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Gravitational waves from the coalescence of compact-binary sources are now routinely observed by Earth
bound detectors. The most sensitive search algorithms convolve many different precalculated gravitational
waveforms with the detector data and look for coincident matches between different detectors. Machine
learning is being explored as an alternative approach to building a search algorithm that has the prospect to
reduce computational costs and target more complex signals. In this work we construct a two-detector search
for gravitational waves from binary black hole mergers using neural networks trained on nonspinning binary
black hole data from a single detector. The network is applied to the data from both observatories
independently and we check for events coincident in time between the two. This enables the efficient
analysis of large quantities of background data by time-shifting the independent detector data. We find that
while for a single detector the network retains 91.5% of the sensitivity matched filtering can achieve, this
number drops to 83.9% for two observatories. To enable the network to check for signal consistency in the
detectors, we then construct a set of simple networks that operate directly on data from both detectors. We
find that none of these simple two-detector networks are capable of improving the sensitivity over applying

networks individually to the data from the detectors and searching for time coincidences.
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I. INTRODUCTION

Gravitational waves (GWs) are now routinely observed
by the two Advanced LIGO detectors [1] and the Advanced
Virgo detector [2]. At the end of the last observing period,
the KAGRA detector [3] joined the network and is
expected to aid observations in the future. During three
observing runs =~ 90 GWs from compact binary sources
have been identified, almost all of which are consistent with
the merger of binary black hole (BBH) systems [4-9].

Many searches for GWs from compact-binary coales-
cence use matched filtering to separate potential signals
from the background detector noise [7,10-12]. Matched
filtering is a technique that convolves a set of precalculated
template waveforms, each representing a possible source
with different component masses, spins, etc., with the
detector’s data and is known to be optimal for Gaussian
noise [13]. A signal-to-noise ratio (SNR) time series is
calculated for each template waveform; candidates are
identified by a peak in the SNR time series that also passes
data quality [14—16] checks. In a second step the candidate
detections from one detector are cross-validated with the
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candidate detections from other detectors to further
increase the significance of the reported events and rule
out false positives [7,17,18]. For sources where the gravi-
tational-wave signal is unknown or poorly modeled other
search algorithms detect coincident excess power in differ-
ent detectors and do not require a model [19].

Deep learning has started to be explored as an alternative
approach to building an algorithm to detect GWs [20-29].
It may potentially target signals which are currently
challenging for matched filter search algorithms due to
computational limitations [26,30,31]. The computational
cost of these modeled searches scales with the number of
templates required by the parameter space. Certain effects
like higher-order modes [32], precession [33], eccentricity
[34,35], or the inclusion of subsolar mass systems [36,37]
potentially require millions of templates and are thus
computationally prohibitive to analyze. Deep learning
may also be more sensitive when the noise is non-
Gaussian [27,38,39].

In our previous work [40] we explored the sensitivity of a
simple neural network to non-spinning BBH sources in
Gaussian noise for a single detector. We tested how
different training strategies influence the training procedure
and the final efficiency of the network. Our results showed
that under the given conditions the network can closely
reproduce the sensitivity of matched filtering and that most
efficient convergence is reached when a range of low SNR
signals is provided throughout training.
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Here we extend our previous work to two detectors. To
do so, we use the same single detector network explored in
[40] and apply it individually to the data from both
observatories. This procedure produces a list of candidate
events for each detector. We then search for coincident
events between the two, where two events are assumed to
be coincident if they are within the maximum time-of-flight
difference between both detectors. We assume this differ-
ence to be 0.1 s since the networks are trained to be
insensitive to variations on such scale.

The network uses the unbounded Softmax replacement
(USR) modification we introduced in [40]. It outputs a
single detector ranking statistic. Here we use it to construct
a network ranking statistic. This network ranking statistic
turns out to be the sum of the individual ranking statistics
minus a correction factor.

The main advantage of this approach is the trivial
computation of the search background which enables
robust detection claims at comparable statistical signifi-
cance (<1 per 100 years) to existing production method-
ology. By applying time shifts larger than the time-of-flight
difference between the detectors to the data from only one
observatory, we can create large amounts of data which by
construction cannot contain any astrophysical coincident
candidates. By applying the time shifts to the single
detector events rather than the input data directly, we
can skip reevaluating the entire test set and efficiently look
for coincident events. This is a well-established method that
has already been successfully applied [7,17,18]. By this
approach we can probe the search down to a false-alarm
rate (FAR) of 1 false-alarm per O(10%) months. The FAR
estimates how often a candidate is produced by the search
under the null hypothesis of no astrophysical candidates.
Our FAR-estimate is limited by the assigned hardware
resources rather than the available data.

We compare this search to an equivalent matched filter
search [41]. We find that the deep learning search still
retains 92.4% of the sensitivity of a two-detector matched
filter search when the latter is restricted to using the timing
difference between the detectors as the only means for
determining coincident events. However, the matched filter
search also extracts some information on the parameters of
the signal. When we also require matching templates and
the phase and amplitude of the triggered templates to be
consistent between detectors [42], the machine learning
search only retains 83.9% of the sensitivity.

We then construct a single network that operates on the
data from both detectors. The idea is that the network may
then be able to learn, summarize, and cross-correlate signal
characteristics between detectors. To do so, we remove the
last layer of the original networks applied to the individual
detectors and concatenate their output. Thereby the input
data are compressed to a 128 dimensional latent space.
Dense layers are used to correlate the concatenated outputs
and condense it into a single ranking statistic.

Using a single network complicates the background
estimation, as time shifts between the detectors can in
principle not be applied after evaluating the individual data
streams. However, the two-detector network architecture is
constructed such that the data from different detectors is
analyzed by individual subnetworks, concatenated and
processed by a third subnetwork. This enables us to process
the bulk of the data only once and apply time shifts to
the individual detector subnetwork outputs. To obtain the
ranking statistic we are then only required to run the time-
shifted data through the final, small subnetwork.

We find that networks constructed this way are not able
to improve the sensitivity over a time coincidence analysis
of the single detector machine learning events. We test three
different approaches to training these networks but none
show any improvement.

II. COINCIDENT SEARCH FROM INDEPENDENT
SINGLE-DETECTOR NETWORKS

The algorithm explored in this section uses a network
trained on data from a single detector and uses it to find
coincidences in multiple detectors. It is one of the most
simple extensions and has two advantages. First, networks
trained on data from a single detector can be re-used which
reduces requirements to computational resources. Second,
the search background can be estimated using well estab-
lished and efficient algorithms allowing for much higher
confidence in candidate detections.

A. Architecture

We use the same network as in [40], which is an
adaptation of the network presented in [22]. It consists
of 6 stacked convolutional layers followed by 3 dense
layers. An overview of the architecture is given in Table I.

TABLE I A detailed overview of the architecture for the single
detector neural network. Rows are grouped by their influence on
the shape of the data. The layers are to be read from left to right
and top to bottom to construct the network.

Layer type Kernel size Output shape
Input + BatchNorm1d 2048 x 1
Conv1D + ELU 64 1985 x 8
Conv1D 32 1954 x 8
MaxPool1D + ELU 4 488 x 8
Conv1D + ELU 32 457 x 16
Conv1D 16 442 x 16
MaxPool1D + ELU 3 147 x 16
ConvlD + ELU 16 132 x 32
ConvlD 16 117 x 32
MaxPool1D + ELU 2 58 x 32
Flatten 1856
Dense + Dropout + ELU 64
Dense + Dropout + ELU 64
Dense + Softmax 2
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The last layer contains a Softmax activation function,
which we remove during testing. In [40] we showed that
this modification, which we called unbounded Softmax
replacement (USR), allows the network to be tested at
lower FARs than otherwise possible.

The Softmax activation for the first output neuron is
given by

1

p = Softmax(x), = T+ exp (—Ax)

(1)
where x = (xo,x;) is the network output before the
activation function and Ax = xy — x;. When Ax is strongly
positive, the denominator in (1) and thus the fraction
numerically evaluates to 1. This leads to problems when
setting the threshold value to use to determine true positive
detections [40].
However, Eq. (1) is bijective and can be inverted

—Ax = log B— 1}. (2)

This quantity is monotonic and we can thus do statistics on
Ax directly, avoiding numerical instabilities while still
using the Softmax activation during training.

B. Datasets and training

The input to the network is a time series of 1 s duration
sampled at 2048 Hz. This allows for signals up to a
frequency of 1024 Hz to be resolved which is sufficient
for the considered parameter space.

The network is trained on signals from nonspinning
BBHs with component masses m;, m, uniformly distrib-
uted from 10 Mg to 50 M. We enforce m; > m, and for
each pair of masses uniformly draw 5 coalescence phases
¢o € [0,2x]. The signals are generated with the waveform
model SEOBNRv4 opt [43] (optlmlzed version of
SEOBNRv4 [44]) and scaled to varying optimal SNRs in
the range [5,15] during training. The time of merger is
varied from 0.6 s to 0.8 s from the start of the input window
to decrease the dependency of the network on the exact
signal position. Each signal is whitened by the analytic
model for the detector power spectral density (PSD)
aLIGOZeroDetHighPower [45]. For further details
on the training set please refer to [40].

Notably, we do not vary the sky position, inclination or
polarization during training. For a single detector, varia-
tions in these parameters can be fully expressed by changes
in the distance, which is fixed by choosing a specific SNR,
and the phase ¢,. For a two detector setup this degeneracy
is broken as a time-of-flight difference is introduced and the
amplitudes and phases are correlated in the two detectors.
However, our search algorithm is largely parameter agnos-
tic. This means that its output does not depend on the
amplitude or phase. Thus, we do not have information on
whether or not the search responds to consistent signals.
Finally, the time-of-flight difference is on the order of the
variation of the merger time within the training set and can,

TABLE 1II. Distributions of the parameters used for the in-
jections in the test set.

Uniform distribution

my,m, € (10,50)Mq

Parameter

Component masses

Spins 0
Coalescence phase (I>0 € (0,2x)
Polarization € (0,2x)
Inclination cost € (—1,1)
Declination sinf € (—1,1)
Right ascension €(-n )
Distance d*e (5002 7000 ) Mpc?

therefore, not be resolved. In Sec. I1I the network has access
to data from both observatories and the data is adjusted
accordingly.

All noise is Gaussian and simulated from the
aLIGOZeroDetHighPower PSD [45]. We explicitly
generate colored noise and whiten it afterwards. This in
principle allows to extend our training to real noise.

The training set contains 200 000 noise samples, 100 000
of which are combined with 100 000 unique signals. The
validation set' contains 400 000 noise samples and 10 000
unique signal samples, which we subsequently scale to
SNRs 3, 6,9, 12, 15, 18, 21, 24, 27 and 30. This set is used
to calculate the efficiency of the network at a fixed false-
alarm probability (FAP) of 107*. The FAP is the fraction of
discrete noise samples misclassified as signals. The effi-
ciency is the fraction of discrete signal samples correctly
classified as signals at a given FAP.

The test set contains a month of continuous simulated
noise for each of the two detectors in Hanford and
Livingston. We inject signals with parameters drawn from
the distributions shown in Table II into both data streams.
Injections are separated by a random time between 16 s to
22 s. To enable the networks to process this data, the
continuous stream is sliced into ~26 million overlapping,
correlated samples. Each sample is whitened individually
by the analytic PSD.

We construct a second test set for background estima-
tion. This set contains the same time domain noise as the
first test set but no injections are performed. We preprocess
this second data set in the same way we preprocess the first
data set for the network to be able to process it.

The network is trained for 200 epochs and we use the
network with the highest average efficiency over all SNRs for
the analysis carried out here. We use the Adam optimizer
with a learning rate of 1075, g, = 0.9, f, = 0.999 and
€ = 1078 [46]. We use a variant of the binary cross-entropy
which was designed to stay finite as loss function

Tn our previous work [40] what we call validation set here was
named efficiency set.
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1
LOuyy) = =5 D v Tog (e 4+ (1 =26y, (3)
i=1

where y, is (1,0)7 for a signal-class sample and (0, 1)7 for a
noise-class sample, y, is the prediction of the network,
N, = 32 is the minibatch size, and € = 107°.

We implemented the network using the high-level API
Keras [47] of TensorFlow version 2.3.0 [48].

C. Single detector events

To apply the network to data of duration longer than the
1 s input of the network, we use a sliding window with step
size 0.1 s. The contents of each window are whitened
individually by the PSD model. At each step the network
outputs a set of two numbers, the difference of which we
use as our ranking statistic.

We apply the same network to the data from both
detectors individually. We, thus, receive two output time
series of ranking statistics. To determine notable events in
the individual detectors we apply a threshold to both time
series and cluster the resulting points above the threshold
into events. A point exceeding the threshold is counted
toward a cluster if it is within 0.2 s of the cluster
boundaries. We choose a threshold on the USR output
of —2.2, which corresponds to a Softmax output of 0.1.

The search algorithm produces a list of events, where an
event is a tuple (¢, Ax). Each event is a time ¢ at which the
network predicts a signal to be present with a ranking
statistic Ax. The ranking statistic can be used to assign a
significance to the event.

D. Coincident events

A signal will be present in the data of all detectors if it is
of astrophyiscal origin. Its SNR in each detector depends
on the location and orientation of the source. The number of
false alarms can, thus, be reduced by requiring that the
event is picked up by multiple detectors at similar times.

To quantify the significance of an event detected by more
than one observatory, a combined ranking statistic is
required. For simplicity we restrict our current analysis
to two detectors. However, this approach is extendable to
any number of detectors.

If the network was using the final Softmax activation
during evaluation a combined ranking statistic would come
straightforwardly from the interpretation of the output as a
probability.

s = 1= (1=py)(1=pL) 4)

The 1-to-1 relation between p and Ax given in Eq. (1)
can be inserted into (4) to get

_AXH+L = —AXH - AXL

—log [l + e + =A%), (5)

The combined ranking statistic is the sum of the single
detector ranking statistics minus a correction term.

We consider an event in one detector to be coincident
with another event in the other detector if the event times ¢;
are within 0.1 s of each other. This time difference is chosen
to be the maximum time resolution the networks can
achieve due to the time variation in the training set.

We construct a list of coincidence events from the single
detector list by the above condition. Each coincident event
is assigned the combined ranking statistic (5) and the time
in the Hanford detector.

E. Background estimation

To estimate the FAR at different ranking statistic values
we evaluate the same noise used to search for signals but
omit injecting the GWs. This ensures that all events found
in this data set are noise artifacts and are not influenced by
close by injections.

We apply the network to the data and determine events as
described in Sec. II C. We obtain two lists of events and
search for coincidences as detailed in Sec. II D.

The lowest FAR that can be probed is limited by the
duration of the analyzed data. Our test set covers one
month. The duration can be increased by shifting the data in
one of the detectors by a time larger than the maximum
time-of-flight duration between the detectors. Rather than
shifting the data itself one may instead alter the event times
returned by the search. This allows us to skip reanalyzing
the full data for each time step and only requires us to look
for coincidences between the events from one detector and
the time shifted events from the second detector. Increasing
the amount of background by applying time shifts is a well
established method that has already been successfully
applied in production searches [7,17,18].

We choose a time shift of 1024 s and apply any
possible integer multiple of this step size. We then
search for coincidences in these events as detailed in
Sec. IID. This procedure increases our background
to 22400 months = 200 years.

A list of FARs at different network ranking statistics is
obtained by counting the number of events in the way
described above with a larger ranking statistic.

F. Sensitivity

The sensitive volume of a search can be estimated by

]‘\'/— . (6)

inj

when it is derived on data containing injections which are
distributed uniformly in volume [17]. Here F is the FAR at
which the volume is being calculated, d,,,, is the maximum
distance of any injection, V(d ;. ) is the volume of a sphere
with radius d,,, N,(F) is the number of signals detected
with a FAR < F and Nj,; is the total number of injected
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signals. We report the radius of a sphere with volume V (F)
instead of the sensitive volume.

We analyze a month of simulated data from the two
detectors Hanford and Livingston, assuming the PSD
aLIGOZeroDetHighPower [45]. The data contains
injections drawn from the distribution shown in Table II.
We apply the network to the data from both detectors
individually as described in Sec. II C. The resulting single
detector events are correlated and a list of coincident events
is produced as detailed in Sec. II D. We then pick out any
events that are within 0.3 s of an injection. These events are
called foreground events from here on out.

To determine the search background, we evaluate the
same month of noise used to find the foreground events.
However, this data does not contain any injections. The
networks return a list of single detector events, which are
correlated and shifted in time to increase the effective
duration of the analyzed data as detailed in Sec. Il E. The
resulting coincident events are called background events
from here on out.

We can then assign a FAR to any foreground event. To do
so we count the number of background events with a
ranking statistic larger than the ranking statistic of the
considered foreground event. This number is divided by the
effective duration of the analyzed background to obtain a
FAR. The sensitive volume is then obtained from equa-
tion (6) and converted to a distance. The sensitive distance
as a function of the FAR is obtained by evaluating the
sensitive volume at the FARs of all foreground events.

G. Matched filtering

The template bank contains 598 unique waveforms and
is constructed such that no more than 3% of the SNR of any
signal is lost due to the discreteness of the bank. It covers
the same mass range of 10 Mg, to 50 M, as the training set
of the networks and spins are set to 0. The individual
templates are generated using the waveform model
IMRPhenomD [49,50] and placed stochastically.

To run the matched filter search we use the program
pycbc inspiral [41]. It is setup to use a SNR thresh-
old of 5 in both detectors to create two sets of single
detector triggers. These two sets are then checked for
coincidence by two different approaches.

One approach handles the matched filter triggers analo-
gous to the network single detector triggers, i.e., they are
clustered and turned into single detector events as described
in Sec. II C. In this case the ranking statistic is the SNR
returned by the best matching template. We then look for
coincidences as described in Sec. II D by requiring two
events in different detectors to be separated by no more than
0.1 s. The combined ranking statistic in this case is given by

PriL =\ Pl + PL- (7)

This disregards the information about the possible param-
eters obtained from the best matching template and only
looks for time coincidence, i.e., no signal consistency is
required.

The other approach leverages the signal information and
checks for phase and amplitude correlation as well as
requiring that the templates matching the data are consis-
tent between detectors. In particular we utilize the com-
bined ranking statistic given in Eq. (2) of [42] and find
coincidences as described therein.

H. Evaluation and comparison to matched filtering

In Fig. 1 we show the injections that were found and
missed by the network coincident search at a FAR of 1 false
alarm per month. The x-axis shows the optimal SNR of the
injections in the Hanford detector and the y-axis shows the
optimal SNR in the Livingston detector. The color indicates
the network ranking statistic as calculated by Eq. (5).
Missed injections are marked with a red cross. A network
SNR of 8 as calculated by Eq. (7) is highlighted by the
black line.

Figure 1 shows that the combined ranking statistic (5) is
correlated with the network SNR. As the network SNR
increases so does the combined ranking statistic. The
loudest missed injection has a network SNR of 22.7.
However, the signal is most dominantly seen in the
Hanford detector with a single detector SNR of 22.6,
whereas Livingston has an optimal SNR < 2 due to the
location of the source. Therefore, it is not surprising that the
signal does not show up in both detectors and is missed by
the coincidence search. When considering only the detector
in which the signal is observable with lower SNR, the
loudest missed signal has a optimal SNR of 9.2 in that
detector.

In Fig. 2 we show the sensitive distance of different
algorithms as a function of the FAR. The orange lines show
the sensitivity curves of the machine learning based
algorithms whereas the purple lines show the sensitivities
of a comparable matched filter search. The dashed lines
show the sensitivity of the searches when only a single
detector is considered. We compare those to a two-detector
search where we require coincident detections in both
detectors. The filled orange line and the dash-dotted purple
line show the comparison between the machine learning
and matched filter algorithms, respectively, when both
impose the same coincidence condition. The filled purple
line shows a more realistic application of matched filtering
where the consistency of the time of arrival, the phase, the
amplitude, as well as the parameters of the best matching
template are required.

We find a significant improvement of up to 20% at a
given FAR when the machine learning algorithm has access
to data from both detectors compared to using only data
from a single detector. Furthermore, we can probe FARs
down to ~4 x 10~ false alarms per month without needing
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FIG. 1. Found and missed injections from the test set as

returned by the procedure discussed in Sec. II. The top panel
overlays the missed injections by the found injections and the
bottom panel reverses the order. The x- and y-axis show the
optimal SNRs of the injections in the Hanford and Livingston
detector, respectively. The color of found injections represents the
combined ranking statistic as defined by Eq. (5). Missed
injections are marked by a red cross. The black line indicates
an optimal network SNR of 8. The plot is generated at a FAR of 1
false alarm per month.

to increase the amount of evaluated data by applying time
shifts between detectors as described in Sec. IIE. In
principle this limit may be decreased even further and
time shifts are only limited by the time-of-flight difference
between the detectors. The large increase in the available
background potentially greatly increases the statistical
significance of any event.

5000 I‘._ Machine learning single detector
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FIG. 2. Shown are the sensitive distances of different search
algorithms as a function of the FAR. In orange we show the
sensitivity curves of the machine learning based searches pre-
sented in [40] and this work. In purple we show sensitivity curves
of an equivalent matched filter search. The dashed lines are
derived on data only from a single detector. A label “coinc. 7’
refers to events being tested for coincidence based solely on the
time difference of the events in the two detectors. The label
“coinc. signal” means that the matched filter search also checked
for signal consistency based on the time-, phase-, amplitude-
difference, and intrinsic parameters in the two detectors. Sensi-
tivities derived on data from more than one detector are truncated
at a FAR of 103 per month due to an increasing number of true
detections caused by random coincident events in the noise.

The sensitivities of the machine learning search algo-
rithms are compared to an equivalent matched filter search.
For the single detector searches given by the dashed lines in
Fig. 2 we find that the machine learning algorithm retains at
least 91.5% of the sensitivity at a fixed FAR of the matched
filter analogue. This corresponds to a maximum absolute
separation of 200 Mpc. This difference in sensitivity is
basically unchanged when data from two detectors is
considered and both the machine learning as well as the
matched filter search calculate coincidences only based on
the timing in the different detectors. The corresponding
curves in Figure 2 are the filled orange and the dash-dotted
purple line, respectively. In this case, the machine learning
algorithm retains at least 92.4% of the sensitivity of the
time coincidence matched filter search which corresponds
to an absolute separation of 180 Mpc.

However, matched filtering also carries information
about the intrinsic parameters of the source, the relative
phase, and the relative amplitudes in the two detectors. This
information can be used to further constrain coincidences
and improve the ranking statistic [42] by testing for signal
consistency. We compare the time coincidence machine
learning search (filled, orange line in Fig. 2) to this matched
filter coincidence search utilizing signal consistency checks
(filled, purple line in Fig. 2). The machine learning search
now only retains at least 83.9% of the sensitivity in FAR
regions where both are defined. This corresponds to an
absolute separation of 430 Mpc.
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We truncate the sensitivity curve of any search that has
access to data from both detectors in Fig. 2 at a FAR of 10°
false alarms per month. This is done due to a large number
of true positives at high FARs originating from random
noise coincidences. This means that the search returns a
coincident event that is caused by a particular noise
realization which happens to coincide with an injection
with an optimal SNR below the trigger threshold. Many of
these injections should thus not be recoverable but are
detected at high FAR due to these noise fluctuations. At a
FAR of 10° per month we expect less then O(10) of these
false associations. Another reason to only compare the
sensitivity at low FARs of the machine learning and the
matched filtering based searches are the thresholds used to
find triggers. The matched filter search uses a threshold of
SNR 5 whereas the machine learning search uses a
threshold on the USR ranking statistic of —2.2. Because
there is no direct relation between these two statistics, we
cannot guarantee that both thresholds correspond to similar
signal strengths. It may be possible that one search excludes
weak signals which are found by the other based on this
difference in the threshold.

The sensitivity difference between machine learning and
matched filtering stays constant between using data from a
single detector and using data from two detectors when
matched filtering may only check for time consistency
between detection candidates from the two observatories.
The performance difference increases when matched filter-
ing also checks for signal consistency. It is, therefore,
reasonable to believe that a multi detector machine learning
search may be more sensitive when it too can check for
signal consistency. This would either require the single
detector network to output parameter estimates of the
detected signal alongside a ranking statistic or a single
network that uses the data from both detectors as input. In
the following Sec. III we explore the second hypothesis.

III. TWO DETECTOR NETWORK

The deep learning algorithm presented in Sec. II is
significantly less sensitive than the full matched filter
analysis that takes signal consistency into account. On
the other hand, when the deep learning algorithm is
compared to the matched filter search where signal con-
sistency is ignored, the difference in sensitivity is compa-
rable to the difference in sensitivity for a single detector.
This gives reason to believe that the difference in sensitivity
compared to the full matched filter search could be reduced
when the network may operate on the data from both
detectors and consider coincidences itself.

A. Architecture

We construct a network that uses data from both
detectors while still retaining the ability to efficiently
estimate a large background. The network from Sec. II

H1 (2048,1) L1 (2048,1)
4 4
A ‘ ‘ B
6x ConvlD 6x ConvlD

input: (2048,1) input: (2048,1)
output: (58,32) output: (58,32)
1 1

Flatten Flatten
input: (58,32) input: (58,32)
output: 1856 output: 1856
1 1
2x Dense 2x Dense
input: 1856 input: 1856
output: 64 output: 64
I I

I
Concatenate
input: [64, 64]
output: 128

1
3x Dense
input: 128
output: 2

1
Softmax
input: 2

output: 2
C \

FIG. 3. A high level overview of the two-detector architecture.
The network consists of three subnetworks A, B, and C. A
detailed description of the subnetworks A and B can be found in
Table I by removing the final row. The fully connected dense
layers contain 128, 64, and 2 neurons in that order. All but the
final dense layer are equipped with an exponential linear unit
(ELU) activation.

is still applied to the data from the two detectors individu-
ally. However, the final layer is removed and the 64 output-
neurons from both networks are concatenated. We then add
3 more fully connected layers to look for coincidences
between the detectors. An overview of the network is
shown in Fig. 3.

The last layer from the single detector network is
removed to create a large latent space. A matched filter
search compresses the input data into the ranking statistic,
the time of the merger, and the parameters of the best
matching template. The intention is that 64 neurons may be
sufficient for a comparable compression and that the
additional layers that operate on the concatenated outputs
could perform a signal consistency analysis.

The subnetworks A and B in Fig. 3 are intended to act as
encoders that reduce the 2048 dimensional input into a
latent space of dimension 64. It may be interesting in the
future to train these subnetworks initially as autoencoders
[51] from which only the encoder is used for detection
purposes afterwards. Autoencoders are neural networks
which in the most simple form consist of an encoder
network and a decoder network. The encoder network
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compresses the input to some lower dimensional latent
representation whereas the decoder uses that lower dimen-
sional representation to reconstruct the input. Other studies
have already found that autoencoders have potential appli-
cations in GW data analysis [52,53].

B. Datasets and training

The network is trained on data similar to that presented in
Sec. II B. However, the data is extended to two detectors
and sources are uniformly distributed in the sky. The latter
change is required due to the amplitude and phase
correlations in the two detectors. We use the same number
of noise and signal samples as in Sec. II B.

We utilize the pre-trained single detector network used in
Sec. II in two different ways. In both cases the single
detector parts of the two detector network (A and B in
Fig. 3) are initialized with the weights of the pretrained
model from Sec. II. However, for one of the two networks,
these weights are then not optimized during training,
leaving only the weights of the final fully connected layers
(C in Fig. 3) to be adjusted. This approach is known as
transfer learning [54] and has been successfully applied for
different problems [55-57]. The second network optimizes
the weights of the entire network. We also train a third
network of the same architecture, where all parameters are
initialized randomly and optimized during training.

The same optimizer settings and loss function described
in Sec. II B are used to train all three networks for 300
epochs. They are trained with a Softmax activation on the
final layer, which is removed during evaluation. Each
network is only trained once and the epoch with the
highest efficiency on the validation set is chosen for further
analysis.

C. Coincident events

Because the networks output a single value when given
the data from two detectors, we interpret that output as a
coincidence ranking statistic at the corresponding time. We
then perform the same clustering and thresholding
described in Sec. II C to obtain a list of coincident events.

D. Background estimation

Determining the background of the two detector network
is more challenging than for the single detector network
from Sec. II E, as there is no direct way of performing time
shift in a computationally efficient way. One would,
therefore, naively be limited by the duration of the analyzed
data or would have to re-evaluate the entire month of test
data multiple times. However, the network is designed in
such a way that the data from both detectors are still
analyzed individually and combined only at later stages.
We evaluate the single detector data individually with the
subnetworks A and B from Fig. 3 and store those outputs.
We then permute the order of the outputs from subnetwork

B such that it corresponds to a time shift with respect to the
output from subnetwork A. Finally, subnetwork C is
applied to the concatenated data from subnetwork A and
B for many different time shifts. Since subnetwork C is
very simple and time shifts can be generated trivially this
process generates O(1000) months of background within
<12 h on a NVIDIA RTX 2070 Super.

E. Evaluation and comparison to matched filtering

Figure 4 shows the sensitive distance of the various
networks as a function of the FAR and compares them to
the results presented in Sec. II H. All curves are truncated at
a FAR of 10° per month due to the large number of false
associations described in Sec. IIH. The three networks
utilizing the data from both detectors described in this
section are labeled as “Machine learning network coinc.”
The matched filter results are shown in purple, where the
dash-dotted line considers only time coincidence and the
filled line also takes the consistency of intrinsic source

4500
Machine learning coinc. ¢

< —— Machine learning network coinc. initialized
a 4000 . . .
s —— Machine learning network coinc. transfer
:,/ —— Machine learning network coinc. scratch
O o — .
S 3500 ——- Matched filtering coinc. ¢
3
é’ —— Matched filtering coinc. signal
g 3000
B
w
c
[}
v 2500

107 10! 107! 1073 1077
False Alarms per Month

FIG. 4. The sensitivity of different search algorithms as a
function of the FAR. All shown algorithms operate on the data
from two detectors. The curves labeled “Machine learning coinc.”
are neural network search algorithms that consider data from both
detectors and an overview can be found in Fig. 3. The network
labeled “initialized” initializes the subnetworks A and B as shown
in Fig. 3 from the single detector network used in Sec. I H but
optimizes them during the subsequent training. The network
labeled “transfer” also initializes both subnetworks as the
initialized network but freezes their weights. The network labeled
“scratch” initializes all parameters of the network randomly. All
other searches operate on the data from the individual detectors
first and then search for coincident events. A label “coinc. 7’
refers to events being tested for coincidence based solely on the
time difference of the events in the two detectors. The label
“coinc. signal” means that the matched filter search also checked
for signal consistency based on intrinsic parameters and the time-,
phase-, and amplitude-difference in the two detectors. The curve
labeled “Machine learning coinc. 7’ refers to the two-detector
machine learning search analyzed in Sec. Il H. All sensitivities
are truncated at a FAR of 10° per month due to a growing number
of true positive detections caused by the coincidence of noise
events.
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parameters, phase, and amplitude into account. The orange
line corresponds to the network from Sec. II.

The networks described in this section were designed to
be able to take signal consistency into account by reducing
the input data to a large latent space. As such we were
expecting sensitivities at low FARs to be larger than those
obtained from time coincidence between single detector
events produced by the single detector network.

However, we find that at low FARs all of the two detector
networks are roughly as sensitive as the network tested in
Sec. IIH. Therefore, they are still less sensitive than the
matched filter equivalent and do not seem to take signal
consistency into account. For high FARs, on the other hand,
they are more sensitive. We suspect that the large time
variation of the peak amplitude of £0.1 s may be responsible
for this behavior. The networks are, thereby, trained to be
insensitive to variations in timing of less then 0.1 s, which
may produce phase and amplitude variations in a broad range.

IV. CONCLUSIONS

In this paper we have extended the single detector deep
learning GW search algorithm from [22,40] to two detec-
tors and compared it to an equivalent matched filter
algorithm. We found that the most simple extension,
applying the one detector network to the data from two
detectors individually and searching for coincident events,
retains x92% of the sensitivity of matched filtering, when
only the time consistency between detectors is required.
This fraction drops to ~84% when signal consistency
between detectors is also considered.

To operate on data from two observatories, we con-
structed a two detector ranking statistic for the machine
learning search based on the single detector USR ranking
statistic proposed in [40]. This ranking statistic proved to be
correlated with the network SNR.

We also highlighted the advantages of using a single
detector network to construct a two detector search. First,
the single detector network does not need to be re-trained to
be applied to the second detector, if both have similar noise
characteristics. Second, this approach enables an efficient
background estimation by applying relative time shifts to
the recovered single detector events. This allows us to test
the two detector search to almost arbitrarily low FARs at
low computational expenses. This method has already
proven to be effective and reliable in state-of-the-art
classical search algorithms [7,17,18].

Because using a single detector network restricts one to
check for coincidences based solely on the timing difference,
we tested a simple network that operates on data
from both detectors directly. This allows the network in
principle to construct internal signal representations which
can be correlated between observatories. The network was

constructed by removing the final layer of the single detector
network, concatenating the outputs and adding a few fully
connected layers to check for coincident events. The final
fully connected layers, thus, receive 64 latent variables for
each detector that can be checked for coincidence.

This design of the two detector network allowed us to do
efficient background estimation. By applying relative time
shifts to the outputs of the individual detector subnetworks,
only the final few fully connected layers need to be
evaluated for all shifts. The bulk of the computation,
namely evaluating the input data of the detectors, only
needs to be done once.

The network architecture was trained in three different
ways; randomly initialized parameters for the entire net-
work, parameters of the subnetworks initialized from the
single detector network, and parameters of the individual
detector subnetworks fixed to the single detector param-
eters and optimizing only the final fully connected layers.

We found that all of these networks have very similar
performance at low FARs. Neither of them performed
substantially better than the initial network that looked for
time coincident events between the single detector network
outputs. It, therefore, seems as if the network architecture
explored here is unable to learn any additional information
about the signal. This may be caused by the allowed time-
variance of 0.1 s for signals in the training set, which may
limit the time resolution of the network and thus over-
shadow correlations in any other parameters. More sophis-
ticated network architectures with higher time resolution
may improve our findings. First promising steps have
already been taken by [26,31]. Using an autoencoder to
find a more meaningful latent representation of the input
data may also be of use.

While the sensitivity was not improved by using a single
network to process the data of two detectors, we still want
to highlight that the method of determining the background
may be of use for future networks.

Here we limited our research to GWs from non-spinning
binary black holes with signal duration < 1 s and Gaussian
noise. Any of these simplifications are desirable to be lifted.
Especially considering real noise may increase the gap in
sensitivity between the single detector and multidetector
search algorithm, by vetoing glitches. While we considered
only two detectors an extension to a larger network should
be trivial and may follow studies such as [58].
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