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Abstract: In this article, we deduce a procedure to apply balanced truncation to parameter-
dependent differential-algebraic systems. For that, we solve projected Lyapunov equations
to compute the Gramians that are required for the truncation procedure. This process
would lead to high computational costs if we perform it for a large number of parameters.
Hence, we combine this approach with the reduced basis method that determines a reduced
representation of the Lyapunov equation solutions for the parameters of interest. Residual-
based error estimators are then used to evaluate the quality of the approximations. To
apply the error estimators, a uniformly strictly dissipative state-space realization of the
system is needed. We demonstrate how this property can be enforced by suitable state-
space transformations. We illustrate the effectiveness of our approach on several models
from fluid dynamics and mechanics. We further consider an application of the method in
the context of damping optimization.
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Novelty statement: We propose a new method that reduces parametric differential-
algebraic equations by combining projection methods for differential-algebraic equations
and the reduced basis methods for Lyapunov equations. To apply the reduced basis
method new error estimators are invented. The performance of our new method is illus-
trated for several examples.

1 Introduction

In the modeling of various industrial processes one often obtains systems of differential-algebraic equa-
tions (DAEs) that are of high dimensions. Typical examples are electrical circuits, thermal and diffusion
processes, multibody systems, and certain discretized partial differential equations [8, 9]. Often, these
systems are further dependent on parameters that can describe physical properties such as material
constants and which are often subject to optimization. The resulting parameter-dependent differential-
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algebraic systems have the form

d

dt
E(µ)z(t) = A(µ)z(t) + B(µ)u(t),

y(t) = C(µ)z(t),
(1)

where E(µ), A(µ) ∈ RN,N , B(µ) ∈ RN,m and C(µ) ∈ Rp,N are dependent on parameters µ ∈ D, where
D ⊂ Rd. The input, the state and the output are described by u(t) ∈ Rm, x(t) ∈ RN and y(t) ∈ Rp.
The matrix E(µ) can be a singular. However, throughout this paper, the pencil sE(µ) − A(µ) is
assumed to be regular for all µ ∈ D, that is det(sE(µ) − A(µ)) is not the zero polynomial for all
µ ∈ D. The model (1) is also referred to as the full-order model (FOM). Often, one also considers the
input/output mapping of the system in the frequency domain. This relation is typically expressed by
the transfer function G(µ, s) := C(µ)(sE(µ)−A(µ))−1B(µ).

Because of the high state-space dimension N of (1) it is useful to apply reduction methods to extract
the essential information of the system and its solution. More precisely, we want to determine a
reduced-order model (ROM)

d

dt
ER(µ)zR(t) = AR(µ)zR(t) + BR(µ)u(t),

yR(t) = CR(µ)zR(t),

with ER(µ), AR(µ) ∈ Rr,r, BR(µ) ∈ Rr,m and CR ∈ Rp,r, r � N . The reduced state and output
are zR(t) ∈ Rr and yR(t) ∈ Rp. The aim is to determine the surrogate model in such a way that the
output of the ROM well-approximates the output of the FOM for all admissible inputs u(·) and all
parameters µ ∈ D. In terms of the transfer function this means that the error ‖G(µ, ·)− GR(µ, ·)‖ is
sufficiently small in an appropriate norm for all µ ∈ D, where GR(µ, s) denotes the transfer function
of the ROM.

For parameter-independent problems, i. e.,

E(µ) ≡ E, A(µ) ≡ A, B(µ) ≡ B, C(µ) ≡ C, G(µ, s) ≡ G(s),

there are several classes of model order reduction techniques. Examples are singular value based
approaches like balanced truncation [5, 25, 38] and Hankel norm approximations [14]. Additionally,
there are Krylov subspace based methods such as the iterative rational Krylov algorithm (IRKA)
[5, 12, 15, 16] and moment matching as well as data driven methods such as the Loewner framework
[23]. Corresponding methods for parameter-dependent systems are introduced in [3, 4, 13].

In this article we consider balanced truncation which is one of the most popular reduction techniques.
This is mainly due to the guaranteed asymptotic stability of the ROM, the existence of an error bound,
and appealing numerical techniques for the involved Lyapunov equations [6, 10, 31, 33].

Within balanced truncation, certain Lyapunov equations corresponding to the original system need to
be solved. The solutions of these equations which are called Gramians. They describe the input-to-
state and state-to-output behavior and are used to construct projection matrices for the reduction. The
multiplication of the system matrices with these projection matrices then results in a reduced-order
model.

All the above-mentioned methods focus on the case E = IN and are, however, not directly applicable
in the DAE case. Even if the problem is not parameter-dependent, there are several challenges that
one has to face (here we assume for simplicity, that the problem is parameter-independent):

a) Since the matrix E is typically singular, the transfer function G(s) is possibly improper, i. e., it
may have a polynomial part which is unbounded for growing values of |s|. If the reduced transfer
function GR(s) does not match this polynomial part, then the error transfer function G(s)−GR(s)
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is not an element of the rational Hardy spaces RHp×m∞ or RHp×m2 (see, e. g, [40] for a definition)
and the output error cannot be bounded by the input norm. Thus, a model reduction scheme for
DAEs must preserve the polynomial part of its transfer function. This is addressed in [16, 24, 35].

b) In balanced truncation, one has to solve two large-scale Lyapunov equations. In the DAE case,
one has to consider a generalization of these – so-called projected Lyapunov equations. There, the
Lyapunov equations are projected to the subspace of the DAE in which the dynamics evolves. This
involves certain projectors which cannot be explicitly formed since this would destroy the sparsity
structure of the coefficient matrices. However, for DAE systems of special structure, the projectors
are of a particular form which can be exploited from the numerical point if view. More precisely, in
the solution algorithms for Lyapunov equations, the projectors can be applied implicitly without
forming them. For details, we refer to [7, 18, 30, 37].

If we want to reduce a parameter-dependent DAE by balanced truncation, we would have to solve the
Lyapunov equations for each individual parameter of interest which is computationally prohibitive. To
avoid these computational costs, in this paper we make use of the reduced basis method which is a well-
established method to reduce parameter-dependent partial differential equations [19, 28]. This method
has also been applied to parametric standard Lyapunov equations in [33]. There, the parametric
Lyapunov equations are only solved for few sampling parameters. Then, based on these solutions, a
reduced subspace in which the Lyapunov equation solutions approximately live, is constructed. The
latter steps form the computationally expensive offline phase. After that, using the reduced basis
representation, the Lyapunov equations can be solved much more efficiently for all µ ∈ D in the online
phase. A crucial question in the offline phase is the choice of the sample parameters. Usually, a grid of
test parameters is selected. For these, the error is quantified using a posteriori error estimators. Then
new samples are taken at those parameters at which the error estimator delivers the largest error.

In this paper we generalize the reduced basis balanced truncation method of [33] to differential-algebraic
systems with a focus on structured systems from certain application areas. The main problems we
solve in this paper are the following:

a) We derive error estimators for parameter-dependent projected Lyapunov equations. This requires
the given system to be uniformly strictly dissipative. Since this condition is not always satisfied,
we discuss transformations to achieve this.

b) We apply this approach to several application problems and show its benefits in optimization
problems for mechanical systems.

This paper is organized as follows. In Section 2, three model problems are introduced that motivate
the method presented in this paper. In Section 3, we review projection techniques to eliminate the
algebraic equations in (1). Afterwards, in Section 4, we consider model order reduction by balanced
truncation for projected systems. We further address the numerical challenges that arise in computing
the solutions of the required Lyapunov equations. Since solving Lyapunov equations for every requested
parameter leads to high computational costs, in Section 5 the reduced basis method is presented,
which was first applied to standard Lyapunov equations in [33]. We derive two error estimators for
our method, one of them is motivated by the estimator from [33], the other one is an adaption of the
estimator presented in [31]. Finally, in Section 6, we evaluate the method of this paper by applying it
to our model problems from Section 2.
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2 Model problems

2.1 Problem 1: Stokes-like DAEs

The first example is the system

d

dt

[
E(µ) 0

0 0

] [
x(t)
λ(t)

]
=

[
A(µ) G(µ)
G(µ)T 0

] [
x(t)
λ(t)

]
+

[
B(µ)

0

]
u(t),

y(t) =
[
C(µ) 0

] [x(t)
λ(t)

]
,

(2)

which arises, i. e., if we discretize the incompressible Navier-Stokes equation. The parameter-independent
version is presented in [24, 35]. The system matrices are dependent on a parameter µ ∈ D, where
D ⊂ Rd is the parameter domain. For fluid-flow problems, the matrices E(µ), A(µ) ∈ Rn,n represent
the masses and the discretized Laplace operator. Naturally, it holds that E(µ) = E(µ)T > 0 and
A(µ) = A(µ)T < 0 for all µ ∈ D. The discrete gradient is given by G(µ) ∈ Rn,q which we assume to be
of full rank for all µ ∈ D. The matrices B(µ) ∈ Rn,m and C(µ) ∈ Rp,n are the input and the output
matrices, respectively. The state of the system at time t is given by x(t) ∈ Rn and λ(t) ∈ Rq. The
vectors u(t) ∈ Rm and y(t) ∈ Rp are the input and output of the system.

We assume that E(·) and A(·) are affine in the parameter µ, i. e.,

E(µ) =

nE∑
k=1

ΘE
k (µ)Ek and A(µ) =

nA∑
k=1

ΘA
k (µ)Ak,

where ΘE
k (·), ΘA

k (·) are non-negative parameter-dependent functions and Ek, Ak parameter-independent,
positive and negative semi-definite matrices. Moreover, for reasons of computational efficiency, we al-
ways assume that nE , nA � n.

2.2 Problem 2: Mechanical systems

The second system we consider is of the form

d

dt

Inx 0 0
0 M(µ) 0
0 0 0

x1(t)
x2(t)
λ(t)

 =

 0 Inx 0
−K(µ) −D(µ) G(µ)
G(µ)T 0 0

x1(t)
x2(t)
λ(t)

+

 0
Bx(µ)

0

u(t),

y(t) =
[
Cx(µ) 0 0

] x1(t)
x2(t)
λ(t)

 ,
(3)

which results from a linearization of the spring-mass-damper model presented in [24]. The mass,
damping, and stiffness matrices M(µ), D(µ), K(µ) ∈ Rnx,nx are assumed to be symmetric and positive
definite for all µ ∈ D. The matrices Bx(µ) ∈ Rnx,m and Cx(µ) ∈ Rp,nx are the input and the output
matrices. The matrix G(µ) ∈ Rnx,q reflects algebraic constraints on the system and is of full rank. In
this example, the state includes the displacement x1(t) ∈ Rnx , the velocity x2(t) ∈ Rnx , and λ(t) ∈ Rq.

For convenience, we also define

E(µ) :=

[
Inx 0
0 M(µ)

]
, A(µ) :=

[
0 Inx

−K(µ) −D(µ)

]
, B(µ) :=

[
0

Bx(µ)

]
,

C(µ) :=
[
Cx(µ) 0

]
, n := 2nx.

(4)

Then with this notation, we can write the mechanical system similarly as in (2) with the difference
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that the off-diagonal blocks of the state matrix are not the transposes of each other.

Similarly to the first model problem, we assume that M(·), D(·), and K(·) can be written as

M(µ) =

nM∑
k=1

ΘM
k (µ)Mk, D(µ) =

nD∑
k=1

ΘD
k (µ)Dk and K(µ) =

nK∑
k=1

ΘK
k (µ)Kk,

where ΘM
k (·), ΘD

k (·), ΘK
k (·) are non-negative parameter-dependent functions andMk, Dk, Kk parameter-

independent symmetric and positive semi-definite matrices with nM , nD, nK � n.

2.3 Problem 3: Optimization problems

We consider an optimization problem which is discussed in [4, 39]. We have a mechanical system

d

dt

=:E︷ ︸︸ ︷[
Inx 0
0 M

] [
x1(t)
x2(t)

]
=

=:A(µ)︷ ︸︸ ︷[
0 Inx
−K −D(µ)

] [
x1(t)
x2(t)

]
+

=:B︷︸︸︷[
0
F

]
u(t),

y(t) =
[
Cx 0

]︸ ︷︷ ︸
=:C

[
x1(t)
x2(t)

]
.

(5)

The matrices M, K ∈ Rnx,nx (both symmetric and positive definite), F ∈ Rnx,m, and Cx ∈ Rp,nx
are the mass, stiffness, input, and output matrices, respectively. The damping matrix is given
by D(µ) := Dint + BxH(µ)BT

x where Dint ∈ Rnx,nx is the internal damping and the expression
BxH(µ)BT

x describes the external dampers. There Bx ∈ Rnx,` contains the external dampers’ posi-
tions andH(µ) := diag(h1(µ), . . . , h`(µ)) ∈ R`,` is a diagonal matrix containing the dampers’ viscosities
h1(µ), . . . , h`(µ) ≥ 0 for all µ ∈ D. The vectors x(t) ∈ Rnx , u(t) ∈ Rm, and y(t) ∈ Rp are the state,
the primary excitation input, and the output at time t. The aim is to choose h1(µ), . . . , h`(µ) such that
the external input Fu(·) affects the output y(·) as little as possible. Therefore, we wish to minimize
the response energy which is given by

J(µ) = tr
(
CP (µ)CT

)
, (6)

where P (µ) solves the Lyapunov equation

A(µ)P (µ)ET + EP (µ)A(µ)T = −BBT. (7)

We will use reduction techniques, presented in Section 5, to efficiently solve the parametric Lyapunov
equation (7) and subsequently solve the reduced optimization problem.

3 Elimination of algebraic equations

In this section we briefly describe the projection technique for eliminating the algebraic constraints in
DAEs of the forms (2) and (3) for a fixed parameter µ ∈ D. Therefore, for simplicity of presentation,
we omit µ in this section. The details of this can be found in [18, 30, 35]. These projections integrate
the state that results from the algebraic equations into the differential equations of the system, such
that the algebraic equations are eliminated. These considerations are useful for deriving a projection
technique for the corresponding Lyapunov equations. First, we deduce the projections for Stokes-like
systems.
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As presented in [18], we can build a projection matrix

Π := In −G
(
GTE−1G

)−1
GTE−1.

With the help of this projector we obtain the projected system

d

dt
EΠx(t) = AΠx(t) +BΠu(t),

y(t) = CΠx(t),
(8)

with EΠ := ΠEΠT, AΠ := ΠAΠT, BΠ := ΠB, CΠ := CΠT. The state λ(t) can be constructed by

λ(t) = −
(
GTE−1G

)−1
GTE−1Ax(t)−

(
GTE−1G

)−1
GTE−1Bu(t). (9)

Note that (2) (for a fixed parameter) has exactly the same solutions as (8) together with (9) and
x(t) = ΠTx(t).

Since the matrix pencil sEΠ − AΠ is singular, we use a factorization Π = ΦlΦ
T
r , with Φl, Φr ∈ Rn,k,

ΦT
l Φr = Ik such that we obtain the system

d

dt
EΦx̃(t) = AΦx̃(t) +BΦu(t),

y(t) = CΦx̃(t),
(10)

with x̃(t) := ΦT
l x(t), EΦ := ΦT

r EΦr, AΦ := ΦT
r AΦr, BΦ := ΦT

r B, CΦ := CΦr. From system (10) we
can derive the solutions of (2) (for a fixed parameter) and (8). Now the matrix pencil sEΦ − AΦ is
regular.

To eliminate the algebraic equations in the case of mechanical systems (3), one can proceed similarly as

above. The main difference is the choice of the projection matrix which now becomes Π := diag
(
Π̂, Π̂

)
with

Π̂ := Inx −G
(
GTM−1G

)−1
GTM−1.

By projecting with this Π, we obtain systems of the form (8) and (10), see also [30].

4 Model reduction of differential-algebraic systems

The aim of this section is to reduce the projected systems presented in the previous section. When
doing so, we can simultaneously reduce the original differential-algebraic equations from Section 2. In
this section we will still focus entirely on the fixed-parameter case.

We utilize balanced truncation modified for projected systems which is presented in Subsection 4.1.
Afterwards, in Subsection 4.2, we compute the projected Gramians that are needed for balanced
truncation by adapting the ADI method to projected Lyapunov equations.

4.1 Balanced truncation

The aim of this subsection is to find a reduced system

d

dt
Erzr(t) = Arzr(t) + Bru(t),

yr(t) = Crzr(t),
(11)
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with Er, Ar ∈ Rr,r, Br ∈ Rr,m, Cr ∈ Rp,r, r � N which approximates the input/output behavior of
the original system (2) (for a fixed parameter) and (8).

We consider the controllability Gramian PΠ and the observability Gramian QΠ of the projected system
(8). We obtain them by solving the projected Lyapunov equations

EΠPΠA
T
Π +AΠPΠE

T
Π = −BΠB

T
Π, ΠTPΠΠ = PΠ, (12a)

ET
ΠQΠAΠ +AT

ΠQΠEΠ = −CT
ΠCΠ, ΠTQΠΠ = QΠ. (12b)

These Gramians PΠ and QΠ correspond to the proper controllability and observability Gramians as
introduced by Stykel [34].

We summarize solution techniques for projected Lyapunov equations in Subsection 4.2. Since PΠ and
QΠ are positive semidefinite, there exist factorizations

PΠ = RΠR
T
Π, QΠ = SΠS

T
Π

with factors RΠ ∈ RN,N , SΠ ∈ RN,N . We consider the singular value decomposition

ST
ΠEΠRΠ = UΣV T =

[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

where the matrix Σ is a diagonal matrix with decreasing nonnegative entries that are called Hankel
singular values. They are an indicator for the observability and reachability of certain states of the
system. With the matrix Σ1 which contains the r largest Hankel singular values, we construct the left
and right projection matrices as

W := SΠU1Σ
− 1

2
1 and T := RΠV1Σ

− 1
2

1 .

Then we obtain the reduced system (11) by setting

Er := WTEΠT = Ir, Ar := WTAΠT, Br := WTBΠ, Cr := CΠT.

Remark 1. The projection matrices fulfill W = ΠTW and T = ΠTT and hence, we also have

Er := WTET, Ar := WTAT, Br := WTB, Cr := CT.

As in [1, Theorem 7.9] and [5, Theorem 6.4], if σr > σr+1, then the ROM is asymptotically stable and
one can estimate the output error of the reduced system by

‖y − yr‖L2([0,∞),Rp) ≤ ‖G − Gr‖∞‖u‖L2([0,∞),Rm), (14)

≤

2

n∑
j=r+1

σj

 ‖u‖L2([0,∞),Rm),

where G(s) := C (sE −A)
−1 B and Gr(s) := Cr (sEr −Ar)

−1 Br are the transfer functions of the
original and the reduced system. The H∞-norm is defined as ‖G‖∞ := supω∈R σmax(G(iω)).

4.2 Solving projected Lyapunov equations

The aim of this section is to solve the projected Lyapunov equations (12) in order to compute the
Gramians of system (8). For standard systems with E = IN , there are several methods to solve
the corresponding Lyapunov equations. If small-scale matrices are considered, the Bartels-Stewart
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algorithm [2] or Hammarling’s method [17] are used. These methods however, are inefficient in the
case of large matrices. In typical applications of practical relevance, the solution of a Lyapunov
equation is often of very low numerical rank. So it is desired to compute low-rank factors of these
solutions directly. State-of-the-art methods are the ADI method [21, 27], the sign function method
[5] or Krylov subspace methods [32]. In the literature there exist also several extensions to projected
Lyapunov equations such as [18, 37].

In this section, we utilize the ADI method for projected Lyapunov equations presented in [18] to
compute a low-rank factor RΠ ∈ Rn,k with n� k such that PΠ ≈ RΠR

T
Π approximately solves (12a).

Analogously, we obtain the low-rank factors SΠ of the solution QΠ for the solution of (12b).

We define the matrices

SΠ(p) := Φr (EΦ + pAΦ)
−1

ΦT
r ,

TΠ(p) := EΠ − pAΠ,

CΠ(p) := SΠ(p)TΠ(p),

(15)

for a shift parameter p ∈ C−. As proven in [18, Lemma 5.5], the solution PΠ of (12a) can be
approximated by PΠ ≈ ZkZH

k with

Zk := α(p)
[
SΠ(p)BΠ CΠ(p)SΠ(p)BΠ . . . CΠ(p)k−1SΠ(p)BΠ

]
(16)

and α(p) :=
√
−2 Re(p). In order to improve the convergence of the method, typically a different shift

is chosen in each iteration. If the coefficient matrices defining the Lyapunov equation are real, then
the iteration matrices Zk can also chosen to be real, if a double shift with p and p is carried out. For
the details on this procedure and the choice of shifts we refer to [21].

Another problem in practice is the construction of the matrices in (15). Since Π and Φr are generally
dense matrices, also the matrices in (15) are dense. Thus, the projectors should only be applied
implicitly without constructing them explicitly at any point in the algorithm. Hence, we use [18,
Lemma 5.4 and 5.3] to determine the entries of Zk for the case of a Stokes-like system without the
explicit computations of projection matrices as follows. The first lemma provides that U := SΠ(p)BΠ

solves [
E + pA G
GT 0

] [
U
Λ

]
=

[
B
0

]
,

which can be used to compute the first m columns of Zk. The second lemma shows that for a matrix
H with H = ΠTH, the equation [

E + pA G
GT 0

] [
U
Λ

]
=

[
(E − pA)H

0

]
has the solution U = CΠ(p)H. That way, we obtain the remaining columns of Zk.

5 Reduced basis method

In this section, we return to the problem of reducing parameter-dependent systems. Since the solution
of the Lyapunov equations is the most expensive part of balanced truncation, we aim to limit the
number of Lyapunov equation solves. To achieve this, the reduced basis method presented by Son and
Stykel in [33] can be applied.

The main idea consists of finding a reduced representation of the solutions of the Lyapunov equations
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(12a) of the form

PΠ(µ) ≈ Z(µ)Z(µ)H with Z(µ) = V (µ)Z̃(µ) ∀µ ∈ D, (17)

where Π(µ) denotes the projector for the parameter value µ and V (µ) ∈ Rn,rV (µ) has orthonormal

columns with Π(µ)TV (µ) = V (µ). The low-rank factor Z̃(µ) solves the reduced Lyapunov equation

V (µ)TEΠ(µ)V (µ)Z̃(µ)Z̃(µ)HV (µ)TAΠ(µ)TV (µ)

+ V (µ)TAΠ(µ)V (µ)Z̃(µ)Z̃(µ)HV (µ)TEΠ(µ)TV (µ) = −V (µ)TBΠ(µ)BΠ(µ)TV (µ), (18)

where EΠ(µ) := Π(µ)E(µ)Π(µ)T, AΠ(µ) := Π(µ)A(µ)Π(µ)T, and BΠ(µ) := Π(µ)B(µ).

The equation Π(µ)TV (µ) = V (µ) replaces the condition

Π(µ)T
(
V (µ)Z̃(µ)

)(
V (µ)Z̃(µ)

)H
Π(µ) =

(
V (µ)Z̃(µ)

)(
V (µ)Z̃(µ)

)H
.

For the case of a Stokes-like system (2), this condition is further equivalent to the propertyG(µ)TV (µ) =
0, i. e., all columns of V (µ) lie in the kernel of G(µ)T.

In practice, we aim to determine a matrix V ∈ Rn,rV with n � rV that contains the information of
V (µ) for all µ ∈ D globally. When we have determined such a V , we set

V (µ) = orth
(
Π(µ)TV

)
, (19)

where orth(Π(µ)TV ) denotes the orthonormalized columns of Π(µ)TV . If the matrix V has been
found, then the reduced-order model for a particular parameter µ ∈ D can be determined very effi-
ciently in the so-called online phase, where one simply solves (18) with (17) and (19) to determine the
two Gramians and then projects the system as in Subsection 4.1.

The computation of the reduced basis V is done beforehand in the offline phase. There, we solve the
full-order Lyapunov equation only for those parameters, where their solutions are currently approxi-
mated worst to enrich the current reduced basis. A posteriori error estimators are employed on a test
parameter set to find these points efficiently.

We determine V by considering a test-parameter set DTest ⊂ D. We begin by computing a low-rank
factor Z(µ1) in µ1 ∈ DTest such that PΠ(µ1) = Z(µ1)Z(µ1)H solves the projected Lyapunov equation

EΠ(µ)PΠ(µ)AΠ(µ)T +AΠ(µ)PΠ(µ)EΠ(µ)T = −BΠ(µ)BΠ(µ)T,

Π(µ)TPΠ(µ)Π(µ) = PΠ(µ) (20)

for µ = µ1.

The first reduced basis is then given by V := orth(Z(µ1)). Next we determine the test parameter
µ2 ∈ DTest for which the solution PΠ(µ2) of the Lyapunov equation (12a) is approximated worst by
using (17), (18), and (19). For that, one of the error estimators ∆V (µ) presented in Subsection 5.1 is
utilized. For this parameter µ2, we solve the projected Lyapunov equation (20) with µ = µ2 to obtain
the low-rank factor Z(µ2). The we define the new reduced basis by setting V := orth([V , Z(µ2)]).
This procedure is repeated until the error estimator ∆V is smaller than a prescribed tolerance for every
test parameter in DTest. This method results in Algorithm 1.
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Algorithm 1 Reduced basis method for projected Lyapunov equations (offline phase)

Input: Dynamical system (1), test parameter set DTest, tolerance Tol.
Output: Reduced basis matrix V
1: Choose any µ1 ∈ DTest.
2: Solve the projected Lyapunov equation (20) for µ = µ1 to obtain Z(µ1).
3: Set M := {µ1}.
4: Set V := orth(Z(µ1)).
5: Set µ̂ := arg maxµ∈DTest\M∆V (µ).
6: Set ∆max

V := ∆V (µ̂).
7: while ∆max

V > Tol do
8: Solve the projected Lyapunov equation (20) for µ = µ̂ to obtain Z(µ̂).
9: Set M :=M∪ {µ̂}.

10: Set V := orth([V , Z(µ̂)]).
11: µ̂ := arg maxµ∈DTest\M∆V (µ)
12: Set ∆max

V := ∆V (µ̂).
13: end while

5.1 Error estimation

We want to estimate the error EΠ(µ) := PΠ(µ)− Z(µ)Z(µ)H with the help of the residual

RΠ(µ) := AΠ(µ)Z(µ)Z(µ)HEΠ(µ)T + EΠ(µ)Z(µ)Z(µ)HAΠ(µ)T +BΠ(µ)BΠ(µ)T.

As in [33], we consider the linear system

LΠ(µ)xΠ(µ) = bΠ(µ), xΠ(µ) = Π(µ)TxΠ(µ),

with

LΠ(µ) := −AΠ(µ)⊗ EΠ(µ)− EΠ(µ)⊗AΠ(µ),

xΠ(µ) := vec(PΠ(µ)), bΠ(µ) := vec(BΠ(µ)BΠ(µ)T), Π(µ) = Π(µ)⊗Π(µ),

which is equivalent to the projected Lyapunov equation (20). The operator ⊗ denotes the Kronecker
product and vec the vectorization operator that stacks the columns of the matrix on top of one another.
Additionally, for the decomposition Π(µ) = Φl(µ)Φr(µ)T with Φl(µ)TΦr(µ) = Ik and with EΦ(µ) :=
Φr(µ)TE(µ)Φr(µ) and AΦ(µ) := Φr(µ)TA(µ)Φr(µ) we define

Φr(µ) := Φr(µ)⊗ Φr(µ), Φl(µ) := Φl(µ)⊗ Φl(µ),

as well as
LΦ(µ) := −AΦ(µ)⊗ EΦ(µ)− EΦ(µ)⊗AΦ(µ).

Then for x̂Π(µ) := vec
(
Z(µ)Z(µ)H

)
it holds that

‖EΠ(µ)‖F =
∥∥x̂Π(µ)− xΠ(µ)

∥∥
2

=
∥∥Π(µ)T(x̂Π(µ)− xΠ(µ))

∥∥
2

=
∥∥Φr(µ)Φl(µ)T(x̂Π(µ)− xΠ(µ))

∥∥
2

=
∥∥Φr(µ)LΦ(µ)−1LΦ(µ)Φl(µ)T(x̂Π(µ)− xΠ(µ))

∥∥
2

=
∥∥Φr(µ)LΦ(µ)−1Φr(µ)TΦl(µ)LΦ(µ)Φl(µ)T(x̂Π(µ)− xΠ(µ))

∥∥
2

=
∥∥Φr(µ)LΦ(µ)−1Φr(µ)T(LΠ(µ)x̂Π(µ)− bΠ(µ))

∥∥
2
.

(21)
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We want to estimate the error ‖EΠ(µ)‖F for which we will impose an additional assumption on the
matrix pencils sE(µ)−A(µ) in (2) and (4).

Definition 5.1. The family {sE(µ) − A(µ) ∈ R[s]n,n | µ ∈ D} of matrix pencils is called uniformly
strictly dissipative, if

E(µ) = E(µ)T > 0 and AS(µ) :=
1

2

(
A(µ) +A(µ)T

)
< 0 ∀µ ∈ D.

The uniform strict dissipativity provides the solvability of the reduced Lyapunov equation (18) for all
µ ∈ D. Additionally, it is used to derive an error bound. The pencil family {sE(µ) − A(µ) | µ ∈
D} in example (2) is naturally uniformly strictly dissipative. On the other hand, the pencil family
{sE(µ) − A(µ) | µ ∈ D} in (4) is not uniformly strictly dissipative. However, we can enforce this
condition by a certain transformation of the system, see Subsection 5.2 for the details.

Now we assume w. l. o. g. that the columns of Φr(µ) and hence those of Φr(µ) are orthonormal.
Moreover, we define

L(µ) := −A(µ)⊗ E(µ)− E(µ)⊗A(µ).

Then Corollary 3.1.5 from [20] and the eigenvalue properties of the Kronecker product, given in [20, 22]
(see also [33]), lead to the estimate

σmin(LΦ(µ)) = σmin

(
Φr(µ)TL(µ)Φr(µ)

)
≥ λmin

(
1

2
Φr(µ)T

(
L(µ) + L(µ)T

)
Φr(µ)

)
≥ λmin

(
1

2

(
L(µ) + L(µ)T

))
= 2λmin(E(µ))λmin

(
−AS(µ)

)
≥ 2 min

k=1,...,nE

ΘE
k (µ)

ΘE
k (µ̄)

λmin(E(µ̄)) min
k=1,...,nA

ΘA
k (µ)

ΘA
k (µ̄)

λmin

(
−AS(µ̄)

)
=: α(µ),

where µ̄ is an arbitrary fixed parameter in D.

We compute the eigenvalues of E(µ̄) and AS(µ̄) once to find a lower bound α(µ) of the minimal singular
value σmin(LΦ(µ)) for every parameter µ ∈ D.

Applying this result to equation (21) provides the error estimate

‖EΠ(µ)‖F ≤ σmax

(
LΦ(µ)−1

)
·
∥∥LΠ(µ)x̂Π(µ)− bΠ(µ)

∥∥
2

=

∥∥LΠ(µ)x̂Π(µ)− bΠ(µ)
∥∥

2

σmin(LΦ(µ))

≤
‖RΠ(µ)‖F
α(µ)

=: ∆
(1)
V (µ).

(22)

To improve the estimator (22), we consider the error bound presented in [31]. We can determine the
exact error EΠ(µ) by solving the error equation

AΠ(µ)EΠ(µ)EΠ(µ)T + EΠ(µ)EΠ(µ)AΠ(µ)T

= AΠ(µ)Z(µ)Z(µ)HEΠ(µ)T + EΠ(µ)Z(µ)Z(µ)HAΠ(µ)T +BΠ(µ)BΠ(µ)T, (23)

with EΠ(µ) = Π(µ)TEΠ(µ)Π(µ) and where Z(µ) = V (µ)Z̃(µ) is our approximate solution factor of the
original Lyapunov equation.

Assuming that ÊΠ(µ) ≈ EΠ(µ) is an error estimate that is not necessarily an upper bound, an error
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bound ∆
(2)
V (µ) is derived by

‖EΠ(µ)‖F = ‖EΠ(µ) + ÊΠ(µ)− ÊΠ(µ)‖F
≤ ‖ÊΠ(µ)‖F + ‖EΠ(µ)− ÊΠ(µ)‖F

≤ ‖ÊΠ(µ)‖F +
‖R̂Π(µ)‖F
α(µ)

:= ∆
(2)
V (µ),

(24)

where the residual R̂Π(µ) is defined as

R̂Π(µ) := AΠ(µ)
(
Z(µ)Z(µ)H + ÊΠ(µ)

)
EΠ(µ)T

+ EΠ(µ)
(
Z(µ)Z(µ)H + ÊΠ(µ)

)
AΠ(µ)T +BΠ(µ)BΠ(µ)T.

It remains to obtain an error estimate ÊΠ(µ) for all µ ∈ DTest. To do so, we solve the error equation
(23) approximately by modifying the projected ADI iteration from Section 4.2 and the reduced basis
method in Algorithm 1.

The right-hand side of the error equation (23) can be written as a product of Bl(µ) and Br(µ)H where

Bl(µ) :=
[
AΠ(µ)Z(µ) EΠ(µ)Z(µ) BΠ(µ)

]
,

Br(µ) :=
[
EΠ(µ)Z(µ) AΠ(µ)Z(µ) BΠ(µ)

]
.

For simplicity we consider the modified ADI iteration for the parameter-independent case. Analogously
to the derivation in [18], it can be shown that the iteration

Ek = Zkl (Zkr )H = CΠ(p)Ek−1CΠ(p)H − 2Re(p)SΠ(p)BlB
T
r SΠ(p)H

= CΠ(p)Zk−1
l (Zk−1

r )HCΠ(p)H − 2Re(p)SΠ(p)BlB
T
r SΠ(p)H

converges to the solution EΠ of (23), where SΠ(p) and CΠ(p) are defined as in (15) for a shift-parameter
p ∈ C−. The factors Zkl and Zkr can be written as

Zkl = α(p)
[
SΠ(p)Bl CΠ(p)SΠ(p)Bl . . . CΠ(p)k−1SΠ(p)Bl

]
,

Zkr = α(p)
[
SΠ(p)Br CΠ(p)SΠ(p)Br . . . CΠ(p)k−1SΠ(p)Br

]
with α(p) =

√
−2Re(p). Consequently, one can modify the projected ADI iteration from Section 4.2 in

such a way, that we multiply in every iteration step the last columns of the current factors Zkl , Z
k
r by

CΠ(p) and concatenate the product with the current factors to obtain Zk+1
l and Zk+1

r . As in Section
4.2, we can derive the ADI iteration for a single shift. The multi-shift version can be formulated
similarly.

We include the modified projected ADI iteration into the reduced basis method presented in Algorithm
1 by solving the error equation (23) in Step 2 and 8 to obtain the the two factors Zl(µ), Zr(µ)
with Zl(µ)Zr(µ)H ≈ EΠ(µ). The orthonormal basis computation in Step 4 and 10 is replaced by
V := orth([V , Zl(µ)]). Note that here, the columns of Zl(µ) and Zr(µ) span the same subspace. As

error estimate we use ∆
(1)
V . After we have determined the orthonormal basis, we solve equation (23)

on the corresponding subspace to get an approximate error ÊΠ(µ), that we use for the error bound

∆
(2)
V (µ).
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5.2 Enforcing uniform strict dissipativity

In this section we demonstrate how to achieve uniform strict dissipativity for our model problems.
Recall that this is needed in order to derive the error estimators from the previous subsection. First
of all, the pencil family {sE(µ) − A(µ) | µ ∈ D} for the Stokes-like problem is uniformly strictly
dissipative by its structure. However, this is not the case for the mechanical systems in Subsections 2.2
and 2.3. Therefore, in order to apply our theory, we transform these systems to make them uniformly
strictly dissipative. We only discuss this transformation for the system (3) from Subsection 2.2 since
for the other one it is analogous.

Here we apply a transformation presented in [11, 26]. We observe that by adding certain productive
zeros and assuming γ(µ) 6= 0, (3) is equivalent to the system

d

dt
K(µ)x(t) + γ(µ)

d2

dt2
M(µ)x(t) = −γ(µ)K(µ)x(t) +

d

dt
K(µ)x(t)

− γ(µ)
d

dt
D(µ)x(t) + γ(µ)G(µ)λ(t) + γ(µ)Bxu(t),

γ(µ)
d

dt
M(µ)x(t) +

d2

dt2
M(µ)x(t) = −K(µ)x(t) + γ(µ)

d

dt
M(µ)x(t)

− d

dt
D(µ)x(t) +G(µ)λ(t) +Bx(µ)u(t),

0 = G(µ)Tx(t),

0 =
d

dt
G(µ)Tx(t),

where x(t) is equal to x1(t) and d
dtx(t) equal to x2(t) from system (3). The last equation is a direct

consequence from the equation above and provides no extra restrictions. These equations can be
written as first order system. By defining the matrices

E(µ) :=

[
K(µ) γ(µ)M(µ)

γ(µ)M(µ) M(µ)

]
, A(µ) :=

[
−γ(µ)K(µ) K(µ)− γ(µ)D(µ)
−K(µ) −D(µ) + γ(µ)M(µ)

]
,

B(µ) :=

[
γ(µ)Bx(µ)
Bx(µ)

]
,

and replacing G(µ) by diag(G(µ), G(µ)), we generate a system in the form (2) such that we can apply
all methods for this kind of system in the following.

As shown in [11, 26] the transformed system has a uniformly strictly dissipative pencil family {sE(µ)−
A(µ) | µ ∈ D}, if we choose γ(µ) > 0 such that

γ(µ)

(
λmax

(
M(µ) +

1

4
D(µ)K(µ)−1D(µ)

))
≤ λmin(D(µ)) ∀µ ∈ D. (25)

Because of the symmetry and positive definiteness of D(µ)K(µ)−1D(µ) and the submultiplicativity of
the norm we obtain

λmax

(
D(µ)K(µ)−1D(µ)

)
=
∥∥D(µ)K(µ)−1D(µ)

∥∥
2

≤ ‖D(µ)‖22 ·
∥∥K(µ)−1

∥∥
2

= λmax(D(µ))2 · λmax(K(µ)−1).

By Weyl’s lemma [20, 22], we also have

λmax

(
M(µ) +

1

4
D(µ)K(µ)−1D(µ)

)
≤ λmax(M(µ)) +

1

4
λmax

(
D(µ)K(µ)−1D(µ)

)
.
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Therefore, condition (25) is satisfied, if we choose γ(µ) such that

γ(µ)

(
λmax(M(µ)) +

1

4
λmax(D(µ))2λmax

(
K(µ)−1

))
≤ λmin(D(µ)) ∀µ ∈ D.

This can be achieved by the choice

γ(µ) ≤ λmin(D(µ))

λmax(M(µ)) + 1
4λmax(D(µ))2λmax(K(µ)−1)

. (26)

To avoid computing the eigenvalues of M(µ), D(µ), K(µ) for every parameter µ, we further use the
estimates

λmax(D(µ)) ≤
nD∑
k=1

ΘD
k (µ)λmax(Dk) and λmin(D(µ)) ≥

nD∑
k=1

ΘD
k (µ)λmin(Dk),

that are a consequence of Weyl’s lemma. Similar estimates are also valid for M(µ) and K(µ).

Assume now that at there exist kD ∈ {1, . . . , nD} and kK ∈ {1, . . . , nK} such that DkD and KkK are
positive definite and that ΘD

kD
(µ) > 0 and ΘK

kK
(µ) > 0 for all µ ∈ D. Then we can further estimate

γ(µ) as

γ(µ) ≤
∑nD
k=1 ΘD

k (µ)λmin(Dk)∑nM
k=1 ΘM

k (µ)λmax(Mk) + 1
4 (
∑nD
k=1 ΘD

k (µ)λmax(Dk))2/
(∑nK

k=1 ΘK
k (µ)λmin(Kk))

,

while ensuring that we can choose γ(µ) > 0 for all µ ∈ D.

The benefit of the above estimate is that the extremal eigenvalues of the matrices Mk, Dk, and Kk

have to be computed only once in the beginning and otherwise, its evaluation is cheap, since ΘM
k (·),

ΘD
k (·), ΘK

k (·) are scalar-valued functions.

6 Numerical results

In this section, we present the numerical results for the two differential-algebraic systems and the
optimization problem from Section 2. The computations have been done on a computer with 2 Intel
Xeon Silver 4110 CPUs running at 2.1 GHz and equipped with 192 GB total main memory. The
experiments use MATLAB®R2017b (9.3.0.713579) and examples and methods from M-M.E.S.S.-2.0.
[29].

6.1 Problem 1: Stokes equation

We consider a system that arises, if we consider the creeping flow in capillaries or porous media. It
has the following structure

d

dt
v(ζ, t) = µ∆v(ζ, t)−∇p(ζ, t) + f(ζ, t),

0 = div(v(ζ, t)),
(27)

with appropriate initial and boundary conditions. The position in the domain Ω ⊂ Rd is described
by ζ ∈ Ω and t ≥ 0 is the time. For simplicity, we use a classical solution concept and assume that
the external force f : Ω × [0,∞) → Rd is continuous and that the velocities v : Ω × [0,∞) → Rd and
pressures p : Ω × [0,∞) → Rd satisfy the necessary smoothness conditions. The parameter µ ∈ D
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(b) Sigma plots of the original, reduced, and error
transfer functions for the parameter µ = 0.65.

Figure 1: Results for the reduction of system (2).

represents the dynamic viscosity. We discretize system (27) by finite differences as shown in [24, 36]
and add an output equation. Then we obtain a discretized system of the form (2), where only the
matrix A(µ) = µA for A ∈ Rn×n depends on the parameter µ.

Our example matrices E, A, G, B, C are created by the M-M.E.S.S. function stokes FVM and we
choose the dimensions n = 3280, q = 1681, and m, p = 1 and the parameter set D = [ 1

2 ,
3
2 ]. The

reduced basis method from Section 5 produces projection space dimensions 24 and 24 for the projected
Lyapunov equations. The errors and their estimates are presented in Figure 1a for the controllability
Lyapunov equation. The error is evaluated by

error ≈
∥∥P acc

Π (µ)− Z(µ)Z(µ)H
∥∥

F
,

where P acc
Π (µ) denotes an accurate approximation of the exact solution PΠ(µ).

We can observe, that after the first iteration step, we obtain an error which is smaller than the tolerance

10−4. Additionally, we see that the error estimator ∆
(2)
V provides a sharp bound of the actual error

while ∆
(1)
V leads to more conservative error bounds.

Afterwards, we apply balanced truncation to obtain the reduced system of dimension r = 10. We
demonstrate the quality of the reduced system by evaluating the error of the transfer functions. We
show the sigma plot of the original and reduced transfer function as well as the error for the parameter
µ = 0.65 in Figure 1b. We observe that the error is smaller than 10−4 in the entire frequency band
[10−4, 104].

6.2 Problem 2: Mechanical system

As an example for system (3) we consider a constrained mass-spring-damper system which is depicted
in Figure 2 and taken from [24]. This system is composed of masses mi, i = 1, . . . , g which are
connected with each other by springs with spring constants ki and dampers with damping constants
di, i = 1, . . . , g− 1. Moreover, each mass is connected to the ground by a spring with spring constant
κi and a damper with damping constant δi for i = 1, . . . , g. An algebraic constraint is given by the
condition that there is a rigid connection between the masses m1 and mg. Our input force acts on the
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Figure 2: Example 2 – Constrained mass-damper-spring system

first mass m1 only. As output we take the position of the first mass. This leads to a system of the
form (3) with the matrices

M = diag(m1, . . . , mg),

D =


d1 + δ1 −d1

−d1 d1 + d2 + δ2 −d2· · · ·
−dg−2 dg−2 + dg−1 + δg−1 −dg−1

−dg−1 dg−1 + δg

 ,

K =


k1 + κ1 −k1

−k1 k1 + k2 + κ2 −k2· · · ·
−kg−2 kg−2 + kg−1 + κg−1 −kg−1

−kg−1 kg−1 + κg

 ,

G = [1, 0, . . . , 0, −1]T, B = [1, 0, . . . , 0]T, C = [1, 0, . . . , 0].

The dimension n coincides with the dimension g in Figure 2. The matrices are generated by the
M-M.E.S.S. function msd ind3. We choose g = 6000 as well as

m1 = . . . = mg = 1, k1 = . . . = kg−1 = 1.5, d1 = . . . = dg−1 = 0.7,

κ1 = . . . = κg = 2, δ1 = . . . = δg = 0.9.

Assume that we want to reduce the model for various damper configurations for δi. So assume that

D(µ) := D + µIg,

where µ ∈ D = [0, 1].

We evaluate the error for the reduced basis method, where we consider especially the controllability
Gramian. After the first iteration, the error for the Gramian is already below 10−4 with a projection
space of dimension 22 in the entire parameter domain D. The results are presented in Figure 3a.

Again, we see that the error estimator ∆
(2)
V approximates the error EΠ well, especially compared to

the estimation by ∆
(1)
V . For the observability Gramian, we obtain a projection space dimension of 22

and so we only have to solve small Lyapunov equations of dimensions 22 and 22 in the online phase,
respectively.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2021-08-20



J. Przybilla, M. Voigt: MOR of Parametric DAE Systems by Balanced Truncation 17

0 0.25 0.5 0.75 1
10−8

10−6

10−4

10−2

µ

er
ro

r
/

er
ro

r
es

ti
m

at
e

error

∆
(2)
V

∆
(1)
V

(a) Error and error estimates of the approximated
Gramians. For evaluating the error, the Lya-
punov equations are also solved with the residual
tolerance 10−15 to obtain an accurate estimate
of the exact solution.

10−4 10−2 100 102 104
10−16

10−12

10−8

10−4

100

ω

m
ax

im
u

m
si

n
gu

la
r

va
lu

e original
reduced
error

(b) Sigma plots of the original, reduced, and error
transfer functions for the parameter µ = 0.1.

Figure 3: Results for the reduction of system (3).

The reduction results for the parameter µ = 0.1 are shown in Figure 3b, where we depict the original,
reduced, and error transfer function. The reduced system has the dimension r = 10. We observe that
the H∞-norm error of the reduced transfer function is smaller than 10−4. Therefore, the procedure of
this article works well for this example, too.

6.3 Problem 3: Optimization problem

Now we revisit the optimization problem detailed in Subsection 2.3. As in the second example the
matrices are generated by the M-M.E.S.S. function msd ind3. As internal damping model we choose
the Rayleigh damping

Dint = βM + ζK,

with β = 0.02 and ζ = 0.01 in our example.

Recall that our aim is to choose H(µ) such that the external input Fu(·) affects the output y(·) as
little as possible. Therefore, we want to minimize the system response which is given by

J(µ) :=

∫ ∞
−∞

tr
(
G(µ, iω)HG(µ, iω)

)
dω,

where the function G(µ, s) is the parameter-dependent transfer function of the system (5). The function
J(·) can be expressed as (6) and (7).

The MATLAB function fminbnd is used to find the minimizer of J(·) in the parameter set D = [0, 100].
As described in (6) and (7), a Lyapunov equation has to be solved in every iteration step. In [4] this
problem is solved by the dominant pole algorithm and in [39] by rational interpolation. In this article,
on the other hand, we apply the reduced basis method, presented in Section 5, to accelerate the
minimization process. In the reduced basis method we use the tolerance 10−3. Then we can solve the
corresponding reduced Lyapunov equations in each step of the minimization process.

The resulting minimizers and times are presented in Table 1. Both optimization methods lead to the
same result. Even though, the reduction in the offline phase takes 28.9 seconds, the online phase
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Table 1: Results and times for the optimization

system dimension optimization time minimizer

original system 12000 118.0 sec 100
reduced system 131 14.2 sec 100

provides an acceleration and the overall runtime is still smaller compared to the approach without
reduction.

7 Conclusion

This paper has addressed the model reduction of parameter-dependent differential-algebraic systems
by balanced truncation. To apply the balancing procedure we have utilized certain projections to
eliminate the algebraic constraints. This has enabled us to compute the necessary Gramians efficiently
by solving projected Lyapunov equations.

To handle the parameter-dependency, we have applied the reduced basis method, which is split into
the offline phase and the online phase. In the offline phase, we have computed the basis of the
subspace which approximates the solution space of the Lyapunov equation. To evaluate the quality of
this subspace we have derived two error estimators. Afterwards, in the online phase, we have solved
a reduced Lyapunov equation to obtain an approximation of the Gramian for a parameter value of
interest efficiently. Therefore, a balanced truncation for this parameter value can also be carried out
very fast.

This method has been illustrated by numerical examples of index two and three. In particular, we were
able to reduce the associated Lyapunov equations to very small dimensions. We have evaluated our
error estimators, where the second one almost estimates the error exactly. Further, we have considered
an optimization problem where applying the reduced basis method has accelerated the minimization
of the system response significantly.

Code Availability

The code and data that has been used to generate the numerical results of this work are freely available
under the DOI 10.5281/zenodo.5145752 under the 3-clause BSD license and is authored by Jennifer
Przybilla and Matthias Voigt.
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