, . . . in 𝜌 such that:

(1) For each 𝑗 = 1, 2, . . ., in configuration 𝑐 𝑗 , both 𝑒 𝑗 and 𝑒 𝑗+1 are in state (𝑤, 𝑖),
(2) 𝑒 𝑗 is switched to in the step after 𝑐 𝑗 , and
(3) 𝑒 𝑗+1 is not switched to until 𝑐 𝑗+1.

For the łifž direction, note that if a progressive run 𝜌 starves (𝑤, 𝑖), then (𝑤, 𝑖) must be in the bag
from some point on and whenever (𝑤, 𝑖) becomes active, there are at least two instances of (𝑤, 𝑖)
in the bag. We choose 𝑐1, 𝑐2, . . . as exactly those configurations in 𝜌 after which (𝑤, 𝑖) becomes
active. Moreover, 𝑒 𝑗 is the thread execution that is switched to after 𝑐 𝑗 . Furthermore, since in 𝑐 𝑗 ,
there must be another instance of (𝑤, 𝑖) in the bag, there must be some execution 𝑒 ′𝑗 whose state
(𝑤, 𝑖) is in the bag at 𝑐 𝑗 . However, since 𝑒 𝑗+1 will start from (𝑤, 𝑖) in 𝑐 𝑗+1 and 𝑒 ′𝑗 is in (𝑤, 𝑖) at 𝑐 𝑗 , we
may assume that 𝑒 𝑗+1 = 𝑒 ′𝑗 . With this choice, we clearly satisfy (1)ś(3) above.

For the łonly ifž direction, note that conditions (1)ś(3) allow (𝑤, 𝑖) to become active in between
𝑐 𝑗 and 𝑐 𝑗+1. However, since 𝑒 𝑗+1 is not switched to between 𝑐 𝑗 and 𝑐 𝑗+1, we know that any time
(𝑤, 𝑖) becomes active, there must be another instance of (𝑤, 𝑖).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:23

6.2 Consistency

Our first step in deciding starvation is to find a reformulation that does not explicitly mention the
stack𝑤 . Instead, it states the existence of𝑤 as a consistency condition, which we will develop now.

Of course, it suffices to check whether a DCPS can starve some thread (𝑤, 𝑖) when 𝑖 ∈ [1, 𝐾] is
fixed. Therefore, from now on, we choose some 𝑖 ∈ [1, 𝐾] and want to decide whether there is a
stack𝑤 ∈ Γ

∗ such that the thread (𝑤, 𝑖) can be starved by our DCPS.
First, a note on notation. In the following, we will abbreviate the set T (A, 𝐾) of thread types

with T . We will work with families (𝑋𝑡)𝑡 ∈T of subsets 𝑋𝑡 ⊆ 𝑋 of some set 𝑋 indexed by types
𝑡 ∈ T . We identify the set of such tuples indexed by T with P (𝑋)T . Sometimes, it is more natural
to treat them as tuples (𝑋1, . . . , 𝑋𝑘) with 𝑘 = |T |. For simplicity, we will call both objects tuples.
For each type 𝑡 ∈ T , we consider the following set

𝑆𝑡 = {(𝑤,m) ∈ Γ
∗ ×M[Λ] | there is an execution of type 𝑡 that produces m

and reaches stack𝑤 after segment 𝑖}

The set 𝑆𝑡 encodes the following information: Is there a thread execution of type 𝑡 that produces
m ∈ M[Λ] and at the same time arrives in 𝑤 after 𝑖 segments? The tuple𝔖A = (𝑆𝑡)𝑡 ∈T encodes
this information for all types at once.

We will analyze𝔖A to show that if our decision procedure claims that there exists a starving run,
then we can construct one. This construction will involve replacing one execution with another that
(i) has the same type, (ii) arrives in𝑤 after 𝑖 segments, and (iii) spawns more threads. Formally, the
inserted execution must be larger w.r.t. the following order: Form,m′ ∈ M[Λ], we havem ⪯1 m

′ if
and only ifm ⪯ m

′ and also supp(m) = supp(m′). Recall that supp(m) = {𝑥 ∈ Λ | m(𝑥) > 0} is the
support of m ∈ M[Λ]. Here, the condition supp(m) = supp(m′) makes sure that the replacement
does not introduce thread spawns with new stack symbols, as this might destroy progressiveness
of the run.
Let 𝑆 ⊆ Γ

∗ ×M[Λ] be a set. For𝑤 ∈ Γ
∗, we define

𝑆↓𝑤 = {m ∈ M[Λ] | ∃m′ ∈ M[Λ] : m ⪯1 m
′, (𝑤,m′) ∈ 𝑆}.

Observe thatm ∈ 𝑆𝑡↓𝑤 expresses that there exists an execution of type 𝑡 that visits𝑤 after segment
𝑖 and produces a vector m′ ⪰1 m.

Our definition of consistency involves the tuple 𝔖A . However, since some technical proofs
will be more natural in a slightly more abstract setting, we define consistency for a general tuple
𝔖 = (𝑆1, . . . , 𝑆𝑘) of subsets 𝑆𝑙 ⊆ Γ

∗ ×M[Λ]. Hence, the following definitions should be understood
with the case𝔖 = 𝔖A in mind. Suppose we have a run with thread executions 𝑒1, 𝑒2, . . . and for
each type 𝑡 , let 𝑉𝑡 be the set of productions of all executions in {𝑒1, 𝑒2, . . .} that have type 𝑡 . We
want to formulate a condition expressing the existence of a stack𝑤 such that for any 𝑡 ∈ T and
any multiset m ∈ 𝑉𝑡 , there exists an execution of type 𝑡 that visits 𝑤 (after 𝑖 context switches)
and produces a multiset m′ ⪰1 m. This would allow us to replace each 𝑒 𝑗 by an execution 𝑒 ′𝑗 that
actually visits𝑤 : Sincem′ ⪰1 m, we know that 𝑒 ′𝑗 produces more threads of each stack symbol (and
can thus still sustain the run), but also does not introduce new kinds of threads (because m′ and m
have the same support), so that progressiveness will not be affected by the replacement.

Let us make this formal. We say that a tuple𝔙 = (𝑉1, . . . ,𝑉𝑘) with 𝑉𝑙 ⊆ M[Λ] is𝔖-consistent if
there exists a 𝑤 ∈ Γ

∗ with 𝑉𝑙 ⊆ 𝑆𝑙↓𝑤 for each 𝑙 ∈ [1, 𝑘]. In this case, we call 𝑤 an𝔖-consistency

witness for𝔙. For words𝑤,𝑤 ′ ∈ Γ
∗, we write𝑤 ≤𝔖 𝑤 ′ if 𝑆𝑙↓𝑤 ⊆ 𝑆𝑙↓𝑤′ for every 𝑙 ∈ [1, 𝑘].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:24 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

6.3 Starvation in Terms of Consistency

This allows us to state the following reformulation of starvation, where𝑤 does not appear explicitly.
A progressive run 𝜌 is said to be consistent if there are configurations 𝑐1, 𝑐2, . . . and thread executions
𝑒1, 𝑒2, . . . that produce m1,m2, . . . and such that:

(1) For each 𝑗 = 1, 2, . . ., in configuration 𝑐 𝑗 , the executions 𝑒 𝑗 and 𝑒 𝑗+1 have completed 𝑖 segments,
(2) 𝑒 𝑗 is switched to in the step after 𝑐 𝑗 ,
(3) 𝑒 𝑗+1 is not switched to until 𝑐 𝑗+1, and:
(4) Let𝑉𝑡 = {m𝑗 | 𝑗 ∈ N, execution 𝑒 𝑗 has type 𝑡}. Then the tuple𝔙 = (𝑉𝑡)𝑡 ∈T is𝔖A-consistent.

Note that the consistency condition in (4) expresses that there exists a stack content𝑤 such that we
could, instead of each 𝑒 𝑗 , perform a thread execution that actually visits𝑤 . It is thus straightforward
to show:

Lemma 6.1. A DCPS has a starving run if and only if it has a consistent run.

6.4 Tracking Consistency

Our next step is to find some finite data that we can track about each of the produced vectors
m1,m2, . . . such that this data determines whether the tuple (𝑉𝑡)𝑡 ∈T is𝔖A-consistent. We do this
by abstracting vectors łup to a bound.ž Let 𝐵 ∈ N. We define the map 𝛼𝐵 : M[Λ] → M[Λ] by
𝛼𝐵 (m) = m

′, where m′(𝑥) = min(m(𝑥), 𝐵) for 𝑥 ∈ Λ. We naturally extend 𝛼𝐵 to subsets ofM[Λ]

(point-wise) and to tuples of subsets ofM[Λ] (component-wise). Note that for a tuple𝔙 = (𝑉𝑡)𝑡 ∈T
with 𝑉𝑡 ⊆ M[Λ] for 𝑡 ∈ T , the tuple 𝛼𝐵 (𝔙) belongs to the finite set P ([0, 𝐵]Λ)T . The following
theorem tells us that by abstracting w.r.t. some suitable 𝐵, we do not lose information about
𝔖A-consistency.

Theorem 6.2. Given a DCPS A, there is an effectively computable bound 𝐵 ∈ N such that the

following holds. If𝔙 = (𝑉𝑡)𝑡 ∈T is a tuple of finite subsets𝑉𝑡 ⊆ M[Λ], then𝔙 is𝔖A-consistent if and

only if 𝛼𝐵 (𝔙) is𝔖A-consistent.

Roughly speaking, Theorem 6.2 allows us to check for the existence of a consistent run by
checking whether there is one with an𝔖A-consistent tuple 𝛼𝐵 (𝔙). However, we may only conclude
consistency of𝔙 (and hence of the run) from consistency of 𝛼𝐵 (𝔙) if𝔙 is finite. To remedy this,
we shall employ the fact that a DCPS with a progressive run also has a shallow progressive run
(Corollary 4.5). We will show that if our algorithm detects a run 𝜌 with consistent 𝛼𝐵 (𝔙), then
there also exists a run 𝜌 ′ with finite𝔙 such that 𝛼𝐵 (𝔙) is consistent, meaning by Theorem 6.2, 𝜌 ′

has to be consistent.
Moreover, given a tuple of finite subsets, we can decide𝔖A-consistency:

Theorem 6.3. Given a tuple𝔙 = (𝑉𝑡)𝑡 ∈T of finite subsets 𝑉𝑡 ⊆ M[Λ], it is decidable whether𝔙 is

𝔖A-consistent.

6.5 Deciding Starvation

We will prove Theorems 6.2 and 6.3 later in this section. Before we do that, let us show how they are
used to decide starvation. First, we use Theorem 6.2 to compute 𝐵 ∈ N. Let us fix 𝐵 for the decision
procedure. Let 𝔲 ∈ P ([0, 𝐵]Λ)T with 𝔲 = (𝑈𝑡)𝑡 ∈T . We use a lower-case letter for this tuple to
emphasize that it is of bounded size. An infinite progressive run 𝜌 of A is said to be (𝑖, 𝔲)-starving
if it contains configurations 𝑐1, 𝑐2, . . . and executions 𝑒1, 𝑒2, . . . that produce m1,m2, . . . such that:

(1) For each 𝑗 = 1, 2, . . ., in configuration 𝑐 𝑗 , the executions 𝑒 𝑗 and 𝑒 𝑗+1 have completed 𝑖 segments,
(2) 𝑒 𝑗 is switched to in the step after 𝑐 𝑗 ,
(3) 𝑒 𝑗+1 is not switched to until 𝑐 𝑗+1, and:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:25

(4) Let 𝑉𝑡 = {m𝑗 | 𝑗 ∈ N, execution 𝑒 𝑗 has type 𝑡}. Then 𝛼𝐵 (𝑉𝑡) ⊆ 𝑈𝑡 for each 𝑡 ∈ T .

Now using the bound 𝐵 from Theorem 6.2, we can show the following.

Lemma 6.4. If A has a starving run, then it has an (𝑖, 𝔲)-starving run for some 𝑖 ∈ [1, 𝐾] and some

𝔖A-consistent 𝔲 ∈ P ([0, 𝐵]Λ)T . Moreover, if A has a shallow (𝑖, 𝔲)-starving run for some 𝑖 ∈ [1, 𝐾]

and some𝔖A-consistent 𝔲 ∈ P ([0, 𝐵]Λ)T , then it has a starving run.

Here, we need to assume shallowness for the converse direction because we need finiteness of𝔙
in the converse of Theorem 6.2.
Because of Lemma 6.4, we can proceed as follows to decide starvation. We first guess a tuple

𝔲 ∈ P ([0, 𝐵]Λ)T and check whether it is𝔖A-consistent using Theorem 6.3. Then, we construct
a DCPS A (𝑖,𝔲) such that A (𝑖,𝔲) has a progressive run if A has an (𝑖, 𝔲)-starving run. Moreover,
we use the fact every DCPS that has a progressive infinite run also has a shallow infinite run
(Corollary 4.5). This will allow us to turn a progressive run of A (𝑖,𝔲) into a shallow (𝑖, 𝔲)-starving
run of A, which must be starving by Lemma 6.4. Let us now see how to construct A (𝑖,𝔲) .

6.6 Freezing DCPS

For constructing A (𝑖,𝔲) , it is convenient to have a simple locking mechanism available, which we
call łfreezing.ž It will be easy to see that this can be implemented in DCPS. In a freezing DCPS,
there is one distinguished łfrozenž thread in each configuration. It cannot be resumed using the
ordinary resume rules. It can only be resumed using an unfreeze operation, which at the same time
freezes another thread. We use this to make sure that the 𝑒 𝑗+1 stays inactive between 𝑐 𝑗 and 𝑐 𝑗+1.

Syntactically, a freezing DCPS is a tupleA = (𝐺, Γ,Δ, 𝑔0, 𝛾0, 𝛾𝑓), where (𝐺, Γ,Δ, 𝑔0, 𝛾0) is a DCPS,
except that the rules Δ also contain a set Δu of unfreezing rules of the form 𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′ and
𝛾𝑓 is the initial frozen thread with a single stack symbol. The unfreezing rules allow the DCPS to
unfreeze and resume a thread with top of stack 𝛾 , while also freezing a thread with top of stack 𝛾 ′. A
configuration is a tuple in𝐺 × (Γ∗×N∪{#}) ×M[Γ̂∗ × N], where Γ̂ = Γ∪Γ

^ and Γ^ = {𝛾^ | 𝛾 ∈ Γ}.
A thread is frozen if its top-of-stack belongs to Γ

^. It will be clear from the steps that in each
reachable configuration, there is exactly one frozen thread.
A freezing DCPS has the same steps as those of the corresponding DCPS. In particular, those

apply only to top-of-stack symbols in Γ. In addition, there is one more rule:

Unfreeze

𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′

⟨𝑔, #,m + [[𝛾^𝑤, 𝑙]] + [[𝛾 ′𝑤 ′, 𝑗]]⟩ ↦→ ⟨𝑔′, (𝛾𝑤, 𝑙),m + [[𝛾 ′^𝑤 ′, 𝑗]]⟩

Hence, the frozen thread (𝛾^𝑤, 𝑙) is unfrozen and resumes, while the thread (𝛾 ′𝑤 ′, 𝑗) becomes the
new frozen thread. Moreover, the initial configuration is ⟨𝑔0, #, [[(𝛾0, 0)]] + [[(𝛾^

𝑓
, 0)]]⟩.

Given these additional steps, progressive termination is defined as for DCPS. (In particular, the
progressiveness condition also applies to frozen threads.)

Lemma 6.5. Given a freezing DCPS A, it is decidable whether A has a progressive run. Moreover,

if A has a progressive run, then it has a shallow progressive run.

Lemma 6.5 can be shown using a straightforward reduction to progressive termination of ordinary
DCPS. The freezing is realized by introducing stack symbols Γ^ = {𝛾^ | 𝛾 ∈ Γ}. An unfreeze rule
𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′ for a thread (𝛾^𝑤, 𝑙) is then simulated by a simple locking mechanism using a
bounded number of context switches: It turns a thread with stack 𝛾 ′𝑤 ′ into one with stack 𝛾 ′^𝑤 ′

(using context switches) and then resumes (𝛾^𝑤, 𝑗), where initially, 𝛾^ is replaced with 𝛾 . Other
than that, for threads with top of stack in Γ

^, there are no resume rules. Since each thread in a

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:26 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

freeze DCPS can only be frozen and unfrozen at most 𝐾 times, the constructed DCPS uses at most
2𝐾 + 1 context-switches to simulate a run of the freeze DCPS.

6.7 Reduction to Progressive Runs in Freezing DCPS

We now reduce starvation to progressive runs in freezing DCPS. We first guess a pair (𝑖, 𝔲) with
𝑖 ∈ [1, 𝐾] and a𝔖A-consistent 𝔲 ∈ P ([1, 𝐵]Λ)T , 𝔲 = (𝑈𝑡)𝑡 ∈T , and construct a freezingDCPSA (𝑖,𝔲)

so that A has an (𝑖, 𝔲)-starving run if and only if A (𝑖,𝔲) has a progressive run. Moreover, if A (𝑖,𝔲)

has a progressive run, then A even has a shallow (𝑖, 𝔲)-starving run. Therefore, A has a starving
run if and only if for some choice of (𝑖, 𝔲), A (𝑖,𝔲) has a progressive run.

Intuitively, we do this by tracking for each thread execution the multiset 𝛼𝐵 (m), where m is its
production. Using frozen threads, we make sure that every progressive run inA contains executions
𝑒1, 𝑒2, . . . to witness (𝑖, 𝔲)-starvation. To verify the (𝑖, 𝔲)-starvation, we also track each thread’s
type and current context-switch number. Hence, we store a tuple (𝑡, 𝑗, m̄, n̄), where (i) 𝑡 is the type,
(ii) 𝑗 is the current context-switch number, (iii) m̄ is the guess for 𝛼𝐵 (m), where m ∈ M[Λ] is the
entire production of the execution, and (iv) n̄ is 𝛼𝐵 (n), where n ∈ M[Λ] is the multiset spawned so
far.
While a thread is inactive, the extra information is stored on the top of the stack, resulting in

stack symbols (𝛾, 𝑡, 𝑗, m̄, n̄). In particular, when we spawn a new thread, we immediately guess its
type 𝑡 and the abstraction m̄, and we set 𝑗 = 0 and n̄ = ∅. The freezing and unfreezing works as
follows. Initially, we have the frozen thread 𝛾† (where 𝛾† is a fresh stack symbol). To unfreeze it, we
have to freeze a thread of some type 𝑡 where m̄ belongs to 𝑈𝑡 (recall that this is a component of 𝔲):

𝑔 ↦→ 𝑔′ ◁ 𝛾† ^ (𝛾, 𝑡, 𝑖, m̄, n̄)

for every 𝑔,𝑔′ ∈ 𝐺 , 𝑡 ∈ T , m̄ ∈ 𝑈𝑡 . To unfreeze (and thus resume) a thread with top of stack
(𝛾, 𝑡, 𝑖, m̄, n̄), we have to freeze a thread (𝛾 ′, 𝑡 ′, 𝑖, m̄′, n̄′) with m̄

′ ∈ 𝑈𝑡 ′ . Unfreezing requires context-
switch number 𝑖 , because the executions 𝑒1, 𝑒2, . . . must be in segment 𝑖 in 𝑐1, 𝑐2, . . .:

𝑔 ↦→ 𝑔′ ◁ (𝛾, 𝑡, 𝑖, m̄, n̄) ^ (𝛾 ′, 𝑡 ′, 𝑖, m̄′, n̄′)

for each resume rule 𝑔 ↦→ 𝑔′ ◁𝛾 , 𝑡 , m̄, and n̄, provided that 𝑔 is the state specified in 𝑡 to enter from
in the 𝑖th segment. Here, 𝑔′ is a decorated version of 𝑔′, in which the thread can only transfer the
extra information related to 𝑡, 𝑖, m̄, n̄ back to the global state. Symmetrically, when interrupting a
thread that information is transferred back to the stack and the segment counter 𝑗 is incremented.
To resume an ordinary (i.e. unfrozen) inactive thread, we have a resume rule 𝑔 ↦→ 𝑔′ ◁ (𝛾, 𝑡, 𝑗, m̄, n̄)

for each resume rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 and each 𝑡 , 𝑗 , m̄, and n̄ Ð if 𝑔 is specified as the entering global
state for segment 𝑗 in 𝑡 . While a thread is active, it keeps n̄ up to date by recording all spawns (and
reducing via 𝛼𝐵). Finally, when a thread terminates, it checks that the components m̄ and n̄ agree.
It is clear from the construction that A has a (𝑖, 𝔲)-starving run if and only if A (𝑖,𝔲) has a

progressive run. Moreover, Lemma 6.5 tells us that if A (𝑖,𝔲) has a progressive run, then it has a
shallow progressive run. This shallow progressive run clearly yields a shallow (𝑖, 𝔲)-starving run of
A. According to Lemma 6.4, this implies that A has a starving run. This establishes the following
lemma, which implies that starvation is decidable for DCPS.

Lemma 6.6. A has a starving run if and only if for some 𝑖 ∈ [1, 𝐾] and some 𝔖A-consistent

𝔲 ∈ P ([0, 𝐵]Λ)T , the freezing DCPS A (𝑖,𝔲) has a progressive run.

6.8 Proving Theorems 6.2 and 6.3

It remains to prove Theorems 6.2 and 6.3. We will use a structural description of the sets
𝑆𝑡 (Lemma 6.7), which requires some terminology. An automaton over Γ

∗ × M[Λ] is a tuple
M = (𝑄, 𝐸, 𝑞0, 𝑞𝑓), where 𝑄 is a finite set of states, 𝐸 ⊆ 𝑄 × Γ

∗ × M[Λ] × 𝑄 is a finite set of

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:27

edges, 𝑞0 ∈ 𝑄 is its initial state, and 𝑞𝑓 ∈ 𝑄 is its final state. We write 𝑝
𝑢 |m
−−−→ 𝑞 if there is a

sequence (𝑝0, 𝑢1,m1, 𝑝1), (𝑝1, 𝑢2,m2, 𝑝2), . . . , (𝑝𝑛−1, 𝑢𝑛,m𝑛, 𝑝𝑛) of edges in M with 𝑝 = 𝑝0, 𝑞 = 𝑝𝑛 ,
𝑢 = 𝑢1 · · ·𝑢𝑛 , andm = m1+· · ·+m𝑛 . The set accepted byM is the set of all (𝑤,m) ∈ Γ

∗×M[Λ] with

𝑞0
𝑤 |m
−−−→ 𝑞𝑓 . A subset of Γ∗ ×M[Λ] is rational if it is accepted by some automaton over Γ∗ ×M[Λ].

Lemma 6.7. For every 𝑡 ∈ T , the set 𝑆𝑡 is effectively rational.

This can be deduced from [Zetzsche 2013, Lemma 6.2]. Since the latter would require introducing
a lot of machinery, we include a direct proof in the full version [Baumann et al. 2020b]. Both proofs
are slight extensions of Büchi’s proof of regularity of the set of reachable stacks in a pushdown
automaton [Büchi 1964, Theorem 1]. The only significant difference is the following: While [Büchi
1964] essentially introduces shortcut edges for runs that go from one stack𝑤 back to𝑤 , we glue in
a finite automaton that produces the same output over Λ as such runs. This is possible since the set
of the resulting multisets is always semi-linear by Parikh’s theorem [Parikh 1966, Theorem 2].
Because of Lemma 6.7, the following immediately implies Theorem 6.3:

Lemma 6.8. Given a tuple 𝔖 = (𝑆1, . . . , 𝑆𝑘) of rational subsets 𝑆 𝑗 ⊆ Γ
∗ × M[Λ] and a tuple

𝔲 = (𝑈1, . . . ,𝑈𝑘) of finite subsets𝑈 𝑗 ⊆ M[Λ], it is decidable whether 𝔲 is𝔖-consistent.

Proof. Since 𝑆 𝑗 is rational, for eachm ∈ M[Λ] and 𝑗 ∈ [1, 𝑘], we can compute a finite automaton
for the language 𝑇𝑗,m = {𝑤 ∈ Γ

∗ | m ∈ 𝑆 𝑗↓𝑤}. Then 𝔲 is𝔖-consistent if and only if the intersection⋂
𝑗 ∈[1,𝑘]

⋂
m∈𝑈 𝑗

𝑇𝑗,m of regular languages is non-empty, which is clearly decidable.

Moreover, because of Lemma 6.7, Theorem 6.2 is a direct consequence of the following.

Proposition 6.9. Given rational subsets 𝑆1, . . . , 𝑆𝑘 ⊆ Γ
∗ ×M[Λ], we can compute a bound 𝐵 such

that for the tuple𝔖 = (𝑆1, . . . , 𝑆𝑘), the following holds: If𝔙 = (𝑉1, . . . ,𝑉𝑘) is a tuple of finite subsets

𝑉𝑗 ⊆ M[Λ], then𝔙 is𝔖-consistent if and only if 𝛼𝐵 (𝔙) is𝔖-consistent.

Thus, it remains to prove Proposition 6.9, which is the purpose of the rest of this section. Note
that in Proposition 6.9, the requirement that the 𝑉𝑗 be finite is crucial. For example, suppose 𝑘 = 1

and 𝑆 = {(a𝑛, 𝑛 · [[b]]) | 𝑛 ∈ N} and𝔖 = (𝑆). Then a set 𝑉 ⊆ M[{b}] is𝔖-consistent if and only
if 𝑉 is finite. Hence, there is no bound 𝐵 such that 𝛼𝐵 (𝑉) reflects 𝔖-consistency of any 𝑉 . For
Proposition 6.9, we use Ramsey’s theorem (see Section 5.3) to prove the following pumping lemma.

Lemma 6.10. Given a tuple𝔖 = (𝑆1, . . . , 𝑆𝑘) of rational subsets 𝑆 𝑗 ⊆ Γ
∗ ×M[Λ], we can compute a

bound𝑀 such that the following holds. In a word𝑤 with𝑀 marked positions, we can pick two marked

positions so that for the resulting decomposition𝑤 = 𝑥𝑦𝑧, we have 𝑥𝑦𝑧 ≤𝔖 𝑥𝑦ℓ𝑧 for every ℓ ≥ 1.

Proof. Let M 𝑗 be an automaton for 𝑆 𝑗 with state set 𝑄 𝑗 for 𝑗 ∈ [1, 𝑘]. We may assume that the

sets 𝑄 𝑗 are pairwise disjoint and we define 𝑄 =
⋃𝑘
𝑗=1𝑄 𝑗 and 𝑛 = |𝑄 |. To each 𝑢 ∈ Γ

∗, we assign a
subset 𝜅 (𝑢) ⊆ 𝑄 × P (Λ), where (𝑞,Θ) ∈ 𝑄 𝑗 × P (Λ) belongs to 𝜅 (𝑢) if there is a cycle inM 𝑗 that
starts (and ends) in 𝑞, reads 𝑢, and reads a multiset with support Θ. Hence, for 𝑞 ∈ 𝑄 𝑗 and Θ ⊆ Λ,

we have (𝑞,Θ) ∈ 𝜅 (𝑢) if and only if 𝑞
𝑢 |m
−−−→ 𝑞 inM 𝑗 for some m ∈ M[Λ] with supp(m) = Θ.

We specify𝑀 later. Suppose𝑀 positions 𝑠1, . . . , 𝑠𝑀 are marked in𝑤 . We build a colored graph
on𝑀 vertices and we label the edge from 𝑗 to 𝑗 ′ by the set 𝜅 (𝑢), where 𝑢 is the infix of𝑤 between

𝑠 𝑗 and 𝑠 𝑗 ′ . Hence, the graph is 𝑟 -colored, where 𝑟 = 2 |𝑄 | ·2|Λ| is the number of subsets of 𝑄 × P (Λ).
We now apply Ramsey’s theorem. We compute𝑀 so that𝑀 ≥ 𝑅(𝑟 ;𝑛 + 1), e.g.𝑀 = 𝑟𝑟 (𝑛−1)+1. Then
our graph must contain a monochromatic subset of size 𝑛 + 1. Let 𝑡1, . . . , 𝑡𝑛+1 be the corresponding
positions in 𝑤 . Moreover, let 𝑤 = 𝑥𝑦1 · · ·𝑦𝑛𝑧 be the decomposition of 𝑤 such that 𝑦 𝑗 is the infix
between 𝑡 𝑗 and 𝑡 𝑗+1. We claim that with 𝑦 = 𝑦1 · · ·𝑦𝑛 , we have indeed 𝑥𝑦𝑧 ≤𝔖 𝑥𝑦ℓ𝑧 for every ℓ ≥ 1.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

44:28 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Consider a word 𝑥𝑦ℓ𝑧 and some multiset m ∈ 𝑆 𝑗↓𝑥𝑦𝑧 . We have to show that m ∈ 𝑆 𝑗↓𝑥𝑦ℓ𝑧 .
Since m ∈ 𝑆 𝑗↓𝑥𝑦𝑧 , there is a run of M 𝑗 reading (𝑥𝑦𝑧,m′) for some m′ ⪰1 m. Since M 𝑗 has ≤ 𝑛

states, some state must repeat at two borders of the decomposition 𝑦 = 𝑦1 · · ·𝑦𝑛 . Suppose our run
reads (𝑦𝑓 · · ·𝑦𝑔, m̄) on a cycle on 𝑞 ∈ 𝑄 𝑗 for some m̄ inM 𝑗 . By monochromaticity, we know that
𝜅 (𝑦𝑓 · · ·𝑦𝑔) = 𝜅 (𝑦ℎ) for every ℎ ∈ [1, 𝑛]. Observe that we can write

𝑥𝑦ℓ𝑧 = 𝑥𝑦1 · · ·𝑦𝑓 −1 (𝑦𝑓 · · ·𝑦𝑛𝑦1 · · ·𝑦𝑓 −1)
ℓ−1𝑦𝑓 · · ·𝑦𝑛𝑧. (1)

For everyℎ ∈ [1, 𝑛], we have𝜅 (𝑦𝑓 · · ·𝑦𝑔) = 𝜅 (𝑦ℎ), and hence𝑞
𝑦ℎ |mℎ

−−−−−→ 𝑞 inM 𝑗 for somemℎ ∈ M[Λ]

with supp(mℎ) = supp(m̄). Then, in particular, supp(mℎ) ⊆ supp(m′) = supp(m). Therefore,
Eq. (1) shows that M 𝑗 accepts (𝑥𝑦ℓ𝑧,m′ + (ℓ − 1)

∑𝑛
ℎ=1 mℎ). Since we now have m ⪯1 m

′ + (ℓ −

1)
∑𝑛
ℎ=1 mℎ , this implies m ∈ 𝑆↓𝑥𝑦ℓ𝑧 .

Using Lemma 6.10, we can obtain the final ingredient of Proposition 6.9:

Lemma 6.11. Given a tuple𝔖 = (𝑆1, . . . , 𝑆𝑘) of rational subsets 𝑆 𝑗 ⊆ Γ
∗ ×M[Λ], we can compute

a bound 𝐵 such that the following holds. Let 𝔙 = (𝑉1, . . . ,𝑉𝑘) be a𝔖-consistent tuple and suppose

𝛼𝐵 (m) ∈ 𝑉𝑗 . Then adding m to 𝑉𝑗 preserves𝔖-consistency.

The idea is the following. Let𝔙′ = (𝑉 ′
1 , . . . ,𝑉

′
𝑘
) be obtained from𝔙 by adding m to 𝑉𝑗 . Let us

say that 𝑤 ∈ Γ
∗ covers some n ∈ 𝑉 ′

𝑗 if and only if n ∈ 𝑆 𝑗↓𝑤 . Since 𝔙 is𝔖-consistent, there is a
𝑤 ∈ Γ

∗ that covers all elements of𝔙. Then𝑤 covers 𝛼𝐵 (m). Moreover, m agrees with 𝛼𝐵 (m) on
all coordinates where m is < 𝐵. We now have to construct a 𝑤 ′ that covers m in the remaining
coordinates. A simple pumping argument for each coordinate of m over an automaton for 𝑆 𝑗 (say,
with 𝐵 larger than the number of states) would yield a word𝑤 ′ that even covers m. However, this
might destroy coverage of all the other multisets in𝔙. Therefore, we use Lemma 6.10. It allows us
to choose 𝐵 high enough so that pumping to 𝑤 ′ = 𝑥𝑦ℓ𝑧 covers m, but also guarantees 𝑤 ≤𝔖 𝑤 ′.
The latter implies that going from𝑤 to𝑤 ′ does not lose any coverage.

Finally, Proposition 6.9 follows from Lemma 6.11 by induction.

7 CONCLUSION

We have shown decidability of verifying liveness forDCPS in the context-bounded case. Our results
imply that fair termination forDCPS isΠ0

1-complete when each thread is restricted to context switch
a finite number of times. Our result extends to liveness properties that can be expressed as a Büchi
condition. We can reduce to fair non-termination by simply adding the states of a Büchi automaton
to the global states via a product construction. From there, the Büchi acceptance condition can be
simulated by using a special thread that forces a visit to a final state when scheduled, and then
reposts itself before terminating. Scheduling this thread fairly along an infinite execution thus
results in infinitely many visits to final states.

While we have focused on termination- and liveness-related questions, our techniques also imply
further decidability results on commonly studied decision questions for concurrent programs. A
run of a DCPS is bounded if there is a bound 𝐵 ∈ N so that the number of pending threads in
every configuration along the run is at most 𝐵. The 𝐾-bounded boundedness problem asks if every
𝐾-context bounded run is bounded. Since boundedness is preserved under downward closures, our
techniques for non-termination can be modified to show the problem is also 2EXPSPACE-complete.
The 𝐾-bounded configuration reachability problem for DCPS asks if a given configuration is

reachable. Our reductions from DCPS to VASSB, and the decidability of reachability for VASSB,
imply 𝐾-bounded configuration reachability is decidable for DCPS.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:29

Thus, combined with previous results on safety verification [Atig et al. 2011] and the case 𝐾 = 0

[Ganty and Majumdar 2012], our paper closes the decidability frontier for all commonly studied
𝐾-bounded verification problems for all 𝐾 ≥ 0.

ACKNOWLEDGMENTS

This research was sponsored in part by the Deutsche Forschungsgemeinschaft project 389792660
TRR 248śCPEC and by the European Research Council under the Grant Agreement 610150
(http://www.impact-erc.eu/) (ERC Synergy Grant ImPACT).

REFERENCES

Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. 1996. General decidability theorems for infinite-state
systems. In Proceedings of the Eleventh Annual Symposium on Logic in Computer Science. IEEE Computer Society Press,
313ś321.

Krzysztof R. Apt and Ernst-Rüdiger Olderog. 1991. Verification of Sequential and Concurrent Programs. Springer-Verlag.
Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash Lal. 2012a. Detecting Fair Non-termination in

Multithreaded Programs. In Proceedings of CAV 2012. 210ś226. https://doi.org/10.1007/978-3-642-31424-7_19
Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2012b. Linear-Time Model-Checking for

Multithreaded Programs under Scope-Bounding. In Automated Technology for Verification and Analysis - 10th International

Symposium, ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings (Lecture Notes in Computer Science,

Vol. 7561). Springer, 152ś166.
Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2017. Parity Games on Bounded Phase

Multi-pushdown Systems. In Networked Systems - 5th International Conference, NETYS 2017, Marrakech, Morocco, May

17-19, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10299). Springer, 272ś287.
Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. 2009. Context-Bounded Analysis for Concurrent Programs with

Dynamic Creation of Threads. In Proceedings of TACAS 2009. 107ś123.
Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. 2011. Context-Bounded Analysis For Concurrent Programs

With Dynamic Creation of Threads. Log. Methods Comput. Sci. 7, 4 (2011). https://doi.org/10.2168/LMCS-7(4:4)2011
Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. 2015. Finite Automata for the Sub- and Superword

Closure of CFLs: Descriptional and Computational Complexity. In 9th International Conference on Language and Automata

Theory and Applications, LATA 2015, Nice, France, March 2-6, 2015, Proceedings. Springer, 473ś485.
Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2020a. The Complexity of Bounded

Context Switching with Dynamic Thread Creation. In 47th International Colloquium on Automata, Languages, and

Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference) (LIPIcs, Vol. 168). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 111:1ś111:16.

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2020b. Context-Bounded Verification
of Liveness Properties for Multithreaded Shared-Memory Programs. arXiv:2011.04581

Julius Richard Büchi. 1964. Regular canonical systems. Archiv für mathematische Logik und Grundlagenforschung 6, 3-4
(1964), 91ś111.

Heino Carstensen. 1987. Decidability questions for fairness in Petri nets. In Proceedings of STACS 1987. Springer, 396ś407.
Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2007. Proving thread termination. In Proceedings of the ACM

SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego, California, USA, June 10-13,

2007. ACM, 320ś330.
Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Proving program termination. Commun. ACM 54, 5 (2011),

88ś98. https://doi.org/10.1145/1941487.1941509
Bruno Courcelle. 1991. On construction obstruction sets of words. EATCS 44 (1991), 178ś185.
Wojciech Czerwiński, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. 2019. The reachability problem

for Petri nets is not elementary. In Proceedings of STOC 2019. 24ś33.
Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2017. Model checking parameterized

asynchronous shared-memory systems. Formal Methods Syst. Des. 50, 2-3 (2017), 140ś167. https://doi.org/10.1007/s10703-
016-0258-3

Paul Erdős and Richard Rado. 1952. Combinatorial Theorems on Classifications of Subsets of a Given Set. Proceedings of the
London Mathematical Society s3-2, 1 (01 1952), 417ś439. https://doi.org/10.1112/plms/s3-2.1.417

Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. 2016. Proving Liveness of Parameterized Programs. In Proceedings

of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. ACM,
185ś196.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.2168/LMCS-7(4:4)2011
https://arxiv.org/abs/2011.04581
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1007/s10703-016-0258-3
https://doi.org/10.1007/s10703-016-0258-3
https://doi.org/10.1112/plms/s3-2.1.417

44:30 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theor. Comput. Sci. 256, 1-2
(2001), 63ś92.

Marie Fortin, Anca Muscholl, and Igor Walukiewicz. 2017. Model-Checking Linear-Time Properties of Parametrized
Asynchronous Shared-Memory Pushdown Systems. In Computer Aided Verification - 29th International Conference, CAV

2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10427). Springer,
155ś175.

Pierre Ganty and Rupak Majumdar. 2012. Algorithmic verification of asynchronous programs. ACM Transactions on

Programming Languages and Systems (TOPLAS) 34, 1 (2012), 6.
Leonard H Haines. 1969. On free monoids partially ordered by embedding. Journal of Combinatorial Theory 6, 1 (1969),

94ś98.
David Harel. 1986. Effective transformations on infinite trees, with applications to high undecidability, dominoes, and

fairness. J. ACM 33 (1986), 224ś248.
Rodney R Howell, Louis E Rosier, and Hsu-Chun Yen. 1991. A taxonomy of fairness and temporal logic problems for Petri

nets. Theoretical Computer Science 82, 2 (1991), 341ś372.
Petr Jančar. 1990. Decidability of a temporal logic problem for Petri nets. Theoretical Computer Science 74, 1 (1990), 71ś93.
Vineet Kahlon. 2008. Parameterization as Abstraction: A Tractable Approach to the Dataflow Analysis of Concurrent

Programs. IEEE Computer Society, 181ś192.
Sambasiva Rao Kosaraju. 1982. Decidability of Reachability in Vector Addition Systems (Preliminary Version). In STOC ’82:

Proc. of 14th ACM symp. on Theory of Computing. ACM, 267ś281.
Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. 2020. Inductive

sequentialization of asynchronous programs. In Proceedings of the 41st ACM SIGPLAN International Conference on

Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020. ACM, 227ś242.
Akash Lal and Thomas W. Reps. 2009. Reducing concurrent analysis under a context bound to sequential analysis. Formal

Methods in System Design 35, 1 (2009), 73ś97. https://doi.org/10.1007/s10703-009-0078-9
Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas W. Reps. 2008. Interprocedural Analysis of Concurrent Programs

Under a Context Bound. In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference,

TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963). Springer, 282ś298.
Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. 2015. On the coverability problem for pushdown vector addition systems

in one dimension. In ICALP 2015, Vol. 9135. 324ś336. https://doi.org/10.1007/978-3-662-47666-6_26
Irina A. Lomazova and Philippe Schnoebelen. 1999. Some Decidability Results for Nested Petri Nets. In Perspectives of

System Informatics, Third International Andrei Ershov Memorial Conference, PSI’99, Akademgorodok, Novosibirsk, Russia,

July 6-9, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1755). Springer, 208ś220.
Ernst W. Mayr. 1981. An Algorithm for the General Petri Net Reachability Problem. In Proceedings of STOC 1981. 238ś246.
Anca Muscholl, Helmut Seidl, and Igor Walukiewicz. 2017. Reachability for Dynamic Parametric Processes. In Verification,

Model Checking, and Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France, January 15-17,

2017, Proceedings (Lecture Notes in Computer Science, Vol. 10145). Springer, 424ś441.
Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for systematic testing of multithreaded programs.

In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, PLDI 2007,

San Diego, CA, USA, June 10-13, 2007. ACM, 446ś455.
Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2018. Reducing liveness

to safety in first-order logic. Proc. ACM Program. Lang. 2, POPL (2018), 26:1ś26:33.
Rohit J. Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966), 570ś581.
Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Concurrent Software. In Tools and Algorithms for

the Construction and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in

Computer Science, Vol. 3440). Springer, 93ś107.
Charles Rackoff. 1978. The covering and boundedness problems for vector addition systems. Theoretical Computer Science 6,

2 (1978), 223ś231.
Ganesan Ramalingam. 2000. Context-sensitive synchronization-sensitive analysis is undecidable. ACM TOPLAS 22(2) (2000),

416ś430.
Frank Plumpton Ramsey. 1930. On a Problem of Formal Logic. Proceedings of the London Mathematical Society s2-30, 1

(1930), 264ś286. https://doi.org/10.1112/plms/s2-30.1.264
Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. 2016. Scope-Bounded Pushdown Languages. Int. J. Found.

Comput. Sci. 27, 2 (2016), 215ś234. https://doi.org/10.1142/S0129054116400074
Moshe Y. Vardi. 1991. Verification of concurrent programsÐthe automata-theoretic framework. Annals of Pure and Applied

Logic 51 (1991), 79ś98.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.1142/S0129054116400074

Context-Bounded Verification of Liveness Properties for Multithreaded Shared-Memory Programs 44:31

Kumar Neeraj Verma and Jean Goubault-Larrecq. 2005. Karp-Miller Trees for a Branching Extension of VASS. Discrete
Mathematics & Theoretical Computer Science Vol. 7 (2005).

Georg Zetzsche. 2013. Silent Transitions in Automata with Storage. (2013). arXiv:1302.3798 Full version of an article in
Proceedings of ICALP 2013.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 44. Publication date: January 2021.

https://arxiv.org/abs/1302.3798

	Abstract
	1 Introduction
	2 Dynamic Networks of Concurrent Pushdown Systems ()
	2.1 Preliminary Definitions
	2.2 Dynamic Networks of Concurrent Pushdown Systems
	2.3 Identifiers and the Run of a Thread
	2.4 Decision Problems and Main Results

	3 Warm-Up: Non-termination
	3.1 Downward Closures: From to DCFS
	3.2 From DCFS Non-Termination to Non-Termination
	3.3 Proof of Theorem 2.2

	4 Fair Non-Termination
	4.1 VASS with Balloons
	4.2 From to

	5 From Progressive Runs for to Reachability
	5.1 From Progressive Runs to Shallow Progressive Runs
	5.2 Reduction to Reachability
	5.3 From Reachability in to Reachability in

	6 Starvation
	6.1 Terminology
	6.2 Consistency
	6.3 Starvation in Terms of Consistency
	6.4 Tracking Consistency
	6.5 Deciding Starvation
	6.6 Freezing
	6.7 Reduction to Progressive Runs in Freezing
	6.8 Proving abstraction-consistency,consistency-decidable

	7 Conclusion
	Acknowledgments
	References

