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ABSTRACT
We consider the decentralized controller synthesis problem for

multi-agent systems with global reach-avoid specifications. Each

agent is modeled as a nonlinear dynamical system with distur-

bances. The objective is to synthesize local feedback controllers

that guarantee that the overall multi-agent system meets the global

specification despite the influence of disturbances. On the one hand,

existing techniques based on planning or trajectory optimization

usually ignore the effects of disturbances and produce open-loop

nominal trajectories that are not generally sufficient in the presence

of disturbances. On the other hand, techniques based on formal

synthesis, which guarantee satisfaction of temporal specifications,

do not scale as the number of agents increases.

We address these limitations by proposing a two-level solution

approach that combines fast global nominal trajectory generation

and local application of formal synthesis. At the top level, we ignore

the effect of disturbances and obtain a joint open-loop plan for

the system using a fast trajectory optimizer. At the lower level,

we use abstraction-based controller design to synthesize a set of

decentralized feedback controllers that track the high level plan

against worst-case disturbances, thus ensuring satisfaction of the

global specification.

We provide the implementation of our approach in an open-

source tool called GAMARA. We demonstrate the effectiveness of

GAMARA on several multi-robot examples using two particular

classes of control specifications. In the first type, we assume that

the robots need to fulfill their own reach-avoid tasks while avoid-

ing collision with each other. In the second type, we require the

robots to fulfill reach-avoid tasks while maintaining certain forma-

tion constraints. The experiments show that GAMARA produces

formally guaranteed feedback controllers while scaling to many

robots. In contrast, nominal open-loop controllers do not guarantee

the satisfaction of the specification, and global formal approaches

run out of memory before synthesizing a controller.
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1 INTRODUCTION
We consider the decentralized feedback controller synthesis prob-

lem formulti-agent, nonlinear systems against temporal reach-avoid
specifications. By multi-agent, we mean that the systems under

study are composed of a number of concurrently executing compo-

nents. Each component is modeled as a possibly nonlinear dynami-

cal system that evolves under the influence of a control as well as

an environmental disturbance. Our specifications require that the

global state of the system eventually reaches a target while avoid-

ing certain bad states along the way. While the dynamics of each

component is independent of the others, the overall trajectories are

coupled by the global specification. Decentralized means that we

require a solution in which each component has a local feedback

controller that sees only the local state, but the combination of all

the closed loops satisfy the global specification. Above all, our goal

is to ensure the resulting controllers are provably correct against
the worst-case model of disturbances.

Such multi-agent control problems are ubiquitous in the domain

of robotics, where a number of (possibly heterogeneous) mobile

robots move concurrently in a shared workspace. A global speci-

fication can ask, for example, that a set of robots be able to reach

certain locations while avoiding collisions among themselves or

with obstacles in the environment, or that a set of drones fly in

formation while reaching a target. Indeed, automatic generation of

decentralized controllers is a classical problem in robotics, artificial

intelligence, and control theory, and there is an enormous literature

on the subject—too many to enumerate—across these disciplines.

Despite the large body of research, few techniques today can

handle all our desiderata. Multi-agent planning algorithms, such

as (hybrid variants of) A* search, scale to large systems but typ-

ically either disregard or simplify the underlying dynamics and

work with geometric or discrete models, or disregard the effect of

disturbances or nonlinear dynamics. Most planning and trajectory

optimization techniques handle the nominal dynamics, i.e., the dy-

namics free of disturbances, and construct open-loop controllers.

However, the open-loop behaviors do not guarantee satisfaction

of the specifications in the presence of disturbances. On the other

hand, correct-by-construction controller synthesis techniques from
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Figure 1: Overall algorithm: The blue block on the left
(centrally) computes a joint open-loop nominal trajectory
for the overall system. The green block on the right com-
putes decentralized controllers for tracking the nominal tra-
jectory using Abstraction Based Controller Design (ABCD).{
Σ𝑖

}
𝑖∈[1;𝑁 ] is a set of 𝑁 agents, Φ is a global reach-avoid

specification, 𝜀 is a robustness margin, 𝜌1, . . . , 𝜌𝑁 are the lo-
cal projections of the nominal trajectory, 𝜂𝑥 , 𝜂𝑢 are parame-
ters used in ABCD, and 𝐶1, . . . ,𝐶𝑁 are the sought local feed-
back controllers for the individual agents.

control theory, such as abstraction-based control design (ABCD)

or Hamilton-Jacobi techniques, handle precise models of nonlinear

dynamics and the effects of disturbance, but are difficult to scale

beyond about 10 dimensions.

In this paper, we provide a simple but effective combined ap-

proach. We use a global planning approach for nominal trajectory

generation and a local correct-by-construction feedback controller

synthesis approach for guaranteed adherence to specification for

each component in the presence of disturbances. Fig. 1 shows the

overall algorithm. In the first step, given a set of control systems,

one for each component, and a reach-avoid specification on the

global state space, we use a trajectory planner to find a nominal

open-loop controller for the global system. The trajectory planner

ignores the effect of disturbances, but takes a robustness parameter
𝜀. The role of the robustness parameter is to ensure that the specifi-

cation is robustly satisfied: Every trajectory within an 𝜀-tube of the

open-loop trajectory also satisfies the specification.

Next, we project the unique open-loop trajectory produced by the

open-loop controller on to a nominal trajectory for each individual

component. The robustness of the trajectory means that there is a

tube around each nominal trajectory. In a second step, we solve a

number of local guaranteed tracking control problems, where we

synthesize correct-by-construction controllers whose objective is

to track the nominal trajectory while staying within the tube. The

overall algorithm is more scalable and guarantees satisfaction of

the global specification.

We show empirically that our algorithm is able to generate prov-

ably correct feedback controllers for many systems for which nei-

ther technique is individually effective. Of course, since we decom-

pose the problem, it is possible that there is no controller for a

particular choice of the robustness parameter, or indeed, for other

Figure 2: Illustration of the trajectories generated by the
open-loop controller for the crane and vehicle example un-
der disturbance-free (left) and perturbed (right) situations.

parameters used by the individual tools. In that case, there is an

outer loop that searches through the parameter space.

We have implemented our approach in an open-source tool called

GAMARA (stands for GuAranteed Multi-Agent Reach-Avoid con-

trol) by combining the following two tools: the ALTRO open-loop

trajectory planner [15] and the SCOTS correct-by-construction con-

troller synthesis tool [31]. ALTRO is a state-of-the-art trajectory

planning tool based on optimal control. It handles nonlinear dy-

namics and scales to large dimensions, but ignores disturbances or

modeling uncertainties. SCOTS implements a highly parallelizable

ABCD algorithm that generates a feedback controller for satisfying

temporal specification.

We empirically evaluate GAMARA on a number of multi-robot

benchmarks, including a coordinated reach-avoid problem for

ground robots, a formation control problem for drones, and a lane

merging scenario for autonomous vehicles. In each case, we demon-

strate that GAMARA can find decentralized and correct controllers

within reasonable time and memory bounds.

Fig. 2 shows a concrete multi-robot reach-avoid scenario with

an overhead crane hanging from a trolley along a horizontal rail

and a cart that drives underneath the crane in the same horizon-

tal axis. The goal is to move the crane and the vehicle such that

they do not collide. Fig. 2 (left) shows an animation of a possible

open-loop behavior from an initial configuration (Frame 1) to a

final one (Frame 4), where the crane and the vehicle have crossed

each other. The trajectory is generated by accelerating the trolley,

causing the crane to swing up and thus creating enough space for

the vehicle to pass. Unfortunately, in the presence of disturbances,

such as wind or a slippery floor, a trajectory may not be free of

collisions: the same open-loop behavior can cause a collision (Fig. 2

right). Instead, GAMARA computes a global robust trajectory for

the system; the robustness parameter ensures a “wider berth.” The

global trajectory is projected to the crane and the vehicle, and we

compute guaranteed tracking controllers that ensure there is no col-

lision despite the disturbances. In our experiments, planning with

ALTRO took less than a second and feedback controller synthesis

with SCOTS about 10 minutes. At the same time, a global approach

to find a correct solution does not scale. The global state space is

1010 times larger and SCOTS timed out with 1.5 TB of memory.
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Related Work The field of multi-agent planning is too large for a

comprehensive survey; we point to the text books [8, 20, 21, 32] for

an introduction. We categorize closely related work into (1) those

combining planning and tracking controller synthesis, (2) those

addressing formal multi-agent controller synthesis, and (3) those

combining (1) and (2). We provide a survey of these categories.

Combining planning and tracking. Techniques combining high-level

planning and low-level tracking are a staple of classical planning

and control. More recently, several techniques consider the problem

of formal guarantees for such planners. Existing works differ in the

dynamics that they can handle (e.g., linear or nonlinear), considered

class of specifications, including disturbances, and scalability. A

common approach is to perform the high-level planning over a

lower dimensional model and then use Sum-of-Squares program-

ming (SOS), Hamilton Jacobi (HJ), or satisfiability modulo convex

programming (SMC) to obtain a low-level controller ensuring a

bounded error between the two models [14, 24, 27, 35].

In contrast to [14, 35], our method does not require finding a

linear mapping between the low and high dimensional models.

Meyer et al. [24] considered reach-avoid problems for perturbed

non-linear control affine systems. They create a lower dimensional

model and use SOS programming to compute a controller ensuring

a bounded error between the two models. Then, they use ABCD to

compute a controller for the low-order model while taking the error

into account. While their method can provide guarantee against

worst-case disturbances, it is not clear if SOS always scales to the

higher dimensions.

Nilsson et al. [27] provide a method that decomposes the state

space into a lower-order planning space, and a higher-order internal

dynamics space, so that fast planning and accurate tracking can be

achieved using a set of control barrier functions computed based

on SOS. Despite providing guarantees for the worst-case bounded

disturbances, their method is not capable of solving reach-avoid

tasks which involve dynamic obstacles as in the multi-agent case.

While we have chosen SCOTS since the underlying algorithm can

be effectively parallelized [18], in principle, we could also use SOS,

HJ, or SMC approaches.

Other works only consider special classes of models such as

linear [10, 30, 39], disturbance-free [11, 36, 38], or finite transition

systems [42]. In contrast, our method supports arbitrary nonlinear

dynamics and provides a guarantee against worst-case bounded

disturbances.

Formal multi-agent synthesis.Chen et al. [7] provide a method, using

control barrier functions, that requires some form of inter-robot

communication and does not consider external disturbances. Sahin

et al. [34] propose a method that requires the group of robots to be

homogeneous. There are methods which do not consider external

disturbances and do not provide formal guarantees [16].

Combinations. Alonso-Mora et al. [1] provide a method for forma-

tion control of a group of communicating homogeneous robots.

They first synthesize a nominal controller using a fast randomized

geometric planning method, namely RRT, and then use optimal

control to track the obtained nominal solution. Unlike us, they

neither consider external disturbances nor provide formal guaran-

tees. Pant et al. [28] have studied multi-quadrotor missions with

signal temporal logic (STL) specifications. They find the reference

Table 1: Features of the publicly available tools compared to
GAMARA. Note that some of these tools can handle richer
classes of specifications, compared to the reach-avoid prob-
lem handled by GAMARA.
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GAMARA ✓ ✓ ✓

SCOTS [31] ✓ ✓

ALTRO [15] ✓

FastTrack [14] ✓ ✓

RealSyn [10] ✓

Factest [11] ✓

Model mismatch (SOS) [35] ✓

RTD [19] ✓

Fly-by-Logic [28] ✓ ✓

trajectory by maximizing robustness of the STL specification, and

then synthesize tracking controllers. Their method can only han-

dle specifications with bounded horizon and does not provide any

guarantee against disturbances.

Xiao et al. [41] propose a method for synthesis of distributed con-

trollers for a set of autonomous vehicles in a lane merging situation.

They consider only linear systems as vehicle models, use global op-

timal control to find a nominal controller, and employ local control

barrier functions with safety constraints. Their designed controllers

is not provably safe in the presence of disturbance and can occa-

sionally violate the safety constraints. Nikou et al. [26] have studied

the problem of robust navigation for multi-agent systems based

on nominal reference trajectory and pre-computed feedback con-

trollers. Their approach requires sensing capabilities of the agents

to avoid collision. In contrast, our method does not requires any

sensing capabilities of the agents. Sun et al. [37] have studied mo-

tion planning of multi-agent systems with linear temporal logic

(LTL) specifications, under the presence of disturbances and de-

nial of service attacks. Their approach uses SMC programming

to compute a feasible nominal trajectory and employs feedback

controllers to gain robustness. Despite being able to provide guar-

antees against disturbances, their implementation is centralized,

thus the required time increases significantly for high-dimensional

reach-avoid specifications.

There are other works that use a pre-defined motion primitive

library to perform planning for multi-robot systems [5, 9, 12, 33].

In contrast, our method deals with the dynamical model directly.



ICCPS ’21, May 19–21, 2021, Nashville, TN, USA Rupak Majumdar, Kaushik Mallik, Mahmoud Salamati, Sadegh Soudjani, and Mehrdad Zareian

Our construction can also be seen as an assume-guarantee tech-
nique that decomposes the global problem based on nominal trajec-

tory tubes. Similar decompositions have been studied in the discrete

case [2, 22]. The closest related work that matches our level of gen-

erality is the work by Bansal et al. [4]. However, they assume that

each robot has its own reach-avoid specification while avoiding

collision with the other robots. In contrast, we allow global reach-

avoid specifications, which subsume their class of specifications.

In fact, there are control problems that can be easily handled by

our approach and cannot be encoded in their setting. An example

is robots maintaining a formation while fulfilling their tasks [1].

A subset of approaches listed above have available implementa-

tions. In Table 1, we summarize the main features of the publicly

available tools. We highlight that our tool GAMARA is the only one

that fulfills all the criteria.

2 SYSTEMS AND CONTROLLERS
Notation. We denote the set of natural numbers including zero

by N. We use the notation R and R>0 to denote respectively the

set of real numbers and the set of positive real numbers. We

use superscript 𝑛 > 0 with R and R>0 to denote the Cartesian

product of 𝑛 copies of R and R>0 respectively. Given two points

𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛) in R𝑛 and a relational symbol

⊲ ∈ { ≤, <,=, >, ≥ }, we write 𝑥⊲𝑦 if 𝑥𝑖 ⊲𝑦𝑖 for every 𝑖 ∈ { 1, 2, . . . , 𝑛 }.
The operator | · | is used to denote both the absolute value of a vector
and cardinality of a set, depending on the type of the operand, and

the operator ∥ · ∥ is used to denote the infinity norm.

Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐶 → 𝐷 be two functions. We define the

product function 𝑓 ⊗𝑔 : 𝐴×𝐶 → 𝐵×𝐷 , 𝑓 ⊗𝑔 : (𝑎, 𝑐) ↦→ (𝑓 (𝑎), 𝑔(𝑐)).
The product is associative and extends to more than two functions

in the obvious way. Given 𝑐 ∈ R𝑛 and 𝜀 ∈ R𝑛
>0, the ball with center 𝑐

and radius 𝜀 in R𝑛 is denoted by Ω𝜀 (𝑐) B { 𝑥 ∈ R𝑛 | ∥𝑥 − 𝑐 ∥ ≤ 𝜀 }.
Let 𝐴 be a set. We use the notation 𝐴∞

to denote the set of

all finite and infinite sequences formed using the members of 𝐴.

Our control tasks are defined using a subset of Linear Temporal

Logic (LTL). In particular, we use the until operator U and the

next operator ⃝ defined as follows. Let 𝑝 and 𝑞 be subsets of R𝑛

and 𝜌 = (𝑥0, 𝑥1, . . . ) be an infinite sequence of elements from R𝑛 .

We write 𝜌 |= ⃝𝑘𝑝 if 𝑥𝑘 ∈ 𝑝 . We write 𝜌 |= 𝑝U𝑞 if there exists

𝑖 ∈ N s.t. 𝑥𝑖 ∈ 𝑞 and 𝑥 𝑗 ∈ 𝑝 for all 0 ≤ 𝑗 < 𝑖 . For detailed syntax

and semantics of LTL, we refer to the book by Baier et al. [3] and

references therein.

Control Systems. A control system Σ = (𝑋, 𝑥in,𝑈 ,𝑊 , 𝑓 ) consists
of a state space 𝑋 ⊆ R𝑛 , an initial state 𝑥in ∈ 𝑋 , an input space
𝑈 ⊆ R𝑚 , a compact disturbance set 𝑊 ⊂ R𝑛 containing 0, and
a vector field 𝑓 : 𝑋 × 𝑈 → 𝑋 modeling the nominal dynamics
of the system. A trajectory of Σ is a finite or infinite sequence

𝑥0, 𝑥1, . . . ∈ 𝑋∞
such that 𝑥0 = 𝑥in and for each 𝑖 ≥ 0, there is an

𝑢𝑖 ∈ 𝑈 and 𝑤𝑖 ∈ 𝑊 such that 𝑥𝑖+1 = 𝑓 (𝑥𝑖 , 𝑢𝑖 ) + 𝑤𝑖 . A trajectory

is nominal if 𝑤𝑖 = 0 for all 𝑖 ≥ 0. Intuitively, a control system

represents a (possibly nonlinear) dynamical system with control

inputs form the set𝑈 and disturbances from the set𝑊 .

Product Control Systems. Let { Σ𝑖 }𝑖∈[1;𝑁 ] , Σ𝑖 =

(𝑋 𝑖 , 𝑥𝑖in,𝑈
𝑖 ,𝑊 𝑖 , 𝑓 𝑖 ), for 𝑖 ∈ [1;𝑁 ], be a set of 𝑁 control sys-

tems. The product control system of { Σ𝑖 }𝑖∈[1;𝑁 ] is defined

as the control system Σ× = (𝑋×, 𝑥×in,𝑈
×,𝑊 ×, 𝑓 ×), where

𝑋× B 𝑋1 × . . . × 𝑋𝑁
, 𝑥×in B (𝑥1in, . . . , 𝑥

𝑁
in ), 𝑈

× B 𝑈 1 × . . . ×𝑈𝑁
,

𝑊 × B𝑊 1 × . . . ×𝑊 𝑁
, and 𝑓 × B 𝑓 1 ⊗ . . . ⊗ 𝑓 𝑁 . We use the state

projection operator proj𝑖 : 𝑋× → 𝑋 𝑖
with proj𝑖 (𝑥1, . . . , 𝑥𝑁 ) = 𝑥𝑖 .

For brevity, we write { Σ𝑖 } instead of { Σ𝑖 }𝑖∈[1;𝑁 ] , when the range

of 𝑖 is irrelevant or clear from context.

Sampled-time Systems.Wedefine control systems and their prod-

uct over discrete time. Such systems can be obtained as time dis-

cretizations of continuous-time nonlinear dynamical systems. We

sketch the connection. Consider the tuple (𝑋, 𝑥in,𝑈 ,𝑊 , 𝑓 ) as above
and suppose that 𝑓 : 𝑋 ×𝑈 → 𝑋 is such that 𝑓 (·, 𝑢) is locally Lips-

chitz for all 𝑢 ∈ 𝑈 . Given a time horizon 𝜏 > 0, an initial state 𝑥0,

and a constant input 𝑢, define the continuous time trajectory 𝜁𝑥0,𝑢

of the system on the time interval [0, 𝜏] as an absolutely continu-

ous function 𝜁𝑥0,𝑢 : [0, 𝜏] → 𝑋 such that 𝜁𝑥0,𝑢 (0) = 𝑥0, and 𝜁𝑥0,𝑢

satisfies the differential inclusion
¤𝜁𝑥0,𝑢 (𝑡) ∈ 𝑓 (𝜁𝑥0,𝑢 (𝑡), 𝑢) +𝑊 for

almost all 𝑡 ∈ [0, 𝜏]. Given 𝜏 , 𝑥0, and 𝑢, we define Sol (𝑥0, 𝑢, 𝜏) as
the set of all 𝑥 ∈ 𝑋 such that there is a continuous time trajectory

𝜁𝑥0,𝑢 with 𝜁 (𝜏) = 𝑥 . A sequence 𝑥0, 𝑥1, . . . is a time-sampled trajec-
tory if 𝑥0 = 𝑥in and for each 𝑖 ≥ 0, we have 𝑥𝑖+1 ∈ Sol (𝑥𝑖 , 𝑢𝑖 , 𝜏) for
some 𝑢𝑖 ∈ 𝑈 .

Given a continuous-time nonlinear dynamical system with the

tuple (𝑋, 𝑥in,𝑈 ,𝑊 , 𝑓 ) as above and a sampling time 𝜏 , there exist

techniques to construct a control system Σ = (𝑋, 𝑥in,𝑈 ,𝑊 , 𝑓𝜏 ) such
that every time-sampled trajectory of the continuous-time system

is also a trajectory of Σ. We omit the details of the construction;

see, e.g., [29].

Controllers. An open-loop controller for Σ = (𝑋, 𝑥in,𝑈 ,𝑊 , 𝑓 ) over
a time interval [0;𝑇 ] with 𝑇 ∈ N is a function 𝐶 : [0;𝑇 ] → 𝑈 . The

open loop is obtained when we connect 𝐶 with Σ serially, denoted

by 𝐶 ⊲ Σ. The set of trajectories of the open-loop system 𝐶 ⊲ Σ
consists of all finite trajectories 𝑥0, 𝑥1, . . . , 𝑥𝑇 such that 𝑥0 = 𝑥in
and 𝑥𝑖+1 = 𝑓 (𝑥𝑖 ,𝐶 (𝑖)) +𝑤𝑖 for some𝑤𝑖 ∈𝑊 for all 𝑖 ∈ [0;𝑇 − 1].

A feedback controller for Σ over a time interval [0;𝑇 ],𝑇 ∈ N, is a
function𝐶 : 𝑋×[0;𝑇 ] → 𝑈 . We denote the feedback composition of

Σ with 𝐶 as 𝐶 ∥ Σ. The set of trajectories of the closed-loop system

𝐶 ∥ Σ consists of all finite trajectories 𝑥0, 𝑥1, . . . , 𝑥𝑇 such that

𝑥0 = 𝑥in and for all 𝑖 ∈ [0;𝑇 −1], we have 𝑥𝑖+1 = 𝑓 (𝑥𝑖 ,𝐶 (𝑥𝑖 , 𝑖))+𝑤𝑖

for some 𝑤𝑖 ∈𝑊 . For both open-loop and feedback composition,

the nominal trajectories are the ones for which𝑤𝑖 = 0 for all 𝑖 ≥ 0.
Now let { Σ𝑖 } be a set of control systems. We can define global

open-loop and feedback controllers by defining the respective con-

trollers on the product system Σ×. We can also define local open-
loop and feedback controllers 𝐶𝑖

for each Σ𝑖 . In this latter case, the

set of trajectories of the system {𝐶𝑖 } ⊲ { Σ𝑖 } (respectively, {𝐶𝑖 } ∥
{ Σ𝑖 }) are finite sequences 𝑥×0 , 𝑥

×
1 , . . . , 𝑥

×
𝑇
such that 𝑥×0 = 𝑥×in and for

each 𝑗 ∈ [0;𝑇 − 1], we have proj𝑖 (𝑥×
𝑗+1) = 𝑓 𝑖 (proj𝑖 (𝑥×

𝑗
),𝐶𝑖 ( 𝑗)) +

𝑤 𝑗𝑖 (respectively, proj
𝑖 (𝑥×

𝑗+1) = 𝑓 𝑖 (proj𝑖 (𝑥×
𝑗
),𝐶𝑖 (proj𝑖 (𝑥×

𝑗
), 𝑗)) +

𝑤 𝑗𝑖 ) for some𝑤 𝑗𝑖 ∈𝑊 𝑖
, for each 𝑖 ∈ [1;𝑁 ].

DecentralizedController Synthesis Problem. Let { Σ𝑖 } be a set
of control systems. A (global) control specification L is a set of finite

sequences in (𝑋×)∗. Intuitively, a control specification specifies a

set of “good behaviors” of the product system. The decentralized
open-loop (resp. feedback) controller synthesis problem asks, given

{ Σ𝑖 } and a global control specification L, to construct a set of local

open-loop (resp. feedback) controllers {𝐶𝑖 } such that {𝐶𝑖 } ⊲ { Σ𝑖 }
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(resp. {𝐶𝑖 } ∥ { Σ𝑖 }) realizes the global control specification L, i.e.,

all trajectories of the respective systems belong to L.

In particular, we consider reach-avoid specifications, written

as ¬Avoid UGoal in linear temporal logic, for two subsets

Avoid ,Goal ⊆ 𝑋×
. A trajectory 𝑥0, 𝑥1, . . . satisfies the reach avoid

specification if there is some 𝑗 ∈ N such that 𝑥 𝑗 ∈ Goal and for all

𝑖 ∈ [0; 𝑗 − 1], we have 𝑥𝑖 ∉ Avoid .
Our notion of product of control systems is a Cartesian product of

each component. Thus, we assume that the dynamics of individual

control systems are not coupled. However, the overall trajectories

of the control systems can be coupled through the control objective.

Indeed, our choice of the specification Φ on the product state space

𝑋×
subsumes many interesting class of control tasks. For example,

we can express situations when the robots have their own local

reach-avoid specifications, and they need to avoid collision among

each other; we consider such a specification in our examples in

Sec. 4.1. In addition, we can also specify more general tasks which

cannot be easily decomposed into individual subtasks for the robots.

One example is the formation control problem, which we consider

in the example in Sec. 4.2, where a set of robots need to reach some

location while maintaining a given geometric formation. Since the

formation is defined using the relative positions of the robots, it is

not possible to decompose this task into separate local reach-avoid

subtasks.

Example 2.1. Consider two simple one-dimensional control sys-

tems Σ𝑖 = (𝑋 𝑖 , 𝑥𝑖in,𝑈
𝑖 ,𝑊 𝑖 , 𝑓 𝑖 ), 𝑖 ∈ {1, 2}, whose states evolve over

the real line, and at every time step, the values of their states can

be either incremented or decremented by 1 independently. We ig-

nore the effect of the disturbances for simplicity. More formally,

𝑋1 = 𝑋2 = R, 𝑈 1 = 𝑈 2 = { −1, 1 }, 𝑊 1 = 𝑊 2 = { 0 }, and
𝑓 1 (𝑥1, 𝑢1) ≡ 𝑥1+𝑢1, 𝑓 2 (𝑥2, 𝑢2) ≡ 𝑥2+𝑢2. Suppose the initial states
are 𝑥1in = 0 and 𝑥2in = 5, and assume that the specification requires

them to simultaneously reach the respective goal sets Goal1 =

{ 10 } andGoal2 = { 20 } while maintaining a distance of at least 5
among themselves. This specification can be formulated as a reach-

avoid objective (¬Avoid UGoal ) for the overall two-dimensional

product system, where Avoid = { (𝑥1, 𝑥2) ∈ R2 | | 𝑥1 − 𝑥2 | < 5 }
and Goal = { (10, 20) }. On the other hand, a decomposition of

this objective into independent reach-avoid sub-tasks for Σ1 and

Σ2 is not possible, because the task has been specified in terms of

their relative distance and their simultaneous arrival at the goal sets.

3 MULTI-AGENT REACH-AVOID SYNTHESIS
3.1 Problem Statement
We now consider the decentralized controller synthesis problem

for a set of control systems { Σ𝑖 } w.r.t. a global reach-avoid specifi-

cation Φ = ¬Avoid UGoal , where Avoid ,Goal ⊆ 𝑋×
are subsets

of the product state space.

First, we define a robust version of the control specification. Let

𝜀 ∈ R𝑛
>0 be a robustness margin. We define the 𝜀-robust version

of Φ, denoted by Φ𝜀 := (¬Avoid ′UGoal ′), where Avoid ′ =

Avoid ⊕ Ω𝜀 (0) and Goal ′ = Goal ⊖ Ω𝜀 (0), and ⊕ and ⊖ are set

operators denoting the Minkowski addition and difference, respec-

tively. Intuitively, if a trajectory 𝑥0, 𝑥1, . . . satisfies Φ𝜀 , then any

trajectory 𝑦0, 𝑦1, . . . such that ∥𝑥𝑖 − 𝑦𝑖 ∥ ≤ 𝜀 satisfies Φ.

Problem 1 (Decentralized Controller Synthesis). Inputs:
Control systems Σ𝑖 = (𝑋 𝑖 , 𝑥𝑖in,𝑈

𝑖 ,𝑊 𝑖 , 𝑓 𝑖 ), 𝑖 ∈ [1;𝑁 ], and global
specification Φ = ¬Avoid UGoal .
Parameters: A robustness margin 𝜀 ∈ R𝑛

>0.
Outputs: Local feedback controllers {𝐶𝑖 } for { Σ𝑖 }, 𝑖 ∈ [1;𝑁 ],
such that {𝐶𝑖 } ∥ { Σ𝑖 } realizes Φ.

It is important to notice that any solution for this problem is

required to provide a formal guarantee on the satisfaction of Φ,
i.e., the reach-avoid specification Φ must be satisfied under every

value of the disturbances affecting the control systems. Further, the

solution must not require any information exchange between the

different agents. Embedding this feature simplifies implementation

by eliminating the need for regular synchronization between agents

at run time.

3.2 Solution Outline
To solve the decentralized control problem, we first plan a high-

level nominal trajectory for the product system by ignoring the

disturbances, and then synthesize low-level formally verified con-

trollers for robustly tracking the nominal trajectory under worst-

case disturbances. We summarize our approach for solving Prob. 1

in Alg. 1. The approach is composed of three main steps: (1) Synthe-

size a global open-loop controller for the nominal system as a single

planner task on the product system to satisfy Φ𝜀 ; (2) Project the
controller into local controllers and obtain a nominal trajectory for

each system; and (3) Design local closed-loop controllers to track

the nominal trajectory while always staying within the robustness

margin. The soundness of the technique is summarized below.

Theorem 3.1. Local feedback controllers {𝐶𝑖 } synthesized by
Alg. 1 guarantee that the the product system {𝐶𝑖 } ∥ { Σ𝑖 } realizes
the global specification Φ.

Proof. Note that Φ𝜀 is a stronger version of Φ and is intention-

ally made conservative to allow for 𝜀-deviation in the trajectory

of the product system. Since { 𝜌𝑖 } is the unique solution of the

nominal product system and satisfies Φ𝜀 , it is guaranteed that 𝜀-

perturbation of this nominal trajectory satisfiesΦ. It can be observed
that all solutions of Σ𝑖 stay within distance 𝜀𝑖 of the nominal trajec-

tory 𝜌𝑖 regardless of the disturbance. This completes the proof. □

Next, we discuss some implementation details of Alg. 1 for the

global open-loop planner (Step 1) and the local guaranteed trajec-
tory tracking (Step 3) in our tool GAMARA. Note that Step 2 is a

simple projection from the product space into local spaces. While

we instantiate particular techniques, our method can be used with

other implementations as well.

3.3 Open-loop Planning
The planner used for generating nominal trajectories in Step 1 of

our algorithm should be fast and scalable. In addition, it should

be capable of handling non-linear dynamics and constraints. Our

choice for the planner is ALTRO [15]. ALTRO is a fast and numer-

ically robust solver for constrained trajectory optimization prob-

lems and and is capable of handling nonlinear state and input con-

straints. Given a product system Σ×nom , reach-avoid specification
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Algorithm 1Multi-agent Controller Synthesis

(1) For every 𝑖 , let Σ𝑖nom = (𝑋 𝑖 , 𝑥𝑖in,𝑈
𝑖 , { 0 } , 𝑓 𝑖 ) be the nominal

control system of Σ𝑖 that ignores the disturbance. Compute

the product control system Σ×nom of { Σ𝑖nom }. Use a scalable
planner to compute a nominal open-loop controller 𝐶×

nom :
[0;𝑇 ] → 𝑈 ×

such that the specification Φ𝜀 is satisfied by

𝐶×
nom ⊲ Σ×nom . Note that 𝑇 is the first time the set Goal ′ is

visited.

(2) Decompose𝐶×
nom into local open-loop controllers {𝐶𝑖

nom }
for the set of { Σ𝑖nom } by projecting the output of𝐶×

nom into

local input spaces 𝑈 𝑖
. Further, for every 𝑖 , find the unique

nominal open-loop trajectory 𝜌𝑖 = (𝑥𝑖0,nom , . . . , 𝑥𝑖
𝑇 ,nom

) of
𝐶𝑖
nom ⊲ Σ𝑖nom . These trajectories are unique since there is

no disturbance.

(3) Let 𝜀𝑖 ∈ R𝑛𝑖
>0, 𝑖 ∈ [1;𝑁 ], be the projections of 𝜀 compatible

with the state dimensions of Σ𝑖 . Each control system Σ𝑖

uses a guaranteed tracking method to compute a closed-loop

controller𝐶𝑖
such that𝐶𝑖 ∥ Σ𝑖 tracks the nominal trajectory

𝜌𝑖 and stays within its 𝜀𝑖 -neighborhood, i.e.,𝐶𝑖 ∥ Σ𝑖 satisfies
the specification

Φ𝑖track B
∧

𝑘∈[0;𝑇 ]
⃝𝑘Ω𝜀𝑖 (𝑥𝑖𝑘,nom ). (1)

Φ𝜀 and time horizon 𝑇 , ALTRO computes an open-loop controller

𝐶×
nom : [0;𝑇 ] → 𝑈 ×

by solving the optimization

minimize

𝑢×
0 ,𝑢

×
1 ,...,𝑢

×
𝑇

ℓ𝑇 (𝑥×𝑇 ) +
𝑇−1∑
𝑘=0

ℓ𝑘 (𝑥×𝑘 , 𝑢
×
𝑘
)

subject to 𝑥×
𝑘+1 = 𝑓 × (𝑥×

𝑘
, 𝑢×

𝑘
), ∀𝑘 ∈ [0;𝑇 − 1]

𝑔(𝑥×
𝑘
, 𝑢×

𝑘
) ≤ 0, ∀𝑘 ∈ [0;𝑇 ]

ℎ(𝑥×
𝑘
, 𝑢×

𝑘
) = 0, ∀𝑘 ∈ [0;𝑇 ],

where ℓ𝑘 (·, ·) denotes a quadratic objective function assigning cost

to each pair of state and input before the end of horizon, ℓ𝑇 (·)
represents a quadratic objective function assigning penalty to the

final state 𝑥×
𝑇
being away from the goal set Goal ′. The constraints

𝑔(𝑥×
𝑘
, 𝑢×

𝑘
) ≤ 0 and ℎ(𝑥×

𝑘
, 𝑢×

𝑘
) = 0 capture the requirement that at

each time 𝑘 the state should not be in Avoid ′
, the state 𝑥×

𝑇
should

be in Goal ′, and the input 𝑢×
𝑘
should always be in 𝑈 ×

. In multi-

robot scenarios, the inequality constraints can be used to define

collision and obstacle avoidance specifications and the equality

constraints can define fixed formation specification. Note that the

reach-avoid specification is fulfilled if the corresponding equality

and inequality constraints (i.e., 𝑔(·) ≤ 0, ℎ(·) = 0) are satisfied at

every time-step and thus choice of the quadratic objective function

(ℓ𝑘 for 𝑘 ∈ [0;𝑇 ]) is not crucial.

Remark 1. ALTRO only supports bounded horizon control prob-
lems. For this reason, we model the states inGoal ′ as a sink state and
select a time horizon 𝑇 for solving the planning task on the nominal
product system. We increase the horizon 𝑇 if ALTRO is not able to
find a controller. We remark that this is an ALTRO-specific implemen-
tation detail, and our overall method does not rely on a fixed time
horizon.

3.4 Guaranteed Trajectory Tracking
Trajectories computed in the planning stage might not be followed

in the presence of disturbance and therefore we need to use a

formally guaranteed tracking controller to satisfy the given reach-

avoid specification. We use abstraction-based controller design

(ABCD) for Step 3. ABCD can handle nonlinear dynamics, (bounded)

uncertainties, and 𝜔-regular specifications. In particular, we use

the implementation of ABCD in the tool called SCOTS [31]. Next,

we introduce briefly the basics of ABCD. For simpler notation, we

omit the control system index 𝑖 in the rest of this section.

Finite-state Abstraction of Control Systems. Let Σ =

(𝑋, 𝑥in,𝑈 ,𝑊 , 𝑓 ) be a control system and Domain be a subset of

𝑋 which imposes a safety specification on all possible trajectories

of the system. Let 𝑋 be a given finite partition of Domain , and

𝑈 be a finite subset of equally spaced (w.r.t. infinity norm on R𝑚)

points in the input set 𝑈 . A finite-state abstraction of Σ is a finite

state-transition system (𝑋,𝑈 , 𝑓 ), where 𝑥 ′ is in 𝑓 (𝑥,𝑢) if there is a
pair of states 𝑥 ∈ 𝑥 and 𝑥 ′ ∈ 𝑥 ′ such that 𝑥 ′ ∈ SolΣ (𝑥,𝑢).

In this work, we will use uniformly sized rectangular partition

elements to construct the set 𝑋 from the set Domain . Without

going into the detail of the construction, we assume that the size

of the partition elements is provided as a vector 𝜂𝑥 ∈ R𝑛
>0 which

is an input to the abstraction procedure. Note that, the larger 𝜂𝑥
is (where comparison is made dimension-wise), the smaller is the

state space 𝑋 resulting in an efficient computation. On the other

hand, the smaller 𝜂𝑥 is, the better is the precision of the abstraction

Σ̂ increasing the chance of a successful controller synthesis. Similar

to the state space partition size 𝜂𝑥 , we also assume that the set𝑈 is

chosen based on an input space discretization parameter 𝜂𝑢 ∈ R𝑚
>0

that governs the distance between the points in𝑈 .

Feedback Refinement Relation. Let Σ be a control system and

Σ̂ be its finite-state abstraction. A feedback refinement relation
(FRR) from Σ to Σ̂ is a relation 𝑄 ⊆ Domain × 𝑋 s.t. for all

𝑥 ∈ Domain there is some 𝑥 ∈ 𝑋 such that 𝑄 (𝑥, 𝑥) and for all

(𝑥, 𝑥) ∈ 𝑄 , we have (i) 𝑈Σ̂ (𝑥) ⊆ 𝑈Σ (𝑥), and (ii) 𝑢 ∈ 𝑈Σ̂ (𝑥) ⇒
𝑄 (𝑓 (𝑥,𝑢)) ⊆ 𝑓 (𝑥,𝑢), where 𝑈Σ (𝑥) := {𝑢 ∈ 𝑈 | 𝑓 (𝑥,𝑢) ≠ ∅ } and
𝑈Σ̂ (𝑥) := {𝑢 ∈ 𝑈 | 𝑓 (𝑥,𝑢) ≠ ∅ }. We write Σ ⪯𝑄 Σ̂ if 𝑄 is an FRR

from Σ to Σ̂.

Abstraction-Based Controller Design. The abstraction-based

controller design (ABCD) [29] is a 3-step method to find a robust

controller for the control system Σ: First, we compute a finite state

abstraction Σ̂ s.t. Σ ⪯𝑄 Σ̂. Second, we synthesize an abstract con-

troller of the form𝐶 : 𝑋 → 𝑈 for Σ̂ using methods from the reactive

synthesis literature. Finally, we obtain the desired controller 𝐶 as

𝐶 := 𝐶 ◦ 𝑄 . It is known that this three step process produces a

controller 𝐶 such that 𝐶 ∥ Σ satisfies the specification [29].

If a controller cannot be found, we reduce the discretization

parameters 𝜂𝑥 and 𝜂𝑢 and try again, or use a larger robustness

margin 𝜀.

Optmization: Local ABCD around the nominal trajectory.
The abstraction process of ABCD usually requires computation

of abstract transitions over the whole compact set Domain , which
is computationally expensive. Luckily, for Step 3 of Alg. 1, we only

need to compute transitions in the 𝜀-neighborhood of the given
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nominal trajectory. Given a control system Σ, together with a ref-

erence open-loop trajectory 𝜌 = (𝑥0,nom , . . . , 𝑥𝑇,nom ) and a tube

size 𝜀 ∈ R𝑛
>0, we iteratively construct a tube as union of 𝜀-balls

around the reference trajectory (note that we have omitted the

system index 𝑖 for simpler notation). Next, we compute finite state

abstraction for Σ for the chosen parameters 𝜂𝑥 , 𝜂𝑢 by setting

Domain B
𝑇⋃
𝑘=0

Ω𝜀 (𝑥𝑘,nom ).

In practice, this local computation of the abstraction is the key to

scalability.

Remark 2. Our decentralized controller synthesis approach fea-
tures an interplay between the global open-loop planning and local
formal synthesis via the robustness parameter 𝜀 and the discretization
parameters 𝜂𝑥 , 𝜂𝑢 . The parameter 𝜀 should be large enough to allow
deviation from the nominal trajectory caused by the disturbance. A
small 𝜀 makes the local specification Φ𝑖

𝑡𝑟𝑎𝑐𝑘
difficult for ABCD syn-

thesis thus requiring large computational complexity with smaller
discretization parameters 𝜂𝑥 , 𝜂𝑢 . On the other hand, large 𝜀 makes the
specification Φ𝜀 very conservative or infeasible for the global open-
loop planning. Therefore, appropriate parameters should be selected
iteratively for a successful controller synthesis.

3.5 Hybrid vs Geometric Planning
Note that Step 3 of Alg. 1 does not use the nominal controller ob-

tained in Step 1 and requires only the nominal trajectories. Then one

could argue that, instead of using ALTRO to generate nominal tra-

jectories, a fast geometric planner [17] can be employed to generate

geometric plans. However, fast geometric planners do not usually

take into consideration the dynamics and control constraints. In

our experience, the plans for nominal trajectories generated while

ignoring the system dynamics are often untrackable unless the

underlying system has special properties (e.g., differential flatness

[25]). This is especially true for systems with restricted control

capabilities or under-actuated systems. We demonstrate this phe-

nomenon on a control system Σ that is a simple 2-dimensional

pendulum with the following nominal dynamics:

¤𝑥1 = 𝑥2 ¤𝑥2 = − sin(𝑥1) + 𝑢/5,

-2 -1 0 1 2 3 4
-1

0

1

2

Figure 3: The state trajectory of the in-
verted pendulum: the red point is the
initial state, the green point is the fi-
nal state, the blue spiral is the nomi-
nal trajectory obtained from ALTRO,
and the dashed straight line is a geo-
metric plan.

where 𝑥1 rep-

resents the

angle (in Radian)

of the pendu-

lum rod mea-

sured counter-

clockwise from

the vertical down-

ward position,

and 𝑥2 repre-

sents the rate

of change of 𝑥1
or the angular

velocity. Suppose

the initial state of

the pendulum is

(0, 0), i.e., when

the pendulum is in the vertical downward position and is stationary.

Suppose we want to find a controller for the goal Goal = { (𝜋, 0) },
i.e., when the pendulum is in the vertical upward position and

is stationary. The set of unsafe states Avoid is empty, i.e., no

safety constraint is imposed. When we use ALTRO to compute an

open-loop controller 𝐶 , unsurprisingly, the controlled trajectory of

𝐶 ⊲ Σ looks like a spiral, as shown in blue Fig. 3.

The synthesis of tracking controller using ABCD is indeed suc-

cessful when we feed this nominal trajectory to our ABCD solver.

However, if we use a geometric planner for this example that ig-

nores the dynamics, the nominal trajectory would be a straight

line path from (0, 0) to (𝜋, 0) (shown using a dashed line in Fig. 3),

which gives an infeasible tracking problem for ABCD, due to the

restrictions on possible trajectories of the pendulum coming from

the its dynamics.

4 EXPERIMENTAL EVALUATION
We have implemented our approach (as presented in Sec. 3) in

the open source tool GAMARA.1 We evaluate the effectiveness of

GAMARA on two distinct categories of problems: local reach-avoid

problems with collision avoidance and global formation control

problems. We consider four case studies: multi-drone path planning,

crane and vehicle, lane merging, and multi-drone formation control.

The design of nominal controller using ALTRO for all experiments

was performed on a machine with core i5-4590 CPU at 3.30 GHz,

with 16 GB of RAM. The formal controller synthesis using SCOTS

for all systems except crane system was performed on the same

machine. Controller synthesis for crane system is done on a cluster

with 4 Intel Xeon E7-8857 v2 CPUs (48 cores in total) at 3 GHz, with

1.5 TB of RAM.

In all of our case studies, the robots are moving in a two-

dimensional shared workspace (related but not exactly the same as

the robots’ state spaces) that possibly has obstacles. Table 2 shows

run times for different stages of each experiment. For local ABCD,

the reported numbers correspond to the maximum value among all

of the agents. This choice is due to the fact that feedback controllers

for different agents can be computed independently in parallel over

different machines. To provide a more fine-grained comparison,

Fig. 4 shows the variations of run times of the different local ABCD

tasks for every experiment. We have excluded the crane and vehicle

case study in the figure due to an expected large variance origi-

nating from different dynamics. Notice that a higher number of

state-input pairs does not necessarily result in a higher run time for

local ABCD as the number of transitions and features of the parallel

implementation can play a role. We compare GAMARA with ABCD

applied to the product system to satisfy the global specification. As

reflected in Table 2, memory requirement for global ABCD exceeds

both system’s (laptop and cluster) limit (1.5TB of RAM) in all of the

experiments.

4.1 Local reach-avoid with collision avoidance
We first consider situations when each robot has an individual

reachability specification, and they need to ensure a minimum safe

distance from each other and the obstacles.

1GAMARA is available online: https://github.com/MehrdadZareian/GAMARA.
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Table 2: Run times for four case studies. Run times (in seconds) for computing open-loop controllers over the corresponding product

spaces using ALTRO (𝑇
plan
𝑔 ), number of state-input pairs of the finite abstraction for the largest ABCD task (𝑁𝑙 ), abstraction and synthesis

times in SCOTS for that task (respectively 𝑇abs
𝑙

and 𝑇
syn
𝑙

), number of state-input pairs of the finite state abstraction for global ABCD (𝑁𝑔),

abstraction and synthesis times for computing a global controller for the product system using SCOTS (respectively 𝑇abs
𝑔 and 𝑇

syn
𝑔 ). “OOM”

denotes “out of memory” on a 1.5TB RAM machine.

Case-study Global planning Local ABCD Global ABCD

𝑇
plan
𝑔 𝑁𝑙 𝑇 abs

𝑙
𝑇
syn
𝑙

𝑁𝑔 𝑇 abs
𝑔 𝑇

syn
𝑔

Multi-drone path planning 77.85 1.13 × 108 30.75 6.66 2.70 × 10110 OOM OOM

Crane and vehicle 0.65 8.56 × 108 511.24 91.43 2.16 × 1018 OOM OOM

Lane merging 89.02 1.07 × 108 22.79 5.29 1.69 × 1059 OOM OOM

Multi-drone formation control 114.34 1.55 × 108 39.46 7.83 3.65 × 1050 OOM OOM

Multi drone path planning Lane merging Multi drone formation control
0

20

40

60

80

C
o

m
p

u
ta

ti
o

n
 t

im
e

 f
o

r 
lo

c
a

l 
A

B
C

D
 (

s
)

Figure 4: Variations of run times of local ABCD among dif-
ferent agents for three case studies.

Figure 5: Time-state space illustration of tubes enclosing
nominal trajectories for the multi-drone path planning

Suppose { Σ𝑖 } models a set of robots, Goal𝑖 ⊆ 𝑋 𝑖
are the indi-

vidual goal sets, and 𝛿 ∈ R>0 is a safety margin for collisions. We

consider each robot as a point object with a bounding box for its

physical dimensions. The parameter 𝛿 is chosen to be a constant

greater than twice the radius of the bounding box around each

robot. By keeping a distance at least 𝛿 from the other robots and

the obstacles, the robots can avoid collision in their physical do-

main. The parameter 𝛿 can additionally take into account statutory

minimum safe distances among the robots, such as in autonomous

driving-like scenarios. The choice of 𝛿 is completely independent of

the choice of 𝜀. The latter is a robustness margin introduced to take

into account the deviation of the system trajectories under external

disturbances. Suppose the specification requires that each robot Σ𝑖

eventually reaches Goal𝑖 while avoiding the obstacle Obs ⊆ R2

and collision with robots by the margin 𝛿 . The global specification

on the product system Σ× is as follows:

• The goal setGoal ⊆ 𝑋×
is defined asGoal B Goal1 × . . .×

Goal𝑁 ⊆ 𝑋×
, and

• The avoid set Avoid ⊆ 𝑋×
is defined as 𝑥× ∈ 𝑋×

������ ∃𝑖 ∈ [1;𝑁 ] . 𝑑Obs (𝑥𝑖 ,Obs) ≤ 𝛿

∨
∃𝑖, 𝑗 ∈ [1;𝑁 ] . 𝑖 ≠ 𝑗 . 𝑑Col

(
𝑥𝑖 , 𝑥 𝑗

)
≤ 𝛿

 , (2)

where 𝑥𝑖 denotes the component of 𝑥× corresponding to

Σ𝑖 , 𝑑Col (·, ·) denotes a distance metric for measuring the

geometric distance between positions of two systems located

in two-dimensional space, and 𝑑Obs (·, ·) denotes a distance
metric for measuring the geometric distance between the

position of one system and the obstacle Obs ⊆ R2.
In this category of problems, we apply our approach to three

case studies as briefly discussed next. The detailed models for the

systems and their different parameters have been presented in

Sec. A.1-A.3 in the appendix, and the performance of GAMARA for

these experiments have been summarized in the first three rows

on Table 2.

4.1.1 Multi-drone path planning. We consider a planning scenario

for ten identical drones (𝑁 = 10). The control objective is to syn-

thesize a feedback controller for each drone so that in the presence

of (bounded) disturbance, beginning from the specified initial state,

the corresponding target state is reached within a finite horizon,

while avoiding collision with other drones and the physical obstacle

at every time point. Fig. 5 gives a time-space illustration for the

safe tubes around the nominal trajectories. The tracking feedback

controllers are synthesized such that every drone remains within

its safe tube until reaching its destination, even with worst-case

disturbance. Additional analysis and detailed models for the sys-

tems and their different parameters are presented in Sec. A.1 in the

appendix.

4.1.2 Crane and Vehicle. The goal of this example is to study the

performance of our method for controlling a number of robots

with different dynamics. As described in Sec. 1, the goal is to move

the overhead crane and the vehicle such that they do not collide.

Formally guaranteed controllers are computed such that the gener-

ated open loop trajectory (see Fig. 2 (left)) is tracked even under
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Figure 6: Illustration of a sample trajectory generated by for-
mally guaranteed controllers for the lane merging example

disturbance. More detailed discussion on dynamics of systems and

further analysis are presented in Sec. A.2 in the appendix.

4.1.3 Lane Merging. We study a lane merging problem wherein

multiple controlled vehicles (𝑁 = 6) are driving over two merg-

ing lanes (Fig. 6, top frame). A dangerous situation may occur at

the merging point of the two lanes if vehicles are not controlled

properly. Different variants of this problem have been studied in

the literature (see, e.g., [40, 41]). Without seeking to optimize fuel

consumption or travel time, we set the goal to control the vehicles

to pass the merging zone safely. In particular, consider a situation

where initially three cars are driving on each of the two lanes

(Fig. 6, (top)). The control objective for each vehicle is to pass the

red dashed line within a finite horizon without hitting the road’s

sides or colliding with other vehicles. Fig. 6 demonstrates snapshots

of one sample trajectory when feedback controllers are employed

under the presence of bounded disturbance. Additional analysis,

systems’ dynamics and parameters are reported in Sec. A.3 in the

appendix.

4.2 Global formation control problem
The second category of examples are about maintaining a global

formation while satisfying a set of reach-avoid specifications. We

show how the formation control problem can be expressed using a

static obstacle Avoid on the product state space 𝑋×
.

Let us first formalize the notion of formation. Let{
Σ𝑖 = (𝑋 𝑖 , 𝑥𝑖in,𝑈

𝑖 ,𝑊 𝑖 , 𝑓 𝑖 )
}

be a set of robots. A formation
constraint is a set

{
𝜆𝑖, 𝑗 ∈ R

}
𝑖, 𝑗 ∈[1;𝑁 ] where every 𝜆𝑖, 𝑗 specifies

the relative Euclidean distance between the projections of state of

robot Σ𝑖 and robot Σ 𝑗
.

Now suppose Goal𝑖 ⊆ 𝑋 𝑖
are the individual goal states, Obs ⊂

R2 is a common obstacle 𝛿 ∈ R>0 is a safety margin, and 𝜇 ∈ R>0
is a tolerance margin for the formation constraint. The formation

control problem then asks to generate controllers {𝐶𝑖 } such that

every robot Σ𝑖 eventually reachesGoal𝑖 while avoidingObs by the

Figure 7: Illustration of a sample trajectory generated by the
feedback controllers for the formation control example

margin 𝛿 , as well as while making sure that the Euclidean distance

between robots Σ𝑖 and Σ 𝑗
is in the range 𝜆𝑖, 𝑗 ± 𝜇. Essentially the

tolerance margin 𝜇 is to account for the possible slight deviations

due to disturbances experienced by the robots. Notice that since the

robots have their own goals but at the same time they need to “stay

close” to their neighboring robots in the formation for the entire

period, they might first need to accompany the other robots to their

goals, before being accompanied by them to reach their own goal.

We can express the formation control problem in the product state

space as follows:

• The goal set Goal ⊆𝑋×
is defined as GoalBGoal1× . . . ×

Goal𝑁 , and

• The avoid set Avoid ⊆ 𝑋×
is 𝑥× ∈ 𝑋×

������ ∃𝑖 ∈ [1;𝑁 ] . 𝐷 (𝑥𝑖 ,Obs) ≤ 𝛿

∨
∃𝑖, 𝑗 ∈ [1;𝑁 ] . 𝑖 ≠ 𝑗 . 𝑑

(
𝑥𝑖 , 𝑥 𝑗

)
∉ 𝜆𝑖, 𝑗 ± 𝜇

 , (3)

where the last disjunction in the definition of Avoid is the restric-

tion required for maintaining the formation, and the rest are same

as in Sec. 4.1.

4.2.1 Multi-drone formation control. Consider a formation control

scenario where a set of five drones (identically modeled) need to go

from a specified start point to a certain destination (both defined

over the corresponding state spaces) within a finite horizon, while

four of them forming a diamond around a fifth drone (positioned

at the diamond’s center) at every time point. There are two square

obstacles from which the group needs to keep a certain minimum

distance at all of the time points. Fig. 7 illustrates four sequential

frames of a sample perturbed trajectory generated by employing

formally guaranteed feedback controllers. Notice that both relative

position and orientation between drones are kept (almost) constant

throughout the journey. Further analysis can be found in Sec. A.4

in the appendix.

5 DISCUSSION AND FUTUREWORK
We have presented a method for synthesizing provably correct

decentralized controllers for multi-agent systems with global reach-

avoid specifications. Our approach is hierarchical. At the top level,

we obtain a high-level joint plan by solving a centralized synthesis

problem on a simplified model of the product system, and at the

bottom level we synthesize local controllers for robustly tracking
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the high-level plan for each individual agent. In this section, we

discuss different features of our work, limitations, and future work.

Scalability of the proposed method. We compute the refer-

ence trajectory for the product system using ALTRO. Our experi-

ments show that ALTRO generates reference trajectories for high-

dimension systems quite fast. On the other hand, for tracking con-

trollers, our method synthesizes controllers in a decentralized man-

ner and thus scalability is not affected by increasing the number of

agents. We use SCOTS for computing tracking controllers because

the algorithm can be effectively parallelized [18]. While GAMARA
uses ALTRO and SCOTS for solving the given reach-avoid problem,

one could replace them with any other off-the-shelf method that

can perform similar tasks.

Extension to richer classes of specifications. Our proposed

method is specific to reach-avoid specifications but it can be ex-

tended to other specifications by decomposing them into a sequence

of reach-avoid tasks. To that end, one can use high-level languages

(e.g., [13, 23]) for specifying complex reach-avoid sequences and

invoke GAMARA to solve each individual reach-avoid task.

Choice of parameters. Our algorithm takes as input the robust-

ness margin 𝜀 and the abstraction parameters 𝜂𝑥 and 𝜂𝑢 . The larger

the value of 𝜀, more difficult it is to synthesize a nominal con-

troller for the product system using ALTRO. On the other hand,

the smaller the value of 𝜀, the more difficult it is to synthesize a set

of decentralized controllers using SCOTS. Also, there is a trade-off

between computation time and ease of synthesis when it comes to

choosing the parameters 𝜂𝑥 and 𝜂𝑢 for SCOTS: Larger values of

these parameters will result in faster computation but there may

be no solution to the synthesis problem. It is not always easy to

come up with a good set of parameters. Our current approach adds

an outer loop around our tool to search for suitable parameters

until the decentralized synthesis is successful. We do not know a

good heuristic to systematically explore the parameter space by

analyzing the dynamics of the systems.
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A EXAMPLES
A.1 Multi-drone path planning
Every drone is modeled as a control system Σ𝑖 = (𝑋, 𝑥𝑖in,𝑈 ,𝑊 , 𝑓 𝑑𝜏 ),
where 𝑓 𝑑𝜏 is the sampled-time abstraction of the following continu-

ous dynamics:

𝑓 𝑑 (𝑥 (𝑡), 𝑢 (𝑡)) :=

¤𝑥1
¤𝑥2
¤𝑥3

 =

𝑢1𝑐𝑜𝑠 (𝑥3)
𝑢1𝑠𝑖𝑛(𝑥3)

𝑢2

 .
where 𝑥1 and 𝑥2 denote the drone’s position in two-dimensional

space, 𝑥3 denotes the rotational angle, and 𝑢1 and 𝑢2 represent

control inputs for each drone. Choosing a sampling time 𝜏 = 0.1

s, the nominal dynamics 𝑓 𝑑𝜏 can be characterized uniquely. We

consider state and input spaces to be 𝑋 = [−1, 11]2 × [−2, 3.3]
and 𝑈 = [−2.4, 2.4]2, respectively. The disturbance set and ro-

bustness margin are chosen as |𝑊 | ≤ (0, 0.025, 0.025) and 𝜀 =

(0.20, 0.20, 0.24).
Recall that we consider 10 drones, i.e., 𝑁 = 10. Selecting the

horizon length 𝑇 = 104 and minimum safe distance 𝛿 = 0.24 m,

ALTRO computes a valid open-loop trajectory in 77.8 seconds for

the product system with 30 state and 20 input variables. Fig. 5

gives time-space illustration for the safe tubes around the nominal

trajectories.

For ABCD, we set 𝜂𝑋 = (0.025, 0.025, 0.03) and 𝜂𝑈 = (0.3, 0.3).
Tab. 2 shows the run times and number of state-input pairs corre-

sponding to both local and global ABCD. Noticeably, already when

𝑁 = 2, memory requirement for global ABCD exceeds memory

limits, even 1.5 TB RAM on a cluster machine is not sufficient to

synthesize a controller.

On the other hand, using ALTRO alone would not provide guar-

antee against bounded disturbance. Fig. 9 illustrates the perfor-

mance of open-loop and feedback controllers in regulating dis-

tance between two particular the drones with and without dis-

turbances. As expected, in the absence of disturbances, the open-

loop controllers suffice and the distance between the two drones

(shown in solid blue) does not go below the defined threshold.

Next, we consider the case when constant additive disturbances

(0, 0.025, 0.025) and (0,−0.025,−0.025) are being applied to the

two drones throughout the whole horizon. It can be noticed that

applying the open-loop controller causes that distance between

the two drones (shown in solid yellow) to go below the predefined

threshold. However, the feedback controller is capable of maintain-

ing distance (shown in solid red) within the safe region when the

same disturbance is being applied.

A.2 Crane and Vehicle
We model the crane and vehicle as control systems Σ1 =

(𝑋1, 𝑥1in,𝑈
1,𝑊 1, 𝑓 𝑐𝜏 ) and Σ2 = (𝑋2, 𝑥2in,𝑈

2,𝑊 2, 𝑓 𝑙𝜏 ), respectively.
The dynamics are obtained by discretizing the following continuous-

time dynamics.

The crane is modeled as cart-pole system [6]:

¥𝜃 =
𝑀𝑡𝑔 sin(𝜃 ) − cos(𝜃 ) (𝐹 +𝑀𝑝𝑙 ¤𝜃2 sin(𝜃 ))

𝑙 (4/3𝑀𝑡 −𝑀𝑝 cos2 (𝜃 ))
= 𝑓 𝑐1 (𝜃, ¤𝜃, 𝐹 )

¥𝑧 =
𝐹 +𝑀𝑝𝑙 ¤𝜃2 sin(𝜃 ) −𝑀𝑝𝑙 ¥𝜃 cos(𝜃 )

𝑀𝑡
= 𝑓 𝑐2 (𝜃, ¤𝜃, 𝐹 ),

𝑥1

𝑥2

Figure 8: The mission map for the multi-drone path plan-
ning example

10 20 30 40 50 60 70 80 90 100

Time step

0

1

1.5

2

2.5

3

D
is

ta
n
c
e
 (

m
)

Nominal controller without disturbance

Robust controller with disturbance

Nominal controller with disturbance

Figure 9: Performance of open-loop and feedback con-
trollers in regulating distance between two selected drones
for disturbance-free and perturbed situations for the multi-
drone path planning example

where 𝑔 = −9.8m/s
2
is the acceleration of gravity,𝑀𝑐 = 1 kg is the

cart mass,𝑀𝑝 = 0.1 kg is the pole mass,𝑀𝑡 = 𝑀𝑐 +𝑀𝑝 denotes the

total mass, and 𝑙 = 0.5 m is the half-pole length. Further, the cart’s

position, the pole’s angle, and input force to the cart are denoted by

𝑥
(1)
1 = 𝑧, 𝑥

(1)
3 = 𝜃 , and 𝑢 (1) = 𝐹 , respectively. The continuous-time

dynamics of the crane is of the following form:

𝑓 𝑐 (𝑥 (1) (𝑡), 𝑢 (1) (𝑡)) :=


¤𝑥 (1)1

¤𝑥 (1)2

¤𝑥 (1)3

¤𝑥 (1)4


=


¤𝑧
¥𝑧
¤𝜃
¥𝜃

 =


𝑥
(1)
2

𝑓 𝑐1 (𝑥
(1)
3 , 𝑥

(1)
4 , 𝑢 (1) )

𝑥
(1)
4

𝑓 𝑐2 (𝑥
(1)
3 , 𝑥

(1)
4 , 𝑢 (1) )


.

The vehicle’s continuous-time dynamics takes the form of

𝑓 𝑙 (𝑥 (2) (𝑡), 𝑢 (2) (𝑡)) =
[
¤𝑥 (2)1

¤𝑥 (2)2

]
=

[
𝑥
(2)
2

𝑢 (2)

]
,

where 𝑥
(2)
1 and 𝑥

(2)
2 denote the vehicle’s position and speed, and

𝑢 (2)
represents the vehicle’s control input (acceleration). On fixing

the sampling time 𝜏 = 0.1 s, one can derive 𝑓 𝑐𝜏 and 𝑓 𝑙𝜏 . For the crane,

the disturbance set and robustness margin are chosen as |𝑊 1 | ≤
(0, 0.05, 0, 0) and 𝜀1 = (0.135, 0.385, 0.176, 0.768). Similarly, for

the vehicle, disturbance set and robustness margin are chosen as

|𝑊 2 | ≤ (0, 0.1) and 𝜀2 = (0.08, 0.12).
There is no obstacle for this example and for minimum distance

between the crane and the vehicle we choose 𝛿 = 0.035 m. Fixing

the horizon length to 𝑇 = 70, ALTRO was capable of generating a

valid nominal trajectory in 0.65 seconds. Fig. 2 (left) demonstrates
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Figure 10: Comparison of open-loop and feedback con-
trollers for the lane merging example

snapshots of the produced trajectory. As before, under the nominal

open-loop controllers, applying (constant) additive disturbance𝑊 =

(0, 0.05, 0, 0) (to the cart-pole system) causes a collision between

the crane and the vehicle before the end of the mission (Fig. 2

(right)).
In the next step, we use SCOTS in order to compute a

feedback controller tolerating disturbances. We choose state

and input spaces for the crane to be 𝑋1 = [−0.195, 5.49] ×
[−1.99, 4.37] × [1.20, 4.68] × [−5.44, 5.28] and 𝑈 1 = [−7, 7],
respectively. For the vehicle, we set 𝑋2 = [3, 9] × [−3, 1.995]
and 𝑈 2 = [−3, 3]. We choose state and input partition sizes

𝜂1
𝑋

= (0.015, 0.035, 0.016, 0.064), 𝜂1
𝑈

= 0.2, 𝜂2
𝑋

= (0.01, 0.015)
and 𝜂2

𝑈
= 0.1. Tab. 2 shows the run times and number of state-

input pairs corresponding to local and global ABCD. As before,

for the cart-pole model, global ABCD exceeds our 1.5 TB memory

limit. Note that computing feedback controllers for the crane and

vehicle takes 511 seconds and 0.3 seconds, respectively. The large

difference is due to the difference in the size of transition systems

for the two dynamics.

A.3 Lane Merging
The nominal dynamics for each of the vehicles is the same as the

one for modeling drones (given in Sec. A.1). The disturbance set and

robustness margin are chosen as |𝑊 | ≤ (0.03, 0.03, 0.03) and 𝜀 =
(0.16, 0.16, 0.16). For collision and obstacle avoidance, we choose

𝛿 = 0.37m. The horizon length is fixed to𝑇 = 110. Given these set-

tings, ALTRO generates a valid nominal trajectory in 89.02 seconds.
Next, we use ABCD in order to compute feedback controllers toler-

ating additive disturbance𝑊 . We choose state and input spaces for

each vehicle’s model to be𝑋 = [−0.5, 15]×[0.1, 7.4]×[−1, 0.4] and
𝑈 = [−0.9, 3] × [−2.1, 2.1], respectively. State and input partition

sizes are chosen as 𝜂𝑋 = (0.02, 0.02, 0.02) and 𝜂𝑈 = (0.3, 0.15).
Tab. 2 shows run times and number of state-input pairs correspond-

ing to local and global ABCD. For 𝑁 > 1, memory requirement for

global ABCD exceeds memory limits. Fig. 6 demonstrates snapshots

of one sample trajectory when feedback controllers are employed

under the presence of disturbance. It should be noticed that us-

ing ALTRO alone would not provide guarantee against bounded

disturbance. Fig. 10 illustrates the fact that open-loop controller

fails in keeping one of the vehicles away from the road’s sides un-

der perturbed situation when constant additive disturbance vector

(−0.03, 0.03,−0.03) is being applied throughout the whole horizon.
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Figure 11: Comparison of open-loop and feedback con-
trollers for the formation control example
In contrast, employing a feedback controller results in successful

lane merging.

A.4 Multi-drone formation control
In the multi-drone formation control case study, the nominal dy-

namics for each of the drones is the same as that in Sec. A.1.

The disturbance set and robustness margin are chosen as |𝑊 | ≤
(0.03, 0.03, 0.03) and 𝜀 = (0.24, 0.24, 0.24). Distance between each
pair of drones positioned at the diamond’s vertices is set to be

𝜆𝑖, 𝑗 =
3
√
2

2 m for 𝑖, 𝑗 ∈ { 1, 2, 3, 4 }, while the drone positioned at the
center is supposed to keep distance 𝜆5, 𝑗 = 1.5m for 𝑗 ∈ { 1, 2, 3, 4 }.
Setting the minimum distance for obstacle avoidance to 𝛿 = 0.4
m and horizon length 𝑇 = 100, ALTRO finds a valid solution

over the product system with 15 state and 10 input variables

within 114.3 seconds. Next, we synthesize local controllers for

every drone such that the specifications hold for the perturbed

models with 𝜇 = 0.5 m. We consider state and input spaces to be

𝑋 = [−2, 17] × [−2, 17] × [0.6, 1.6] and𝑈 = [−0.9, 4.8] × [−3, 3],
respectively.We select𝜂𝑋 = (0.03, 0.03, 0.03) and𝜂𝑈 = (0.3, 0.15).
Tab. 2 shows the run times and number of state-input pairs corre-

sponding to local and global ABCD. Already for two drones, the

memory requirement for global ABCD exceeds the available mem-

ory of 1.5 TB of RAM. Fig. 7 illustrates four sequential frames of

a sample perturbed trajectory generated by employing feedback

controllers. Notice that both relative position and orientation be-

tween drones are kept (almost) constant throughout the journey.

On the other hand, using ALTRO alone would not provide guaran-

tee against bounded disturbance. Fig. 11 illustrates performance of

open-loop and feedback controllers on regulating distance between

two specific drones with and without disturbances. As expected, in

the absence of disturbances, the open-loop controllers suffice and

the distance between the two drones (shown in solid blue) does

not go below the threshold line (showed as the dotted line). How-

ever, when constant additive disturbance vectors (0, 0.03, 0.03) and
(0,−0.03,−0.03) are being applied to the two drones throughout

the whole horizon, open-loop controller fails, whereas the feedback

controller is still capable of maintaining distance above the given

threshold.
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