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Abstract
In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology
operations, using explicit cochain formulae for cup-i products of cocycles. He later
recast the construction in more general homological terms, using group homology
and acyclic model methods, rather than explicit cochain formulae, to define mod p
operations for all primes p. Steenrod’s student J. Adem applied the homological point
of view to prove fundamental relations, known as the Adem relations, in the algebra
of cohomology operations generated by the Steenrod operations. In this paper we
give a proof of the mod 2 Adem relations at the cochain level. Specifically, given
a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the
Adem relations among compositions of Steenrod Squares applied to the cocycle, using
Steenrod’s original cochain definition of the Square operations.
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1 Introduction

The primary goal of this paper is to produce explicit coboundary formulae that
yield the Adem relations between compositions of Steenrod Squares. There are
three main ingredients in our constructions. The first ingredient is a combinatorial
result that calculates the classical �n two-variable cochain operations of Steenrod
in the standard model BΣ2 of the classifying space of the symmetric group Σ2.
Our result implies the known calculation of Steenrod Squares in the cohomology
of BΣ2, without using the Cartan product formula, but it does more. The second
ingredient is the construction of certain very specific chain homotopies between
pairs of chain maps from chains on BV4 to chains on BΣ4, where V4 ⊂ Σ4 is
the normal subgroup of order 4 in the symmetric group. Chain homotopies pro-
duce explicit formulae that write differences of cycles as boundaries. The third
ingredient is the exploitation of certain operadic multivariable cochain operations
that extend Steenrod’s two-variable �n operations. The operad cochain operations
allow boundary formulae in the chains on BΣ4 to be interpreted as coboundary rela-
tions between cocycles on any space X , leading to the Adem relations. All these
ingredients will be previewed in the introduction, and carefully developed in the
paper.

Themotivation for our work arose as follows. In thework [6], on the Pontrjagin dual
of 4-dimensional Spin bordism, two of the authors of this paper studied a simplicial
set model of a three-stage Postnikov tower that represents this Pontrjagin dual functor.
To construct the tower as an explicit simplicial set, rather than just as a homotopy
type, we made use of a degree 5 cochain x(a), produced by the other author, with
dx(a) = Sq2Sq2(a)+Sq3Sq1(a) for a degree 2 cocycle a.Wewanted to understand a
simplicial set delooping of that Postnikov tower related to 5-dimensional Spin bordism.
To accomplish that, we needed a degree 6 cochain x(α) with dx(α) = Sq2Sq2(α) +
Sq3Sq1(α), for a degree 3 cocycle α. Despite the low degree, there does not seem to
be a simple coboundary formula for even that Adem relation. Rather than grind out by
direct computer computation a coboundary formula in that one case, we embarked on
our project of finding structured coboundary formulae for all Adem relations among
Steenrod Squares.

The Spin bordism project itself, along with the 3-dimensional version in [5] and
the combinatorial description of Pin− structures on triangulated manifolds in [7],
resulted from questions from the physicist Anton Kapustin about finding discrete
cochain/cocycle level descriptions of all invariants of the Spin bordism of classifying
spaces of finite groups G. His questions were related to topics in condensed matter
physics, connected to Spin bordism classification of principal G-bundles over low
dimensional triangulated Spinmanifolds, regarded as discrete latticemodels of various
phenomena [10,11].

In this introductory section of the paper we give some historical background, state
our main results, and roughly outline the proofs.
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1.1 Steenrod operations

1.1.1 The initial approach to cohomology operations dates back to the 1940’s and
1950’s. We denote the normalized chain complexes and cochain complexes with F2
coefficients of a simplicial set by N∗(X) and N∗(X). Steenrod defined his Squares in
terms of certain natural cochain operations �i : N p(X) ⊗ Nq(X) → N p+q−i (X).1

These operations arise by applying duality to a natural equivariant chain map
ÃWΔ : N∗(EΣ2) ⊗ N∗(X) → N∗(X) ⊗ N∗(X) constructed by Steenrod in [23].
Here, EΣ2 is a specific contractible Σ2-space and Σ2 acts in the obvious way on
the domain and switches the two factors of the range. For a cocycle α of degree k,
Sqk−i ([α]) = [α �i α], where [α] denotes the cohomology class of α.

Restricted to N0(EΣ2) ⊗ N∗(X) = F2[Σ2] ⊗ N∗(X) → N∗(X) ⊗ N∗(X), the
map ÃWΔ is an equivariant extension of the classical Alexander-Whitney diagonal
approximation.Wewill describe Steenrod’smap ÃWΔ in 3.2.1 and 3.2.2, but the theory
of acyclic models easily implies equivariant extensions of any diagonal approximation
do exist, and any two are equivariantly chain homotopic. Thus all choices of equivariant
maps extending some diagonal approximation lead to cochain operations like the �i

and these all define the same cohomology operations Sqk−i ([α]).
1.1.2 Steenrod realized early on that a more general theory of cohomology operations
could be formulated using the language of homology of groups, [25]. For any groupG
and a contractible free G-space EG, the homology of BG is given by the homology
of the coinvariant quotient complex N∗(EG)G = N∗(G\EG) = N∗(BG), defined
by setting x̃ ≡ gx̃ , all g ∈ G, x̃ ∈ N∗(EG). The cohomology of BG is given by the
cohomology of the invariant subcomplex N∗(EG)G .

Before sketching Steenrod’s group homology approach to cohomology operations,
we need a brief discussion of products. When working with products of spaces, one
needs to decide what chain complexes will be used to compute homology and coho-
mology. You can use normalized chain complexes of the product spaces or you can
use tensor products of complexes associated to the factors. These choices are related
by chain equivalences AW : N∗(X × Y ) → N∗(X) ⊗ N∗(Y ) of Alexander-Whitney,
and EZ : N∗(X) ⊗ N∗(Y ) → N∗(X × Y ) of Eilenberg-Zilber. Moreover, these chain
equivalences are functorial in X and Y and associative.

If X = Y the EZ map is equivariant with respect to the interchange of factors, but
the AW map is not. There are various ways to extend the AW map in an equivariant
manner. For example, following Dold [9], one can prove using acyclic models that
there exist Σn-equivariant chain homotopy equivalences

ÃW : N∗(EΣn) ⊗ N∗(X × · · · × X) → N∗(X) ⊗ · · · ⊗ N∗(X).

We can precompose such a map with Id⊗Δ∗, where Δ : X → Xn is the diagonal
x �→ (x, . . . , x). Thus, there are equivariant cochain maps

1 In this introduction, we grade cohomology in positive degrees, because that is more familiar. But in the
rest of the article we follow the more appropriate convention that grades cohomology in negative degrees.
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N∗(X)⊗n ˜AW
∗

−−−→ N∗(EΣn) ⊗ N∗(Xn)
Id⊗Δ∗−−−−→ N∗(EΣn) ⊗ N∗(X).

These maps restrict to maps of invariant subcomplexes. If α ∈ Nk(X) is a cocycle
then α⊗n is an invariant cocycle, which maps to a cocycle in the invariant complex
(N∗(EΣn)⊗ N∗(X))Σn , by the above composition. The cohomology of the invariant
complex (N∗(EΣn) ⊗ N∗(X))Σn is H∗(BΣn) ⊗ H∗(X).

Thus, in the composition above, the invariant cocycle α⊗n produces a coho-
mology class of degree nk in H∗(BΣn) ⊗ H∗(X), which evaluates on homology
classes in Hi (BΣn) ⊗ Hnk−i (X), giving a map Hi (BΣn) → Hnk−i (X). This was
Steenrod’s construction, defining cohomology classes in Hnk−i (X) as functions of
[x] ∈ Hi (BΣn) and [α] ∈ Hk(X). The non-zero element [xi ] ∈ Hi (BΣ2) gives rise
to the Steenrod Square Sqk−i ([α]).

A great advantage of the homology of groups approach was that it immediately
led to Steenrod’s reduced pth power operations Pi of degree 2i(p − 1), defined on
the cohomology of spaces with Fp coefficients for odd primes p. These operations
corresponded to certain elements in the Fp homology of the classifying spaces of
cyclic groups of order p that map non-trivially to generators of the Fp homology
of the symmetric group Σp. The specific construction mimics the discussion above,

using Dold’s ÃW map and invariant cocycles α⊗p in normalized cochain complexes
with Fp coefficients.

Then came the great work by Wu, Thom, Cartan, Serre, Adem, and others estab-
lishing all the important properties of Steenrod Squares and reduced pth powers as
cohomology operations, such as the Cartan product formula and the Adem relations
between certain sums of compositions of Steenrod operations. It was proved that
the Steenrod operations, along with cup products, generate all natural cohomology
operations defined on cohomology of spaces with Fp coefficients.2 The underlying
cochains were pushed to the background, including Steenrod’s original �n operations
in the p = 2 case. The Adem relations for all p were related to computations in the
homology ofΣp2 , or to computations of the cohomology of Eilenberg-Maclane spaces
K (Z/p, n).

1.1.3 It was certainly understood in the 1950’s that if one had explicit cochain formulae
for the chain equivalences AW , ÃW , and EZ , and if one exploited specific homotopies
to the identity of maps BΣp2 → BΣp2 defined by conjugations, and if one had a few
other explicit chain homotopies, then one could produce cochain level proofs of the
Cartan formula and the Adem relations.

However, such chain level manipulations were not really feasible. Not only that,
but acyclic G-spaces EG and the operations AW , ÃW , EZ were not even uniquely
defined, but rather only up to certain kinds of homotopies, so what would cochain
level proofs even mean? The method of acyclic models implied the existence of these
operations with certain homological properties, and methods emphasizing homology
and cohomology, rather than chains and cochains, were in vogue. The cohomological
proofs exploited the freedom to choose different contractible spaces EG with free G

2 For odd primes p, it is also necessary to include as a Steenrod operation the Bockstein operator β of
degree 1 associated to the coefficient sequence 0 → Z/p → Z/p2 → Z/p → 0. When p = 2, β = Sq1.
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actions, for various groups G. It was understood, by the method of acyclic models,
that any two contractible models for EG were equivariantly homotopy equivalent, and
any two equivariant maps between such models were equivariantly homotopic. This
gave the impression, forcefully stated by some authors, that cochain formulae were
unnatural, and obscured the true issues.

1.1.4 But it turns out that there are greatly preferred choices of models of acyclic
free G spaces EG, the AW and EZ maps, and in the case p = 2 a preferred choice
of the cochain operations �i , or equivalently the map ÃWΔ. In fact, the preferred
choice of the �i is Steenrod’s original definition. The second author has emphasized
the important properties of Steenrod’s definition of the �i , and has given axioms
characterizing that choice in [18].

The theory of operads extends Steenrod’s �i ’s to multivariable chain and cochain
operations that bring the chains for symmetric groups N∗(BΣn) into prominence,
not just the homology. Chains x ∈ Ni (BΣn) determine natural cochain operations
Nk(X) → Nnk−i (X), linear in x . Cycles x take cocycles to cocycles. If two cycles in
N∗(BΣn) differ by an explicit boundary, then the resulting cocycle operations applied
to a cocycle differ by an explicit coboundary. Precisely, (∂x)(α) = d(x(α)).

It is our belief that use of the preferred models and preferred cochain formulae
actually makes proofs of things like the Adem relations for p = 2 easier to fully
understand. That is essentially our goal in this paper. Our exposition in the paper is
rather leisurely, and the classical constructions due originally to Steenrod will all be
explained. We will also explain the operad methods that produce cochain and cocycle
operations with F2 coefficients.

1.2 Adem relations

1.2.1Nowwe will return to the discussion of our results on Adem relations. Of course
BΣ2 	 RP∞, the real projective space. One of our main results is a cochain level
computation of the �n products in N∗(BΣ2). First it is well-known, and easy, that in
a standard model the cochain algebra N∗(BΣ2) = F2[t], where t ∈ N 1(BΣ2) is dual
to x1, and t p ∈ N p(BΣ2) is dual to xp. The class xp is homologically represented by
the real projective space RP p. Our first main result is this:

Theorem 1.1 t i �n t j = (i
n

)( j
n

)

t i+ j−n ∈ N∗(BΣ2).

We derive this result purely combinatorially from Steenrod’s definition of the�i . In
fact, what we really evaluate is Steenrod’s equivariant chain map ÃWΔ : N∗(EΣ2) ⊗
N∗(BΣ2) → N∗(BΣ2)⊗N∗(BΣ2), and the cochain statement follows by duality.Our
result includes the evaluation of the Squares in projective space, Sqk(t i ) = (i

k

)

t i+k , a
result that is usually deduced as a consequence of the Cartan formula for the evaluation
of Squares on cup products of cohomology classes. We do not use the Cartan formula,
and we obtain more, namely the evaluation of all �n products in a specific cochain
complex N∗(BΣ2).

The binomial coefficients in Theorem 1.1 correspond to rather simple binomial
coefficient formulae for counting various kinds of partitions of integers, either exactly
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or mod 2. There is no need for strenuous binomial coefficient manipulations that one
often finds in proofs of Adem relations.3

1.2.2 Following Adem [1], we study classifying spaces BV4 ⊂ BD8 ⊂ BΣ4 at the
simplicial set level, where Σ4 denotes the symmetric group, D8 is the dihedral group,
and V4 is the normal Klein 4-group V4 ⊂ Σ4 containing the three products of disjoint
2-cycles. Of course V4 	 Σ2 × Σ2, generated by any two non-identity elements.
The dihedral group, of which there are three conjugate versions in Σ4, contains other
copies of Σ2 × Σ2. The D8 we work with contains the commuting 2-cycles b = (12)
and c = (34), and is generated by these elements along with a = (13)(24) ∈ V4. We
will work with the generators {a, bc} ∈ V4 	 Σ2 × Σ2. Note that conjugation in Σ4
by the element (23) interchanges the generators a = (13)(24) and bc = (12)(34) of
V4.4

The homology H∗(BV4) 	 H∗(BΣ2×BΣ2) is generated by products of projective
spaces RPq ×RP p. In specific simplicial chain complexes, these generators are given
by xq × xp = EZ(xq ⊗ xp), where EZ is the Eilenberg–Zilber map

EZ : N∗(BΣ2) ⊗ N∗(BΣ2) → N∗(BΣ2 × BΣ2) 	 N∗(BV4).

It is important to point out that the map EZ is pretty complicated, so xq × xp is
actually a sum of quite a large number of basic elements. Essentially, EZ amounts to
triangulating prisms.

With the models of contractible G spaces EG, and classifying spaces BG, that we
use, inclusions of groups H ⊂ G yield inclusions of simplicial sets EH ⊂ EG and
BH ⊂ BG, hence inclusions of normalized chain complexes, N∗(EH) ⊂ N∗(EG)

and N∗(BH) ⊂ N∗(BG). We thus have many such inclusions corresponding to our
chosen subgroups Σ2’s ⊂ V4 ⊂ D8 ⊂ Σ4. If we name an element in some set
associated to one of these groups, wewill generally use the same name for that element
viewed in the similar set associated to a larger group.5

1.2.3 The cycle xq × xp ∈ Nq+p(BV4) ⊂ Nq+p(BD8) ⊂ Nq+p(BΣ4) corresponds,
following 1.1.4, to a cocycle operation. We construct an explicit V4-equivariant chain
homotopy JΨ : N∗(EV4) → N∗+1(ED8), which induces on coinvariants a chain
homotopy JΨ : N∗(BV4) → N∗+1(BD8), so that the cycle xq ×xp+∂ JΨ (xq ×xp) ∈
Np+q(BD8) homologous to xq×xp corresponds to a very specific operation expressed
in terms of iterated Squares and �i products of Squares. The chain homotopy JΨ is
constructed using the preferred choices of AW and EZ maps, along with Steenrod’s
definition of the�i , and our explicit calculation of�i products in N∗(BΣ2). Although
the main result concerning cocycle operations is first expressed entirely in terms of
�i products, it will be more familiar to express it in terms of Square operations on a

3 An analogue of Theorem 1.1 for an equivariant map ÃWΔ : N∗(ECp; Fp) ⊗ N∗(BCp; Fp) →
N∗(BCp; Fp)

⊗p , where Cp is the cyclic group of order p, seems to be the main obstacle to extending our
results to odd primes p.
4 In the first few sections of the paper we use the disjoint cycle notation to name permutations. Later on, it
will bemore natural to name a permutation σ ∈ Σn as a function, written as a sequence (σ (1)σ (2) · · · σ(n)).
5 It does not seem all that controversial to call by only one name an element of a subset of various other
sets, and it saves substantially on notation.
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cocycle α ∈ Nn(X). For fixed cocycle degree n, the cocycle operation associated to
xq × xp has degree 3n − (q + p). Here is a precise statement.

Theorem 1.2 For a cocycle α ∈ Nn(X) we have

(xq × xp)(α) + d(JΨ (xq × xp)(α)) =
∑

	

(

p − 	

p − 2	

)

Sq2n−q−	Sqn−p+	(α)

+d(Nq,p,n(α)),

where Nq,p,n(α) is equal to

∑

0<a≤	∈Z[1/2];
a≡	 mod Z

(

p − 	 − a

p − 2	

)(

p − 	 + a

p − 2	

)

Sqn−p+	+a(α) �q−p+2	+1 Sqn−p+	−a(α).

By symmetry, we also have an explicit formula

(xp × xq)(α) + d(JΨ (xp × xq)(α)) =
∑

	

(

q − 	

q − 2	

)

Sq2n−p−	Sqn−q+	(α)

+ d(Np,q,n(α)).

In these formulae, d is the cochain coboundary in N∗(X). The existence of the
homotopies JΨ and JΨ is a special case of a general result, Theorem 2.2, proved
in 2.3.1. A general formula for these homotopies is given in Theorem 2.3. Study of
the underlying V4-equivariant map in our special case, Ψ : N∗(EV4) → N∗(ED8),
is carried out in the subsections of Sect. 4. This is where our explicit calculation of
Steenrod’s map ÃWΔ : N∗(EΣ2) ⊗ N∗(BΣ2) → N∗(BΣ2) ⊗ N∗(BΣ2) gets used.

1.2.4 The purely cohomological part of Theorem 1.2, that is, the terms involving
compositions of Squares, was established by Adem. But the proof was not easy, and
was rather hidden by his use of chain homotopies that were not made explicit. Our
proof, even at the cochain level with coboundary terms, is quite transparent once the
�n products in BΣ2 are computed. The binomial coefficients in Theorem 1.2 are
essentially just repetitions of the binomial coefficients in Theorem 1.1 with different
values of i, j, n.

1.2.5 We have observed in 1.2.2 that conjugation by (23) ∈ Σ4 interchanges our two
chosen Σ2’s in V4 	 Σ2 × Σ2. But an inner automorphism cg of a group G gives
rise to a very specific equivariant homotopy Jg on EG that induces a homotopy J g
between Id : BG → BG and Bcg : BG → BG. In our case, we then have a formula
at the cycle level

xq × xp + xp × xq = ∂ J (23)(xq × xp) ∈ N∗(BΣ4).

For g ∈ G, we give the general formula for Jg in 2.3.3.
We apply this last equation to a cocycle α and add that equation to the two equations

in Theorem 1.2. The result is the following cochain level formula:
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Theorem 1.3 For a cocycle α ∈ Nn(X) we have

∑

	

(

q − 	

q − 2	

)

Sq2n−p−	Sqn−q+	(α) +
∑

	

(

p − 	

p − 2	

)

Sq2n−q−	Sqn−p+	(α)

= d
(

(JΨ (xp × xq)(α) + Np,q,n(α) + JΨ (xq × xp)(α) + Nq,p,n(α)

+J (23)(xq × xp)(α)
)

.

And there you have it, a very specific cocycle/coboundary formulation of Adem
relations.

One interesting thing about the equivariant chain homotopies JΨ and J(23) is that
they are essentially given by exactly the same kind of formula, arising from a rather
general common underlying situation. Specifically, we mentioned above that any two
equivariant maps between contractible freeG complexes are equivariantly homotopic.
But with preferred models there is even a canonical way to choose equivariant homo-
topies. This will all be explained in due course.

Of course to fully explain Theorems 1.2 and 1.3, we need to clarify exactly how ele-
ments of N∗(BΣ4) act on cocycles. This will be accomplished using operad methods,
which we begin discussing in Sect. 1.3.

1.2.6Wewant to emphasize that the overall structure of our proof of theAdem relations
follows very closely the original proof of Adem [1]. As mentioned previously, Adem
proved the cohomological part of Theorem 1.2. Our combinatorial result Theorem 1.1
provides cochain details Adem lacked. In addition, in his proof of the cohomological
part of Theorem1.2,Ademdid not need an explicit V4-equivariant chain homotopy like
our JΨ , only that such a thing existed. Finally, Adem also used the inner automorphism
by the element (23) ∈ Σ4 to show that the elements xq × xp and xp × xq that are
distinct in the homology of V4 map to the same element in the homology of Σ4, hence
differ by a coboundary and define the same cohomology operation. He did not have
the structured method using operads to generate specific coboundary formulae, but
just the fact that a cohomology operation is determined by a homology class in the
symmetric group surely corresponded to some theoretically possible behind the scenes
explicit coboundary computations.

1.2.7 The relations in Theorem 1.3 do not look like the usual Adem relations that
express inadmissible compositions SqaSqb of Steenrod Squares, with a < 2b, as
sums of admissible compositions. The easiest way to recover the usual Adem relations
is to use the fact that the Steenrod Squares are stable cohomology operations, that is,
they commute with cohomology suspension. One looks at a high suspension sN [α] ∈
Hn+N (SN ∧ X) and identifies one of the relations for degree n + N cocycles in
Theorem 1.3 so that the binomial coefficients give exactly the usual Adem relation for
SqaSqb(sN [α)].6 We include this argument in an appendix.

1.2.8 Theorem 1.3 produces, for each cocycle degree n and pair (p, q), a relation
between Steenrod operations of total degree 3n − (p + q). With n and the sum p + q

6 We found this trick in some course notes of Lurie [12], although it probably goes back to Adem.
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fixed, these relations are highly redundant. We do not see how to use linear combina-
tions of these relations to single out a preferred coboundary formula for a given Adem
relation on degree n cocycles. The desuspension trick of 1.2.7 also does not single out
preferred coboundary formulae for Adem relations. Of course two different cobound-
ary expressions for a fixed relation differ by a cocycle, related to the indeterminacy of
secondary cohomology operations, and that might be something interesting to pursue.

1.3 Operads

1.3.1 In the early 2000’s the Surj operad was introduced, along with actions on tensors
of cochains generalizing Steenrod’s �n operations. The Surj operations are multivari-
able cochain operations, computed as sums of products of evaluations of different
cochains on faces of simplices (coface operations). The sums are parameterized by
certain diagrams. We review the sum over diagrams formulae for the �n in Sect. 3.2
and for the more general Surj operations in 5.3.2.

The results of this paper lead to computer algorithms for producing explicit Surj
operad formulae that can be used to define cochains whose boundaries are Adem
relations, in the form stated in Theorem 1.3. The formulae quickly involve sums of a
very large number of terms as the degrees of the relations and the cocycles increase.
We do believe that it is a theoretical advance to have the better understanding of Adem
relations that we establish in this paper. But it has limited practical use.

1.3.2 We will briefly review how operad methods give rise to an action of N∗(EΣn)

as multivariable cochain operations. We take this up in greater detail in Sect. 5. Given
a space X , we make use of three operads and operad morphisms7

E
T R−−→ S

Eval−−−→ End(N∗(X)).

The first is the Barratt–Eccles operad, with En = N∗(EΣn), the normalized chains on
the classical MacLane model of a contractible Σn simplicial set. The second operad is
theSurj operad, also called theStep operad or theSequence operad,whose construction
and action on tensors of cochains directly generalizes Steenrod’s original construction
of the �i products. The third operad End(C∗) for a cochain complex C∗ has operad
components End(C∗)n = Hom((C∗)⊗n,C∗), themultilinear cochain operations.We
remark that our constructions are applicable to any Barratt–Eccles algebra, i.e., a chain
complex A together with an operad morphism E → End(A). The Adem cochains
described in this paper are in this general case only as constructive as the morphism
defining the algebra structure.

1.3.3 The operad E was introduced in [2], and studied in great detail by Berger and
Fresse [3,4]. The Surj operad S was more or less simultaneously introduced by
Berger and Fresse and by McClure and Smith [17]. The operad components Sn are
free acyclic Σn chain complexes with F2 basis in degree k named by surjections

7 Strictly speaking we only use the F2 coefficient versions of these operads.
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s : {1, 2, . . . , n + k} → {1, 2, . . . , n} with s(i) = s(i + 1), all i . Each such surjection
gives rise to a multivariable cochain operation N∗(X)⊗n → N∗(X) that lowers total
degree by k, (when cochains are graded positively), and these operations define the
operad morphism Eval. When n = 2, the surjection named (1212 . . .) with 2 + k
entries corresponds to Steenrod’s operation �k . The operad morphism T R is called
table reduction and was introduced by Berger and Fresse as a way to explain how
simplices in EΣn , which can be regarded as tables consisting of some number of
permutations, act on tensors of cochains, via the Surj operad. The important thing for us
is that our chain homotopies JΨ : N∗(EV4) → N∗+1(EΣ4) and J(23) : N∗(EΣ4) →
N∗+1(EΣ4) take values in E . But by T R they are pushed over to S , and then to
cochain operations. We cannot see the needed chain homotopies directly inS .

1.3.4 In the paper [19], the second author carried out a program, somewhat similar
to the joint program here, for finding an explicit coboundary formula implying the
Cartan product formula for Steenrod Squares. In fact, both that work and the work in
this paper originated when we were working on the paper [6] and needed a specific
coboundary formula for the relation Sq2([a]2) = (Sq1[a])2 for a cocycle a of degree
2, which is simultaneously a Cartan relation and an Adem relation. Since that time, we
have figured out our much more structured explanations of both the Cartan formula
and the Adem relations in general for the mod 2 Steenrod algebra.

1.3.5 We did apply our computer algorithm to Theorem 1.3 with (q, p) = (4, 1) to
find a formula dx(α) = Sq2Sq2(α) + Sq3Sq1(α) for a degree 3 cocycle α. The class
x(α) desuspends to the class we used in [6] for the corresponding Adem relation in
one lower dimension.

In general, Theorem 1.3 with (q, p) = (4, 1) ultimately produces, for each cocycle
α of degree n, a formula writing a certain sum of Steenrod operations of total degree
3n − 5 applied to α as the coboundary of a cochain x(α) of degree 4n − 6. The Surj
formula used to define the cochain x(α) is a sum of 116 surjections {1, 2, . . . , 10} →
{1, 2, 3, 4} applied to the multi-tensor α⊗4, via the operad morphism Eval. Each such
surjection term gives a sum of coface operations parameterized by certain diagrams.
The number of diagrams, but not the surjections themselves, depends on n.

When n = 3, the diagrams for the Surj formula for the degree 6 cochain x(α) all
yield 0, except for 26 of the 116 surjections {1, 2, . . . , 10} → {1, 2, 3, 4}. The number
of diagrams, or coface expressions, associated to these 26 surjections is around 100.
So the coface operation formula for x(α) with dx(α) = Sq2Sq2(α) + Sq3Sq1(α) is
quite complicated, even for cocycles α of degree 3.

1.3.6 The paper [8] also makes use of operad methods to study actions of the mod
2 Steenrod algebra. Those authors’ goal was not to produce explicit coboundary for-
mulae for the Cartan and Adem relations, but rather to develop a universal operadic
treatment of contexts in which the Steenrod algebra acts, or equivalently, in which the
Cartan and Adem relations hold for some family of operations, somewhat similar to
what May carried out in his paper [15].

We believe our work is related to results that connect operads and higher structures
on cochain algebras to homotopy theory, as in [13,14,16,22]. It is clear that our proofs
of Theorems 1.2 and 1.3, especially the construction of the equivariant chain map
Ψ : N∗(EV4) → N∗(EΣ4) and the equivariant chain homotopy JΨ : N∗(EV4) →
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N∗+1(EΣ4) between Ψ and the inclusion map, bring into the open certain useful
structure inside theBarratt-Eccles operad that has perhaps not previously been noticed.

2 Simplicial sets and classifying spaces

In this sectionwe review some basic facts about simplicial sets, their chain and cochain
complexes, and some facts about classifying spaces BG for groups arising fromacyclic
spaces EG with free G actions. We also explain how using the join operation, the
Eilenberg–Zilber and Alexander–Whitney maps leads to explicit chain homotopies
between maps whose target is the chains on EG.

2.1 Simplicial sets and normalized chain complexes

2.1.1 Recall that a simplicial set X consists of a collection of sets {Xn}n≥0 indexed by
the natural numbers, together with face and degeneracy operators. If X is a simplicial
set and σ is in Xn , the set of “n-simplices" of X , then there is a unique simplicial map
s : Δn → X sending the top-dimensional simplex to σ , where Δn is the n-simplex,
regarded as a simplicial set with standard face and degeneracy operators. In particular,
the vertices of Δn are {0 < 1 < · · · < n} and the elements of Δn

k are non-decreasing
sequences (i0, i1, . . . , ik) of vertices. The degenerate simplices are those that repeat
at least one vertex. The degenerate n-simplices σ ∈ Xn are images of degenerate
n-simplices of Δn under the associated maps s : Δn → X . Products of simplicial sets
are simplicial sets with (X × Y )n = Xn × Yn , with the product face and degeneracy
operators. We sometimes use the word space for a simplicial set. Maps of spaces
always means maps of simplicial sets.

2.1.2 Naturally associated to simplicial sets are various chain and cochain complexes,
which have homology and cohomology groups. For any simplicial set X , let N∗(X)

denote the chain complex of normalized chains with F2 coefficients. Thus in degree
n, Nn(X) is the F2 vector space with basis the set of n-simplices Xn , modulo the
subspace generated by the degenerate simplices.

2.1.3 The boundary operator ∂ on N∗(X) is defined on a basic n-simplex to be the
sum of the codimension one faces. Given σ ∈ Xn there is the unique simplicial map
s : Δn → X with s(Δn) = σ . We can thus define the boundary formula universally
by

∂(i0, i1, . . . , in) =
n

∑

j=0

∂ j (i0, i1, . . . , in) =
n

∑

j=0

(i0, . . . ̂i j . . . , in),

where ̂i j means i j is deleted. It is easy to check that if σ is a degenerate simplex then
∂(σ ) = 0.

2.1.4 The normalized cochains are defined as the dual chain complex N∗(X) =
Hom(N∗(X), F2), where we regard F2 as a chain complex concentrated in degree
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0. Cochains thus lower degree, so the natural grading then is to regard N∗(X) as a
chain complex concentrated in negative degrees, and this will be our convention.8

Since cochains are in negative degrees, the adjoint coboundary operator d on N∗(X),
also lowers degree by one. So everything is a chain complex, and cochain complex
just means a chain complex concentrated in negative degrees.

2.1.5 The Eilenberg-Zilber functorial chain map EZ : N∗(X)⊗N∗(Y ) → N∗(X ×Y )

with F2 coefficients will play a prominent role in the paper. By naturality, the general
definition follows from the case X = Δn, Y = Δm . In this case, we simply triangulate
the prismΔn×Δm as the simplicial complexunderlying the product of posets (0 < 1 <

· · · < n)× (0 < 1 < · · · < m). The map EZ takes the tensor product of the universal
simplices of dimensions n andm to the sum of themaximal dimension simplices of the
product space. These n + m dimensional simplices correspond to strictly increasing
vertex sequences in the product poset order, (00 = i0 j0 < i1 j1 < · · · < in+m jn+m =
nm), where at each step one of the indices increases by 1 and the other is unchanged.
One can prove that EZ is a chain map either by working directly with these simplices
or by thinking geometrically and using ∂(Δn × Δm) = ∂(Δn) × Δm ∪ Δn × ∂(Δm).
We are working with F2 coefficients throughout, so orientation signs are irrelevant.

In the case m = 1, denote by EZh the composition EZh(z) = EZ(z ⊗ (0, 1))
displayed below,

N∗(Z)
Id⊗(0,1)−−−−−→ N∗(Z) ⊗ N1(Δ

1)
EZ−−→ N∗+1(Z × Δ1).

Then EZh is a (classical) universal chain homotopy between top and bottom faces of
cylinders,

(EZh ◦ ∂ + ∂ ◦ EZh)(z) = (z, (1, . . . , 1)) + (z, (0, . . . , 0)) ∈ N∗(Z × Δ1).

By naturality, it suffices to verify this when Z = Δn and z = (0, 1, . . . , n). Since EZ
is a chain map, we have

∂ ◦ EZ(z ⊗ (0, 1)) = EZ(∂z ⊗ (0, 1) + z ⊗ 1 + z ⊗ 0)

and the result is clear.
On the other hand, to make this more precise, one can write out sums for EZh(z)

and ∂ ◦ EZh(z) in the chain homotopy formula. The n + 1 dimensional simplices of
the convex prism Δn × Δ1 are joins of simplices on the bottom and top faces,

(00, 10, . . . , j0) ∗ ( j1, . . . , n1) = (00, . . . , j0, j1, . . . , n1).

Then EZh(z) = ∑

j (00, 10, . . . , j0) ∗ ( j1, . . . , n1) and ∂EZh(z) = ∑

j ∂
(

(00, 10, . . . , j0) ∗ ( j1, . . . , n1)
)

. Since the join operation on simplices just writes

8 Negative means ≤ 0 and strictly negative is < 0. The negative grading of cochains, which is the correct
way to do it, does require some extra thought at times by those accustomed to positive grading.
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the vertices of one simplex after those of another it is easy to understand the boundary
of the join of two simplices,

∂(a ∗ b) = ∂a ∗ b + a ∗ ∂b + ε(a) b + a ε(b),

where on the right the join operation is extended bilinearly and where ε : N∗(Δn) →
F2 is the linear map defined by ε(v) = 1 for vertices and is 0 for positive degree
simplices.

The join operation on simplices extends to a linear map of degree one ∗: N∗(Δn)⊗
N∗(Δn) → N∗(Δn), and the boundary formula above holds for all a ⊗ b. It follows
immediately that

(∂ ∗ + ∗ ∂)(a ⊗ b) = ε(a)b + aε(b).

The functorial Alexander-Whitney diagonal chain map AWΔ : N∗(Z) → N∗(Z) ⊗
N∗(Z) will also play a prominent role. Again by naturality it suffices to consider
Z = Δn and z = (0, . . . , n). The formula is

AWΔ(0, . . . n) =
∑

j

(0, . . . j) ⊗ ( j, . . . n).

For arbitrary simplicial sets Z this gives thewell-known sumof front faces of simplices
tensored with back faces. A direct computation shows that AWΔ is a chain map.
2.1.6 Consider a connected simplicial set X for which a degree one join operation
∗: N∗(X)⊗ N∗(X) → N∗(X) has meaning, and satisfies the boundary formula ∂(a ∗
b) = ∂a ∗ b + a ∗ ∂b + ε(a) b + a ε(b). Suppose we have two degree zero chain
complex morphisms φ0, φ1 : N∗(Z) → N∗(X) for some simplicial set Z . Given a
simplex generator z ∈ Zn , let j∂z mean front faces and let ∂n− j z mean back faces, of
degrees j and n − j . Consider

JΦ(z) =
∑

j

φ0(
j∂z) ∗ φ1(∂

n− j z) ∈ N∗+1(X).

Lemma 2.1 If Z is connected and if both φ0 and φ1 induce non-zero maps in degree
0 homology, then

(JΦ ◦ ∂ + ∂ ◦ JΦ)(z) = φ1(z) + φ0(z).

Proof We will give two proofs, one exploiting AWΔ and the other EZh . The assump-
tion that both φ0 and φ1 induce non-zero maps in degree 0 homology implies that for
any vertex v of Z both φ0(v) and φ1(v) are sums of an odd number of vertices of X ,
hence εφ0(v) = εφ1(v) = 1.

For the first proof we notice that the degree one map JΦ is the composition

N∗(Z)
AWΔ−−−→ N∗(Z) ⊗ N∗(Z)

φ0⊗φ1−−−−→ N∗(X) ⊗ N∗(X)
∗−→ N∗(X).
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Since the first two maps are chain maps, the boundary formula for ∗ implies

(JΦ ◦ ∂ + ∂ ◦ JΦ)(z) = (∂ ∗ + ∗ ∂) ◦ φ0 ⊗ φ1 ◦ AWΔ(z)

= φ1(z) + φ0(z),

where, denoting z0 = 0∂z and zn = ∂0z, we used for the last equality the fact that
εφ0(z0) = εφ1(zn) = 1.

For the second proof we first define a degree zero chain map

HΦ : N∗(Z × Δ1) → N∗(X)

that agrees for any chain maps φ0 and φ1 with (εφ0(z0))φ1(z) on the top copy Z ×1 of
the cylinder andwithφ0(z)(εφ1(zn)) on the bottom copy Z×0. Consider an n-simplex
in Z × Δ1, not on the top or bottom,

(t, u) = (t0, . . . , t	, t	+1, . . . , tn), (0 . . . , 0, 1, . . . , 1),

where there are 	 + 1 zeros and n − 	 ones in the Δ1 factor u. Set

HΦ(t, u) = φ0(t0, . . . , t	) ∗ φ1(t	+1, . . . , tn) ∈ Nn(X).

Using the join boundary formula, it is an exercise to prove that HΦ is indeed a chain
map.

We then observe that the degree one map JΦ is the composition

Nn(Z)
EZh−−→ Nn+1(Z × Δ1)

HΦ−−→ Nn+1(X).

Since HΦ is a chain map, with the assumption that εφ0(z0) = εφ1(zn) = 1 we have
again

(JΦ ◦ ∂ + ∂ ◦ JΦ)(z) = HΦ ◦ (EZh ◦ ∂ + ∂ ◦ EZh)(z)

= HΦ

(

(z, (1, . . . , 1)) + (z, (0, . . . , 0))
)

= φ1(z) + φ0(z)

as claimed. ��
The existence of a join operation on N∗(X) implies H∗(X; F2) 	 H∗(point; F2).

We remark that Lemma 2.1 can be proven with this much weaker hypothesis, using a
different chain homotopy JΦ . But the chain homotopy obtained using a join operation
leads to the construction of equivariant chain homotopies in the presence of group
actions, which will be very important in later sections of the paper. Another reason the
join is important is, as was shown in [20], that the join together with the Alexander–
Whitney diagonal and the augmentation ε define an E∞-structure on chain complexes
of simplicial sets, generalizing the one we describe in Sect. 5.3 below.
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2.2 Classifying spaces for discrete groups

Let G be a discrete group. We review here the MacLane model for a contractible left
G simplicial set EG and a classifying simplicial set BG = G\EG.

2.2.1TheMacLanemodel for EG has (EG)n equal to the set of ordered (n+1)-tuples
(g0, . . . , gn) of elements of G. The i th-face map is given by deleting the entry gi and
the i th degeneracy map is given by repeating gi . In particular, the degenerate simplices
of EG are those sequences that have the same group element as two successive entries.

There is a left action G × EG → EG given by

g(g0, . . . , gn) = (gg0, . . . , ggn).

This is a free action and the quotient is BG, the MacLane model for the classifying
space for G. We can identify BGn with n-tuples of elements in G by identifying the
orbit of (g0, . . . , gn) with [g−1

0 g1, . . . , g
−1
n−1gn]. With this representation of elements

in BGn the face maps are given by

∂0[h1, . . . , hn] = [h2, . . . , hn],
∂i [h1, . . . , hn] = [h1, . . . , hi−1, hi hi+1, . . . , hn],
∂n[h1, . . . , hn] = [h1, . . . , hn−1].

The degenerate simplices in BG are those sequences in which at least one entry is the
identity element.

2.2.2 This definition of EG is a special case of the classifying space of a category, the
category which has the elements of group G as objects and for every pair g, g′ ∈ G a
uniquemorphism between them.A simple proof that EG is contractible is given by the
observation that every element g ∈ G is a terminal object of the category underlying
EG.

BG is the classifying space of the quotient category of EG, the quotient having a
single object ∗ with Hom(∗, ∗) = G and with the composition operation being the
product in G. One can think of the map EG → BG as the map of classifying spaces
associated to the functor between the underlying categories that takes the morphism
(g0, g1) to the morphism g−1

0 g1. This assignment does preserve compositions since
g−1
0 g2 = (g−1

0 g1)(g
−1
1 g2).

2.3 Equivariant maps at the EG level

2.3.1 We will next prove a rather general fact stating that certain pairs of equiv-
ariant chain maps are equivariantly chain homotopic. Actually, results like this are
well-known, using acyclic model methods. But we want explicit equivariant chain
homotopies. Our result will be crucial for the ultimate goal of producing coboundary
formulae for Adem relations.

Theorem 2.2 Consider a group homomorphism ι : H → G between finite groups,
inducing a simplicial map ι : EH → EG, and a chain map ι∗ : N∗(EH) → N∗(EG).
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Note that ι∗ is ι-equivariant for the free actions of H on the domain and of ιH ⊂ G
on the range. Suppose Ψ : N∗(EH) → N∗(EG) is any ι-equivariant chain map that
induces the identity on

H0(EH) = F2 = H0(EG).

Then ι∗ andΨ are chain homotopic, by an ι-equivariant chain homotopy JΨ : N∗(EH)

→ N∗+1(EG).

Proof First we indicate a reason this should be true somewhat different from the usual
acyclic model argument. The equivariant chain mapΨ can be regarded as a zero-cycle
in the chain complex

Hom
F2[H ](N∗(EH), N∗(EG)).

Since N∗(EH) is free over the group ring F2[H ] and EG is contractible,

H0(HomF2[H ](N∗(EH), N∗(EG))) = H0(Hom(N∗(BH), F2)) = F2.

Thus, Hom(N∗(EH), N∗(EG)) contains only one non-trivial equivariant homotopy
class. ��
2.3.2 The explicit equivariant chain homotopy betweenΨ and ι∗ that we write down in
the next theorem is a special case of the chain homotopies constructed in Lemma 2.1
of 2.1.6. Note the join map of simplices extends to a multilinear map N j (EG) ⊗
Nk(EG)

∗−→ N j+k+1(EG) satisfying ∂(x ∗ y) = ∂x ∗ y + x ∗ ∂ y + ε(x) y + x ε(y).

Theorem 2.3 With ι andΨ as in Theorem2.2, a canonical equivariant chain homotopy
between ι∗ and Ψ is given by the formula

JΨ (h0, h1, . . . , hn) =
∑

j

ι∗(h0, h1, . . . , h j ) ∗ Ψ (h j , h j+1, . . . , hn).

Proof The ι equivariance of JΨ is obvious from the formula defining it. That JΨ
defines a chain homotopy is a direct consequence of Lemma 2.1 after noticing that
j∂(h0, . . . , hn) = (h0, . . . , h j ) and ∂ j (h0, . . . , hn) = (h j , . . . , hn). 9 ��
2.3.3 A special case of Theorem 2.2 is the map on chains induced by the right trans-
lation map of simplicial sets EG → EG given by x �→ xg−1, with ι = Id : G → G.
In this case, one actually obtains an equivariant homotopy Jg : EG × Δ1 →
EG between the identity and the map (g0, . . . , gn) �→ (g0g−1, . . . , gng−1) =
g−1(cg(g0), . . . , cg(gn)), where cg is conjugation by g. Applying equivariance, these
constructions project to a homotopy J g : BG×Δ1 → BG between the identity and the
map induced by inner automorphism cg . The chain homotopy N∗(EG) → N∗+1(EG)

9 We discussed aspects of this proof of Theorem 2.3, perhaps prematurely, in 2.1.6, because we wanted to
pave the way for Theorems 2.2 and 2.3. One can also prove Theorem 2.3 by a lengthy but straightforward
direct computation.
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produced by Theorem 2.3 coincides with the chain homotopy produced by the space
level homotopy. The formula is

Jg(g0, . . . , gn) =
∑

j

(g0, . . . , g j , g j g
−1, . . . , gng

−1).

2.4 The spaces E62 and B62

2.4.1 Of particular importance for us is the group G = Σ2 = {1, T }. In EΣ2
there are just two non-degenerate simplices in each dimension, which are x̃ p =
(T 0, T 1, . . . , T p) = (1, T , 1, . . . , T p) and T x̃ p = (T , 1, T , . . . , T T p). The (equiv-
ariant) boundary in the normalized chain complex is determined by ∂ x̃ p = T x̃ p−1 +
x̃ p−1, since all codimension one faces except the first and last are degenerate. In the
classifying space BΣ2 there is a single non-degenerate simplex in each dimension,
namely xp = [T , T , . . . , T ], which is a cycle. For normalized cochains, we have the
dual basis elements tp = x∗

p ∈ N−p(BΣ2) and˜tp = x̃∗
p, T˜tp = T x̃∗

p ∈ N−p(EΣ2).

2.4.2 Remark We make an observation about the simplices of EΣ2 and BΣ2 that
will be quite important later. This observation extends the above observation about the
chain boundary formula. In EΣ2, if we delete an interior interval, consisting of an odd
number of adjacent vertices of a non-degenerate simplex, the result is a degenerate
simplex. If we delete an interior interval consisting of an even number of vertices, or
any initial or terminal interval of vertices, the result remains a non-degenerate simplex.

It is slightly trickier understanding compositions of face operations in BΣ2. Of
course one can always just apply the observations in the paragraph above about degen-
erate and non-degenerate simplices in EΣ2 to the projection EΣ2 → BΣ2. But one
can also reason directly in BΣ2. From the general face operator formulae for BG in
2.2.1, the first or last basic face operator ∂0 or ∂p in BΣ2 applied to xp = [T , T , . . . , T ]
just deletes a first or last T , leaving the non-degenerate xp−1. But an interior basic face
operator multiplies two adjacent T ’s, resulting in a 1 entry and a degenerate simplex.
If now another adjacent interior face operator is applied, the 1 and a T are multiplied,
eliminating the 1 and resulting in the non-degenerate xp−2. Thus a composition of
adjacent interior face operators applied to xp results in a non-degenerate simplex if
and only if the number of adjacent interior face operators composed is even.

3 Cupn products

In the first two subsections of this section we explain Steenrod’s explicit enhanced
Alexander–Whitney chain map ÃWΔ : N∗(EΣ2)⊗N∗(X) → N∗(X)⊗N∗(X) that is
used to define�n products. Then in Sect. 3.3we compute the�n products in N∗(BΣ2)

and N∗(EΣ2), using some simple combinatorial facts about counting certain kinds of
partitions of integers.10 In particular, we prove Theorem 1.1 of the Introduction.

10 The proofs of the combinatorial facts are deferred to an appendix.
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3.1 Alexander–Whitney and Steenrodmaps

3.1.1We will make heavy use of the classical Alexander–Whitney map

AW : N∗(X × Y ) → N∗(X) ⊗ N∗(Y ).

Simplices of dimension n in a product simplicial set X × Y are given by pairs (X ×
Y )n = Xn × Yn . The map AW is defined universally on a basic product of simplices
Δn × Δn by

AW
(

(0, 1, . . . , n), (0, 1, . . . , n)
) =

n
∑

i=0

(0, 1, . . . , i) ⊗ (i, i + 1, . . . , n).

On a general pair of n-simplices (u, v), this yields by naturality the usual sum of front
faces of u tensor back faces of v.

We will call by the name AWΔ : N∗(X) → N∗(X) ⊗ N∗(X) the map which is
a chain approximation of the diagonal given by the composition AW ◦ Δ∗, where
Δ∗ is the chain map associated to the diagonal map of simplicial sets Δ : X →
X × X , Δu = (u, u). The cochain dual of AWΔ defines the cochain cup product
N∗(X) ⊗ N∗(X) → N∗(X).

The map AW for products of spaces is associative, hence unambiguously defied
for any number of factors. It is also natural in any number of factors. The diagonal
approximation map AWΔ for single spaces is natural and (co)associative.

3.1.2 For any space X there is an immensely important enhanced AW diagonal
approximation chain map ÃWΔ : N∗(EΣ2) ⊗ N∗(X) → N∗(X) ⊗ N∗(X), which
is a Σ2-equivariant chain map of degree 0. Here T ∈ Σ2 acts on N∗(EΣ2) in the
obvious way, fixes the copy of N∗(X) in the domain, and switches the two copies
of N∗(X) in the range. The map ÃWΔ was constructed by Steenrod using higher
homotopies between the diagonal approximations AWΔ and T AWΔ, [23]. The map
(̃AWΔ)0 : x̃0 ⊗ N∗(X) → N∗(X) ⊗ N∗(X) is a chain map, (since x̃0 is a cycle), and
identifies with AWΔ. The enhanced diagonal ÃWΔ is natural for maps X → Y . A
precise construction of ÃWΔ is given in Sect. 3.2 below.
3.1.3For n > 0, the cochain dual of themap (̃AWΔ)n : x̃n⊗N∗(X) → N∗(X)⊗N∗(X)

encodes the higher �n product. To be precise, given cochains α, β of degrees −p,−q
and a simplex u of dimension p + q − n, one has

〈α �n β, u)〉 = 〈α ⊗ β, ÃWΔ(̃xn ⊗ u)〉.

Since ÃWΔ is a chain map, it is a cycle of degree 0 in the complex

Hom(N∗(EΣ2) ⊗ N∗(X), N∗(X) ⊗ N∗(X)).
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This means 0 = ÃWΔ ◦ ∂ + ∂ ◦ ÃWΔ. Pursuing this, one obtains the coboundary
formula for the �n operations,

d(α �n β) = dα �n β + α �n dβ + α �n−1 β + β �n−1 α.

We can ignore signs since we have F2 coefficients.

3.1.4 From the coboundary formula, if α and β are cocycles then

d(α �n β) = α �n−1 β + β �n−1 α.

If α is a cocycle of degree−i then for 0 ≤ n ≤ i the Steenrod Square Sqnα = α �i−n

α is a cocycle of degree−(i+n). Then Sqi (α) = α2. If β is another cocycle of degree
−i then

Sqn(α + β) = (α + β) �i−n (α + β) = Sqn(α) + Sqn(β) + d(α �i−n+1 β),

so the Sqn are linear operations on cohomology classes. It is easy to see from the
direct combinatorial construction of ÃWΔ given in the next section that Sq0(α) =
α �i α = α.

Another property of Steenrod Squares that follows easily from Steenrod’s direct
definition is the commutativity of Squares with cohomology suspension. The proof of
this result seems almost awkward when expressed in terms of cohomology, [12,21]. In
the papers [5] and [6] we discovered and exploited the following cochain level formula
for the integral version of �n products:

s(x �i y) = (−1)deg(x)+i+1sx �i+1 sy,

where s is cochain suspension. This obviously implies quite a bit more than just the
fact that Steenrod Squares commute with cohomology suspension.11

3.1.5 It is easy to compute cup products in H∗(BΣ2) and H∗(EΣ2). For any EG, we
have the AW maps, which are G-equivariant,

AW ((g0, . . . , gn) × (h0, . . . , hn)) =
n

∑

i=0

(go, . . . , gi ) ⊗ (hi , . . . , hn),

AWΔ(g0, . . . , gn) =
n

∑

i=0

(g0, . . . , gi ) ⊗ (gi , . . . , gn).

Reducing mod the G action gives the AW maps for BG.
In the case G = Σ2 one can reason directly with the cells [T , T , . . . , T ] of BΣ2.

The result is easily seen to be AWΔ(xp) = ∑

i+ j=p xi ⊗ x j . Applying these formulae
to dual cochains in BΣ2, we get the cup product formula

ti � t j = ti+ j ∈ N∗(BΣ2).

11 We believe this to be an unnoticed or under-appreciated formula.

123



536 G. Brumfiel et al.

Thus the ring N∗(BΣ2) = F2[t], a polynomial ring on one generator t = t1 of degree
−1. This ring is also the cohomology ring H∗(BΣ2), since the differential is 0.

The AW formulae also reveal the cup products in N∗(EΣ2). Explicitly,

˜tp �˜tq =˜tp+q and˜tp � T˜tq = 0 if p is even,

˜tp �˜tq = 0 and˜tp � T˜tq =˜tp+q if p is odd.

The other products in N∗(EΣ2) are determined by T -equivariance.

3.2 Explicit definition of ˜AW1

3.2.1Wenow recall Steenrod’s explicit cochain formulae for�n products, [23]. In fact,
we will define Steenrod’s map ÃWΔ : N∗(EΣ2)⊗N∗(X) → N∗(X)⊗N∗(X). A sim-
plex u ∈ XN can be viewed as a simplicial mapΔN → X , so by naturality it suffices to
work on a simplex,ΔN = (0, 1, . . . , N ). Then ÃWΔ(̃xn⊗ΔN ) ∈ N∗(ΔN )⊗N∗(ΔN )

is a sum of tensor products of various faces of ΔN . Subsets I ⊂ (0, 1, . . . , N ) name
the faces of ΔN . The sum we want is indexed by a set, Diagrams(N ), of diagrams
consisting of two rows of non-empty intervals of the vertices of ΔN . The total num-
ber of intervals is n + 2, thus I1, I2, . . . , In+2. Every vertex of ΔN is in at least one
interval. For each 1 ≤ j ≤ n + 1, the final vertex of I j is the initial vertex of I j+1,
and this describes the only overlaps of the intervals. We require each interior interval
I2, I3, . . . In+1 to contain more than one vertex.

We alternate these intervals, with I1, I3, I5, . . . on the first row and I2, I4, . . . on the
second row. Visualize the intervals by inserting n+1 separating bars between vertices
of ΔN , then repeating the vertex after each bar. Thus

(I1|I2| . . . |In+2) = ((0, . . . , k1)|(k1, . . . , k2)| . . . |(kn+1, . . . , N )).

3.2.2 Here is Steenrod’s formula.

ÃWΔ(̃xn ⊗ ΔN ) =
∑

Diagrams(N )

(Iodd ⊗ Ieven), where Iodd =
⊔

j

I2 j−1

and Ieven =
⊔

j

I2 j .

In terms of a simplex u : ΔN → X , with faces denoted u(I ), the formula is

ÃWΔ(̃xn ⊗ u) =
∑

Diagrams(N )

u(Iodd) ⊗ u(Ieven) ∈ N∗(X) ⊗ N∗(X).

We extend ÃWΔ equivariantly, defining ÃWΔ(T x̃n ⊗ u) by switching the order of
the tensor product factors in ÃWΔ(̃xn⊗u). Given the intervals I j , we could also form a
diagram by putting the I1, I3, . . . on the second row and the I2, I4, . . . on the first row.
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So the equivariance amounts to a sum over diagrams vs a sum over inverted diagrams.
Of course, it is by no means obvious that ÃWΔ is a chain map. But Steenrod proved
that it is.

Now, given cochains α, β ∈ N∗(X) of degrees −i,− j with i + j − n = N , and
a simplex u of dimension N , Steenrod’s definition of the �n product becomes, by
duality, the following coface formula:

〈α �n β, u〉 =
∑

Diagrams(N )

〈α, u(Iodd)〉〈β, u(Ieven)〉.

3.2.3Remark For 1 ≤ k ≤ n+2, define |Ik | to be the number of vertices in Ik . For 2 ≤
k ≤ n+1 we have |Ik | ≥ 2. Possibly |I1| = 1 and/or |In+2| = 1. Of course a diagram
contributes 0 for a pair of cochains of degrees −i,− j unless i + 1 = |I1| + |I3| + · · ·
and j + 1 = |I2|+ |I4|+ · · · . We also notice that if n = 2m is even, then the intervals
are I1, I3, . . . , I2m+1 and I2, I4, . . . , I2m+2. So there are m + 1 intervals on the first
row and m + 1 intervals on the second row. If n = 2m + 1 is odd then the intervals
are I1, I3, . . . , I2m+3 and I2, I4, . . . , I2m+2. So there are m + 2 intervals on the first
row and m + 1 intervals on the second row.

3.3 Cupn products in E62 and B62

3.3.1 We will now embark on a calculation of all �n products in N∗(BΣ2) and
N∗(EΣ2). The computations will make use of some standard combinatorial formulae
for counting ordered partitions of positive integers.

We fix i, j, n and N = i + j − n. The only non-zero cochains and chains are
the dual pairs t i = x∗

i and t j = x∗
j . We distinguish the cases n = 2m even and

n = 2m + 1 odd. By Remarks 2.4.2 and 3.2.3, in the even case n = 2m the only
diagrams that give non-zero evaluations on t i ⊗ t j are the diagrams for which i + 1 =
|I1| + |I3| + · · · + |I2m+1| is a positive partition, with all terms other than |I1| even,
and also for which j + 1 = |I2| + · · · + |I2m+2| is a positive partition with all terms
other than |I2m+2| even.

The point here is that on the second row, where t j will be evaluated, the number
of vertices deleted between intervals I2k and I2k+2, k ≥ 1, is |I2k+1| − 2. Thus by
Remark 2.4.2, the j-face of xN named xN (Ieven) is degenerate unless all |I2k+1| are
even. Similarly, on the first row, the i-face of xN named xN (Iodd) is degenerate unless
all |I2k |, k ≤ m, are even.

In the same way by Remarks 2.4.2 and 3.2.3, in the odd case n = 2m + 1 the
only diagrams that give non-zero evaluations are the diagrams for which i + 1 =
|I1| + |I3| + · · · + |I2m+3| is a positive partition for which all but the first and last
terms are even, and also for which j + 1 = |I2| + · · · + |I2m+2| is a positive partition
with all terms even.

3.3.2We prove the following facts in an appendix.

Combinatorial fact 1. Let n = 2m + 1. The number mod 2 of positive ordered
partitions of i + 1 consisting of m + 2 terms with all but the first and last even, is the
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binomial coefficient
(i
n

)

mod 2. The number mod 2 of positive ordered partitions of

j + 1 consisting of m + 1 even terms is the binomial coefficient
( j
n

)

mod 2.

Combinatorial fact 2. Let n = 2m. The number mod 2 of positive ordered partitions
of i+1 consisting ofm+1 summands, all but the first even, is the binomial coefficient
(i
n

)

mod2. Thus also the numbermod 2 of positive ordered partitions of j+1 consisting

of m + 1 summands, all but the last even, is the binomial coefficient
( j
n

)

mod 2.

3.3.3 The key consequence of the combinatorial facts and the discussion preceding
those statements is the following, which repeats Theorem 1.1 of the introduction.

Theorem 3.1 For ÃWΔ : N∗(EΣ2) ⊗ N∗(BΣ2) → N∗(BΣ2) ⊗ N∗(BΣ2), we have
the chain formula

ÃWΔ(̃xn ⊗ xk) =
∑

i+ j=k+n

(

i

n

)(

j

n

)

xi ⊗ x j .

The equivalent cochain formula is

t i �n t j =
(

i

n

)(

j

n

)

t i+ j−n .

3.3.4 Remark The Steenrod Squares are defined for cocycles α of degree −i by
Sqm(α) = α �i−m α. Thuswe have computed the Steenrod Squares in N∗(BΣ2) by a
direct combinatorialmethod. The result is Sqm(t i ) = ( i

m

)

t i+m, using that
( i
m

) = ( i
i−m

)

and
( i
m

)2 ≡ ( i
m

)

mod 2. The usual proof of the formula for Steenrod Squares in real
projective space uses the Cartan formula. We have avoided the Cartan formula, and,
moreover we have computed all �n products in a model of real projective space.

3.3.5 We can also calculate the �n products in N∗(EΣ2). The method is the same,
based on Remarks 2.4.2 and 3.2.3, and the combinatorics of counting partitions. A
new wrinkle arises in the EΣ2 case dealing with the first interval I1 in the diagrams
for computing �n . In evaluating a �n product diagram on a cell (1, T , 1, . . . ), the
parity of |I1| determines whether the face to be evaluated on the second row begins
with 1 or T . If |I1| is even, the second row begins with T . But we know how to count
the appropriate partitions mod 2 when |I1| is even, and also when |I1| is arbitrary. So
the case |I1| odd will be the difference, or sum, of those numbers. Here is the result.

Theorem 3.2 For ÃWΔ : N∗(EΣ2) ⊗ N∗(EΣ2) → N∗(EΣ2) ⊗ N∗(EΣ2) we have
the chain formula

ÃWΔ(̃xn ⊗ x̃k) =
∑

i+ j=k+n

(

i + 1

n + 1

)(

j

n

)

x̃i ⊗ x̃ j +
(

i

n + 1

)(

j

n

)

x̃i ⊗ T x̃ j .
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A formula that includes all four evaluation cases for N∗(EΣ2) is given for b, a ∈
{0, 1} by

ÃWΔ(T bx̃n ⊗ T a x̃k) =
∑

ε=0,1

∑

i+ j=k+n

cε
n,k,i S

b(T a x̃i ⊗ T a+ε x̃ j ),

where

c0n,k,i =
(

i + 1

n + 1

)(

j

n

)

and c1n,k,i =
(

i

n + 1

)(

j

n

)

,

and where S switches the tensor factors.

Proof The first statement will be proved in the combinatorial appendix. The remaining
evaluations are determined by equivariance.

For example, applying T to the second variable x̃k , one uses naturality of
ÃWΔ : N∗(EΣ2) ⊗ N∗(X) → N∗(X) ⊗ N∗(X) in X . Applying T to the first variable
x̃n , one uses the equivariance that applies the operator S interchanging the two factors
in the range. ��

Note that we have

(

i

n + 1

)

+
(

i + 1

n + 1

)

=
(

i

n + 1

)

+
(

i

n

)

+
(

i

n + 1

)

≡
(

i

n

)

(mod 2),

in agreement with Theorem 3.1.

4 The chainmaps Phi and Psi

The main results Theorem 1.2 and Theorem 1.3 are proved in this section, modulo
explaining the operad method for extending Steenrod’s �n operations to multi-
variable cochain operations.12 The key steps in the proofs of Theorem 1.2 and
Theorem 1.3 amount to constructing some chain homotopies with target various com-
plexes N∗(EG), arising from certain equivariant chain maps. The needed equivariant
chain maps are constructed in Sects. 4.1 and 4.2. The maps they induce on chain
complexes are computed in Sects. 4.3 and 4.4 . The formulae for these chain maps
in Corollary 4.2 and Corollary 4.3 look somewhat complicated, but do not really
involve anything more than the classical Alexander–Whitney diagonal map and the
computation of the �n products in N∗(EΣ2).

From Sect. 2.3, certain pairs of equivariant chain maps are connected by canon-
ical chain homotopies. Theorem 4.4, Corollary 4.5 and Corollary 4.6 in Sect. 4.4
summarize these chain homotopy formulae in our special cases. Then in Sect. 4.5 we
summarize how these results imply Theorem 1.2 and Theorem 1.3, modulo explaining
how operad methods produce actions of various complexes N∗(EG) on multi-tensors
of cochains.

12 The operad discussion is carried out in Sect. 5.

123



540 G. Brumfiel et al.

4.1 Some dihedral group actions

4.1.1Let D8 be the dihedral group of order 8, with generators a, b, c. These generators
are all of order 2; [b, c] = 1; ab = ca; and ac = ba. These are the relations that hold
for the inclusion D8 ⊂ Σ4 given by b = (12), c = (34), a = (13)(24). Note that
V4 ⊂ D8 is the subgroup generated by {a, bc}.

We define a left action of D8 on N∗(EΣ2)⊗ N∗(EΣ2)⊗ N∗(EΣ2) as follows. Let
T be the generator of Σ2 with its natural action on N∗(EΣ2). Then

a(x ⊗ y ⊗ z) = T x ⊗ z ⊗ y,

b(x ⊗ y ⊗ z) = x ⊗ T y ⊗ z,

c(x ⊗ y ⊗ z) = x ⊗ y ⊗ T z.

One checks easily that these equations define a group action. Since N∗(EΣ2) is an
acyclic chain complex of free F2[Σ2]-modules, it is easy to see that this action makes
N∗(EΣ2)⊗N∗(EΣ2)⊗N∗(EΣ2) an acyclic chain complex of free F2[D8]-modules.

4.1.2 Next, since EZ is an associative operation on products of spaces, there is a
well-defined Eilenberg–Zilber map

EZ : N∗(EΣ2) ⊗ N∗(EΣ2) ⊗ N∗(EΣ2) → N∗(EΣ2 × EΣ2 × EΣ2).

We also give the range of this map a D8 action. In fact, D8 acts on the space EΣ2 ×
EΣ2 × EΣ2 by the same formulae on cell triples (x, y, z) of the same degree as
the above formulae on basic tensor triples. The space EΣ2 × EΣ2 × EΣ2 is then a
contractible, free D8 space. Themap EZ is equivariant with respect to the two actions.
The Alexander–Whitney map

AW : N∗(EΣ2 × EΣ2 × EΣ2) → N∗(EΣ2) ⊗ N∗(EΣ2) ⊗ N∗(EΣ2)

is equivariant for the actions of b and c, but not for the action of a.

4.1.3 The action of D8 on the product space EΣ2 × EΣ2 × EΣ2 is determined by
the action on the vertices Σ2 × Σ2 × Σ2, extended coordinate-wise to

(EΣ2 × EΣ2 × EΣ2)n 	 (Σ2 × Σ2 × Σ2)
n+1.

The free left action of D8 on vertices identifies the group D8 with the setΣ2×Σ2×Σ2,
viewed as the D8-orbit of (1, 1, 1). This identification determines a multiplication on
Σ2×Σ2×Σ2, making this set of triples into a group isomorphic to D8.Moreover, with
this group structure and the coordinatewise action of D8 on n-simplices of E(Σ2 ×
Σ2×Σ2) 	 EΣ2× EΣ2× EΣ2, we see that in fact we have defined an isomorphism
of simplicial sets EΣ2 × EΣ2 × EΣ2 	 ED8, as free D8 complexes.

The actual formula for the induced group product on triples Σ2 × Σ2 × Σ2 is
somewhat tricky. We can name the triples (T ε1 , T ε2 , T ε3), with ε j ∈ {0, 1}. Such a
triple is identified with the element cε3bε2aε1 ∈ D8. This is true because evaluating
that D8 element on (1, 1, 1) indeed yields (T ε1 , T ε2 , T ε3).
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To multiply triples, one simply computes products cδ3bδ2aδ1cε3bε2aε1 ∈ D8, using
the relations ac = ba, ab = ca, bc = cb to move aδ1 across cε3bε2 and to commute
b’s and c’s. The result will then have the form cγ3bγ2aγ1 , which translates to the
product of triples.13

4.1.4 Amuch simpler discussion applies to Σ2 ×Σ2 acting on N∗(EΣ2)⊗ N∗(EΣ2)

by the tensor product of the natural action of the group factors on the tensor factors,
and on N∗(EΣ2 × EΣ2) by the product action on the product space. Both the EZ
and AW maps are equivariant in this case.

Notice that the product EΣ2× EΣ2 is naturally identified with E(Σ2×Σ2). Thus,
we can view the Alexander–Whitney map as a map

AW : N∗(E(Σ2 × Σ2)) → N∗(EΣ2) ⊗ N∗(EΣ2).

It is equivariant with respect to the natural Σ2 × Σ2-actions.

4.2 Themap Phi

4.2.1We have the Alexander–Whitney diagonal map

AWΔ : N∗(EΣ2) → N∗(EΣ2) ⊗ N∗(EΣ2)

and the map of Steenrod

ÃWΔ : N∗(EΣ2) ⊗ N∗(EΣ2) → N∗(EΣ2) ⊗ N∗(EΣ2).

We form the composition below, Φ = (Id⊗ ÃWΔ) ◦ (AWΔ ⊗ Id),

N∗(EΣ2) ⊗ N∗(EΣ2) N∗(EΣ2) ⊗ N∗(EΣ2) ⊗ N∗(EΣ2)

N∗(EΣ2) ⊗ N∗(EΣ2) ⊗ N∗(EΣ2).

AWΔ⊗Id

Id⊗˜AWΔ

4.2.2 The following result will be important for the later construction of certain chain
homotopies.

Theorem 4.1 The composition Φ is equivariant with respect to the embedding

Σ2 × Σ2 → D8

that sends the generator of the first factor to a and the generator of the second factor
to bc. (This embedding coincides with the inclusion V4 ⊂ D8 as subgroups of Σ4.)

13 This product on triples can be viewed as a semi-direct product multiplication on D8 = Σ2� (Σ2×Σ2),
with the subgroup 〈a〉 = Σ2 acting by conjugation on the normal subgroup 〈b, c〉 = Σ2 × Σ2.
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Proof This follows for the involution in the first factor immediately from the fact that
AWΔ(T x) = (T ⊗ T )(AWΔ(x)) and ÃWΔ(T y ⊗ z) = S(̃AWΔ(y ⊗ z)), where S
denotes the switch of tensor factors. It follows for the involution in the second factor
from the fact that ÃWΔ(x ⊗ T y) = (T ⊗ T )(̃AWΔ(x ⊗ y)). ��

4.2.3 As an immediate consequence from the definition x̃q = (1, T , 1, . . . , T q) and
the definition of AWΔ we have the following.

Lemma The Alexander–Whitney diagonal approximation for the simplicial set
N∗(EΣ2) is given by

AWΔ(̃xq) =
q

∑

i=0

x̃i ⊗ T i x̃q−i

and

AWΔ(T x̃q) =
q

∑

i=0

T x̃i ⊗ T i+1 x̃q−i .

4.2.4 We recall from Theorem 3.2 that the map

ÃWΔ : N∗(EΣ2) ⊗ N∗(EΣ2) → N∗(EΣ2) ⊗ N∗(EΣ2)

is determined by Σ2 × Σ2 equivariance and the formula

ÃWΔ(̃xn ⊗ x̃k) =
∑

ε=0,1

∑

i+ j=k+n

cε
n,k,i x̃i ⊗ T ε x̃ j ,

where the coefficients cε
n,k,i are given in Theorem 3.2. Specifically, with j = n+k− i ,

c0n,k,i =
(

i + 1

n + 1

)(

j

n

)

and c1n,k,i =
(

i

n + 1

)(

j

n

)

.

Let us write out explicitly the composition Φ = (Id⊗ ÃWΔ) ◦ (AWΔ ⊗ Id). Thus,
for a ∈ {0, 1}, we have from Lemma 4.2.3 and the full version of Theorem 3.2 that
includes the equivariance

Φ(̃xq ⊗ T a x̃ p) =
q

∑

i=0

x̃i ⊗ ÃWΔ(T i x̃q−i ⊗ T a x̃ p)

=
q

∑

i=0

x̃i ⊗
⎛

⎝

∑

ε=0,1

p+q−i
∑

j=0

cε
q−i,p, j S

i (T a x̃ j ⊗ T a+ε x̃ p+q−i− j )

⎞

⎠ ,

(4.1)
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where S is the switch of factors. We also have

Φ(T x̃q ⊗ T a x̃ p) =
q

∑

i=0

T x̃i ⊗ ÃWΔ(T i+1 x̃q−i ⊗ T a x̃ p)

=
q

∑

i=0

T x̃i ⊗
⎛

⎝

∑

ε=0,1

p+q−i
∑

j=0

cεq−i,p, j S
i+1(T a x̃ j ⊗ T a+ε x̃ p+q−i− j )

⎞

⎠ .

(4.2)
In parsing these formulae, the subscriptsn, k, i, j in the expression for ÃWΔ(T bx̃n⊗

T a x̃k) of Theorem 3.2 become subscripts q − i, p, j, p+q − i − j in the expressions
for ÃWΔ(T bx̃q−i ⊗ T a x̃ p) that occur in identities (4.1) and (4.2).

4.3 Explicit computation of8

4.3.1 From the formulae in the previous subsection, along with equivariance, we can
deduce formulae for actions of Φ on certain quotients of the domain and range of Φ.
Consider the map formed from Φ by first dividing the domain of Φ by the involution
on the second factor of N∗(EΣ2) × N∗(EΣ2), and dividing the range of Φ by the
corresponding action of bc. Follow that by dividing the range ofΦ by the full subgroup
{b, c},

Φ : N∗(EΣ2) ⊗ N∗(BΣ2) → N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2).

From Formula (4.1) of 4.2.4, and since c0q−i,p, j + c1q−i,p, j = ( j
q−i

)(p+q−i− j
q−i

)

, we
have

Φ(̃xq ⊗ xp) =
q

∑

i=0

x̃i ⊗
⎛

⎝

p+q−i
∑

j=0

(

j
q − i

) (

p + q − i − j
q − i

)

Si (x j ⊗ xp+q−i− j )

⎞

⎠ .

(4.3)
In this summation, the binomial coefficient product is 0 unless 0 ≤ q − i ≤ j ≤ p.

We assume these inequalities going forward.14

4.3.2 We will rewrite the sum (4.3) so as to easily distinguish the symmetric and
non-symmetric terms in the second two tensor factors of the expression.

We set 	 = (p − q + i)/2, an element of Z[ 12 ]. We set a = p − 	 − j so that a is
congruent to 	 modulo Z. Also, 0 ≤ p − j = 	 + a and 0 ≤ j − q + i = 	 − a. Thus
−	 ≤ a ≤ 	.

14 The binomial coefficients arose when we were counting diagrams in Sect. 3.3 related to partitions of
integers that were used to compute �n products of cochains. Sometimes there are no diagrams of certain
shape that evaluate non-trivially on a tensor product of cochains of given dimensions. You do not need a
binomial coefficient formula to count the number of positive partitions of N into M > N summands.
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Wehave i = q−p+2	, j = p−	−a, q−i = p−2	, and p+q−i− j = p−	+a.
Substitute these values into the sum in Formula (4.3).

Φ(̃xq ⊗ xp) =
∑

−	≤a≤	;
a≡	 (mod Z)

(

p − 	 − a
p − 2	

)(

p − 	 + a
p − 2	

)

x̃q−p+2	 ⊗ Sq−p+2	(xp−	−a ⊗ xp−	+a).

(4.4)

The sum is finite since 	 ∈ Z[ 12 ] and 0 ≤ 	 ≤ p/2. We also must have 0 ≤
2	 + q − p. We can remove the powers of the switching operator S in Formula (4.4)
because for fixed 	 there is an S-invariant term with a = 0 and the other terms occur
in pairs with indices 	, a and 	,−a whose sum is invariant under Sq−p+2	.

Corollary 4.2 In N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2) we have

Φ(̃xq ⊗ xp) = Sq,p + NSq,p,

where the symmetric terms are

Sq,p =
∑

	

(

p − 	

p − 2	

)

x̃q−p+2	 ⊗ xp−	 ⊗ xp−	,

and the non-symmetric terms are

N Sq,p =
∑

−	≤a≤	; a =0;
a≡	 (mod Z)

(

p − 	 − a
p − 2	

) (

p − 	 + a
p − 2	

)

x̃q−p+2	 ⊗ xp−	−a ⊗ xp−	+a .

By symmetry, we also have a formula Φ(̃xp ⊗ xq) = Sp,q + NSp,q .

4.3.3 The map we have constructed

Φ : N∗(EΣ2) ⊗ N∗(BΣ2) → N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2)

is equivariant with respect to the remaining Σ2 actions on both sides. On the range,
this involution is T ⊗ S, where S switches the second and third factors. Φ passes to
the quotient to give a map that we will also call Φ,

Φ : N∗(BΣ2) ⊗ N∗(BΣ2) → (

N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2)
)

Σ2.

This last complex can also bewritten as
(

N∗(EΣ2)⊗N∗(EΣ2)⊗N∗(EΣ2)
)

D8
,where

D8 is the dihedral group acting freely as described in 4.1.1. As such, the homology of
this coinvariant complex is the homology of BD8.
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Corollary 4.3 We have

Φ(xq ⊗ xp) = ̂Sq,p + ∂̂NSq,p ∈ (

N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2)
)

Σ2
,

where

N̂ Sq,p =
∑

0<a≤	;
a≡	 (mod Z)

(

p − 	 − a
p − 2	

) (

p − 	 + a
p − 2	

)

[̃xq−p+2	+1 ⊗ xp−	−a ⊗ xp−	+a]

and where

̂Sq,p =
∑

	

(

p − 	

p − 2	

)

[̃xq−p+2	 ⊗ xp−	 ⊗ xp−	].

By symmetry, we also have a formula Φ(xp ⊗ xq) = ̂Sp,q + ∂̂NSp,q .

Proof After dividing by the last Σ2 action, we have in the coinvariant complex [T x̃ ⊗
y ⊗ z] = [̃x ⊗ z ⊗ y]. So we can combine pairs of terms in Corollary 4.2. Thus with
0 < a we have

[

x̃q−p+2	 ⊗ (xp−	−a ⊗ xp−	+a + xp−	+a ⊗ xp−	−a)
]

=
[

(̃xq−p+2	 + T x̃q−p+2l) ⊗ xp−	−a ⊗ xp−	+a

]

= ∂
[

x̃q−p+2	+1 ⊗ xp−	−a ⊗ xp−	+a

]

.

In parsing this formula and the statement of Corollary 4.3 it is useful to observe that
basis elements in the coinvariant complex

(

N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2)
)

Σ2

which are non-symmetric in the second two factors have unique names in the form
[T a x̃r ⊗ xs ⊗ xt ], with a ∈ {0, 1} and s < t . For symmetric elements, [̃xr ⊗ xs ⊗ xs] =
[T x̃r ⊗ xs ⊗ xs]. The result is then clear. ��

4.4 Themap Psi

4.4.1 In 4.1.3 we identified set-wise D8 = Σ2×Σ2×Σ2.We also implicitly translated
the product in D8 to a corresponding product of triples. The group action of D8 on the
left of simplices in E(Σ2 × Σ2 × Σ2) described in 4.1.2 then gives an identification
of free D8 simplicial sets ED8 = E(Σ2 × Σ2 × Σ2). We can also identify E(Σ2 ×
Σ2 × Σ2) with EΣ2 × EΣ2 × EΣ2.

123



546 G. Brumfiel et al.

4.4.2We form the composition below, Ψ = EZ ◦ Φ ◦ AW ,

N∗(EΣ2 × EΣ2)
AW−−→ N∗(EΣ2) ⊗ N∗(EΣ2)

Φ−→ N∗(EΣ2)

⊗N∗(EΣ2) ⊗ N∗(EΣ2)
EZ−−→ N∗(EΣ2 × EΣ2 × EΣ2) 	 N∗(ED8).

The last equivalence is fromour identification of the simplicial set ED8 with EΣ2×
EΣ2 × EΣ2 discussed just above.

The map Ψ is equivariant with respect to the inclusion Σ2 × Σ2 	 V4 ⊂ D8 that
sends the first generator to a and the second to bc. This holds because Φ has this
equivariance property by Theorem 4.1, and the AW and EZ maps are also suitably
equivariant.

Theorem 4.4 Let

ι∗ : N∗(E(Σ2 × Σ2)) → N∗(ED8)

be the inclusion induced by the inclusion ι : Σ2 × Σ2 	 V4 ⊂ D8. Then there is an
explicit ι-equivariant chain homotopy JΨ between Ψ and ι∗, given by the formula

JΨ (g0, g1, . . . , gn) =
∑

j

ι∗(g0, . . . , g j ) ∗ Ψ (g j , . . . , gn)

=
∑

j

(g0, . . . , g j , Ψ (g j , . . . , gn)).

Proof The statement is immediate from the equivariance we have established forΨ =
EZ ◦ Φ ◦ AW and Theorems 2.2 and 2.3 in 2.3.1 and 2.3.2. In degree 0, the map Ψ

is just the inclusion F2[Σ2 × Σ2] → F2[D8], hence the induced map on H0 is the
identity, so Theorems 2.2 and 2.3 do apply. ��
4.4.3 Now we set

x̃q × x̃ p = EZ (̃xq ⊗ x̃ p) ∈ N∗(EΣ2 × EΣ2)

xq × xp = EZ(xq ⊗ xp) ∈ N∗(BΣ2 × BΣ2).

Since AW ◦ EZ = Id, we see that AW (̃xq × x̃ p) = x̃q ⊗ x̃ p, and hence

Ψ (̃xq × x̃ p) = EZ(Φ(̃xq ⊗ x̃ p)).

An immediate consequence of Theorem 4.4 is the following:

Corollary 4.5

(∂ ◦ JΨ + JΨ ◦ ∂)(̃xq × x̃ p) = EZ(Φ(̃xq ⊗ x̃ p)) + (̃xq × x̃ p) ∈ N∗(ED8).

By symmetry we have

(∂ ◦ JΨ + JΨ ◦ ∂)(̃xp × x̃q) = EZ(Φ(̃xp ⊗ x̃q)) + (̃xp × x̃q) ∈ N∗(ED8).
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Let π∗ : N∗(EG) → N∗(BG) be the map induced by the projection to the quotient
forG = V4 	 Σ2×Σ2 andG = D8. The V4-equivariant homotopy JΨ : N∗(EV4) →
N∗+1(ED8) yields a commutative diagram

N∗(EV4) N∗+1(ED8)

N∗(BV4) N∗+1(BD8).

JΨ

π∗ π∗
JΨ

(4.5)

Corollary 4.6 With JΨ (xq × xp) = π∗ JΨ (̃xq × x̃ p) we have

∂ JΨ (xq × xp) = EZ(Φ(xq ⊗ xp)) + xq × xp ∈ N∗(BD8).

By symmetry we have

∂ JΨ (xp × xq) = EZ(Φ(xp ⊗ xq)) + xp × xq ∈ N∗(BD8).

Proof Follows from Corollary 4.6 since π∗∂(̃xq × x̃ p) = ∂(xq × xp) = 0. ��

4.5 A brief summary

4.5.1 In 2.3.3 we gave the general formula for a chain homotopy associated to an inner
automorphism of a group. Specializing to Σ4, and referring to the discussion in 1.2.5,
we get ∂ J (23)(xq × xp) = xp × xq + xq × xp ∈ N∗(BΣ4).

Combining with Corollary 4.6 just above, we then have an equality

∂ JΨ (xq × xp) + ∂ JΨ (xp × xq) + ∂ J (23)(xq × xp)

= EZ(Φ(xq ⊗ xp)) + EZ(Φ(xp ⊗ xq)) ∈ N∗(BΣ4). (4.6)

Four of the five terms here are actually in N∗(BD8). But recall the point made in 1.2.2
that we use the same names in N∗(BD8) ⊂ N∗(BΣ4).

To complete the proofs of Theorems 1.2 and 1.3, which were stated in 1.2.3 and
1.2.5 and which the reader should review, we will explain how to ‘evaluate’ every term
in Formula (4.6) on a cocycle α ∈ N−n(X), using an action of elements in N∗(BΣ4)

on symmetric tensors of the form α ⊗ α ⊗ α ⊗ α. We will explain such an action in
Sect. 4 in terms of operads. The sum of the five evaluations of the terms in Formula
(4.6) will be 0, which will be seen to be equivalent to Theorem 1.3. The proof of
Theorem 1.2 will be a more direct application of Corollary 4.6.

4.5.2 It turns out that the operad method allows us to suppress the EZ step in the two
terms on the right-hand side of Formula (4.6) above, and directly apply Φ(xq ⊗ xp)
and Φ(xp ⊗ xq), which lie in

(

N∗(EΣ2) ⊗ N∗(BΣ2) ⊗ N∗(BΣ2)
)

, to a symmetric
tensor. These two terms were computed in Corollary 4.2 in 4.3.2, as sums of triple
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tensors. The direct evaluation of x̃r ⊗ xs ⊗ xt on a symmetric tensor will follow from
Lemma 5.1 in 5.3.4. The result is

(̃xr ⊗ xs ⊗ xt )(α
⊗4) = (α �s α) �r (α �t α) = Sqn−s(α) �r Sqn−t (α),

where deg(α) = −n. Note that if s = t then Sqn−s(α) �r Sqn−s(α) =
Sq2n−s−r Sqn−s(α).

Bringing in the formulae of Corollary 4.3, which are explicit sums of triple tensors
with various coefficients and subscripts (which the reader should review and compare
with Theorem 1.2), we find that Corollary 4.3 and Lemma 5.1 imply the formulae
stated originally in the introduction as Theorem 1.2. Specifically, from Corollary 4.3,
the evaluation of Φ(xq ⊗ xp) on a symmetric tensor α⊗4 consists of evaluating the
symmetric part ̂Sq,p of Φ(xq ⊗ xp), which yields by Lemma 5.1 the sum of iterated
Steenrod Squares appearing in Theorem 1.2, and evaluating the non-symmetric part
∂̂NSq,p, which yields the coboundary of the sum of �r products of Squares in The-
orem 1.2. Similarly for Φ(xp ⊗ xq). Thus, evaluating the terms in Corollary 4.6 on
α⊗4 completes the proof of Theorem 1.2.

4.5.3 The meaning of the evaluation of the three boundary terms on the left-hand side
of Formula (4.6) on a symmetric tensor α⊗4, producing three coboundary terms in
N∗(X), will be explained in 5.4.4. Then the vanishing of the sumof the five evaluations
of the terms in (4.6), combined with the discussion of Theorem 1.2 in Sect. 4.5.2 just
above, very easily translates to the statement of Theorem 1.3.

4.5.4 In a strong sense, our main theorem is really Formula (4.6) in 4.5.1. For each
pair q > p, Formula (4.6) can be rewritten as a relation R(q, p) = 0 ∈ Nq+p(BΣ4),
where R(q, p) is a sum of five terms. Explicit formulae for all five of these terms have
been given at various points in our paper. In fact, before applying equivariance to the
chain homotopies JΨ and J(23), we actually gave formulae for all five terms in the
sum

˜R(q, p) = ∂ JΨ (̃xq × x̃ p) + ∂ JΨ (̃xp × x̃q) + ∂ J(23)(̃xq × x̃ p)

+ EZ(Φ(̃xq ⊗ x̃ p)) + EZ(Φ(̃xp ⊗ x̃q)) ∈ Nq+p(EΣ4). (4.7)

The sum ˜R(q, p) ∈ Nq+p(EΣ4) projects to the sum R(q, p) ∈ Nq+p(BΣ4), and
in the operad method to be described in Sect. 5 it is actually ˜R(q, p) that is directly
evaluated on symmetric tensors α⊗4, with the result depending only on R(q, p).
Conceptually it is not so difficult to write a computer program for calculating the
˜R(q, p) ∈ Nq+p(EΣ4), and we have done so, but the output gets extremely large,
even for q + p ≈ 10. A positive way to look at this is that each R(q, p) corresponds
to infinitely many different (unstable) Adem relations, obtained as in Theorem 1.3 by
evaluating R(q, p) on a symmetric tensor α⊗4, where the cocycle α can have any
degree.
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5 Operads

At the beginning of this section we introduce some basic terminology about operads.
We describe the symmetric group operad in the category of sets and the endomorphism
operads in the category of chain complexes as examples. In Sects. 5.2 and 5.3 we
introduce the Surj operad, S = {Sn}n≥1, also an operad of chain complexes, and
describe how each chain complex Sn acts on n-fold tensors of cochains on spaces
X . The action of S2 coincides with Steenrod’s two-variable �n products. Then we
explain in Lemma 5.1 how the operad structure exhibits iterations of �n products as
part of the action of S4.

In Sect. 5 we introduce the Barratt–Eccles operad E with En = N∗(EΣn). The
operad E acts on multi-tensors of cochains via an operad morphism T R : E → S .
The operad morphism T R is very important in our paper because our key chain
homotopies all have values in E , and we need to push those chain homotopies to S
to obtain explicit cochain operations and complete the proofs of the main theorems.

5.1 Introduction

5.1.1 Recall that a symmetric operad, [16], P in a monoidal category is a collection
of objects P = {Pn}n≥1 of the category together with structure maps

Pr × (Ps1 × · · · × Psr ) → Ps1+···+sr ,

satisfying composition and symmetry rules for Σn actions on Pn , and a unit rule for
P1.
5.1.2 Let us define the operad in the category of sets determined by the symmetric
groups. We denote an element σ ∈ Σn by the sequence (σ (1) . . . σ (n)), which is the
reordering of (1 . . . n) given by applying the permutation.15

The symmetric groups {Σn}n≥1 form an operad where the operad structure

Σr × (Σs1 × · · · × Σsr ) → Σs1+···+sr

is given by dividing the interval [1, s1 + . . . + sr ] into disjoint blocks of lengths
s1, . . . , sr , starting from the left, and then first permuting the elements of the i th block
among themselves by applying the conjugation of the element of Σsi by the unique
order preservingmap from the i th block to {1, . . . , si }. This produces an automorphism
of each block. The blocks with their new internal orderings are then permuted among
themselves, according to the element of Σr .16

5.1.3As a simple example, consider the operad structure mapΣ2×(Σ2×Σ2) → Σ4.
We have the embedding D8 ⊂ Σ4, with a �→ (3412), b �→ (2134), c �→ (1243).

15 For the remainder of the paper we will write permutations in this form, rather than as products of disjoint
cycles.
16 One can also first permute the r blocks using σ ∈ Σr , keeping the entries of each original block in their
consecutive order. Then apply the σi ∈ Σsi . To keep straight how each permutation is applied, it helps to
pretend that r , s1, . . . , sr are distinct integers.
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It is easy to see from the block description of the operad structure map that the triple
(T ε1, (T ε2 , T ε3)) ∈ Σ2 × (Σ2 × Σ2) maps to the permutation cε3bε2aε1 ∈ D8 ⊂ Σ4.
Here, εi ∈ {0, 1}.

Thus, the operad structure map is a bijectionΣ2×(Σ2×Σ2) 	 D8, and, moreover,
this bijection coincides with the bijection D8 	 Σ2 × (Σ2 × Σ2) studied in 4.1.3.
The induced product on the triples (T ε1, (T ε2 , T ε3)) ∈ Σ2 × (Σ2 × Σ2) thus also
coincides with the product on triples from 4.1.3.

5.1.4 For a vector space or a chain complex V there is the Endomorphism operad,
with

End(V )n = Hom(V⊗n, V ),

with the obvious operad structure and action of the symmetric groups. To give V the
structure of an algebra over a symmetric operad P is to give a map of symmetric
operads P → End(V ).

5.2 The Surj operadS

In this subsection and the next we follow McClure and Smith [17].

5.2.1 We view a function {1, . . . , r + d} → {1, . . . , r} as a sequence of integers
A = (a(1) . . . a(r + d)), each in the interval [1, r ]. Fix r and consider the F2-vector
space with basis the set of all maps {1, . . . , r+d} → {1, . . . , r}. We form the quotient
vector space, denotedSr (d), by setting equal to zero all sequences (a(1) . . . a(r +d))

that are either not surjective functions or have a(i) = a(i +1) for some i < r +d. We
define a chain complex structure onSr . The boundary of a basis element ofSr (d) is

∂
(

a(1) . . . a(r + d)) =
∑

i

(a(1) . . . â(i) . . . a(r + d)
) ∈ Sr (d − 1).

Of course, this means that any terms in the sum that are either non-surjective functions
or have the property that two successive entries are equal are set to zero. One sees
easily that this defines a chain complex denoted Sr .

5.2.2 There is the obvious left action of Σr on Sr given by post-composition of
a function with a permutation of {1, . . . , r}. The operad structure on S , which we
will not define explicitly, is compatible with these actions. This means that S is a
symmetric operad. For each r ≥ 1, the action of Σr onSr is a free action and it turns
out, [17], thatSr is an acyclic resolution of F2 over F2[Σr ]. Hence, the homology of
the coinvariant complex (Sr )Σr is identified with H∗(BΣr ).

5.2.3 The basis of S2(n) consisting of alternating sequences of 1’s and 2’s of length
n+2 matches the basis of Nn(EΣ2) consisting of alternating sequences of 1’s and T ’s
of length n + 1, by dropping the last entry of a 1, 2 sequence. The Σ2 actions and the
boundary formulae also coincide. Thus we can identify S2 and N∗(EΣ2). The full
operad operations in the Surj operad S are quite complicated. However, on degree
zero chains, S2 ⊗ (S2 ⊗ S2) → S4 coincides with the map F2[D8] → F2[Σ4]
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induced by the dihedral group inclusion D8 → Σ4 for the symmetric group operad,
as described in 5.1.3. In all degrees, the axioms for permutation group actions on
symmetric operads imply that

N∗(EΣ2) ⊗ (N∗(EΣ2) ⊗ N∗(EΣ2)) = S2 ⊗ (S2 ⊗ S2) → S4

is equivariant for the inclusion D8 → Σ4.

5.3 Action of the Surj operad on normalized cochains

5.3.1 The normalized cochain complex of a simplicial set X , N∗(X), is an algebra
over the Surj operad. That is to say there are chain maps that we will describe in the
next subsection

OX : Sr ⊗ N∗(X) ⊗ · · · ⊗ N∗(X)
︸ ︷︷ ︸

r− times

→ N∗(X).

This means that (i) the degree of OX (ζ ⊗ α1 ⊗ · · · ⊗ αr ) is the sum of the degrees of
the αi plus the degree of ζ , and (ii)

d(OX (ζ ⊗ α1 ⊗ · · · ⊗ αr ))

= OX

{

∂(ζ ) ⊗ (α1 ⊗ · · · ⊗ αr ) +
∑

i

ζ ⊗ (α1 ⊗ · · · ⊗ dαi ⊗ · · · ⊗ αr )
}

.

Also, the OX satisfy certain associativity and equivariance properties.
Recall our convention that N∗(X) is negatively graded. This means that the oper-

ation OX (ζ ) decreases the sum of the absolute values of the degrees of the αi by
deg(ζ ).

The operations OX , natural in X , implicitly determine the operad structure maps
forS . In fact, any finite part ofS injects into End(N∗(Δk)) for large k.

5.3.2 We will describe the action of a function A = (a(1) . . . a(n + r)) ∈ Sr (n)

on multi-tensors of cochains. For each k, we consider a set of r -step diagrams,
Diagrams(A, k), associated to certain collections of n + r subintervals of [0, k]. By
this we mean a division of [0, k] into non-empty intervals I1, I2, . . . , In+r so that the
final point of each interval agrees with the initial point of the next interval. The interval
I j is said to be at level a( j). There is one extra condition, which is that for any j = j ′,
if the intervals I j and I j ′ are at the same level, then they are disjoint. For a given level
1 ≤ 	 ≤ r , set I (	) = ⊔

a( j)=	 I j , which we interpret as a face of the simplex Δk .
The generator A = (a(1) . . . a(n + r)) ∈ Sr (n) acts in the following manner. Let

α1 ⊗ · · · ⊗ αr be a multi-tensor of cochains of total degree −(n + k). The operad
algebra structure OX will assign to A ⊗ (α1 ⊗ · · · ⊗ αr ) a cochain of degree −k. Let
u ∈ Nk(X) be a simplex of dimension k, regarded as a simplicial map u : Δk → X .
Then

〈OX (A ⊗ (α1 ⊗ · · · ⊗ αr )), u〉 =
∑

Diagrams(A,k)

∏

	

〈α	, u(I (	))〉.
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With this definition the element (1212 . . .) inS2(n) acts by17

α ⊗ β �→ α �n β.

5.3.3 The coinvariant chain complex of the Σr action on Sr acts on Σr -symmetric
cochains in N∗(X)⊗r as follows. Let ζ ∈ Sr (n)Σr . Lift ζ to an element˜ζ ∈ Sr (n).
The element˜ζ determines a map

N∗(X)⊗r → N∗(X)

raising degree by n.18 Another lift will give a different map, but elements in the same
Σr orbit have the same restriction to the Σr -invariant elements in N∗(X)⊗r .

Thus, we have a well-defined chain map

(OX )Σr : (Sr )Σr ⊗ (

N∗(X) ⊗ · · · ⊗ N∗(X)
︸ ︷︷ ︸

r− times

)Σr → N∗(X).

Restricting even further to symmetric cocycles of the form α ⊗α ⊗· · ·⊗α, a cycle
in Sr (n)Σr determines a map from cocycles of degree k ≤ 0 to cocycles of degree
rk + n. The induced operation on cohomology depends only on the homology class
of ζ . In this way Hn(BΣr ) acts as cohomology operations

Hk(X) → Hrk+n(X).

In the special case when r = 2 the operation associated to

[(1212 . . .
︸ ︷︷ ︸

(n+2)

)] ≡ [(1T 1T . . .
︸ ︷︷ ︸

(n+1)

)] = xn ∈ Nn(BΣ2)

sends a symmetric cochain (α ⊗ α) ∈ Nk(X) ⊗ Nk(X) to α �n α ∈ N 2k+n(X). In
the case when α is a cocycle, the result of this operation is a cocycle representing the
cohomology class Sq |k|−n([α]).
5.3.4 In particular, we are interested in the operad product

S2 ⊗ (S2 ⊗ S2) → S4.

This is a map of an acyclic complex with a free action of the dihedral group D8 to
an acyclic complex with a free Σ4-action. Of course,S2 is identified with N∗(EΣ2).
This allows us to consider

Φ(̃xq ⊗ x̃ p) ∈ N∗(EΣ2) ⊗ (N∗(EΣ2) ⊗ N∗(EΣ2))

17 We defined �n as a sum over two-step diagrams in 3.2.1, 3.2.2, using the terminology odd and even for
levels 1 and 2.
18 Again recall cochains are negatively graded.
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as an element of the domain of this operad product, where the map Φ was defined in
4.2.1. From 5.2.3, the operad product is equivariant with respect to the inclusion of
D8 ⊂ Σ4 that sends the elements b and c in the dihedral group to the permutations
(2134) and (1243) respectively, and sends the element a in the dihedral group to
(3412). The following is an important observation.

Lemma 5.1 Under the operad composition S2 ⊗ (S2 ⊗ S2) → S4, the element
x̃r ⊗ (̃xs ⊗ x̃t ) maps to an element of S4 that acts on a cochain α1 ⊗ α2 ⊗ α3 ⊗ α4
to produce

(α1 �s α2) �r (α3 �t α4).

Proof We will not prove this by directly passing through S4, but rather by using the
operad morphism S → End(N∗(X)). We have the identification S2 	 N∗(EΣ2)

of 5.2.3, with �q= (12121...) ↔ x̃q . The operad morphism sends x̃r ⊗ (̃xs ⊗ x̃t ) to
the endomorphism operad element �r ⊗(�s ⊗ �t ). Acting on N∗(X)⊗4, this gives
the composition

N∗(X)⊗4 = N∗(X)⊗2 ⊗ N∗(X)⊗2 �s⊗�t−−−−→ N∗(X) ⊗ N∗(X)
�r−→ N∗(X),

which is exactly the claim of the lemma. ��

5.4 The Barratt–Eccles operad E

Here we follow the presentation of Berger–Fresse [4].

5.4.1 The Barratt–Eccles operad is an operad in the category of chain complexes with
Er = N∗(EΣr ). The E operad structure map

Er ⊗ (Es1 ⊗ · · · ⊗ Esr ) → Es1+···+sr

is a composition of the operad structure on symmetric groups and the Eilenberg-Zilber
map

EZ : N∗(EΣr ) ⊗ (N∗(EΣs1) ⊗ · · · ⊗ N∗(EΣsr )) → N∗(EΣr × (EΣs1 × · · · × EΣsr )).

post-composition of EZ with the map of normalized chain complexes induced by the
set theoretic map

Σr × (Σs1 × · · · × Σsr ) → Σs1+···+sr ,

which is the structure map of the symmetric group operad described in 5.1.2.
As is the casewith the Surj operad, the Barratt-Eccles operad is a symmetric operad:

the natural actions ofΣr on Er are compatible with the operad structures. Furthermore,
Er is a free F2[Σr ] resolution of F2.
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5.4.2 Berger–Fresse define an operad morphism T R : E → S , which they call Table
Reduction. Since Table Reduction is an operad map, for any simplicial set X the
normalized cochains N∗(X) form an algebra over the Barratt-Eccles operad.

For completeness in this paper, we include here a definition of the Table Reduction
morphism. Given a basis element (σ0, . . . , σn) ∈ Er (n) we define

T R(σ0, . . . , σn) =
∑

a

sa ∈ Sr (n)

as a sum of surjections

sa : {1, . . . , n + r} → {1, . . . , r}

parametrized by all tuples of integers a = (a0, . . . , an)with each ai ≥ 1 and such that
a0 + · · · + an = n + r . For one such tuple a we now describe its associated surjection
sa as a sequence sa = (sa(1), sa(2), . . . , sa(n + r)).

Consider the following “table" representation of the generator of Er (n):

σ0(1) · · · σ0(r)
σ1(1) · · · σ1(r)

...
. . .

...

σn(1) · · · σn(r) .

Each line of the table is a permutation of {1, 2, . . . , r}. The first a0 entries of the
sequence sa are the first a0 entries of the permutation on the first line of the table. The
first a0 − 1 of these values, that is, all except the last one, are then removed from all
lower permutation lines of the table.

The next a1 entries in the sequence sa are the first a1 entries remaining in the second
line of the table. The values of all except the last of these are then removed from all
lower lines in the table. The process forming the sequence sa continues in this way.
The final an entries of the sequence will consist of all remaining entries on the last
line of the table after the first n steps of the process.

For more details on this map we refer the reader to the original treatment in [4].
The component E2 in the Barratt–Eccles operad is N∗(EΣ2) = S2. On these

components of the operads, Table Reduction is the identification of E2 withS2 given
above.

We shall use the following commutative diagram

N∗(EΣ2) ⊗ (N∗(EΣ2) ⊗ N∗(EΣ2)) N∗(EΣ4)

S2 ⊗ (S2 ⊗ S2) S4,

T R ⊗(T R ⊗T R) T R

where the horizontal arrows are the Barratt-Eccles and Surj operad structure maps.
These maps are equivariant with respect to the inclusion D8 ⊂ Σ4.

The Barratt–Eccles operad map

N∗(EΣ2) ⊗ (N∗(EΣ2) ⊗ N∗(EΣ2)) → N∗(EΣ4)
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is the composition of

EZ : N∗(EΣ2) ⊗ N∗(EΣ2) ⊗ N∗(EΣ2) → N∗(E(Σ2 × Σ2 × Σ2))

with the map

N∗(E(Σ2 × Σ2 × Σ2)) → N∗(EΣ4)

induced by the group homomorphism (T , 1, 1) �→ a = (3412); (1, T , 1) �→ b =
(2134); (1, 1, T ) �→ c = (1243), which defines our chosen group inclusion D8 ⊂
Σ4.19

5.4.3 Recall from 4.3.3 that Φ(xq ⊗ xp) ∈ (S2 ⊗ S2 ⊗ S2)D8 . It is exactly the
commutativity of the above diagram, and the fact that EZ is part of the E operad
structure, that explains our remark in Sect. 4.5.2 that we can evaluate EZΦ(xq⊗xp) ∈
N∗(BD8) ⊂ N∗(BΣ4) = (E4)Σ4 on a cocycle α ∈ N∗(X) by directly evaluating
Φ(xq ⊗ xp) ∈ (S4)Σ4 on α⊗4. The actual formula in terms of Steenrod Squares and
�r products, then comes from Corollary 4.3 and Lemma 5.1. We have now completed
one of the last steps in the proofs of the main Theorems 1.2 and 1.3, as summarized
in Sect. 4.5.

5.4.4All that remains in the proofs of Theorems 1.2 and 1.3 from the summary in Sect.
4.5 is to explain how Table Reduction is used to evaluate the three boundary terms

∂ JΨ (xq × xp), ∂ JΨ (xp × xq), ∂ J (23)(xq × xp) ∈ N∗(BΣ4)

from Formula (4.6) in 4.5.1 on a cocycle α. Since Table Reduction is aΣ4-equivariant
chain map, it induces a chain map of coinvariant complexes T R : N∗(BΣ4) →
(S4)Σ4 . Each of the three J terms is an element of N∗(BΣ4). We then have three
versions of T R(∂ J ) = ∂(T R J ) ∈ (S4)Σ4 . Given a cocycle α, we evaluate each of
these three boundaries on the symmetric 4-tensor α⊗4, using theS algebra structure
of N∗(X) as described in 5.3.2 and 5.3.3. We thus have

(∂ T R J )(α⊗4) = d (T R J (α⊗4)) ∈ N∗(X).

This last expression, for each of the three J ’s, is what we abbreviated as d(J (α)) in
the original statement of Theorem 1.3. All we have done here is clarify precisely the
operad mechanism alluded to in 1.1.4 by which chains in N∗(BΣ4) act on cocycles α.

5.4.5 We have implemented Table Reduction as part of a computer program, along
with all the other ingredients needed to make explicit our coboundary formulae for
Adem relations. Note that as explained in 5.3.3 and discussed in 4.5.4, for each of the
cochains

J = JΨ (̃xq × x̃ p), JΨ (̃xp × x̃q), J(23)(̃xq × x̃ p) ∈ N∗(EΣ4),

19 It is here that we use the identification of the group operation on triples with D8 that we discussed in
4.1.3 and 5.1.3.
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it is really the lifts T R J ∈ S4 of the T R J that we evaluate directly on α⊗4. For fixed
(q, p), the computer output for the T R J ∈ S4 is much smaller than the computer
output for the J ∈ N∗(EΣ4). For a cocycle α ∈ H−n(X) with fixed small n, there
is significant further reduction since many surjection generators in S4 contribute 0
when evaluated on α⊗4. Nonetheless, our coboundary formulae for Adem relations
quickly get very lengthy, even for cocycles and relations of low degree.

This completes our discussion of the main Theorems 1.2 and 1.3.

6 Combinatorial appendix

The first two subsections of the final section of the paper provide proofs of the com-
binatorial facts about counting partitions that we used to compute the �n operations
in N∗(BΣ2) and in N∗(EΣ2). Then in Sect. 6.3 we provide the details that exploit
commutativity of Steenrod operations with suspension to deduce the standard form
of Adem relations from the form given in Theorem 1.3. We find it interesting that
this argument proves somewhat more, namely that some of the coboundary terms in
our unstable cochain level Adem relations also commute with cochain suspension. It
seems like a good question whether cochain versions of unstable Adem relations can
be found that completely commute with cochain suspension.

6.1 Counting ordered partitions

6.1.1We begin with the following well-known statement about counting ordered par-
titions. The goal is to prove Combinatorial Facts 1 and 2 from 3.3.2 that were used to
evaluate �n products in N∗(BΣ2) and N∗(EΣ2).

Lemma 6.1

(i): The number of non-negative ordered partitions of an integer N into M summands
equals the coefficient of x N in (1 + x)N+M−1, hence is given by the binomial
coefficient

(N+M−1
N

)

. The number of such partitions is also (more obviously) given
by the coefficient of x N in the expansion of (1 + x + x2 + · · · )M.

(ii): The number of positive ordered partitions of N into M summands is
( N−1
N−M

) =
(N−1
M−1

)

.

Proof (i): We give a correspondence between individual terms of degree N in the
expansion of (1 + x)N+M−1 and non-negative ordered partitions of N into M
summands. The individual terms in the expansion can be viewed as sequences of
0’s and 1’s of length N + M − 1, based on whether in each factor (1 + x) one
selects the 1 = x0 or the x = x1. Such a sequence consists of blocks of 0’s and 1’s.
Remove one 0 from each block of 0’s that lies between two blocks of 1’s. Then the
associated ordered partition of N will consist of all the remaining 0’s and positive
integers corresponding to the number of 1’s in each original block of 1’s.
For the second statement in part (i), in the expansion of (1 + x + x2 + · · · )M , to
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get a term xN one must choose some power xnk in the kth factor so that n1 + n2 +
· · · + nM = N .

(ii): We pass from non-negative partitions to positive partitions by adding 1 to each
summand. Thus, the number of positive ordered partitions of N into M summands
is the same as the number of non-negative partitions of N −M into M summands,
which is the binomial coefficient

( N−1
N−M

) = (N−1
M−1

)

.
��

6.1.2Now let’s consider ordered partitions of N into M , M + 1, or M + 2 summands,
with M specific summands even.

Lemma 6.2

(i): The number of non-negative partitions of N into M even summands is the coef-
ficient of X N in the expansion (1 + x2)N+M−1, which is also the coefficient of
x N in (1 + x2 + x4 + · · · )M. This is the same mod 2 as the coefficient of x N in
(1 + x + x2 + · · · )2M, which is

(N+2M−1
N

) = (N+2M−1
2M−1

)

, by Lemma 6.1(i).
(ii): The number mod 2 of positive partitions of N into M even summands is

( N−1
N−2M

) = ( N−1
2M−1

)

.

(iii): The number mod 2 of positive partitions of N into M + 1 summands, all but the
first even (or all but the last even) is

( N−1
N−(2M+1)

) = (N−1
2M

)

.

(iv): The number mod 2 of positive partitions of N into M + 2 summands, all but the
first and last even, is

( N−1
N−(2M+2)

) = ( N−1
2M+1

)

.

Proof (i) and (ii): The first statement is essentially the same as Lemma 6.1(i). We then
count mod 2, and use the fact that (1+ x2 + x4 + · · · )M ≡ (1+ x + x2 + ...)2M mod
2. To count positive even partitions, we add 2 to each non-negative term of a partition
of N − 2M into M even pieces.

(iii): First we count the number mod 2 of non-negative partitions of N into M + 1
terms where all terms except the first term, or all terms except the last term, are even.
The count is the coefficient of xN in

(1 + x + x2 + · · · )(1 + x2 + x4 + · · · )M ≡ (1 + x + x2 + · · · )2M+1.

The answer from Lemma 6.1 is
(N+2M

N

)

. To get positive such partitions, subtract
2M + 1 from N .

(iv): The mod 2 arithmetic first takes us to the coefficient of xN in

(1 + x + x2 + . . .)(1 + x2 + x4 + · · · )M (1 + x + x2 + · · · ) ≡ (1 + x + x2 + · · · )2M+2

to count non-negative such partitions. The answer is
(N+2M+1

N

)

. To get positive such
partitions subtract 2M + 2 from N , which means subtract 2 for each even piece and
1 for the other two pieces. ��

123



558 G. Brumfiel et al.

6.2 Proofs of Theorems 3.1 and 3.2

6.2.1 We now deduce Combinatorial Fact 1 stated in 3.3.2. For odd n = 2m + 1, we
first want to partition N = j + 1 into M = m + 1 positive even terms. The count,
explained in Lemma 6.2(ii) above, is

( j
2m+1

) = ( j
n

)

.
We have also covered the other part of Combinatorial Fact 1, where N = i + 1 is

partitioned into m + 2 positive pieces, all but the first and last even. The answer from
Lemma 6.2(iv) is

( i
i−(2m+1)

) = (i
n

)

.
One gets in the same way the claims of Combinatorial Fact 2, when n = 2m is

even. We partition N = i + 1 into m + 1 positive pieces, all but the first even. The
count from Lemma 6.2(iii) is

( i
i−2m

) = (i
n

)

.
The combinatorial facts just established imply Theorem 3.1.

6.2.2 Finally we prove Theorem 3.2. In the computation for EΣ2, with |I1| even, we
need when n = 2m the number mod 2 of partitions of N = i + 1 into m + 1 positive
even summands. By Lemma 6.2(ii) above, this is

( i
2m+1

) = ( i
n+1

)

. When n = 2m + 1
and |I1| is even we need the number mod 2 of partitions of N = i + 1 into m + 2
positive summands, all but the last even. This is also calculated in Lemma 6.2(iii)
as

( i
2m+2

) = ( i
n+1

)

. When |I1| is arbitrary, the previous counts were
(i
n

)

in both the
n even and n odd cases. This means the counts with |I1| odd is the sum mod 2,
( i
n+1

) + (i
n

) = (i+1
n+1

)

, which implies the statements in Theorem 3.2.

6.3 Manipulations with the relations

6.3.1We first want to use the relations in Theorem 1.3 to prove the Adem relations in
their usual form, expressing an inadmissible composition SqaSqb, a < 2b, as a sum
of admissible compositions,

SqaSqb =
∑

i

(

b − 1 − i

a − 2i

)

Sqa+b−i Sqi .

Of course we want cochain level versions of these relations, writing differences of
specific cocycles as coboundaries.

To keep the notation here consistent with the statement of Theorem 1.3, we will
grade cocycles in positive degrees. In 3.1.4, we pointed out that on the cocycle level
s(α �i α) = sα �i+1 sα, where s is cochain suspension. This is a strong form at the
cocycle level of the commutativity of Squares with suspension. It then suffices to prove
the standard Adem relation on cocycles of very high degree n, since, by desuspending,
it will also hold on cocycles of lower degree. In fact, a specific cochain level relation
in high degree desuspends to a cochain level relation in lower degrees. It is unclear
how such desuspended relations compare to the unstable relations of Theorem 1.3,
although there do exist simply described algorithms for computing such desuspensions
in terms of Surj operations or coface operations.
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First, fix a and b. Withm large, we set n = 2m −1+b, p = 2m −1, q = 2n−a.20

Thus a = 2n−q, b = n− p. Suppressing the cocycle α of degree n, the cohomology
relation in Theorem 1.3 is

∑

	

(

q − 	

q − 2	

)

Sq2n−p−	Sqn−q+	 +
∑

	

(

p − 	

p − 2	

)

Sq2n−q−	Sqn−p+	 = 0.

In the right-half sum, 	 = 0 gives SqaSqb. Since p = 2m − 1, all its base 2 expansion
coefficients are 1’s. Recall that if A = ∑

ai2i and B = ∑

bi2i , with ai , bi ∈ {0, 1},
then

(A
B

) = ∏ (ai
bi

)

(mod 2). Thus, for 	 > 0 all the binomial coefficients
( p−	
p−2	

) ≡ 0

(mod 2), since if 2i is the greatest power of 2 dividing 	 then one will see
(0
1

)

in the

i th factor of the formula for
( p−	
p−2	

)

.

In the left-half sum, set i = n − q + 	. Then the Square terms are Sqa+b−i Sqi .
The corresponding binomial coefficients are

(

q − 	

q − 2	

)

=
(

q − 	

	

)

=
(

n − i

	

)

=
(

n − i

q − n + i

)

=
(

n − i

2n − q − 2i

)

=
(

n − i

a − 2i

)

=
(

2m + b − 1 − i

a − 2i

)

≡
(

b − 1 − i

a − 2i

)

(mod 2).

The last congruence holds because m is large, so the 2m just adds an irrelevant 1 in
the base 2 expansion. This proves the usual Adem relation formula.

One can also show directly that linear combinations of the relations in Theorem 1.3
for any fixed cocycle degree express inadmissible compositions SqaSqb(α) as sums
of admissible compositions, plus specific coboundaries. But that argument is recursive
and does not lend itself to determining Adem’s general binomial coefficient formulae.

6.3.2 We want to make one more point about the method of 6.3.1 that finds the exact
Adem relations for inadmissible compositions SqaSqb by stabilizing the cocycle
dimension and using commutativity of Squares with suspension. We fixed a, b and
chose n = 2m − 1 + b, p = 2m − 1, q = 2n − a. The integer m can vary. We then
examined the relation of Theorem 1.3 for these choices of (n, p, q). But Theorem 1.3
contains more than cohomology information.21 Specifically, Theorem 1.3 is a cocycle
formula with coboundary terms.

Among the coboundary terms are d(Nq,p,n(α)), affiliatedwith the right-half Square
terms in Theorem 1.3, and d(Np,q,n(α)), affiliated with the left-half Square terms.
The affiliations are from Theorem 1.2. The point of 6.3.1 was that some binomial
arithmetic showed that both halves of the Square terms in Theorem 1.3 did not change
as m increased. Specifically, these Square terms gave the usual Adem relations for

20 We found these values of n, p, q in some lecture notes of Lurie, [12], although they probably go back
to Adem.
21 This was the whole point of the paper!
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SqaSqb. Our new point here is that also the expressions for Nq,p,n(α) and Np,q,n(α),
given in Theorem 1.2, are stable under cochain suspension, asm varies. First consider

Nq, p, n(α) =
∑

0<a≤	∈Z[1/2];
a≡	 mod Z

(

p − 	 − a

p − 2	

)(

p − 	 + a

p − 2	

)

Sqn−p+	+a(α) �q−p+2	+1

× Sqn−p+	−a(α).

If m increases by 1, then n, p and q − p increase by 2m , and q increases by 2m+1.
So n − p is unchanged. Set M = 2m . Then

Nq+2M, p+M, n(s
Mα) = sM Nq, p, n(α).

The proof involves binomial arithmetic, similar to what was done in 6.3.1, and also
the cochain suspension formula for �r ’s mentioned in 3.1.4 that reads sx �r+1 sy =
s(x �r y). The binomial arithmetic is easy and uses that if p = 2m − 1 and 0 < a <

	 ≤ p/2 then

(

2m + p − 	 − a

2m + p − 2	

)(

2m + p − 	 + a

2m + p − 2	

)

≡
(

p − 	 − a

p − 2	

)(

p − 	 + a

p − 2	

)

(mod 2),

since the 2m’s just add irrelevant 1’s on the left end of the base two representations of
all the other numbers occurring in the binomial coefficients.

We also get

Np+M, q+2M, n(s
Mα) = sM Np, q, n(α).

This is trickier. Note increasing m by 1 decreases both n − q and p − q by M = 2m .
Also, the binomial arithmetic is a bit trickier because in analyzing the summation with
binomial coefficients one needs to work with a new variable j with 	 = M + j . This
also takes care of the �p−q+2	+1 product of two Square terms, so that the cochain
suspension formula for �r ’s still works out.

It is unclear, to put it mildly, how the other coboundary terms in Theorem 1.3
behave under these same 2m-fold cochain suspensions. It seems that it would be quite
a nice result if a priori, preferred coboundary formulae for Adem relations could be
found that are compatible under cochain suspension. This would allow constructions
of simplicial set three-stage Postnikov tower spectra that would seem interesting,
extending the (easy) constructions of simplicial set, suspension compatible, two-stage
Postnikov tower spectra. The first serious example would be the 2-type of the sphere
spectrum, with homotopy groups Z, Z/2, Z/2 in degrees 0, 1, 2.
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