Supporting Information

A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate: Total Syntheses of Keramaphidin B, Ingenamine, and Nominal Njaoamine I

Zhanchao Meng, ${ }^{[+]}$Simon M. Spohr, ${ }^{[+]}$Sandra Tobegen, Christophe Farès, and Alois Fürstner*
${ }^{[+]}$these authors contributed equally

Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Email: fuerstner@kofo.mpg.de

Table of Contents

Supporting Crystallographic Information S2
General S4
Ingenamine and Keramaphidine S5
Nominal Njaoamine I. The Quinoline Building Block S25
The Failed First Foray S28
Completion of the Total Synthesis S38
NMR Assignment and Structure Confirmation of Synthetic Nominal Njaomine I ((+)-4) S51
Comparison of Synthetic Nominal Njaomine I ((+)-4) with Native Njaoamine I S65
Structure Revision of Njaoamine I Based on a Re-Assessment of an Authentic Sample S69
Two Concurrent RCAM Reactions S78
Copies of Spectra S80
References S199

Supporting Crystallographic Information

Figure S1. Molecular structure of the two independent molecules of cycloalkyne $\mathbf{2 8}$ in the solid state; atomic displacement ellipsoids are shown at the 50% probability level, H -atoms omitted for clarity

X-ray Crystal Structure Analysis of Compound 28: $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}_{\mathrm{r}}=526.78 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless needle, crystal size $0.140 \times 0.034 \times 0.025 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}[4], a=15.6435(7) \AA, b=8.6081(4) \AA$, $c=23.3896(10) \AA$ Å, $\beta=109.531(2)^{\circ}, V=2968.4(2) \AA^{3}, T=100(2) \mathrm{K}, Z=4, D_{\text {calc }}=1.179 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073$ $\AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=0.115 \mathrm{~mm}^{-1}$, analytical absorption correction ($T_{\min }=0.99, T_{\max }=1.00$), Bruker-AXS Kappa Mach3 APEX-II diffractometer with a 1μ s microsource, $1.381<\theta<32.467^{\circ}, 106114$ measured reflections, 20839 independent reflections, 16939 reflections with $I>2 \sigma(I), R_{\text {int }}=0.0706, S=1.031,680$ parameters, absolute structure parameter $=0.02(3)$, residual electron density $+0.4(1.12 \AA$ from H3AA) / - $0.4(0.13 \AA$ from Si1A) e $\cdot \AA^{-3}$.

The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^{2} to $R_{1}=$ $0.049[I>2 \sigma(I)], w R_{2}=0.107$. CCDC-2081190.

Figure S2. Molecular structure of the four independent molecules of compound $\mathbf{4 2}$ in the solid state; atomic displacement ellipsoids are shown at the 50% probability level, H -atoms omitted for clarity

X-ray Crystal Structure Analysis of Compound 42: $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}_{\mathrm{r}}=434.60 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.180 \times 0.155 \times 0.111 \mathrm{~mm}^{3}$, triclinic, space group P1 [2], $a=11.7256(5) \AA$ A $, b=13.3258(6) ~ \AA \AA, c=$ $15.6551(7) \AA$ Å, $\alpha=89.927(2)^{\circ}, \beta=89.955(2)^{\circ}, \gamma=83.357(2)^{\circ}, V=2429.73(19) \AA^{3}, T=100(2) \mathrm{K}, Z=4, D_{\text {calc }}=$ $1.188 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=0.576 \mathrm{~mm}^{-1}$, analytical absorption correction ($T_{\min }=0.92, T_{\max }=$ 1.00), Bruker AXS Enraf-Nonius KappaCCD diffractometer with a FR591 rotating Cu-anode X-ray source, $2.823<\theta<72.989^{\circ}, 105618$ measured reflections, 18363 independent reflections, 17486 reflections with $I>2 \sigma(I), R_{\text {int }}=0.0426, S=1.145,1190$ parameters, absolute structure parameter $=-0.09(6)$, residual electron density +0.2 (0.71 Å from H33B) / - 0.2 ($0.86 \AA$ from C108) e $\cdot \AA^{-3}$.

The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^{2} to $R_{1}=$ $0.040[I>2 \sigma(I)], w R_{2}=0.093$. CCDC-2081189.

General. Unless stated otherwise, all reactions were carried out in flame-dried glassware using anhydrous solvents under argon atmosphere. The solvents were purified by distillation over the following drying agents and were transferred under argon: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg/anthracene); MeCN, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DCE $\left(\mathrm{CaH}_{2}\right)$; toluene (Na / K alloy); $\mathrm{MeOH}\left(\mathrm{Mg}\right.$, stored over MS $3 \AA$). DMSO, DMF, NEt_{3}, pentane and pyridine were dried by an adsorption solvent purification system based on molecular sieves. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM ${ }^{\circledR}$ SIL/UV254). Detection was achieved under UV-Light (254 nm) and by staining with either acidic p-anisaldehyde, cerium ammonium molybdenate or basic KMnO_{4} solution. Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with predistilled or HPLC grade solvents. NMR: Spectra were recorded on Bruker AV 400, AV 500, AVIII 600 or AVneo 600 spectrometers in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}=77.00 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{C}}=49.00 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HOD}$ in $\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=3.31 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta_{\mathrm{C}}=39.52 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HSOCD}_{3}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta_{\mathrm{H}}$ $=2.50 \mathrm{ppm})$; all spectra were recorded at $25^{\circ} \mathrm{C}$. Multiplicities are indicated by the following abbreviations: s : singlet, d : doublet, t : triplet, q : quartet, p : pentet, h : hextet, hept: heptet, m : multiplet, br: broad signal. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ${ }^{1} \mathrm{H}$-decoupled manner and the values of the chemical shifts are rounded to one decimal point. Signal assignments were established using HSQC, HMBC, COSY, NOESY and other 2D experiments. IR: Spectra were recorded on an Alpha Platinum ATR instrument (Bruker), wavenumbers (\tilde{v}) in cm^{-1}. MS (ESI-MS): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FTMS (7 T magnet) or Mat 95 (Finnigan). Optical rotations ([$\alpha]_{\mathrm{D}}$) were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm . Preparative LC was performed with an Agilent 1260 infinity prep system (fraction collector G7159 B + G7166A, diode array detector G7115A); stationary phase and conditions for each compound are specified below.

Molecular sieves ($5 \AA$) were activated at $150^{\circ} \mathrm{C}$ for 24 h in high vacuum ($1 \times 10^{-3} \mathrm{mbar}$) and stored under argon.

Unless stated otherwise, commercially available compounds (Alfa Aesar, Aldrich, TCI, Strem Chemicals, ChemPUR) were used as received. The following compounds were prepared according to the cited literature: 5-iodopent-2-yne ${ }^{[1]}$, 7-iodohept-2-yne ${ }^{[2]}$ and molybdenum alkylidyne complex 31. ${ }^{[3]}$

Table S1. Statistical Analysis

Target	Macrocyclization Tactics	Step Count (LLS) a	Total Step Count	Overall Yield
nominal xestocyclamine A ${ }^{b}$	RCAM / alkyl-Suzuki coupling	16	20	1.97%
actual xestocyclamine A	RCAM / macrolactamization	19	23	1.94%
($=$ ent-ingenamine A) b				
ingenamine A	RCAM / RCM	16	20	2.01%
keramaphidine B	RCAM / RCM	19	23	0.93%
nominal njaoamine I	RCAM / RCAM	21	32	1.14%

${ }^{a}$ starting from commercially available materials; ${ }^{b}$ see ref. 2; LLS = longest linear sequence; RCAM = ring closing alkyne metathesis; RCM = ring closing olefin metathesis

Ingenamine and Keramaphidine

tert-Butyl (S)-3-((tert-butyldimethylsilyl)oxy)piperidine-1-carboxylate (14). 4-Dimethylamino-pyridine Noc $(68.3 \mathrm{mmol}, 8.3 \mathrm{~g})$ and triethylamine ($124.22 \mathrm{mmol}, 17.3 \mathrm{~mL}$) were added to a stirred
solution of (S)-1-Boc-3-hydroxypiperidine $(124.22 \mathrm{mmol}, 25.00 \mathrm{~g})$ at room temperature. solution (S)-1-Boc-3 hydroxypiperidine (124.22 mmol 25.00 g) at room After 5 min , tert-butyldimethylsilylchloride ($132.91 \mathrm{mmol}, 20.03 \mathrm{~g}$) was added and the resulting mixture stirred for 4 h at room temperature. Next, the mixture was poured into ice-cooled water $(100 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 250 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 10:1), providing the title compound as a colorless oil (39.09 g, quant.). $[\alpha]_{\mathrm{D}}^{25}=+14.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)^{[4]}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.91-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dt}, \mathrm{J}=$ $13.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dp}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{tt}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=154.8,79.3,67.1,51.1,43.6,33.9,28.4,25.8,23.1,18.1,-4.8 ; \operatorname{IR}($ film $): \tilde{v}=$ 2930, 2886, 2857, 1697, 1465, 1421, 1391, 1365, 1278, 1254, 1239, 1176, 1154, 1099, 1041, 981, 904, 873, 858, 837, $775 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 338.21219, found: 338.21235.
tert-Butyl (S)-5-((tert-butyldimethylsilyl)oxy)-2-oxopiperidine-1-carboxylate (15). Ruthenium(IV) oxide
 hydrate ($7.31 \mathrm{mmol}, 974 \mathrm{mg}$) was added to a solution of piperidine 14 ($122.02 \mathrm{mmol}, 38.50$ g) and $\mathrm{NaIO}_{4}(569.83 \mathrm{mmol}, 121.88 \mathrm{~g})$ in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(1.62 \mathrm{~L}, 1: 3)$. The resulting mixture was vigorously stirred in a flask open to air at room temperature for 1.5 h . The organic phase was separated and the aqueous layer extracted with EtOAc $(3 \times 300 \mathrm{~mL})$. The combined
organic extracts were stirred with isopropanol (20 mL) for 3 h to decompose any remaining catalyst before they were filtered. The filtrate was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 20:1 to 10:1), furnishing the title compound as a white solid (22.10 g , 55% yield). M.p. $=36.3-37.2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+8.2^{\circ}(\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right)^{[4]]}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.19-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{ddd}, \mathrm{J}=17.2$, $9.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dt}, \mathrm{J}=17.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (dddd, $J=13.2,9.0,6.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (ddtd, $J=13.6$, $6.8,5.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,152.5$, 82.9, 64.4, 52.4, 31.1, 29.0, 28.0, 25.7, 18.0, -4.9; IR (film): $\tilde{v}=2954,2931,2895,2857,1773,1716,1472$, 1391, 1368, 1346, 1296, 1251, 1151, 1114, 1087, 1061, 1020, 984, 938, 881, 836, 777, $702 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 352.19146, found: 352.19136.

3-Allyl 1-(tert-butyl) (5S)-5-((tert-butyldimethylsilyl)oxy)-2-oxopiperidine-1,3-dicarboxylate (S1).

LiHMDS (1 M in THF, $114.82 \mathrm{mmol}, 19.21 \mathrm{~g}$) was added dropwise to a solution of oxopiperidine 15 ($49.92 \mathrm{mmol}, 16.45 \mathrm{~g}$) in anhydrous THF (250 mL) at $78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , before allyl chloroformate ($52.42 \mathrm{mmol}, 5.6 \mathrm{~mL}$) was added. The resulting yellow solution was stirred for 25 min at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and the mixture warmed to ambient temperature. The aqueous phase was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The combined extracts were washed with brine (100 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 5:1), furnishing the title compound as a white solid ($19.45 \mathrm{~g}, 94 \%$ yield). M.p. $=49.4-50.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}=+15.0^{\circ}(\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta=5.93$ (ddtd, $J=17.2,10.5,5.7,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{dp}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddt}, J=10.5,2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.21(\mathrm{~m}$, 0.7 H, major), 4.13 (tdd, $J=6.4,5.6,3.7 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), $3.84-3.78$ ($\mathrm{m}, 0.7 \mathrm{H}$, major), $3.77-3.63$ ($\mathrm{m}, 1.7 \mathrm{H}$, major), 3.60 (ddd, $J=13.2,3.9,0.9 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 3.46 (dd, $J=10.0,7.3 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), $2.37-2.19$ (m, 1.3H), 2.09 (dddd, $J=13.6,6.4,4.6,1.6 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), 1.51 ($\mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}, 9 \mathrm{H}$), 0.87 ($\mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, 9 \mathrm{H}$), $0.12-0.04$ (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=169.6,168.8,166.9,166.9$, $152.5,152.2,131.6,131.6,118.7,118.6,83.5,83.4,66.1,64.3,63.2,52.2,51.3,49.5,48.0,33.4,32.8,27.9$, 25.6, 17.9, -4.8, -4.9, -5.0, -5.0; IR (film): $\tilde{v}=2955,2932,2896,2857,1776,1746,1722,1472,1391,1369$, $1296,1255,1147,1103,1030,1005,970,927,838,810,778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{SiNa}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 436.21259$, found: 436.21242 .

3-Allyl 1-(tert-butyl)

(5S)-3-(but-3-en-1-yl)-5-((tert-butyldimethylsilyl)oxy)-2-oxopiperidine-1,3dicarboxylate (16). 4-Bromobut-1-ene ($70.62 \mathrm{mmol}, 7.2 \mathrm{~mL}$) and caesium carbonate ($75.32 \mathrm{mmol}, 24.54 \mathrm{~g}$) were added to a solution of compound $\mathbf{S 1}$ $(47.08 \mathrm{mmol}, 19.47 \mathrm{~g})$ in anhydrous DMF (47 mL) at room temperature. The mixture was vigorously stirred for 16 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the mixture was extracted with EtOAc (3 x 200 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, $5: 1$), furnishing the title compound as a colorless oil (20.60 g , 94% yield). $[\alpha]_{\mathrm{D}}^{25}=+3.8^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers): $\delta=5.95-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.34$ (ddq, $J=17.2,4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (ddq, $J=11.0,8.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{dp}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dt}, J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{dtd}, J=7.0,5.9$, $3.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), $4.14-4.05(\mathrm{~m}, 0.5 \mathrm{H}), 3.83$ (ddd, $J=13.1,4.4,1.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.72(\mathrm{dd}, J=13.3,5.9 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.54-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=13.9,5.8,1.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.48(\mathrm{ddd}, J=13.9,6.5,0.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.23-1.90$ $(\mathrm{m}, 4 \mathrm{H}), 1.70(\mathrm{dd}, \mathrm{J}=13.9,7.1 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.52(\mathrm{~s}, 9.4 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.13-0.03(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, mixture of diastereomers): $\delta=171.3,171.3,169.8,169.2,152.7,152.6,137.6,137.5$, $131.4,131.2,119.0,118.4,115.1,83.1,83.1,66.2,66.0,64.0,63.9,55.5,54.7,51.2,51.0,38.8,35.8,35.4$, 29.0, 28.6, 27.9, 25.7, 25.6, 18.1, 17.9, -4.8, -4.8, -5.0; IR (film): $\tilde{v}=2955,2931,2897,2858,1777,1723$, $1642,1472,1462,1392,1368,1302,1256,1151,1126,985,914,870,838,810,778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 490.25954$, found: 490.25960 .
tert-Butyl (S)-5-(but-3-en-1-yl)-3-((tert-butyldimethylsilyl)oxy)-6-oxo-3,6-dihydropyridine-1(2H)-

carboxylate (17). $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(1.07 \mathrm{mmol}, 1.11 \mathrm{~g})$ was added to a solution of compound 16 ($21.38 \mathrm{mmol}, 10.00 \mathrm{~g}$) in anhydrous $\mathrm{MeCN}(86 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min . The crude mixture was filtered through a plug of Celite, which was carefully washed with tert-butyl methyl ether. The combined filtrates were concentrated in vacuo and the resulting crude material was purified by flash chromatography on silica (toluene, then hexane/tert-butyl methyl ether, 10:1) to furnish the title compound as a colorless oil ($6.77 \mathrm{~g}, 83 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=+62.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.38(\mathrm{dq}, J=3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{dddt}, J=$ 8.0, 4.7, 3.3, 1.3 Hz, 1H), 3.88 (ddd, $J=12.8,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.65(\mathrm{dd}, J=12.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (ddt, $J=$ 8.5, 5.8, $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.29-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2}$: $\delta=163.8,152.8,141.0,137.7,135.3,115.2,83.1,63.8,50.7,32.3,29.6,28.1,25.7,18.1,-4.7,-4.7 ;$ IR (film): $\tilde{v}=2955,2930,2889,2858,1768,1716,1651,1472,1389,1368,1337,1303,1256,1194,1149$,

1091, 1034, 1005, 980, 954, 913, 876, 837, 810, $778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 404.22276$, found: 404.22262 .

Allyl 1-benzyl-4-hydroxy-1,2,5,6-tetrahydropyridine-3-carboxylate (19b). NaH ($127.81 \mathrm{mmol}, 3.07 \mathrm{~g}$) was
 transferred into a Schlenk flask before anhydrous THF (54 mL) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of 1-benzyl-4-piperidone (51.12 mmol , 9.5 mL) in THF (16.6 mL) was added dropwise. Once the addition was complete, the mixture was warmed to room temperature before diallyl carbonate (76.68 mmol , 11.0 mL) was added. The resulting mixture was stirred at room temperature for 18 h before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$ was carefully added to quench the reaction. The aqueous phase was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 5:1), furnishing the title compound as a colorless oil ($6.35 \mathrm{~g}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.93(\mathrm{~s}, 0.7 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.91$ (dddt, $\left.\mathrm{J}=17.2,10.4,9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.38-5.19$ $(\mathrm{m}, 2 \mathrm{H}), 4.73-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{ddd}, \mathrm{J}=7.9,5.0,1.3 \mathrm{~Hz}, 0.25 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=1.8$ $\mathrm{Hz}, 1.5 \mathrm{H}$), 3.08 (ddd, $J=11.6,7.8,1.2 \mathrm{~Hz}, 0.25 \mathrm{H}$), 2.96 (ddd, $J=11.7,5.0,1.7 \mathrm{~Hz}, 0.25 \mathrm{H}$), 2.84 (dddd, $J=$ $11.7,6.3,5.6,1.7 \mathrm{~Hz}, 0.25 \mathrm{H}$), 2.75 (dddd, $J=11.3,8.1,4.8,1.2 \mathrm{~Hz}, 0.25 \mathrm{H}$), $2.64-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{td}, \mathrm{J}=$ $5.9,3.1 \mathrm{~Hz}, 1.5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.9,170.7,170.6,168.5,137.8,132.0,131.6,129.0$, $128.8,128.4,128.4,127.4,127.3,118.7,118.1,96.7,65.8,64.8,62.0,61.6,56.6,55.1,53.1,50.0,48.5$, 40.8, 29.4; IR (film): $\tilde{v}=3063,3028,2935,2808,2764,1743,1720,1664,1622,1495,1453,1418,1403$, $1367,1350,1302,1285,1233,1212,1193,1168,1126,1078,1052,1028,994,972,934,815,742,699 \mathrm{~cm}$ ${ }^{1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 274.14377, found: 274.14376 .

Allyl 1-benzyl-4-oxo-3-(pent-3-yn-1-yl)piperidine-3-carboxylate (21). 5-Iodopent-2-yne (58.06 mmol ,

$14.72 \mathrm{~g})^{[1]}$ and caesium carbonate ($60.38 \mathrm{mmol}, 19.67 \mathrm{~g}$) were added in three portions (1:1:0.5) to a solution of compound $\mathbf{1 9 b}$ ($23.22 \mathrm{mmol}, 6.35 \mathrm{~g}$) in anhydrous DMF $(24 \mathrm{~mL})$ at room temperature (the second and third portion were added after 30 min and 1 h , respectively). The mixture was stirred for 3 h , before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 250 \mathrm{~mL}$), the combined organic extracts were washed with brine (30 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 5:1) to give the title compound as a colorless oil ($7.15 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.82$ (ddt, J = 17.2, 10.4, 5.8 Hz, 1H), 5.32-5.14 (m, 2H), 4.58 (qdt, J = 13.1, 5.8, 1.4 Hz, 2H), 3.52 (d, J = 1.9 Hz ,
$2 \mathrm{H}), 3.36(\mathrm{dd}, J=11.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dtd}, J=12.8,5.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=16.0,12.3,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=205.8,170.9,137.7,131.5,128.8,128.3,127.4,118.9,78.3,75.9,65.9,61.8$, 61.1, 60.7, 53.4, 40.5, 31.7, 14.5, 3.5; IR (film): $\tilde{v}=3028,2957,2919,2807,1717,1649,1495,1453,1423$, $1348,1316,1227,1186,1121,1076,1059,1029,1000,971,936,742,699 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 340.19072$, found: 340.19053 .

3-Allyl 1-methyl 4-oxo-3-(pent-3-yn-1-yl)piperidine-1,3-dicarboxylate (20). Methyl chloroformate (73.65
 $\mathrm{mmol}, 5.7 \mathrm{~mL}$) was added to a solution of compound $21(14.73 \mathrm{mmol}, 5.00 \mathrm{~g})$ in toluene (21 mL). The reaction was stirred at $100^{\circ} \mathrm{C}$ for 14 h . The mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 3:1 to 2:1), furnishing the title compound as a yellow oil (4.52 g , quant.). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86$ (ddt, $J=16.5,9.9,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.27-3.93(\mathrm{br}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{br}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (ddd, $J=14.1,9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=14.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.86$ (br, 1H), $1.76-1.68(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=203.9,169.4,155.6,131.1,119.3,77.8,76.5$, $66.3,60.6,53.1,50.1,43.6,39.6,31.1,14.3,3.4$; IR (film): $\tilde{v}=2956,2920,2860,1699,1650,1447,1474$, $1413,1375,1264,1238,1220,1189,1130,1067,1028,995,935,876,767,528 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 330.13119$, found: 330.13101.

Methyl 4-oxo-5-(pent-3-yn-1-yl)-3,4-dihydropyridine-1(2H)-carboxylate (22). $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3} \quad(0.73$

$\mathrm{mmol}, 668 \mathrm{mg})$ was added to a solution of compound $20(14.60 \mathrm{mmol}, 4.49 \mathrm{~g})$ in anhydrous $\mathrm{MeCN}(59 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered through a plug of Celite, which was carefully washed with tert-butyl methyl ether. The combined filtrates were concentrated in vacuo and the resulting crude material was purified by flash chromatography on silica (hexane/EtOAc, 3:1 to 1:1) to give the title compound as a white solid ($3.10 \mathrm{~g}, 96 \%$ yield). M.p. $=69.8-70.5$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$: $\delta=7.77(\mathrm{br}, 1 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 2 \mathrm{H})$, $2.35-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.24$ (dddd, $J=7.7,6.1,2.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=192.8,153.4,140.9,117.3,78.4,76.6,53.9,42.6,35.8,26.9,18.7,3.4 ; \operatorname{IR}($ film $): \tilde{v}=2956,2919$, $2857,1722,1662,1615,1440,1399,1369,1322,1300,1245,1204,1174,1122,1077,1049,1017,969$, 927, 909, 868, 767, 666, 512, 484, $438 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]: 244.09441$, found: 244.09442 .

Compound 24. A solution of $\mathrm{LiOtBu}(2.89 \mathrm{mmol}, 223 \mathrm{mg})$ in THF $(6 \mathrm{~mL})$ was added dropwise to a solution
 of compound $22(2.79 \mathrm{mmol}, 617 \mathrm{mg})$ in anhydrous THF (11 mL) at $-50^{\circ} \mathrm{C}$. The resulting red solution was stirred for 10 min before a solution of compound 17 ($2.33 \mathrm{mmol}, 887 \mathrm{mg}$) in THF (5 mL) was added. The mixture was warmed to room temperature over the course of 5 h and stirring was continued for another 16 h . Next, 4-dimethyl-aminopyridine ($4.65 \mathrm{mmol}, 568$ mg) and di-tert-butyl dicarbonate ($4.65 \mathrm{mmol}, 1.1 \mathrm{~mL}$) were added and the resulting mixture was stirred for 1 h . sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was carefully introduced to quench the reaction. The aqueous phase was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$) and the combined extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated in vacuo. The crude residue was purified by flash chromatography on silica (hexane/tert-butyl methyl ether, 10:1; then hexane/EtOAc, 10:1), furnishing compound 23 as a white foam which was used in the next step without further purification.
$\mathrm{NaBH}_{4}(9.42 \mathrm{mmol}, 356 \mathrm{mg})$ was added in portions to a solution of 23 in methanol $(15.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 min , before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at this temperature. The aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ and the combined extracts were washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane/tert-butyl methyl ether, $3: 1$) to furnish the title compound as a white foam ($742 \mathrm{mg}, 53 \%$ yield over 2 steps). $[\alpha]_{\mathrm{D}}^{25}=-66.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=5.76-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{tdd}, \mathrm{J}=10.6,4.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 0.3 \mathrm{H}$, minor), 4.20 (s, 0.7H, major), 4.10 (ddd, $J=12.4,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (ddd, $J=20.7,11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.01(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.56$ $(\mathrm{m}, 8 \mathrm{H}), 1.52(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=172.2,172.1,156.7,156.6,151.8,151.7,137.9,137.4,115.0,114.7,83.3,83.2,79.1,78.9,76.5,76.4$, $75.5,75.3,67.7,67.7,52.7,52.6,52.6,52.5,52.4,52.1,52.1,51.6,50.0,49.9,48.1,46.2,46.0,40.2,39.8$, $34.3,34.2,32.3,32.3,28.3,28.1,28.0,25.8,17.9,16.4,16.4,3.4,-4.5,-4.5,-4.6 ; \operatorname{IR}($ film $): \tilde{v}=3493$, 2952, 2930, 2885, 2857, 1766, 1707, 1681, 1641, 1453, 1394, 1369, 1338, 1298, 1256, 1190, 1156, 1125, $1074,1005,914,865,839,779 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}(E S I): m / z$ calcd. for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]: 627.34360$, found: 627.34354.

Compound 25. Triethylamine ($69.64 \mathrm{mmol}, 9.7 \mathrm{~mL}$), 4-dimethylaminopyridine ($11.16 \mathrm{mmol}, 1.36 \mathrm{~g}$) and
 methanesulfonyl chloride ($27.68 \mathrm{mmol}, 2.14 \mathrm{~mL}$) were successively added to a solution of compound $24(4.46 \mathrm{mmol}, 2.70 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature after 5 min and stirred for 1 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the aqueous phase extracted with tert-butyl methyl ether ($3 \times 250 \mathrm{~mL}$). The combined organic extracts were washed with brine (50 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography on silica (hexane/EtOAc, $5: 1$ to $4: 1$), furnishing the title compound as a white foam (2.79 g, 91% yield). $[\alpha]_{\mathrm{D}}^{25}=-30.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=5.68$ (dtt, $J=17.0,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $3 \mathrm{H}), 3.38$ (ddd, $J=10.9,8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.59(\mathrm{dp}, J=17.1,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.14(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta=171.2,171.1,156.5,156.4$, $151.4,151.3,137.5,137.0,115.3,115.0,84.6,84.3,83.6,83.5,78.5,78.1,76.3,76.2,67.8,67.7,52.9,52.2$, $51.8,51.6,50.3,49.8,49.3,49.2,48.0,42.8,42.8,40.0,39.5,38.8,38.7,34.0,33.8,31.8,31.7,28.3,28.1$, 28.0, 25.8, 17.9, 16.1, 16.0, 3.5, 3.5, -4.3, -4.3, -4.5, -4.6; IR (film): $\tilde{v}=2953,2931,2857,1770,1704$, 1641, 1450, 1389, 1366, 1338, 1297, 1256, 1176, 1155, 1125, 1096, 1051, 994, 964, 941, 897, 838, 779, 754, 686, 666, $527 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 705.32115$, found: 705.32108.

Compound 26. A solution of mesylate $25(3.83 \mathrm{mmol}, 2.616 \mathrm{~g})$ in 2,6 -lutidine (21 mL) was stirred at $170^{\circ} \mathrm{C}$
 for 5 d . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ and tertbutyldimethylsilyl trifluoromethanesulfonate ($15.32 \mathrm{mmol}, 3.52 \mathrm{~mL}$) were added. Stirring was continued at room temperature for 45 min before sat. aq. NaHCO_{3} $(5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. Next, the mixture was poured into a solution of $\mathrm{HCl}(2$ $\mathrm{M}, 45 \mathrm{~mL}$), which was vigorously stirred for 15 min . The aqueous phase was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$), the combined organic extracts were washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (25 mL), before they were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ tertbutyl methyl ether, 6:1), furnishing the title compound as a white foam ($1.357 \mathrm{~g}, 73 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-69.4^{\circ}$ (c = 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.43$ ($\mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 6.37 (d, 0.7H, major), 5.94 (dd, $J=10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dddd, $J=16.7,13.0,10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.86(\mathrm{~m}$,
2.3 H, minor), $4.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), $3.69(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{tdd}, \mathrm{J}=9.4,5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.14(\mathrm{~m}, 5 \mathrm{H}), 2.14-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 6 \mathrm{H}), 0.89$ ($\mathrm{s}, 9 \mathrm{H}$), $0.08(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3 , mixture of rotamers): $\delta=173.5,173.5,156.1$, $156.1,146.6,145.9,138.3,137.8,125.6,125.1,114.8,114.5,78.5,78.1,75.9,75.5,70.9,70.8,54.3,54.2$, $52.8,52.5,52.4,52.3,51.5,51.5,47.2,47.0,45.6,39.8,39.5,33.7,33.4,33.2,33.1,28.6,28.3,25.6,17.8$, 16.9, 16.8, 3.4, 3.4, -4.3, -4.4, -4.8, -4.8; IR (film): $\tilde{v}=3209,3075,2953,2929,2896,2857,1702,1667$, $1448,1389,1345,1329,1300,1273,1257,1220,1191,1120,1091,1006,956,913,873,838,776,685 \mathrm{~cm}$ ${ }^{1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 509.28061, found: 509.28065.

Compound 27. A solution of amide $26(2.79 \mathrm{mmol}, 1.357 \mathrm{~g})$ in DMF (2 mL) and 7-iodohept-2-yne (9.76
 mmol, 2.166 g$)^{[2]}$ were successively added to a mixture of NaH (41.81 $\mathrm{mmol}, 1.003 \mathrm{~g})$ in DMF $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was carefully added. The aqueous phase was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc (3 x 100 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane/tert-butyl methyl ether, 4:1), furnishing the title compound as a colorless oil ($1.545 \mathrm{~g}, 95 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-54.7^{\circ}$ (c $=1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, mixture of rotamers): $\delta=5.92(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73 (dddt, $J=16.8,13.2,10.2,6.5 \mathrm{~Hz}$, 1 H), $5.04-4.85(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}$, major), $3.66(\mathrm{~s}, 1 \mathrm{H}$, minor), $3.38(\mathrm{dt}, \mathrm{J}=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.21$ $(\mathrm{m}, 2 \mathrm{H}), 3.21-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=10.5,2.8 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), $2.99-2.92(\mathrm{~m}, 1.3 \mathrm{H}$, minor), $2.81-$ $2.70(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.08(\mathrm{~m}, 7 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-$ $1.47(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$, mixture of rotamers): $\delta=170.4,156.2,156.1,147.0,146.3,138.5,138.1,125.2,124.6,114.6,114.3,78.6,78.6$, $78.5,78.3,75.9,75.8,75.4,70.7,70.6,54.8,54.7,53.1,52.9,52.4,52.3,52.1,52.0,51.0,47.1,46.9,46.9$, $40.0,39.7,33.7,33.4,33.1,33.0,28.7,28.4,26.6,26.6,25.9,25.7,18.4,18.3,17.8,16.8,16.8,3.4,3.4$, $-4.3,-4.4,-4.8,-4.8 ; \operatorname{IR}($ film $): ~ \tilde{v}=2951,2928,2857,1701,1645,1446,1389,1347,1328,1299,1259$, 1190, 1161, 1104, 1088, 1049, 1005, 956, 908, 871, 837, 811, $776 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 603.35886, found: 603.35906.

Compound 28. A solution of the molybdenum complex $31(0.45 \mathrm{mmol}, 351 \mathrm{mg})^{[3]}$ in toluene (10 mL) was
 added dropwise to a suspension comprising diyne 27 ($2.26 \mathrm{mmol}, 1.310 \mathrm{~g}$) and powdered MS ($5 \AA, 30 \mathrm{~g}$) in toluene (1.17 I) at reflux temperature. After stirring for $10 \mathrm{~min}, \mathrm{EtOH}(10 \mathrm{~mL})$ was added, the mixture was cooled to room temperature and filtered through a short pad of Celite, which was carefully rinsed with EtOAc. The combined filtrates were concentrated in vacuo and the residue was purified by flash chromatography on silica (toluene/EtOAc, 8:1), furnishing the title compound as a white solid ($983 \mathrm{mg}, 83 \%$ yield). M.p. $=163.9-165.1^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=-102.4^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.00-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.73$ (dddt, $J=16.8,13.1,10.1,6.5$ Hz, 1H), $5.04-4.80(\mathrm{~m}, 3 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{dd}, \mathrm{J}=12.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, J = 10.5, 2.0 Hz, 1H), 3.06-2.89 (m, 2H), 2.89-2.77 (m, 1H), 2.70-2.51 (m, 1H), 2.47-2.03(m, 8H), 1.92 (ddt, J = 16.3, 13.2, 3.1 Hz, 1H), 1.74-1.51 (m, 4H), 1.40-1.27(m, 1H), $1.27-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}$, 9 H), 0.09 ($\mathrm{d}, \mathrm{J}=25.2 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=170.0,170.0,156.3$, $146.0,145.2,138.6,138.2,123.4,122.9,114.6,114.3,81.0,80.9,79.3,79.2,70.4,70.3,55.2,54.7,54.7$, $54.5,54.2,52.4,52.4,52.1,52.0,50.6,47.2,47.0,39.8,39.5,33.9,33.6,32.2,32.1,28.7,28.5,26.2,26.1$, 25.7, 18.7, 17.8, 14.1, -4.2, -4.2, -4.6, -4.7; IR (film): $\tilde{v}=2953,2928,2857,1699,1640,1449,1423,1390$, $1350,1319,1262,1218,1190,1170,1157,1140,1103,1085,1051,1006,955,909,870,836,809,775$, 754, $723,712,683,665,442 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]: 549.31191$, found: 549.31220 .

Table S2. RCAM of Diyne 27: Reaction Optimization ${ }^{a}$

Entry	Catalyst	Temperature	Yield of 28
1	$\mathbf{3 1 (1 0 ~ m o l \%)}$	$110^{\circ} \mathrm{C}$	63%
2	$\mathbf{3 1 (2 0 ~ \mathrm { mol } \%)}$	$110^{\circ} \mathrm{C}$	83%
3	$\mathbf{2 9}(25 \mathrm{~mol} \%)+\mathbf{3 0}(\mathbf{3 0} \mathrm{mol} \%)$	$100^{\circ} \mathrm{C}$	79%

${ }^{a}$ All reactions were performed in toluene in the presence of MS $5 \AA$

Compound 32. L-Selectride (1 M in THF, $8.28 \mathrm{mmol}, 8.28 \mathrm{~mL}$) was added to a solution of carbamate 28
 $(2.07 \mathrm{mmol}, 1.090 \mathrm{~g})$ in THF (19 mL). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . Next, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{MeOH}(5 \mathrm{~mL})$ was carefully added. The solution was concentrated in vacuo and the residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right.$ to $\left.90: 10\right)$, furnishing the title compound as a yellow oil ($878 \mathrm{mg}, 91 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-45.5^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.97$ (dd, $\left.J=6.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.84(\mathrm{ddt}, J=16.8,10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dq}, J=10.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=10.6,8.8,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=12.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.07(\mathrm{~m}, 10 \mathrm{H})$, 1.95 (dddd, $J=22.0,19.4,12.6,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.72 (ddd, $J=13.7,11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.66-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (tq, $J=12.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, J=25.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.6,146.2,138.5,122.6,114.5,81.2,79.2,70.4,55.6,55.2,54.3,50.7,50.6,45.1,39.7,33.4$, 31.9, 28.8, 26.3, 26.2, 25.7, 18.8, 17.9, 14.2, -4.2, -4.6 ; IR (film): $\tilde{v}=2952,2927,2856,1638,1484,1452$, $1422,1388,1357,1327,1258,1171,1141,1092,1006,924,910,868,836,804,775,750,678,664,439$ cm^{-1}. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 469.32448, found: 469.32463.

Compound 33. $\mathrm{NaBH}(\mathrm{OAc})_{3}(39.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ was added to a solution of secondary amine 32 (43.2
 $\mathrm{mg}, 0.09 \mathrm{mmol})$ and 5-hexenal $(40.7 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$ and the resulting mixture was stirred at ambient temperature for 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the reaction quenched with sat. aq. NaHCO_{3} (5 $\mathrm{mL})$. The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$, the combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexane/EtOAc, 8:1), furnishing the title compound as a colorless oil ($48.5 \mathrm{mg}, 96 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-24.4^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.94(\mathrm{~d}, \mathrm{~J}=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.71(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{ddq}, \mathrm{J}=17.2,10.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.91(\mathrm{~m}$, $1 \mathrm{H}), 3.65-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=12.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=12.1,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{ttd}, J=8.8,6.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dt}, J=11.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddt}, J=12.3,7.9,4.2 \mathrm{~Hz}, 4 \mathrm{H})$, $2.26-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.90(\mathrm{ddq}, J=15.9,12.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.52-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{qd}, J=12.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, J=24.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=171.36,143.24,139.22,139.05,121.67,114.19,113.91,81.22,79.09,70.75,61.86,57.68$, $54.48,54.37,54.05,52.04,50.55,39.35,34.31,33.65,28.92,27.96,26.47,26.20,26.13,25.73,18.82$, 17.86, 14.28, -4.25, -4.61; IR (film): $\tilde{v}=2929,2881,2857,1642,1482,1451,1419,1357,1328,1287,1257$,

1171, $1157,1123,1086,1042,1065,1006,997,925,908,870,836,775,804 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 551.40273$, found: 551.40310.

Compound 34. DMF (2 drops) and oxalyl chloride ($2.06 \mathrm{mmol}, 0.18 \mathrm{~mL}$) were added to a solution of 5-
 hexenoic acid ($1.72 \mathrm{mmol}, 0.20 \mathrm{~mL}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 2 h . The resulting solution was added to a solution of amine $\mathbf{3 2}(1.87 \mathrm{mmol}, 878 \mathrm{mg})$ and triethylamine (9.37 $\mathrm{mmol}, 1.3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , the mixture was warmed to room temperature and stirred for 1 h . sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography on silica (hexane/EtOAc, $4: 1$ to $3: 1$) to give the title compound as a white foam (756 mg , 71% yield). $[\alpha]_{D}^{25}=-103.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.03-5.92$ $(\mathrm{m}, 1 \mathrm{H}), 5.85-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $5.07-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 4.01 (dt, $J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dtd, $J=10.6,8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (ddd, $J=12.3,10.7,5.1 \mathrm{~Hz}$, 1 H), 3.30 (dd, $J=9.5,2.0 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $3.22-3.12$ (m, 1.2H, major/major), 3.06 (dd, J = 9.5, 2.8 Hz , 0.4 H, minor), $3.00-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.46-1.87(\mathrm{~m}, 13 \mathrm{H}), 1.83-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.11$ ($\mathrm{m}, 2 \mathrm{H}$) , $0.91(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.11(\mathrm{~d}, J=27.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=172.2,171.9,170.2,169.9,146.4,144.4,138.6,138.2,138.0,137.4,124.2,122.8,115.2,115.1,114.3$, $81.0,80.8,79.5,79.3,70.4,69.9,58.2,55.0,54.3,54.2,53.4,52.5,52.1,51.8,50.7,50.5,48.1,46.5,40.0$, $39.6,34.2,33.6,33.3,33.3,33.0,33.0,32.9,32.3,32.3,32.2,29.0,28.5,26.3,26.2,26.1,25.7,24.3,23.9$, 18.8, 18.7, 17.9, 14.2, 14.1, -4.2, -4.2, -4.6, -4.6; IR (film): $\tilde{v}=2952,2928,2857,1645,1472,1484,1452$, 1415, 1358, 1326, 1299, 1260, 1170, 1141, 1120, 1086, 1005, 910, 871, 837, 809, $776 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 587.36394$, found: 587.36424.

Compound 35. A solution of benzylidene-bis(tricyclohexylphosphino)-dichlororuthenium ("first
 generation" Grubbs catalyst, $0.009 \mathrm{mmol}, 7.3 \mathrm{mg}$) in toluene (2 mL) was slowly added to a solution of compound $\mathbf{3 4}(0.018 \mathrm{mmol}, 10 \mathrm{mg})$ in toluene (16 mL) at $100^{\circ} \mathrm{C}$ over the course of 2.5 h . After the addition was complete, stirring was continued at $100{ }^{\circ} \mathrm{C}$ for another 2 h before a solution of potassium 2isocyanoacetate ($0.154 \mathrm{mmol}, 19 \mathrm{mg}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added at $100^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and stirred for an additional 30 min , before it was concentrated in vacuo. The residue was purified by flash chromatography on silica
(hexane/EtOAc, 2:1 to 1:1), furnishing the title compound as a mixture of olefin isomers ($9.2 \mathrm{mg}, 97 \%$ yield, $E-/ Z$-Isomeric mixture $60: 40$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of E-/Z-Isomers ca. 60:40): $\delta 5.98$ (dd, J = 15.7, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $5.91-5.84$ (m, 0.6H, major), 5.59 (s, 0.4 H, minor), 5.51 5.40 ($\mathrm{m}, 0.6 \mathrm{H}$, major), 5.32 (td, $J=10.3,5.2 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 5.08 ($\mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 4.99 ($\mathrm{d}, \mathrm{J}=$ $1.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 4.01 ($\mathrm{dt}, J=9.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $3.74-3.62$ (m, 1H, major/minor), 3.39 (ddd, $J=12.3,10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $3.27-3.08$ (m, 2H, major/minor), 2.98 (ddd, $J=12.4,4.4$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), 2.84 ($\mathrm{dq}, J=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $2.77-2.55$ (m, 1H, major/major/minor), $2.46-2.23$ (m, 7H, major/minor), $2.22-2.04$ (m, 4H, major/minor), $2.01-1.96$ (m, 1 H, major/minor), 1.90 (td, $J=15.3,14.9,3.8 \mathrm{~Hz}, 3 \mathrm{H}$, major/minor), $1.83-1.75$ ($\mathrm{m}, 1 \mathrm{H}$, major/minor), 1.66 - 1.51 ($\mathrm{m}, 3 \mathrm{H}$, major/minor), 1.38 (dddd, $J=15.5,11.2,7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $1.22-1.12$ (m, 1H, major/minor), 0.91 ($\mathrm{d}, \mathrm{J}=0.9 \mathrm{~Hz}, 9 \mathrm{H}$, major/minor), 0.14 ($\mathrm{s}, 3 \mathrm{H}$, major/minor), 0.08 ($\mathrm{s}, 3 \mathrm{H}$, major/minor); HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$]: 559.33209, found: 559.33264.

The isomer mixture was separated by preparative HPLC (two consecutive Multochrom 100-3 Si columns, $250 \mathrm{~mm} \times 20 \mathrm{~mm}$, iso-hexane/isopropanol 95:5, $20 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (Z-Isomer) $\left.=31.0 \mathrm{~min}\right)$. The pure Z-isomer analyzed as follows: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.95(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.31$ (td, $J=10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J=10.1,8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=12.3$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=11.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=12.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.83 (dd, $J=6.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddd, $J=14.3,12.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.62(\mathrm{ddt}, J=15.4,13.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ - $2.32(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.79(\mathrm{~s}$, $1 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta=173.3,170.3,145.1,130.0,129.6,123.6,80.7,79.4,70.4,58.2,55.6,54.3,52.3$, $50.9,47.7,38.3,33.2,31.8,30.6,26.3,26.1,25.9,25.7,25.4,22.8,18.8,17.9,14.2,-4.3,-4.6$.

Compound 40. Tetrabutylammonium fluoride (1 M in THF, $1.78 \mathrm{mmol}, 1.78 \mathrm{~mL}$) was added to a solution
 of TBS-ether $34(0.89 \mathrm{mmol}, 502 \mathrm{mg})$ in THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 20 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ was added. The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic extracts were washed with brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexane/EtOAc, 1:2 to pure EtOAc), furnishing the title compound as a white foam (400 mg , quant.). $[\alpha]_{\mathrm{D}}^{25}=-134.2^{\circ}$ (c = 0.5 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.10-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.47$ (d, J = $1.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $5.06-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 3.99 (ddt, J = 12.3, 5.7, 2.7
$\mathrm{Hz}, 1 \mathrm{H}$), $3.81-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=12.2,10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=9.3,1.7 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $3.22-3.02(\mathrm{~m}, 4.6 \mathrm{H}$, major), $2.69-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.33-1.99(\mathrm{~m}, 8 \mathrm{H}), 1.90(\mathrm{ddd}, \mathrm{J}=$ $16.7,13.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.36(t d d, J=14.9,11.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23$ - $1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=172.3,172.1,170.3,170.0,145.9$, $144.2,138.4,138.1,137.9,137.3,124.5,123.2,115.3,115.3,115.1,114.6,81.0,80.8,79.7,79.5,69.3$, $68.9,58.4,54.4,54.2,52.8,52.6,52.1,51.9,50.7,50.5,48.1,46.7,40.0,39.7,34.2,33.7,33.3,33.2,33.0$, 32.3, 29.1, 28.6, 26.3, 26.2, 26.1, 24.3, 23.9, 18.9, 18.8, 14.1, 14.1; IR (film): $\tilde{v}=3364,2924,2863,1635$, $1612,1487,1418,1356,1326,1264,1236,1167,1137,1116,1063,1034,996,911,831,812,751,685$, $665,646,579,443 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 473.27746$, found: 473.27731 .

Compound 41. Martin's sulfurane ($2.10 \mathrm{mmol}, 1.41 \mathrm{~g}$) was added to a mixture of alcohol 40 (0.84 mmol ,
 378 mg) in toluene $(38 \mathrm{~mL})$ at room temperature. The mixture was stirred at 100 ${ }^{\circ} \mathrm{C}$ for 1 h before it was cooled to room temperature and sat. aq. NaHCO_{3} (10 $\mathrm{mL})$ was added. The aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (toluene/EtOAc, $8: 1$ to $4: 1$) to furnish the title compound as a colorless oil (351 $\mathrm{mg}, 97 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-121.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=6.25-$ $6.11(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.64(\mathrm{~m}, 3 \mathrm{H}), 5.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), $5.06-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.79$ (ddd, J = 19.5, 8.1, 4.9 Hz, 1H), $4.52(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), $4.16(\mathrm{dt}, J=14.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.88-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{tt}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.31(\mathrm{~m}, 5 \mathrm{H}), 2.31-1.95(\mathrm{~m}, 10 \mathrm{H}), 1.92-1.64(\mathrm{~m}, 3 \mathrm{H})$, $1.58-1.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, mixture of rotamers): $\delta=172.4,169.1,169.1,145.9,144.1$, $138.3,138.2,138.0,137.7,130.8,130.5,125.0,123.5,115.2,115.0,114.9,114.5,105.2,104.4,81.4,81.2$, 80.9, 80.7, 59.4, 54.5, 53.5, 53.3, 50.4, 49.2, 48.7, 48.7, 44.6, 43.9, 41.0, 40.8, 37.9, 37.2, 33.4, 33.3, 33.2, $33.0,32.5,29.2,29.1,27.0,26.7,24.2,23.8,18.6,18.6,14.3$; IR (film): $\tilde{v}=3072,2920,2862,1639,1450$, $1408,1398,1355,1330,1308,1263,1230,1197,1167,1150,1132,1068,1044,1026,995,910,852,825$, 750, $724,695,646,608,591,434 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]: 455.26690$, found: 455.26713.

Compound 42. $\mathrm{NaBH}_{3} \mathrm{CN}(0.89 \mathrm{mmol}, 56 \mathrm{mg})$ and trifluoroacetic acid ($1.78 \mathrm{mmol}, 0.14 \mathrm{~mL}$) were
 successively added to a solution of compound $\mathbf{4 1}(0.18 \mathrm{mmol}, 77 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 1 h . Next, sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the resulting mixture was vigorously stirred for 45 min . The aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by flash chromatography (hexane/EtOAc, 2:1 to 1:1) to give the title compound as a white solid ($57 \mathrm{mg}, 73 \%$ yield). M.p. $=86.2-86.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=-153.0^{\circ}$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.04-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.61(\mathrm{~m}$, 2 H), 5.49 (d, $J=1.5 \mathrm{~Hz}, 0.34 \mathrm{H}$, minor), $5.07-4.83(\mathrm{~m}, 4 \mathrm{H}), 4.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), $4.03(\mathrm{dt}, J=$ 12.9, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (tdd, $J=12.7,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (dd, $J=9.3,2.1 \mathrm{~Hz}, 0.34 \mathrm{H}, \operatorname{minor}), 3.21$ (dd, $J=$ $11.8,2.0 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), 3.11-2.95(m,2H), 2.72-2.53(m,2H), 2.45-2.15(m, 8H), 2.15-1.80(m, 7H), $1.80-1.10(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta=172.1,171.8,170.7,170.4$, $145.7,143.7,138.7,138.3,138.0,137.6,124.0,122.6,115.2,115.0,115.0,114.2,81.0,80.8,79.8,79.6$, $58.3,52.6,51.6,51.5,50.7,50.5,48.5,48.2,48.1,47.1,46.0,44.3,39.9,39.7,37.2,36.7,33.3,33.2,32.9$, 32.4, 32.4, 30.0, 29.6, 29.2, 28.7, 26.4, 26.3, 26.3, 26.2, 24.3, 23.9, 18.9, 18.8, 14.1, 14.1; IR (film): $\tilde{v}=$ $3073,2924,2859,1632,1489,1451,1415,1355,1342,1310,1279,1229,1164,1145,1109,1021,997$, 910, $809,753,661,432 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 435.30060$, found: 435.30068 .

Compound S2. A solution of benzylidene-bis(tricyclohexylphosphino)-dichlororuthenium (Grubbs first
 generation catalyst, $0.018 \mathrm{mmol}, 14.2 \mathrm{mg}$) in 1,2-dichloroethane (2 mL) was slowly added to a refluxing solution of diene 42 ($0.069 \mathrm{mmol}, 30 \mathrm{mg}$) in $1,2-$ dichloroethane (140 mL) over 10 min . Stirring was continued at reflux temperature for 2 h before a second batch of benzylidene-bis(tricyclohexylphosphino)-dichlororuthenium ($0.018 \mathrm{mmol}, 14.2 \mathrm{mg}$) was slowly added as a solution in 1,2 -dichloroethane (2 mL) over 10 min . After stirring for another 2 h , a solution of potassium 2-isocyanoacetate ($0.154 \mathrm{mmol}, 19 \mathrm{mg}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added at reflux temperature. The mixture was cooled to room temperature and stirred for an additional 30 min . All volatile materials were evaporated in vacuo and the residue was purified by flash chromatography on silica (hexane/EtOAc, 1:1 to pure EtOAc) to furnish compound $\mathbf{4 3}$ as an mixture of olefin isomers.
$\mathrm{NaBH}_{4}(0.267 \mathrm{mmol}, 10 \mathrm{mg})$ was added to a vigorously stirred solution of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.241 \mathrm{mmol}, 60$ mg) in $\mathrm{EtOH}(3 \mathrm{~mL})$ at room temperature. The resulting black suspension was vigorously stirred for 1 h
before ethylenediamine ($0.968 \mathrm{mmol}, 65 \mu \mathrm{~L}$) was introduced. After stirring for another 30 min , the mixture was added to a flask purged with hydrogen containing compound 43 . Stirring was continued for 4 h under a hydrogen atmosphere, before the suspension was filtered through a plug of silica, which was carefully rinsed with EtOAc. The combined filtrates were evaporated and the crude product was purified by flash chromatography on silica (hexane/EtOAc, 1:1 to pure EtOAc) to provide the title compound in isomerically pure form as a white amorphous solid ($10.4 \mathrm{mg}, 37 \%$ yield over 2 steps). $[\alpha]_{\mathrm{D}}^{25}=-56.5^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.87(\mathrm{dd}, \mathrm{J}=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}$, 1 H), 4.37 (dt, $J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23(\mathrm{dd}, J=11.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.14-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J=11.8,2.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.77 (ddd, $J=14.4,11.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dtd}, J=14.9,9.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ - 2.21 (m, 3H), 2.20-2.10 (m, 5H), 2.06-1.98 (m, 2H), 1.95-1.87 (m, 2H), 1.78 (ddd, J = 9.1, 6.4, 2.2 Hz , $1 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{ddq}, \mathrm{J}=13.9,11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.10$ (dddd, $J=21.5,11.8,8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.1,171.2,145.3,130.7,130.4$, $130.1,128.4,126.3,58.5,51.2,47.9,45.6,44.2,42.7,39.7,36.6,33.8,31.0,28.9,27.2,26.7,25.8,25.6$, 24.8, 24.2, 21.8; IR (film): $\tilde{v}=3003,2927,2859,1625,1488,1443,1416,1342,1327,1276,1230,1203$, $1162,923,728,665,644 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 409.28495$, found: 409.28469 .
$(+)$-Keramaphidin B ((+)-1). DIBAL-H (1 M in hexane, $0.15 \mathrm{mmol}, 0.15 \mathrm{~mL}$) was added to a solution of
 bislactam S2 ($0.015 \mathrm{mmol}, 6.0 \mathrm{mg}$) in diethyl ether (0.15 mL). The mixture was stirred at rt for 3.5 h , before it was cooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Next, sat. aq. Rochelle's salt solution (0.5 mL) was carefully added and the mixture was vigorously stirred for 1 h . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $15 \mathrm{~mL})$, the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by preparative HPLC (YMC Triart C18, $5 \mu \mathrm{~m}$, $150 \mathrm{~mm} \times 10 \mathrm{~mm}$, methanol: $20 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3} \mathrm{pH} 9.0=85: 15,4.7 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.0 \mathrm{~min}$) to afford the title compound as a white amorphous solid ($2.1 \mathrm{mg}, 38 \%$ yield). $[\alpha]_{D}^{20}=+27.0^{\circ}(\mathrm{c}=0.20, \mathrm{MeOH}$); For ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data see Tables S3-S7. IR (film): $\tilde{v}=3005,2920,2851,1486,1460,1340,1317,1299$, 1275, 1220, 1207, 1174, 1130, 1103, 1048, 989, 933, 908, 819, 764, 721, 685, 666, $461 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 381.32642 , found: 381.32671.

Figure S3. Numbering scheme for Keramaphidin B adopted from Kobayashi et al. ${ }^{[5]}$

Table S3. Comparison of ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ data of synthetic Keramaphidin B with isolated Keramaphidin $\mathrm{B}^{[6]}$ (numbering scheme as shown in Figure S 3)

Position	Original Assignment ${ }^{[5]}$	${ }^{1} \mathrm{H}$ NMR Synthetic $\delta(\mathrm{ppm}), \mathrm{J}(\mathrm{Hz})$	${ }^{1} \mathrm{H}$ NMR Isolated ${ }^{[5]}$ δ (ppm), J (Hz)
1	1	3.12, d	3.18, br s
3a	3	2.87 (dd, $J=9.1,2.0)$	2.89 (dd, J = 9.2, 1.9)
3b	3	1.67, (dd, $J=9.1,2.8)$	1.68 (dd, J = 9.2, 2.6)
4	4	2.25, m	2.30, m
4a	4a	0.90, (ddd, $J=12.4,5.8,2.4)$	0.98 (ddd, $J=12.5,5.5,2.1)$
5a	5	1.20 (tdd, $J=13.7,12.4,4.1$)	1.23 (qd, $\mathrm{J}=14.0,4.1$)
5b	5	1.36, (pd, $J=13.5,3.2,2.8,2.0)$	1.50, m
6a	6	2.68 (dt, J = 12.9, 4.1, 2.8)	2.88, m
6b	6	2.76 (td, J = 13.8, 13.0, 2.7)	2.97 (td, J = 13.5, 2.6)
8a	8	2.09, m	2.16 (d, J=11.6)
8 b	8	2.34, m	2.70 (d, J=11.6)
10	10	5.85 ($\mathrm{d}, \mathrm{J}=6.4$)	5.91 (d, J = 6.4)
11	11	2.21, m	2.21, (ddd, $J=12.5,5.2,1.2)$
		2.98 (td, J= 12.6, 5.0)	2.99 (td, $\mathrm{J}=12.5,5.2)$
12	12	1.27, m	1.27, m
		1.48, m	1.53, m
13	13	$1.52, \mathrm{~m}$	1.50, m
		1.58, m	1.61, m
14	14	$1.55, \mathrm{~m}$	1.56, m
		2.42, m	2.41, m
15	15	5.65, m	5.65, m
16	16	5.64, m	5.65, m
17	17	1.75, m	1.76, m
		2.35, m	2.38, m
18	18	1.67, m	1.75, m
		1.77, m	1.75, m
19	19	2.24, m	2.52 , (ddd, $J=13.5,7.5,2.5)$

		3.06, (ddd, J = 13.8, 8.2, 6.8)	$3.24,(\mathrm{dt}, \mathrm{J}=13.5,7.5$)
20	20	1.44, m	1.49, m
		1.61, m	1.73, m
21	21	1.35, m	1.44, m
		1.49, m	1.52, m
22	22	1.98, m	2.02 (br d, J=15.2)
		2.22, m	2.26, m
23	23	5.24 (tt, J=10.8, 2.7)	5.28 (tt, J=10.8, 2.8)
24	24	5.38, m	5.41, m
25	25	2.09, m	2.11, m
		2.36, m	2.35, m
26	26	$2.35, \mathrm{~m}$	2.38, m
		2.29, (ddd, J = 10.8, 6.1, 1.5)	2.31, m

Table S4. Comparison of ${ }^{13} \mathrm{C}$ NMR data ($\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}$) of synthetic Keramaphidin B with those of isolated Keramaphidin $\mathrm{B}^{[6]}$ (numbering scheme as shown in Figure S 3); reassigned positions are shown in red

Position	Original Assignment ${ }^{[5]}$	${ }^{13} \mathrm{C}$ NMR Synthetic δ (ppm)	${ }^{13}$ C NMR Isolated ${ }^{[5]}$ δ (ppm)	$\Delta \delta$ (ppm)
20	20	21.5	20.9	+0.6
17	17	21.8	21.6	+0.2
14	14	23.8	23.8	0
22	22	26.1	26.1	0
25	25	26.6	26.5	+0.1
12	5	27.2	26.8	+0.4
13	12	27.5	27.1	+0.4
21	21	27.7	27.1	+0.6
5	13	28.0	27.5	+0.5
26	26	37.9	37.6	+0.3
4	4	39.1	38.8	+0.3
18	18	42.3	41.8	+0.5
4a	4 a	44.9	44.1	+0.8
8 a	8a	45.9	45.0	+0.9
6	6	48.5	48.8	-0.3
8	8	51.0	50.8	+0.2
3	3	54.6	54.3	+0.3
11	11	55.2	55.1	+0.1
19	19	57.1	56.9	+0.2
1	1	65.3	64.6	+0.7
10	10	124.3	125.0	-0.7
15	16	131.5	131.0	+0.5
16	23	132.4	132.6	-0.2
23	15	132.6	132.8	-0.2
24	24	133.3	133.4	-0.1
9	9	143.0	142.8	+0.2

Table S5. Comparison of the ${ }^{13} \mathrm{CNMR}\left(\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ data of synthetic Keramaphidin B with those of a sample of Keramaphidin B prepared by Baldwin et al., ${ }^{[7]}$ which had been doped with authentic material provided by Kobayashi et al. ${ }^{[5]}$ (numbering scheme as shown in Figure S3)

Position	${ }^{13} \mathrm{C}$ NMR Synthetic δ (ppm)	${ }^{13} \mathrm{C}$ NMR (literature) δ (ppm)	$\Delta \delta$ (ppm)
20	21.5	21.3	+0.2
17	21.8	21.7	+0.1
14	23.8	23.8	0
22	26.1	26.1	0
25	26.6	26.5	+0.1
12	27.2	27.1	+0.1
13	27.5	27.5	0
21	27.7	-	-
5	28.0	-	-
26	37.9	37.8	+0.1
4	39.1	39.0	+0.1
18	42.3	42.1	+0.2
4a	44.9	44.7	+0.2
8 a	45.9	-	-
6	48.5	48.8	-0.3
8	51.0	50.9	+0.1
3	54.6	54.5	+0.1
11	55.2	55.2	0
19	57.1	57.0	+0.1
1	65.3	65.0	+0.3
10	124.3	124.5	-0.2
15	131.5	131.3	+0.2
16	132.4	132.6	-0.2
23	132.6	132.6	0
24	133.3	133.3	0
9	143.0	142.9	+0.1

Table S6. Comparison of ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ data of synthetic Keramaphidin B with those of the isolated sample fo Keramaphidin $\mathrm{B}^{[5]}$ (numbering scheme as shown in Figure S3); reassigned positions are shown in red

Position	Original Assignment ${ }^{[6]}$	${ }^{1} \mathrm{H}$ NMR Synthetic δ (ppm), J (Hz)	${ }^{1} \mathrm{H}$ NMR Isolated ${ }^{[6]}$ $\delta(\mathrm{ppm}), \mathrm{J}(\mathrm{Hz})$
1	1	3.01, s	3.01, s
3a	3	2.85 (dd, J = 9.1, 2.1)	2.86 (dd, $J=8.5,1.5)$
3b	3	1.64 (dd, $J=9.1,2.7)$	1.64 (dd, $J=9.0,2.3)$
4	4	2.20, m	2.22, m
4a	4a	0.91, m	0.93 (ddd, J=11.6, 5.6, 1.9)
5a	5	1.16 (qd, $J=13.0,4.6)$	1.17 (ddd, J =13.0, 8.7, 4.4)
5b	5	1.30, m	1.36, m
6a	6	2.62 ($\mathrm{d}, \mathrm{J}=12.2$)	2.63 (dt, J = 12.3, 3.6)
6b	6	2.67 (t, J = 12.4)	2.75, m
8a	8	2.07, m	2.08 (d, $J=10.7)$
8b	8	2.12, m	2.23 (d, J = 12.3)
10	10	5.79 (d, $J=6.5)$	5.81
11	11	2.22, m	2.23, m
	3	2.88 (dd, $J=12.6,5.2)$	2.91 (dd, $J=20.7,9.7)$
12	12	1.25, m	1.24, m
		1.45, m	1.45, m
13	13	1.49, m	1.46, m
		1.58, m	1.58, m
14	14	1.58, m	1.57, m
		2.34, m	2.35, m
15	16	5.70 (td, $J=10.4,9.7,6.3)$	5.69 (ddd, $J=13.6,10.1,6.3$)
16	15	5.64 (td, J = 10.4, 5.1)	5.64 (ddd, $J=13.6,10.1,5.2)$
17	17	1.73, br s	1.78, m
		2.28, m	2.27, m
18	18	1.62, m	1.61, m
		1.86 (td, J= 12.1, 7.6)	1.88 (dt, J = 12.3, 7.6)
19	19	2.16, m	2.24, m
		3.05, br s	3.07, m
20	20	1.30, m	1.34, m
		1.54, m	1.55, m
21	21	1.29, m	1.32, m
		1.46, m	1.48, m
22	22	1.95 (d, $J=15.1)$	1.96 (br d, $\mathrm{J}=15.2)$
		2.16, m	2.14, m
23	23	5.23 (tt, J = 10.8, 3.1)	5.24 (br d, $J=10.8)$
24	24	5.35, m	5.36 (br d, $J=10.8)$
25	25	2.10, m	2.12, m
		2.28, m	2.29, m
26	26	2.23, m	2.25, m
		2.32, m	2.33, m

Table S7. Comparison of ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ data of synthetic Keramaphidin B with those of isolated Keramaphidin $\mathrm{B}^{[5]}$ (numbering scheme as shown in Figure S3)

Position	Original Assignment ${ }^{[}$	${ }^{13} \mathrm{C}$ NMR Synthetic δ (ppm)	${ }^{13} \mathrm{C}$ NMR Isolated ${ }^{[6]}$ δ (ppm)	$\Delta \delta$ (ppm)
17	17	21.0	21.0	0
20	20	21.2	21.1	+0.1
14	14	22.9	22.9	0
22	22	24.9	25.0	-0.1
25	25	25.5	25.6	-0.1
12	12	26.1	26.1	0
13	13	26.4	25.6	+0.8
21	21	27.3	27.2	+0.1
5	5	27.8	27.6	+0.2
26	26	37.0	37.0	0
4	4	37.9	38.0	-0.1
18	18	41.6	41.6	0
4a	4a	43.4	43.3	+0.1
8a	8 a	45.2	45.1	+0.1
6	6	47.4	47.4	0
8	8	50.7	50.8	-0.1
3	3	53.6	53.6	0
11	11	54.0	54.1	-0.1
19	19	56.2	56.2	0
1	1	64.3	64.3	0
10	10	122.5	122.6	-0.1
15	16	130.9	130.9	0
16	15	131.2	131.2	0
23	23	131.5	131.5	0
24	24	132.0	132.0	0
9	9	141.7	141.8	-0.1

Nominal Njaoamine I

The Quinoline Building Block

N-(3-(2-Aminophenyl)-3-oxopropyl)-2,2,2-trifluoroacetamide (45). Trifluoroacetic acid anhydride (9.5

$\mathrm{mL}, 68.3 \mathrm{mmol}$) was slowly added to a solution of tryptamine ($8.0 \mathrm{~g}, 50.0$
mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ was added to terminate the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 500 \mathrm{~mL}\right.$), the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the crude product was used for next step without further purification.

The crude product was dissolved in $\mathrm{MeOH}(800 \mathrm{~mL})$ and the solution was added dropwise to a solution of $\mathrm{NaIO}_{4}(54.8 \mathrm{~g}, 256 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and stirring continued at ambient temperature for 24 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 800 \mathrm{~mL})$, and the combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated to provide the crude product which was directly used for the next step.
conc. $\mathrm{HCl}(6.4 \mathrm{~mL}, 80.0 \mathrm{mmol})$ was added dropwise to a solution of this crude material in MeOH (640 mL). The mixture was stirred at reflux temperature for 1 hour before it was cooled to room temperature and aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~m}, 76 \mathrm{mmol})$ was added until a $\mathrm{pH} \approx 6$ was reached. The yellow residue was poured into $\mathrm{H}_{2} \mathrm{O}$ $(80 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removing the solvent, the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ tert-butyl methyl ether, $\left.20: 1\right)$ to afford the title compound as a yellow solid ($13.1 \mathrm{~g}, 81 \%$ over 3 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, \mathrm{J}=$ $8.6,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{td}, \mathrm{J}=8.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=$ $6.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=200.5,150.5,135.1,130.9,117.5,117.3,117.1,116.1$, 114.4, 37.6, $34.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-76.1 \mathrm{ppm} ; \operatorname{IR}($ film $) \tilde{v}=3468,3348,1708,1616$, 1550, 1452, 1204, 1159, $971,750 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 120 (100), 260 (32.9); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}\left[M^{+}\right]:$260.07671, found: 260.07733 .

2,2,2-Trifluoro-N-(2-(2-hydroxy-3-propionylquinolin-4-yl)ethyl)acetamide (47). Compound 46 (5.50 g,
 $27.5 \mathrm{mmol})^{[8]}$ was added to a solution of compound $45(4.78 \mathrm{~g}, 18.4 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ at ambient temperature. The resulting mixture was stirred at reflux temperature for 2 h before it was cooled to ambient temperature and directly loaded on silica filled into a flash column. After a contact time of 24
h, the product was eluted (hexanes/acetone, $3: 1$ to $0: 1$) to provide the tilte compound as a yellow solid ($5.89 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}$): $\delta=8.07$ (dd, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (ddd, J = 8.4, 7.1, 1.3 $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=8.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right): \delta=208.1,162.1,146.9,139.8,134.8,132.7$ 126.6, 124.4, 120.3, 119.0, 117.4, 116.1, 40.9, 37.9, 29.8, $7.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=-77.4 \mathrm{ppm} ;$ IR (film) $\tilde{v}=3307,2942,2883,1701,1652,1563,1187,1152,757 \mathrm{~cm}^{-1} ; \mathrm{MS}(E \mathrm{I}): \mathrm{m} / \mathrm{z}(\%): 212$ (100), 340 (12); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}\left[M^{+}\right]$: 340.10293, found: 340.10283.

2,2,2-Trifluoro- N -(2-(2-hydroxy-3-propionylquinolin-4-yl)ethyl)acetamide (48). $\mathrm{Tf}_{2} \mathrm{O}$ ($2.3 \mathrm{~mL}, 13.7 \mathrm{mmol}$)
 was added to a solution of compound 47 ($3.18 \mathrm{~g}, 9.30 \mathrm{mmol}$) in pyridine $(50.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , the cooling bath was removed and the mixture stirred at ambient temperature for 12 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{M}, 400 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the aqueous phase was extracted with EtOAc ($3 \times 500 \mathrm{~mL}$), and the combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation of the solvent, the crude product was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ tert-butyl methyl ether, $\left.40: 1\right)$ to provide the title compound as a yellow solid material ($3.88 \mathrm{~g}, 88 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{dd}, \mathrm{J}=8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (ddd, $J=8.4,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.66(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{td}, J=6.9,5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=204.7,158.5,158.1,157.7,157.4,149.3,147.6,145.5,132.3,129.8,128.9,126.1,125.8,124.3,120.1$, 117.0, 116.9, 114.2, 40.2, 38.3, 28.5, $\left.7.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(282} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-72.4,-76.0 \mathrm{ppm} ; \mathrm{IR}($ film $) ~ \tilde{v}$ $=3342,2955,1703,1563,1420,1178,1121,997,760 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 473\left[M+\mathrm{H}^{+}\right], 495\left[M+\mathrm{Na}^{+}\right] ; \mathrm{HRMS}$ (ESI): m/z: calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}\left[M+\mathrm{Na}^{+}\right]$: 495.04199, found: 495.04193.

N-(2-(2-(4-((tert-butyldimethylsilyl)oxy)butyl)-3-propionylquinolin-4-yl)ethyl)-2,2,2-trifluoroacet-amide

(50). Neat (but-3-en-1-yloxy)(tert-butyl)dimethylsilane (8.0 mL , $29.1 \mathrm{mmol})^{[9]}$ was added to a solution of 9-H-9-BBN (0.5 M in THF, $31.6 \mathrm{~mL}, 15.8 \mathrm{mmol}$) at ambient temperature. After stirring at this temperature for 12 h , the solution was warmed to $40{ }^{\circ} \mathrm{C}$ and stirring was continued for another 6 h before the mixture was cooled to ambient temperature. MeONa ($821 \mathrm{mg}, 15.2 \mathrm{mmol}$) was added and the resulting mixture was stirred for 1 h at ambient temperature. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(475 \mathrm{mg}, 0.411 \mathrm{mmol})$ and triflate 48 ($3.88 \mathrm{~g}, 8.21 \mathrm{mmol}$) were successively added to this solution. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h before it was
cooled to ambient temperature. The mixture was diluted with tert-butyl methyl ether ($3 \times 100 \mathrm{~mL}$) and washed with brine, the organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated under vacuum, and the crude product was purified by flash chromatography on silica gel (hexanes/EtOAc, 10:1 to $4: 1$) to afford the title compound as a yellow oil ($3.08 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.08$ (ddd, $\mathrm{J}=8.5$, $1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (ddd, $J=8.5,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.60$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{td}, J=6.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 2.86-2.79$ $(\mathrm{m}, 4 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=211.4,157.9,157.5,156.5,147.9,138.9,135.5,130.2,130.0,127.2,124.4$, $123.3,114.2,62.7,40.1,39.2,37.0,32.6,27.8,26.0,25.9,18.3,8.0,-5.4 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ $=-75.9 \mathrm{ppm}$; IR (film) $\tilde{v}=3309,2931,2858,1703,1208,1160,835,762 \mathrm{~cm}^{-1} ;$ MS (ESI): m/z: $511\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 533 [$M+\mathrm{Na}^{+}$]; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 533.24178 , found: 533.24155 .
tert-Butyl (2-(2-(4-hydroxybutyl)-3-(prop-1-yn-1-yl)quinolin-4-yl)ethyl)carbamate (S3). KHMDS (1.0 m in
 THF, $31.7 \mathrm{~mL}, 31.7 \mathrm{mmol}$) was added to a solution of compound 50 (3.08 g, 6.03 mmol) and $\mathrm{PhNTf}_{2}(3.39 \mathrm{~g}, 9.49 \mathrm{mmol})$ in THF (40 mL) at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL})$, and the combined extracts were washed with brine and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvent, the crude material was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$. DMAP $(3.10 \mathrm{~g}, 25.4 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(5.34 \mathrm{~g}, 24.5 \mathrm{mmol})$ were successively added at $0^{\circ} \mathrm{C}$., the cooling bath was removed after 5 min , and the mixture stirred at ambient temperature for 2 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The resulting mixture was stirred for 5 h before it was extracted with tert-butyl methyl ether $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with anhydrous MgSO_{4}, filtered and the solvent was evaporated. The residue was purified by flash chromatography on silica gel (hexanes/tert-butyl methyl ether, 8:1 to 2:1).

TBAF (1.0 M in THF, $24.0 \mathrm{~mL}, 24.0 \mathrm{mmol}$) was added to a solution of the product thus obtained in THF (10 mL) at $0^{\circ} \mathrm{C}$. The mixture was then stirred at ambient temperature for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($4 \times 100 \mathrm{~mL}$), the combined organic phases were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of the solvent, the residue was purified by flash chromatography on silica (hexanes/acetone, 8:1 to 1:1) to afford the title compound as a yellow oil ($1.66 \mathrm{~g}, 72 \%$). ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 1 H), 7.99 (dd, $J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$
$(\mathrm{s}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 5 \mathrm{H}), 3.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.08$ $-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta=162.6,155.9,147.4$, $145.7,129.4,129.1,126.4,125.7,123.8,117.7,95.9,79.3,75.8,62.3,40.4,36.8,32.3,30.9,28.4,24.1,4.8$ ppm; IR (film) $\tilde{v}=3322,2933,1691,1498,1365,1252,1170,1072,761 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 383\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$, $405\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}\left[M+\mathrm{H}^{+}\right]$: 383.23292, found: 383.23288.
tert-Butyl (2-(2-(4-oxobutyl)-3-(prop-1-yn-1-yl)quinolin-4-yl)ethyl)carbamate (52). Sulfur trioxide
 pyridine complex ($750 \mathrm{mg}, 4.71 \mathrm{mmol}$) was added to a solution of anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ (1.3 mL, 9.32 mmol$)$, alcohol $\mathbf{~ S 3}$ $(604 \mathrm{mg}, 40.8 \mathrm{mg})$ and DMSO ($0.56 \mathrm{~mL}, 7.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.3 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After 10 min , the cooling bath was removed and stirring was continued at ambient temperature for 3 h before sat. aq. $\mathrm{NaHCO}_{3}(2.0 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (hexanes/acetone, 6:1 to 3:1) to afford the title compound as a yellow oil ($461 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.79(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=$ $8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.25-3.03(\mathrm{~m}$, $2 \mathrm{H}), 2.57(\mathrm{td}, J=7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)^{2}\right): \delta=202.5$, $161.7,155.9,147.3,146.0,129.4,129.3,126.4,125.7,123.8,117.7,96.0,75.7,43.4,40.3,36.7,30.8,28.4$, 21.1, 4.7 ppm ; IR (film) $\tilde{v}=3368,2977,2936,1713,1498,1367,1250,872,764 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}: 381$ [$M+\mathrm{H}^{+}$]; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 381.21727, found: 381.21717.

The Failed First Foray

3-Allyl 1-(tert-butyl) (5R)-5-((tert-butyldimethylsilyl)oxy)-2-oxo-3-(pent-3-yn-1-yl)piperidine-1,3-

 dicarboxylate (S4). LiHMDS (1 M in THF, $26.7 \mathrm{ml}, 26.7 \mathrm{mmol}$) was slowly added to a solution of ent-15 (3.83 $\mathrm{g}, 11.6 \mathrm{mmol})$ in anhydrous THF (58 ml) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h before allyl chloroformate $(1.3 \mathrm{ml}, 12.2 \mathrm{mmol})$ was added. After 30 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3×200 $\mathrm{mL})$, and the combined organic phases were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of the solvent, the residue was purified by flash chromatography on silica (hexanes/EtOAc, $5: 1$ to $3: 1$) to provide a yellow oil.
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(7.66 \mathrm{~g}, 23.5 \mathrm{mmol})$ was added to a solution of this compound and 5-iodopent-2-yne ($4.5 \mathrm{~g}, 23.2$ $\mathrm{mmol})^{[1]}$ in DMF $(20.0 \mathrm{~mL})$ at ambient temperature. The mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting solution was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica (hexane/EtOAc, 1:10) to afford the title product as a white solid material ($5.17 \mathrm{~g}, 93 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}=-10.2\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta=5.99-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.04(\mathrm{~m}, 1 \mathrm{H})$, $3.83-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.96(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, $9 \mathrm{H}), 0.89-0.79(\mathrm{~m}, 9 \mathrm{H}), 0.09--0.03(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,170.9,169.4$, 168.9, 152.7, 152.5, 131.3, 131.1, 119.0, 118.4, 83.1, 83.1, 78.2, 78.1, 76.2, 76.2, 66.2, 66.0, 63.9, 63.8, $55.2,54.4,51.1,50.9,38.7,38.6,35.8,35.4,27.9,25.6,25.6,18.0,17.9,14.7,14.4,3.4,3.4,-4.8,-4.9$, $-5.04,-5.00 \mathrm{ppm}$; IR (film) $\tilde{v}=2926,2856,1717,1376,1300,1254,1147,1092,836,777 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 502\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$: 502.2595, found: 502.2597.
tert-Butyl (R)-3-((tert-butyldimethylsilyl)oxy)-6-oxo-5-(pent-3-yn-1-yl)-3,6-dihydropyridine-1(2H)carboxylate (53). $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(974 \mathrm{mg}, 0.941 \mathrm{mmol})$ was added to a solution of compound $\mathbf{S 4}(9.03 \mathrm{~g}$,
 18.8 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(76 \mathrm{~mL})$ at ambient temperature. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered through a pad of Celite. The filtrate was evaporated and the residue was purified by chromatography on silica (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$ to $1: 4$ to remove the dba, then the elutant was changed to hexanes/tert-butyl methyl ether, $4: 1$) to afford the title compound as a colorless oil ($5.84 \mathrm{~g}, 79 \%$). $[\alpha]_{D^{20}}=56.3\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.51-$ $6.48(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=12.8,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=12.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (ddddd, $J=6.3,5.3,3.8,2.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, 0.11 (s, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=163.6,152.7,142.1,134.0,83.1,78.3,63.9,50.7,29.9$, 28.1, 25.7, 18.1, 17.9, 3.4, -4.7, -4.7 ppm; IR (film) $\tilde{v}=2930,2857,1715,1368,1301,1255,1093,837,778$ cm^{-1}; MS (ESI): m/z: 416 [$\left.M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 416.22276, found: 416.22272.

Allyl 1-benzyl-4-oxo-3-(pent-4-en-1-yl)piperidine-3-carboxylate (S 5). $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.83 \mathrm{~g}, 11.8 \mathrm{mmol})$ was
 added to a solution of compound $19 \mathrm{~b}(1.6 \mathrm{~g}, 5.85 \mathrm{mmol})$, 1-bromo-4-pentene (1.4 $\mathrm{g}, 11.8 \mathrm{mmol})$ and $\mathrm{NaI}(1.78 \mathrm{~g}, 11.9 \mathrm{mmol})$ in DMF (11 mL) at ambient temperature. The mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting solution was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica (EtOAc/hexane, 1:5) to afford the title compound as a colorless oil (1.91 g, 96\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.04(\mathrm{~m}, 5 \mathrm{H}), 5.84$ (ddt, $J=17.2,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dq}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (dq, $J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{ddt}, J=13.2,5.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{ddt}, J=13.1,5.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.27$ $(\mathrm{m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddtt}, J=6.6,5.2,4.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.36(\mathrm{~m}$, 2H), 1.19 - $1.03(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=206.1,171.3,138.1,137.8,131.6,128.7$, $128.2,127.3,118.7,114.8,65.7,61.8,61.2,61.2,53.5,40.5,34.0,31.6,23.7 \mathrm{ppm}$; IR (film) $v=2925,2806$, 1454, 1315, 1224, 1190, 1121, 912, $738 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 342\left[\mathrm{M}^{\left.+\mathrm{H}^{+}\right] ; 364\left[\mathrm{M}+\mathrm{Na}^{+}\right] ; \text {HRMS (ESI): } \mathrm{m} / \mathrm{z}: ~: ~}\right.$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 342.20637, found: 342.20614.

3-Allyl 1-methyl 4-oxo-3-(pent-4-en-1-yl)piperidine-1,3-dicarboxylate (S6). Methyl chloroformate (12
 $\mathrm{mL}, 155 \mathrm{mmol})$ was added to a solution of compound $\mathbf{S 5}(10.0 \mathrm{~g}, 29.3 \mathrm{mmol})$ in toluene at ambient temperature. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h before it was adsorbed on silica and directly loaded on top of a silica column, eluting the product with hexanes/EtOAc (5:1 to $1: 1$). The title compound was obtained as a colorless oil (9.02 g, quant.). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86$ (ddt, $J=17.2,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.74 (ddt, $J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dq}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}, 2 \mathrm{H})$, 4.62-4.57 (m, 2H), $4.52(\mathrm{dd}, J=13.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66$ (ddd, $J=14.7,9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=14.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=204.2,169.8,155.6,137.8$, 131.2, 119.2, 115.1, 66.1, 61.2, 53.0, 50.1, 43.7, 39.6, 33.8, 31.1, 23.4 ppm; IR (film) $v=2955,1450,1414$, 1239, 1193, 1137, $996 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $310\left[M+\mathrm{H}^{+}\right] ; 332\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 332.14684$, found: 332.14658 .

Methyl 4-oxo-5-(pent-4-en-1-yl)-3,4-dihydropyridine-1(2H)-carboxylate (54). $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(970 \mathrm{mg}, 1.06$ mmol) was added to a solution of compound $\mathbf{S 6}(6.74 \mathrm{~g}, 21.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(88 \mathrm{~mL})$ at ambient
 temperature. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered through a pad of Celite, which was rinsed with tert-butyl methyl ether (100 mL). The combined filtrates were evaporated and the crude product purified by flash chromatography on silica gel (hexanes/tert-butyl methyl ether, $4: 1$ to $1: 1$) to afford the title compound as a colorless oil ($4.43 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, \mathrm{J}=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.85(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ (s, 3H), 2.76-2.36(m, 2H), 2.29-2.12(m, 2H), 2.05 (tdt, J = 8.0, 6.6, 1.5 Hz, 2H), 1.58-1.37 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=193.1,140.5,140.0,138.4,118.7,114.7,53.9,42.6,35.9,33.3,28.3,26.8$ ppm; IR (film) v = 2927, 1723, 1665, 1618, 1442, 1371, 1264, 1207, 1007, $912 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 224 $\left[M+\mathrm{H}^{+}\right], 246\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 246.11006, found: 246.10998.

Compound 55. A solution of $\mathrm{Bn}_{2} \mathrm{NLi}$ (0.5 M in THF, 3.94 mmol) was added to a solution of compound
 54 ($1060 \mathrm{mg}, 4.75 \mathrm{mmol})$ in THF (3.0 mL) at $-50^{\circ} \mathrm{C}$. The mixture was stirred for 30 min before DMPU ($0.48 \mathrm{~mL}, 3.98 \mathrm{mmol}$) and a solution of compound 53 (1.06 $\mathrm{g}, 4.75 \mathrm{mmol}$) in THF (4.0 mL) were successively added. The resulting mixture was gradually warmed to $20^{\circ} \mathrm{C}$ over the course of 4 h and stirring continued for 24 h before DMAP ($1.65 \mathrm{~g}, 13.5 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(2.93 \mathrm{~g}, 13.4 \mathrm{mmol})$ were added. The resulting solution was stirred for 1 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 10:1 to $6: 1$) to afford the product 55 which was used in the next step without further characterization
$\mathrm{NaBH}_{4}(537 \mathrm{mg}, 14.2 \mathrm{mmol})$ was added in portions to a solution of product 55 in $\mathrm{MeOH}(31 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, the combined organic phases were washed with brine (10 mL), dried over MgSO_{4}, filtered, and concentrated. The crude material was purified by flash chromatography on silica gel (hexanes/EtOAc, $4: 1$ to 2:1) to afford the title compound as a white solid (1.22 g, 42\%). [$\alpha]_{\mathrm{D}}^{20}=81.8$ (c $=0.4, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.78$ (ddq, J=16.9, $10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.67$
(m, 3H), 3.57-3.47 (m, 1H), 3.32 (ddd, J = 25.1, 11.4, 3.0 Hz, 1H), 3.21-3.04 (m, 2H), 2.34-2.14 (m, 2H), 2.09-1.93 (m, 3H), 1.81-1.76 (m, 2H), $1.73(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.54-$ $1.49(\mathrm{~m}, 9 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10-0.09(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.6,156.8,156.6,151.4,138.8,138.6,114.6,114.5,83.4,83.4,78.5,77.9,76.3,76.1$, $75.9,52.7,52.7,52.5,52.3,52.1,51.8,51.3,50.8,49.8,48.0,46.1,45.9,40.1,39.8,34.7,34.6,33.9,33.9$, 32.7, 32.5, 28.1, 28.0, 27.6, 26.1, 26.0, 25.8, 17.9, 13.8, 3.5, 3.4, -4.4, -4.4 ppm; IR (film) v=3506, 2953, 2930, 2887, 2857, 1704, 1681, 1453, 1393, 1299, 1257, 1124, 839, $779 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $641\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]$: 641.35925, found: 641.35960.

Compound S7. $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10.0 \mathrm{mmol})$, $\mathrm{DMAP}(408 \mathrm{mg}, 3.34 \mathrm{mmol})$ and $\mathrm{MsCl}(0.52 \mathrm{~mL}, 6.72 \mathrm{mmol})$ were successively added to a solution of compound $\mathbf{S 6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , the cooling bath was removed and the mixture stirred at ambient temperature for 2 h before sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$
 was added. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, the combined organic phases were washed with brine (5 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel (hexanes/EtOAc, $4: 1$ to $2: 1$) to afford the title compound as a white solid (1.98 g, 85%). $[\alpha]_{\mathrm{D}}^{20}=24.1$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=5.76$ (ddddd, $J=22.0,10.1,6.7,5.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.05-4.79 (m, 2H), 4.44-4.28(m, 2H), 4.23-4.09 (m, 2H), 3.78-3.64(m, 3H), 3.43-3.33(m, 1H), 3.26-3.11(m, 2H), 3.00-2.95 (m, 3H), $2.58(d, J=18.4 H z, 1 H), 2.42-2.16(m, 1 H), 2.14-$ $1.98(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{q}, \mathrm{J}=2.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.41-$ $1.30(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.15-0.11(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,156.5,156.4$, $151.1,151.0,138.5,138.3,114.9,114.8,85.2,84.9,83.8,83.7,78.1,77.6,76.1,75.6,67.8,67.7,52.9,52.9$, $51.8,51.7,51.5,50.2,49.7,49.2,48.0,43.3,43.3,39.9,39.6,38.6,38.5,34.0,33.8,33.4,33.4,31.4,31.3$, $28.0,25.8,25.5,25.3,17.9,13.9,3.5,3.4,-4.3,-4.5 \mathrm{ppm}$; IR (film) $v=2953,2931,2858,1704,1450,1389$, 1367, 1257, 1125, 839, $779 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $719\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{9} S S i N a$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 719.33680$, found: 719.33702.

Compound S8. A solution of compound $\mathbf{S 7}(900 \mathrm{mg}, 1.29 \mathrm{mmol})$ in 2,6-lutidine (6.5 mL) was stirred at 170 ${ }^{\circ} \mathrm{C}$ for 5 d . The mixture was then cooled to ambient temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$. TBSOTf $(1.5 \mathrm{~mL}, 6.53 \mathrm{mmol})$ was added to this solution at $0^{\circ} \mathrm{C}$. After 5 min , the cooling bath was removed and the
 mixture was stirred at ambient temperature for 3 h . sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, followed by careful addition of $\mathrm{HCl}(2 \mathrm{M}, 40 \mathrm{~mL})$. The mixture was vigorously stirred for 10 min before it was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, $8: 1$ to $4: 1$) to afford the title product as a white solid ($524 \mathrm{mg}, 81 \%$). $[\alpha]_{\mathrm{D}}^{20}=27.1$ (c $=0.9, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, ca. 1.9:1): $\delta=5.87$ (d, J = 5.1 Hz, 0.65 H , major), 5.83 (d, $J=5.7 \mathrm{~Hz}, 0.35 \mathrm{H}$, minor), 5.83-5.72 (m, $1 \mathrm{H}), 5.70(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.35 \mathrm{H}$, minor)), $4.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.65 \mathrm{H}$, major), 3.72 ($\mathrm{s}, 2 \mathrm{H}$, major), 3.68 ($\mathrm{s}, 1 \mathrm{H}$, minor), 3.35 (ddd, $J=9.9,8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (ddd, J = 8.9, 7.0, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{ddt}, J=12.2,10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.76(\mathrm{~m}, 0.65 \mathrm{H}$, major), 2.75$2.71(\mathrm{~m}, 0.35 \mathrm{H}$, minor), 2.48-2.10(m,5H), 2.01-1.93(m, 2H), 1.92-1.79 (m, 2H), 1.79-1.70(m,3H), 1.61$1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11-0.01(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.6$, $156.1,148.4,147.4,138.7,138.5,124.5,123.8,114.6,114.5,79.0,78.4,75.7,75.5,70.8,70.7,54.3,54.2$, $52.9,52.6,52.5,52.5,51.5,51.3,47.3,47.1,45.6,45.6,39.9,39.7,33.6,33.3,33.3,33.3,33.2,26.2,26.1$, $25.7,17.8,14.1,3.5,3.4,-4.3,-4.3,-4.8,-4.8 \mathrm{ppm} ; \operatorname{IR}(f i l m) v=3200,2952,2929,2858,1701,1666,1448$, 1388, 1122, 1068, 837, $776 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $501\left[M+\mathrm{H}^{+}\right], 523\left[M+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m / z : calcd. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}\left[M+\mathrm{H}^{+}\right]: 501.31431$, found: 501.31465 .

Compound S9. $\mathrm{NaH}(327 \mathrm{mg}, 13.6 \mathrm{mmol})$ was added to a solution of compound $\mathbf{S 8}(908 \mathrm{mg}, 1.81 \mathrm{mmol})$ and 1-bromo-4-pentene ($0.5 \mathrm{~mL} \mathrm{mg}, 4.22 \mathrm{mmol}$) in DMF (4.5 mL) at $0^{\circ} \mathrm{C}$. After stirring at this temperature
 for 1 h , the mixture was added to a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the compbined organic phases were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (hexanes/tert-butyl methyl ether, $8: 1$ to $4: 1$) to afford a colorless oil.

TBAF (1 M in THF, $2.4 \mathrm{~mL}, 2.40 \mathrm{mmol}$) was added to a solution of this compound in THF (3.5 mL). The mixture was stirred at ambient temperature for 1 h before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc
$(3 \times 10 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 6:1 to 2:1) to afford the title compound as a yellow oil ($808 \mathrm{mg}, 98 \%$). $[\alpha]_{\mathrm{D}}^{20}=60.9$ ($\mathrm{c}=1.4, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}, mixture of rotamers, ca. 2:1): $\delta=5.90-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.77(\mathrm{~m}, 5 \mathrm{H}), 3.72(\mathrm{~s}$, 2 H, major), $3.68(\mathrm{~s}, 1 \mathrm{H}$, minor), 3.44-3.36(m,1H), 3.35-3.25(m,2H),3.24-3.16(m,2H),3.12(dd, J=12.0, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{ddd}, J=26.5,10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.05(\mathrm{~m}, 3 \mathrm{H})$, 2.03-1.92 (m, 4H), 1.92-1.83(m, 1H), 1.80-1.69(m,5H), 1.63-1.59(m, 1H), 1.56-1.48(m, 2H), 1.48-1.37 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=169.9,169.9,156.2,156.1,148.3,147.4,138.7,138.5,137.7$, $137.6,124.3,123.6,115.1,115.1,114.5,114.5,79.1,78.6,75.7,75.6,69.7,69.6,53.9,53.8,53.5,53.3$, $52.6,52.5,52.0,51.9,51.1,47.3,47.3,47.1,39.8,39.5,33.7,33.4,33.2,33.2,33.1,30.8,30.8,26.7,26.7$, 26.1, 26.0, 14.2, 3.5, 3.5 ppm ; IR (film) v = 3409, 2925, 2847, 1699, 1678, 1449, 1391, 1271, 1115, 912, 767 cm^{-1}; MS (ESI): m/z: $455\left[M+\mathrm{H}^{+}\right], 477\left[M+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m/z: calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{N}^{\left.+\mathrm{H}^{+}\right]:}\right.$ 477.27238, found: 477.27262.

Compound S10. $\mathrm{Et}_{3} \mathrm{~N}$ ($0.55 \mathrm{~mL}, 3.95 \mathrm{mmol}$), DMAP ($160 \mathrm{mg}, 1.31 \mathrm{mmol}$) and chloromethanesulfonyl chloride ($\mathrm{McCl}, 0.23 \mathrm{~mL}, 2.53 \mathrm{mmol}$) were added to a solution of compound $\mathbf{S 9}$ ($583 \mathrm{mg}, 1.28 \mathrm{mmol}$) in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min , the cooling bath was removed and the mixture stirred at ambient temperature for 4 h before sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine (2 mL), dried over MgSO_{4}, filtered, and concentrated.

The resulting crude product was dissolved in toluene (0.8 mL). DBU (1.2 mL) was added and the resulting mixture stirred at $100^{\circ} \mathrm{C}$ for 2 h . After cooling to ambient temperature, the mixture was loaded onto a silica gel column and the product eluted with (hexanes/EtOAc, $8: 1$ to $4: 1$) to afford the title product as a colorless oil (432 mg). $[\alpha]_{\mathrm{D}}^{20}=28.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, ca. 2:1): $\delta=5.97(d d d, J=8.8,6.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.07-4.75(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.52$ (dddd, $J=13.4,8.1,6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (ddd, $J=10.0,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dddd, $J=13.8,9.0,6.5,2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.84 (ddd, $J=25.9,10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dq}, J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-1.89$ $(\mathrm{m}, 10 \mathrm{H}), 1.74(\mathrm{q}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{tdd}, J=8.0,6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.7,168.7,156.5,156.4,147.6,146.8,138.8,138.6,137.7,137.7,128.0,127.9,125.9$, $125.3,115.4,115.4,114.7,107.1,106.8,78.7,78.6,75.8,75.8,56.5,56.2,53.5,53.4,52.7,52.6,48.3,48.2$,
$46.9,46.8,44.2,41.2,37.7,37.5,33.7,33.7,33.4,33.3,30.8,30.8,27.6,27 ., 26.2,26.1,15.1 \mathrm{ppm} ;$ IR (film) $v=2925,2861,1697,1642,1389,1338,1255,1110,911,766 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 437\left[M+\mathrm{H}^{+}\right], 459$ $\left[M+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m / z : calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 459.26181 , found: 459.26175 .

Compound 56. $\mathrm{NaBH}_{3} \mathrm{CN}(180 \mathrm{mg}, 2.86 \mathrm{mmol})$ was added to a solution of compound $\mathbf{S 1 0}$ ($250 \mathrm{mg}, 0.573$
 mmol equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~m})$ at $0{ }^{\circ} \mathrm{C}$. TFA ($0.44 \mathrm{~mL}, 5.74 \mathrm{mmol}$) was slowly added and the mixture stirred for 1 h at ambient temperature before the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 8:1 to $3: 1$) to afford the title product as a colorless oil ($151 \mathrm{mg}, 60 \%$). $[\alpha]_{\mathrm{D}}^{20}=71.2$ ($\mathrm{c}=0.6, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, ca. 2:1): $\delta=5.88-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.89(\mathrm{~m}, 4 \mathrm{H})$, 4.87 ($\mathrm{d}, J=1.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 4.76 ($\mathrm{d}, J=1.5 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 3.72 ($\mathrm{s}, 2 \mathrm{H}$, major), 3.68 ($\mathrm{s}, 1 \mathrm{H}$, minor), 3.36-3.18 (m, 4H), 3.07 (ddd, J=12.6, 5.3, 3.6 Hz, 1H), 2.96 (dd, J=10.3, 2.6 Hz, 0.6 H, major), 2.88 (dd, J $=10.0,2.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, major), 2.53 (dq, J = 6.7, $2.3 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), 2.49 ($\mathrm{dt}, J=6.6,2.2 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 2.38-2.04 (m,5H), 2.03-1.88(m,5H), 1.84-1.79(m,1H), $1.74(t, J=2.5 H z, 3 H), 1.64(d d d d, J=13.6,11.8$, $7.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.4,170.4$, $156.2,156.2,147.2,146.4,138.8,138.6,137.9,137.9,137.8,124.3,123.5,115.0,114.9,114.5,114.5,79.2$, $78.8,75.4,75.3,54.4,54.3,52.5,52.4,52.1,51.9,48.2,48.0,47.5,47.5,45.2,45.2,45.1,44.9,39.5,39.4$, $37.2,36.9,33.3,33.3,33.2,33.2,31.0,30.9,29.8,29.8,29.7,26.7,26.1,26.0,14.5,14.4,3.5,3.5 \mathrm{ppm} ;$ IR (film) $v=2924,1679,1632,1648,1446,1389,1286,1109,911,767 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 439\left[M+\mathrm{H}^{+}\right], 461$ $\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}\left[M+\mathrm{H}^{+}\right]: 461.27746$, found: 461.27755.

Compound 57. L-Selectride (1 M in THF, $1.70 \mathrm{~mL}, 1.70 \mathrm{~mol}$) was added to a solution of compound 56 (151 $\mathrm{mg}, 0.344 \mathrm{~mol})$ in THF (0.3 mL) at ambient temperature. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h before the reaction was quenched by cautious addition of $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was loaded onto
 an amino cartridge (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of three column length each)) and the product was eluted with $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(90: 10)$ to provide a white solid.

HOAc ($0.1 \mathrm{~mL}, 1.75 \mathrm{mmol}$) was added to a solution of this secondary amine and aldehyde 52 ($393 \mathrm{mg}, 1.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.4 \mathrm{~mL})$ at ambient temperature. After stirring for 30 min , $\mathrm{NaBH}(\mathrm{OAc})_{3}(256 \mathrm{mg}, 1.21 \mathrm{mmol})$ was added and the resulting mixture was stirred at ambient temperature for 3 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. After removing the solvent under argon, the residue was purified on an amino cartridge ($\mathrm{MeOH} ; 100 \%$) to provide a white solid. This compound was then subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150$ $\mathrm{mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=95: 5,35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=3.8 \mathrm{~min}$) to afford the title compound as a colorless oil ($192 \mathrm{mg}, 75 \%$). $[\alpha]_{\mathrm{D}}^{20}=-22.3\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.00 (dd, $J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 ($\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.88-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.04-4.87(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-$ $3.10(\mathrm{~m}, 5 \mathrm{H}), 3.04$ (ddd, $J=20.6,7.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49$ (ddd, $J=11.5,8.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 6 \mathrm{H})$, 2.17-2.07 (m, 3H), 2.07-1.75 (m, 10H), 1.73-1.67 (m, 2H), 1.65 (d, J = $2.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.58-1.47 (m, 4H), 1.44 (s, 9H), 1.36 (dqt, J = 21.1, 8.4, $3.4 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,163.3,156.0,147.1$, $146.1,144.5,138.9,138.1,129.5,129.2,126.2,125.7,123.8,122.5,117.7,114.8,114.4,95.6,79.8,79.2$, $76.1,74.9,62.5,58.0,55.6,52.2,47.4,45.4,44.2,40.4,39.1,37.9,37.9,34.6,33.6,31.0,30.8,29.7,28.8$, 28.4, 26.8, 26.7, 26.0, 14.7, 4.9, 3.5 ppm; IR (film) v = 3327, 2974, 2928, 2858, 1708, 1626, 1496, 1391, 1170, $911,760 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $745\left[\mathrm{M}+\mathrm{H}^{+}\right], 767\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{48} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 745.50512$, found: 745.50462.

Compound 58. A solution of ligand $\mathbf{3 0}(37.4 \mathrm{mg}, 0.0475 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ was added to complex

29 ($27.6 \mathrm{mg}, 0.0474 \mathrm{mmol}$), and the resulting mixture was stirred for 5 min . This mixture was added to a suspension containing diyne 57 ($118 \mathrm{mg}, 0.158 \mathrm{mmol}$) and $5 \AA \mathrm{MS}$ powder (3.0 g) in toluene $(79 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. After 10 min , the mixture was allowed to cool to ambient temperature, before it was filtered through a pad of Celite and the filtrate was concentrated. The crude product was then subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=95: 5,35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ $=6.6 \mathrm{~min}$) to afford the title compound as a white solid ($84.7 \mathrm{mg}, 77 \%$). $[\alpha]_{\mathrm{D}}^{20}=-48.6\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=8.06(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.43$ (m, 1H), 5.82 (dtt, $J=19.5,6.5,3.1 \mathrm{~Hz}, 3 \mathrm{H}), 5.00$ (dddd, $J=20.9,18.9,10.2,5.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.73$ ($\mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56-3.41(m,6H), 3.39-3.18(m,1H), 3.18-2.97(m,3H), $2.93(\mathrm{dd}, J=9.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.81(\mathrm{td}, \mathrm{J}=11.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-1.82(\mathrm{~m}, 12 \mathrm{H}), 1.73(\mathrm{dd}, \mathrm{J}=$ $9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.55 (dq, $J=15.4,7.6,6.8 \mathrm{~Hz}, 6 \mathrm{H}$), $1.44(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 10 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,164.3,156.0,146.4,146.1,145.3,139.0,138.0,129.2,129.1,126.2$, $125.8,123.9,122.3,117.9,115.0,114.3,102.2,79.2,76.3,60.8,55.3,54.3,52.5,47.3,46.9,45.3,40.5$, $38.6,37.4,37.0,34.6,33.7,30.9,30.8,30.4,28.4,27.8,26.9,26.2,25.1,13.4$ ppm; IR (film) v=2929, 1706, 1632, 1496, 1449, 1365, 1250, 1170, 911, $760 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $691\left[\mathrm{M}^{+} \mathrm{H}^{+}\right], 713\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{44} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 691.45817, found: 691.45836.

Compound S11. DIBAL-H (1.0 m in Hexane, $0.4 \mathrm{~mL}, 0.40 \mathrm{mmol}$) was added to a solution of compound 58
 $(42 \mathrm{mg}, 0.0608 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was gradually warmed to $20^{\circ} \mathrm{C}$ over 2 h before the reaction was quenched with EtOAc $(0.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , aq. NaOH $(3.0 \mathrm{~m}, 0.1 \mathrm{~mL}$) was added and the resulting mixture was stirred for another 30 min before it was extracted with EtOAc (3×5 mL), the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL}) . \mathrm{MnO}_{2}(372 \mathrm{mg}, 4.28 \mathrm{mmol})$ was added and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 d . Then the mixture was filtered through a PFE filter (0.45 $\mu \mathrm{L}$), the filtrate was concentrated, and the crude product was subjected to preparative HPLC (Kromasil-5$\left.\mathrm{C} 18,5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}: 20 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{HCO}_{3} \mathrm{PH} 9=95: 5,35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=15.2 \mathrm{~min}\right)$
to afford the title compound as a yellow solid ($25.6 \mathrm{mg}, 62 \%$). $[\alpha]_{\mathrm{D}}^{20}=-82.2\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{ddd}, \mathrm{J}=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, 1 H), $5.89-5.78(\mathrm{~m}, 3 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{dd}, \mathrm{J}=10.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 5 \mathrm{H})$, $2.90(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.37$ $(\mathrm{m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 9 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 11 \mathrm{H}), 1.34-$ $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.4,156.0,146.3,146.1,142.9,138.6$, $129.2,126.2,125.8,123.9,121.0,117.8,114.7,114.5,102.3,76.2,62.8,58.6,55.2,53.8,50.3,49.6,47.2$, $43.1,40.5,38.6,37.3,36.8,35.8,31.4,30.9,28.4,27.8,27.3,26.8,26.0,25.1,13.6 \mathrm{ppm}$; IR (film) v=2930, 2854, 2225, 1703, 1497, 1447, 1365, 1250, 1170, 911, $759 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 677 [M+H+]; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{44} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 677.47890, found: 677.47917.

Completion of the Total Synthesis

(E)-2,3-Dibromo-8-iodooct-2-ene (61). Bromine ($5.2 \mathrm{~mL}, 101.5 \mathrm{mmol}$) was added to a solution of oct-6-yn-
 1-ol ($10.6 \mathrm{~g}, 84.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(420 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 20 min at this temperature, the reaction mixture was poured into a solution of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (500 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, the combined organic layers were washed with brine, dried with anhydrous MgSO_{4} and filtered, and the solvent was evaporated. The crude dibromide $\mathbf{6 0}$ thus obtained was used in the next step without further purification.
lodine ($25.6 \mathrm{~g}, 100.9 \mathrm{mmol}$) was added to a vigorously stirred solution of $\mathrm{PPh}_{3}(26.5 \mathrm{~g}, 101.0 \mathrm{mmol})$ and imidazole ($6.88 \mathrm{~g}, 101.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ at 0 C . After stirring at this temperature for 30 min , a solution of the crude dibromide $\mathbf{6 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the resulting mixture was stirred for 2 h before the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography on silica (pentane) to afford the title compound as a colorless oil ($33.0 \mathrm{~g}, 99$ \%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.86 (ddd, J = 13.0, 7.9, $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.65-1.55 (m, 2H), 1.48-1.38 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 121.6, 115.6, 40.3, 33.2, 29.3, 28.8, 26.3, 6.7 ppm; IR (film) $\tilde{v}=2929,2857,1453,1428,1375,1349,1298$, 1267, 1204, 1165, 1104, 1069, 1030, 957, 723, 615, $505 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%):107 (100), 213 (43), 396 (4); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mid \mathrm{Br}_{2}\left[M^{+}\right]$: 393.84235 , found: 393.84232 .

Allyl (E)-1-benzyl-3-(6,7-dibromooct-6-en-1-yl)-4-oxopiperidine-3-carboxylate ($\mathbf{S 1 2}$). $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (27.2 g, 83.5
 mmol) was added to a solution of compound $\mathbf{1 9 b}(14.5 \mathrm{~g}, 53.0 \mathrm{mmol})$ and iodide $61(33.0 \mathrm{~g}, 83.4 \mathrm{mmol})$ in DMF (128 mL) at ambient temperature. The mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($3 \times 300 \mathrm{~mL}$), and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica (EtOAc/hexanes, 1:8) to afford the title compound as a colorless oil ($19.1 \mathrm{~g}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.14$ (m , 5 H), 5.89 (ddt, $J=17.3,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.41$ (dd, J=11.5, 2.6 Hz, 1H), 2.98 (dtd, $J=12.6,5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91-2.76 (m, 1H), 2.66-2.58 (m, 2H), 2.49$2.32(\mathrm{~m}, 5 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.22$ (m, 2H), 1.17-1.05 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.9,171.2,137.7,131.6,128.7,128.1$, 127.2, 121.8, 118.6, 115.1, 65.5, 61.7, 61.1, 61.0, 53.4, 40.4, 40.3, 31.9, 28.7, 28.6, 26.9, 24.1 ppm; IR (film) $\tilde{v}=3027,2927,2859,2805,1716,1649,1494,1454,1348,1318,1221,1195,1160,1122,1073,1027,972$, 997, 931, 820, 734, 698, 616, 554, 501, $462 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $540\left[\mathrm{M}^{\left.+\mathrm{H}^{+}\right] ; 562\left[\mathrm{M}+\mathrm{Na}^{+}\right] ; \text {HRMS (ESI): }}\right.$ m / z : calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Br}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 540.07369, found: 540.07475.

3-Allyl 1-methyl (E)-3-(6,7-dibromooct-6-en-1-yl)-4-oxopiperidine-1,3-dicarboxylate (62). Methyl
 chloroformate ($13.6 \mathrm{~mL}, 176 \mathrm{mmol}$) was added to a solution of S12 (19.1 g, 35.3 mmol) in toluene (35 mL) at ambient temperature. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 6 h before it was directly loaded on a column of silica. The product was eluted with hexanes/EtOAc (5:1 to 1:1) to provide the desired product as a colorless oil ($17.4 \mathrm{~g}, 97 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.87$ ($\mathrm{ddt}, J=16.5,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37-5.18 (m, 2H), $4.62(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.58-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.22-$ $3.08(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{dt}, \mathrm{J}=14.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{td}, \mathrm{J}=$ $19.4,14.8,8.4 \mathrm{~Hz}, 3 \mathrm{H}$), $1.31(\mathrm{dt}, J=13.3,6.9 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.3,169.8$, $155.7,131.3,121.8,119.2,115.4,66.1,61.2,53.1,50.2,43.7,40.3,39.7,31.5,28.7,28.6,27.0,24.0$ ppm; IR (film) $\tilde{v}=2930,2860,1703,1650,1448,1412,1376,1308,1272,1236,1192,1132,1073,994,933,767$, $616 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $508\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 530\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{Br}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 508.03290, found: 508.03322.

Methyl (E)-5-(6,7-dibromooct-6-en-1-yl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate (63). Pd ${ }_{2}(\mathrm{dba})_{3}$
 ($859 \mathrm{mg}, 0.938 \mathrm{mmol}$) was added to a solution of compound $63(9.54 \mathrm{~g}$, $18.7 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(94 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered filtered through a pad of Celite, rinsing with tert-butyl methyl ether (100 mL). The combined filtrates were evaporated and the residue was purified by flash chromatography on silica (hexanes/EtOAc, $4: 1$ to $1: 1$) to afford the title compound as a colorless oil ($7.22 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66$ $(\mathrm{s}, 1 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.17(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{tt}, J=10.2,4.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=193.2,122.0,115.2,53.9,42.6,40.5,36.0,29.0,28.8,28.2,27.2,27.2 \mathrm{ppm} ;$ IR (film) $\tilde{v}=2926,2857,1723,1665,1617,1439,1398,1370,1322,1301,1243,1204,1153,1122,1061$, 1048, 1006, 974, 917, 766, 668, 615, $511 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 422\left[M+\mathrm{H}^{+}\right], 444\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right] ;$HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{Br}_{2}\left[M+\mathrm{H}^{+}\right]$: 421.99612 , found: 421.99593 .

Compound 64. The Michael donor 53 ($4.50 \mathrm{~g}, 10.6 \mathrm{mmol}$) was dissolved in THF (35 mL) and the solution
 cooled to $-50^{\circ} \mathrm{C}$ before a solution of LiOtBu ($854 \mathrm{mg}, 10.7 \mathrm{mmol}$) in THF (18 mL) was added dropwise. After the addition was complete, stirring was continued for 10 min at $-50^{\circ} \mathrm{C}$. Then, a solution of the Michael acceptor 53 ($3.27 \mathrm{~g}, 8.89 \mathrm{mmol}$) in THF (17 mL) was added dropwise at $-50^{\circ} \mathrm{C}$. The reaction was warmed to $25{ }^{\circ} \mathrm{C}$ over the course of 5 h and then stirred at that temperature for another 16 h . $\operatorname{DMAP}(1.63 \mathrm{~g}, 13.3 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.63 \mathrm{~g}$, 13.3 mmol) were added and stirring continued for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined extracts were washed with brine, dried over magnesium sulfate and filtered. After removal of the organic solvents in vacuum, the crude material was purified by flash chromatography on silica (hexanes/EtOAc, 10:1 to 6:1) to afford the desired product 64.
$\mathrm{NaBH}_{4}(1.0 \mathrm{~g}, 26.4 \mathrm{mmol})$ was added in portions to a solution of compound 64 in $\mathrm{MeOH}(35.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic phases were washed with brine (10 mL), dried over MgSO_{4} and filtered. After evaporation of the solvent, the crude product was purified by flash chromatography on silica gel (hexanes/EtOAc, $8: 1$ to $4: 1$) to afford the title product as a white solid ($3.98 \mathrm{~g}, 55 \%$). $[\alpha]_{\mathrm{D}}^{20}=48.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of
rotamers, 2.3:1) : $\delta=4.46$ (tdd, $J=10.6,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 0.3 \mathrm{H}$, minor), 4.18 (s, 0.7 H , major), 4.09 (dd, $J=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=2.5,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=22.5,11.5,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, \mathrm{J}=2.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.11$ $(\mathrm{m}, 1 \mathrm{H}), 1.98(\mathrm{dtt}, \mathrm{J}=16.5,8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.58-1.23(\mathrm{~m}, 17 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.6,156.8,156.5,151.5,151.4,122.2,122.0,115.2,115.1,83.4$, $83.3,78.5,77.9,76.2,76.0,75.8,75.5,67.8,67.7,52.7,52.5,52.2,52.1,51.8,51.3,50.8,49.7,48.0,46.2$, $46.0,40.4,40.1,39.8,34.6,34.5,33.2,32.9,28.7,28.7,28.6,28.0,27.2,27.2,26.5,26.4,25.7,17.9,13.8$, 13.8, 3.5, 3.4, -4.4, -4.5; IR (film) $\tilde{v}=3502,2951,2929,2884,2857,1766,1703,1680,1454,1393,1369$, 1339, 1296, 1255, 1191, 1156, 1122, 1067, 991, 939, 865, 838, 808, 779, 756, 685, 671, $666 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 839\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiBr}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 839.22725, found: 839.22744.

Compound S13. $\mathrm{Et}_{3} \mathrm{~N}$ ($1.6 \mathrm{~mL}, 11.5 \mathrm{mmol}$), DMAP ($474 \mathrm{mg}, 3.88 \mathrm{mmol}$) and $\mathrm{MsCl}(0.75 \mathrm{~mL}, 9.69 \mathrm{mmol})$
 were successively added to a solution of alcohol 64 ($3.18 \mathrm{~g}, 3.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , the cooling bath was removed and the mixture stirred at ambient temperature for 2 h before sat. aq. NaHCO_{3} (10 $\mathrm{mL})$ was added. The aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined extracts were washed with brine (5 mL), dried over MgSO_{4} and filtered, and the solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, $4: 1$ to 2:1) to afford the title compound as a white solid ($3.28 \mathrm{~g}, 94 \%$). $[\alpha]_{\mathrm{D}}^{20}=29.4$ (c $\left.=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, 2:1): $\delta=4.42-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.15(\mathrm{~m}$, 2 H), 3.75 ($\mathrm{s}, 2 \mathrm{H}$, major), $3.73(\mathrm{~s}, 1 \mathrm{H}$, minor), $3.40(\mathrm{td}, \mathrm{J}=11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.99(\mathrm{~m}$, $3 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{dt}, J=3.2,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.22$ (dddd, $J=16.3,9.6,6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~h}, \mathrm{~J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 10 \mathrm{H})$, 1.43-1.24 (m, 4H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=170.9,156.6$, $156.5,151.1,151.0,122.1,121.9,115.3,85.1,84.8,83.8,83.7,78.2,77.6,76.1,75.8,67.8,67.7,52.9,51.8$, $51.7,51.6,51.5,50.3,49.8,49.2,48.1,43.5,43.4,40.5,40.4,40.0,39.6,38.7,38.6,34.0,33.8,32.2,31.9$, 28.8, 28.5, 28.4, 28.0, 27.2, 27.1, 26.1, 26.1, 25.8, 17.9, 13.9, 3.5, 3.4, -4.2, -4.5 ppm; IR (film) $\tilde{v}=2931$, $2858,1770,1704,1449,1389,1367,1340,1298,1256,1177,1155,1125,1065,991,962,941,899,838$, 779, 754, 666, 617, 526, $490 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 917 [$\left.M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SiBr}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 917.20480, found: 917.20512.

Compound 65. Note: To assure reproducibility, the starting material should be stirred and dried under high
 vacuum for $2 d$ until it has turned into a fine power.

Mesylate S13 ($2.28 \mathrm{~g}, 2.54 \mathrm{mmol}$) was dissolved in 2,6-lutidine (12.7 mL) and the resulting solution was stirred at $170^{\circ} \mathrm{C}$ (bath temperature) for 5 d . The mixture was then cooled to ambient temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$.

TBSOTf ($2.9 \mathrm{~mL}, 12.6 \mathrm{mmol}$) was added to this solution at $0^{\circ} \mathrm{C}$. After 5 min, the cooling bath was removed and the mixture stirred at ambient temperature for 3 h . sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, followed, after 5 min , by careful addition of $\mathrm{HCl}(2 \mathrm{M}, 40 \mathrm{~mL})$. After stirring for 10 min , the mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and dried with MgSO_{4}. After filtration and evaporation of the solvent in vacuum, the residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 8:1 to 4:1) to afford the title product as a yellow solid ($1.40 \mathrm{~g}, 78 \%$). $[\alpha]_{\mathrm{D}}^{20}=30.0$ ($c=1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, ca. 2:1): $\delta=5.93-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.65(\mathrm{~m}, 1 \mathrm{H})$, 4.87 (d, $J=1.6 \mathrm{~Hz}, 0.34 \mathrm{H}$, minor), $4.75(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), $3.73(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{td}, J=$ $9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.37(\mathrm{~m}$, $3 \mathrm{H}), 2.33-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{dq}, \mathrm{J}=10.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.6,156.0,156.0,148.4,147.6,124.3,123.7,122.1,122.0,115.2,115.1,79.0,78.5$, $75.7,75.4,70.8,70.7,54.3,54.2,52.9,52.6,52.5,51.4,51.3,47.3,47.1,45.6,40.6,40.6,39.9,39.7,33.6$, $33.6,33.3,28.7,28.0,27.9,27.2,27.1,27.0,26.6,26.4,25.7,17.8,14.1,3.5,3.4,-4.3,-4.3,-4.8 \mathrm{ppm} ; \mathrm{IR}$ (film) $\tilde{v}=2950,2928,2857,1699,1664,1446,1386,1339,1299,1273,1254,1216,1190,1120,1107$, 1064, 1006, 981, 955, 927, 876, 836, 814, 774, 708, 685, 660, $616 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $699\left[\mathrm{M}+\mathrm{H}^{+}\right], 721$ $\left[M+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m / z : calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{SiBr}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 721.16291, found: 721.16321.

Compound 67. $\mathrm{NaH}(254 \mathrm{mg}, 10.6 \mathrm{mmol})$ was added to a solution of compound $65(1.40 \mathrm{~g}, 1.99 \mathrm{mmol})$
 and iodide 61 ($0.75 \mathrm{~mL}, 2.38 \mathrm{mmol}$) in DMF/THF (10 mL , $1: 1)$ at $0{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the mixture was poured into a solution of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20$ mL). The resulting mixture was extracted with EtOAc (3 x 50 mL), the combined organic phases were washed with brine, dried over MgSO_{4} and filtered. After evaporation of the solvent in vacuum, the residue was purified by flash chromatography on silica gel (hexanes/tert-butyl methyl ether, 8:1 to $4: 1$) to afford product 66 as a colorless oil.

This compound was dissolved in THF (4.2 mL) and TBAF (1 M in THF, $4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added. The resulting mixture was stirred at ambient temperature for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvent in vacuum, the crude material was purified by flash chromatography on silica gel (hexanes/acetone, 15:1 to $4: 1$) to afford the title compound as a yellow oil (1.56 g, 92%). $[\alpha]_{\mathrm{D}}^{20}=36.7$ (c = 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, ca. 2:1): $\delta=5.92-5.77(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 0.4 \mathrm{H}$, minor), $4.78(\mathrm{~s}, 0.6 \mathrm{H}$, major), $3.72(\mathrm{~s}, 2 \mathrm{H}$, major), $3.66(\mathrm{~s}, 1 \mathrm{H}$, minor), 3.44-3.23(m,3H),3.21-3.09(m,3H),3.03-2.82(m,2H),2.70-2.56 $(\mathrm{m}, 5 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 6 \mathrm{H}), 2.31-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{q}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.62-1.54(\mathrm{~m}$, $4 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.16(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=169.9,169.9,156.1,156.1$, $148.2,147.4,124.3,123.7,122.1,121.9,121.7,121.7,115.5,115.4,115.2,115.1,79.1,78.6,75.7,75.5$, $69.6,69.5,53.8,53.8,53.4,53.1,52.6,52.5,51.9,51.8,51.1,47.6,47.5,47.3,47.0,40.6,40.5,40.3,40.3$, $39.8,39.5,33.7,33.5,33.4,28.7,28.0,27.9,27.2,27.2,27.1,27.1,27.0,26.6,26.4,25.5,25.4,14.2,3.6$, $3.5 \mathrm{ppm} ; \operatorname{IR}($ film $) \tilde{v}=3400,2926,2858,1700,1678,1645,1617,1487,1448,1391,1340,1261,1192,1159$, $1113,1066,971,955,816,766,714,616,582 \mathrm{~cm}^{-1} ; \mathrm{MS}(E S I): m / z: 851\left[\mathrm{M}+\mathrm{H}^{+}\right], 873\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}_{4}\left[M^{+}\right]$: 849.01188, found: 849.01244.

Compound S14. Martin's sulfurane ($1.48 \mathrm{~g}, 2.20 \mathrm{mmol}$) was added to a solution of compound 67 (1.18 g,

1.38 mmol) in toluene (7.0 mL) at $100^{\circ} \mathrm{C}$. After stirring at this temperature for 20 min , the mixture was cooled to ambient temperature and directly loaded on silica. The product was eluted with hexanes/EtOAc (8:1 to 4:1) to afford the title compound as a colorless oil (1.16 g, quant.). $[\alpha]_{\mathrm{D}}^{20}=15.9$ ($c=1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, mixture of rotamers, ca. 2:1): $\delta=5.97$ (td, $J=6.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.96-4.76 (m, 2 H), 3.74 ($\mathrm{s}, 2 \mathrm{H}$, major), $3.69(\mathrm{~s}, 1 \mathrm{H}$, minor), 3.50 (dddd, $J=13.8,7.9,6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27-3.18 (m, 1H), 3.09 (dddd, J = 13.3, 8.2, 6.7, 3.3 Hz, 1H), 2.84 (ddd, J = 25.0, 10.1, 2.4 Hz, 1H), 2.69-2.53 (m, 5H), 2.43$2.38(\mathrm{~m}, 6 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.97(\mathrm{~m}, 5 \mathrm{H}), 1.74(\mathrm{q}, \mathrm{J}=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.39-1.19$ (m, 5H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,156.3,156.2,147.5,146.7,127.9,127.7,125.7,125.1$, 122.1, 122.0, 121.7,121.7, 115.6, 115.5, 115.3, 106.9, 106.6, 78.6, 78.5, 75.7, 75.6, 56.2, 55.9, 53.2, 52.6, $52.5,48.2,47.1,44.0,44.0,41.0,40.6,40.5,40.4,40.4,37.6,37.3,34.0,28.8,28.8,28.1,28.1,27.9,27.9$, 27.2, 27.1, 27.1, 27.0, 26.6, 25.5, 25.4, 15.0, 3.5 ppm; IR (film) $\tilde{v}=2927,2858,1700,1648,1447,1390$, $1414,1338,1274,1257,1232,1191,1152,1107,1067,973,951,847,766,730,702,617,590 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI): m/z: $833\left[M+\mathrm{H}^{+}\right], 855\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 854.99781, found: 854.99776.

Compound 68. $\mathrm{NaBH}_{3} \mathrm{CN}$ ($368 \mathrm{mg}, 5.86 \mathrm{mmol}$) was added to a solution of compound $\mathbf{S 1 4}(1.0 \mathrm{~g}, 1.20 \mathrm{mmol})$
 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$. TFA $(0.91 \mathrm{~mL}, 11.9 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$. After stirring for 10 min , cooling bath was removed and the mixture stirred at ambient temperature for 50 min before the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$. [Note: the reaction is seriously timedependent: any longer reaction time will cause a sharp decrease in yield]

The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×300 mL), the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After evaporation of the solvent in vacuum, the residue was purified by flash chromatography on silica (hexanes/EtOAc, 8:1 to 4:1) to afford the title product as a colorless oil (664 mg, 66%) . $[\alpha]_{D}^{20}=30.8$ ($c=$
1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, ca. $2: 1$): $\delta=5.85(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 0.35 \mathrm{H}$, minor), 4.75 (d, J = $1.5 \mathrm{~Hz}, 0.65 \mathrm{H}$, major), $3.73(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ $3.14(\mathrm{~m}, 3 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=29.8,10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.55-2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.41(\mathrm{dq}, J=2.8,1.8,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J$ $=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=170.4,170.3,156.2,156.2,147.3,146.6,124.1,123.5,122.2,122.0,121.8$, $121.8,115.4,115.4,115.2,79.3,78.9,75.4,75.3,54.3,54.2,52.6,52.4,52.0,51.9,48.2,48.0,47.8,47.7$, $45.2,45.1,44.9,44.9,40.6,40.6,40.4,40.4,39.5,39.4,37.2,36.8,33.7,33.6,29.8,28.8,28.0,27.9,27.3$, $27.2,27.2,27.1,27.1,27.0,26.6,26.4,25.6,25.6,14.5,14.4,3.6,3.5 \mathrm{ppm} ; \operatorname{IR}(f i l m) ~ \tilde{v}=2928,2858,1699$, 1634, 1487, 1447, 1389, 1338, 1275, 1231, 1210, 1190, 1159, 1110, 1068, 970, 767, $616 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 835\left[M+\mathrm{H}^{+}\right], 857\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 857.01346 , found: 857.01264.

Compound 69. A solution of TMSI ($0.13 \mathrm{~mL}, 0.914 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added to a solution of
 compound 68 ($700 \mathrm{mg}, 0.835 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (17 mL). The resulting mixture was stirred for 1 d at ambient temperature before the reaction was quenched with $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and sat. aq. NaHCO_{3} $(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After removal of the solvents, the crude mixture was loaded on an amino cartridge (Agilent, Bond Elut- $\mathrm{NH}_{2}, 500 \mathrm{mg}, 3 \mathrm{~mL}, 40 \mu \mathrm{~m}$, preequilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of ca . one column length each)) and the amine product was eluted with MeOH to provide a white solid [purification on silica gel with basic elute gave much lower yields].

A solution of aldehyde $52(476 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a solution of the amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After stirring for 10 min at ambient temperature, $\mathrm{NaBH}(\mathrm{OAc})_{3}(230 \mathrm{mg}, 1.09 \mathrm{mmol})$ was added and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. After removing the solvent in high vacuum, the crude material was subjected to preparative HPLC (Kromasil-5$\mathrm{C} 18,5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}=9.2 \mathrm{~min}$) to afford the title compound as a brownish solid (642 mg, $67 \%) .[\alpha]_{\mathrm{D}}^{20}=-15.0\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.96(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.74(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{dt}, J=13.2,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07(\mathrm{dt}, J=16.1,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=9.2$, $1.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.15(\mathrm{~s}, 5 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.85-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.47(\mathrm{~h}, \mathrm{~J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 12 \mathrm{H}), 1.29-1.14(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $171.8,163.2,155.9,147.0,146.1,144.6,129.4,129.2,126.2,125.7,123.8,122.4,122.1,121.9,117.7$, $115.4,115.1,95.6,79.8,79.2,76.1,74.9,62.5,58.0,55.6,52.2,47.7,45.3,44.1,40.6,40.4,39.1,37.9,35.0$, 30.8, 29.7, 28.8, 28.8, 28.4, 28.4, 27.4, 27.2, 27.2, 26.8, 26.4, 25.7, 14.7, 4.9, 3.5 ppm; IR (film) $\tilde{v}=3328$, 2928, 2857, 1708, 1628, 1453, 1251, 1171, $759 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $1141\left[\mathrm{M}^{+} \mathrm{H}^{+}\right], 1163\left[M+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m / z : calcd. for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}\left[M+\mathrm{H}^{+}\right]$: 1141.24112, found: 1141.24199.

Compound 70. A flame-dried two-necked flask connected to a reflux condenser was charged with
 activated molecular sieve powder ($5 \AA, 1.5 \mathrm{~g}$) and toluene (20 mL). The suspension was purged with argon at room temperature for 30 min . The mixture was then heated to $110^{\circ} \mathrm{C}$ for 30 min and a solution of diyne 69 ($50.6 \mathrm{mg}, 0.044 \mathrm{mmol}$) in toluene (2 mL) was added. Next, a solution of the Mo-catalyst 31 $(9.8 \mathrm{mg}, 0.013 \mathrm{mmol})^{[3]}$ in toluene $(0.5 \mathrm{~mL})$ was added dropwise and stirring was continued at $110{ }^{\circ} \mathrm{C}$ for 15 min . Ethanol (5 mL) was added to quench the reaction. The mixture was cooled to room temperature and filtered through a plug of Celite, which was carefully rinsed with EtOAc. The combined filtrates were evaporated in vacuo and the residue was purified by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=11.5$ min) to afford the title compound a white solid ($37.1 \mathrm{mg}, 77 \%$) as. $[\alpha]_{\mathrm{D}}^{20}=-30.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49$ (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64-3.41(\mathrm{~m}, 7 \mathrm{H}), 3.29(\mathrm{td}, J=12.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.97(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{dd}, \mathrm{J}=9.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (td, $J=11.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.56(\mathrm{~m}, 6 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$, 2.33-2.19 (m, 4H), 2.17-2.08 (m, 1H), 1.96 (ddd, $J=13.7,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=13.4,5.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{dtd}, J=16.2,9.1,8.2,3.2 \mathrm{~Hz}, 7 \mathrm{H}), 1.48(\mathrm{dd}, J=7.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, 1.37 (qt, $J=7.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,164.3,156.0$, $146.3,146.1,145.5,129.2,129.1,126.2,125.8,123.9,122.2,121.9,117.8,115.5,115.1,102.2,79.1,76.3$, $60.8,55.3,54.3,52.5,47.6,46.9,45.3,40.7,40.5,40.4,38.6,37.5,37.0,35.0,30.8,30.4,28.8,28.8,28.4$,
28.4, 27.8, 27.4, 27.4, 27.2, 26.7, 25.5, 25.1, 13.5 ppm ; IR (film) $\tilde{v}=3339,2928,2855,1705,1630,1450$, 1169, 1070, $756,617 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 1086\left[M+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}\left[\mathrm{M}^{2}+\mathrm{H}^{+}\right]$: 1087.19417, found: 1087.19495.

Table S8. RCAM of Diyne 69: Reaction Optimization ${ }^{a}$

Entry	Catalyst	Conversion	Yield of 70
1	$31(10 \mathrm{~mol} \%)$	$\approx 50 \%(\mathrm{NMR})$	$\mathrm{n} . \mathrm{d}$.
2	$31(30 \mathrm{~mol} \%)$	quant.	77%
3	$29(30 \mathrm{~mol} \%)+\mathbf{3 0}(30 \mathrm{~mol} \%)$	quant.	77%

${ }^{a}$ All reactions were performed in toluene at reflux temperature in the presence of MS $5 \AA$

Compound S15. $\mathrm{Pd} / \mathrm{CaCO}_{3}(5 \mathrm{~mol} \% \mathrm{w} / \mathrm{w}$, unpoisoned, $704 \mathrm{mg}, 0.331 \mathrm{mmol}$) was added to solution of
 compound 70 ($180 \mathrm{mg}, 0.165 \mathrm{mmol}$) in THF (18 mL) at ambient temperature. After stirring for 2 h , the suspension was filtered through a pad of Celite ${ }^{\oplus}$ and the filtrate was concentrated. The crude product was subjected to purification by preparative HPLC (Kromasil-5-C18, 5 $\mu \mathrm{m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=8.6 \mathrm{~min})$ to afford the title compound as a white solid ($94.0 \mathrm{mg}, 52 \%$). $[\alpha]_{\mathrm{D}}^{20}=4.8$ ($\mathrm{c}=0.24, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.08-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.65$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$) , $7.54(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.81(\mathrm{~m}$, $1 \mathrm{H}), 5.79-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.10$ $(\mathrm{m}, 9 \mathrm{H}), 3.02-2.87(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $2.34-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, \mathrm{J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.71-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 13 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.20-$ $1.11(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.7,159.9,155.8,146.7,145.2$, $135.7,130.3,129.3,128.6,126.2,125.9,124.5,124.2,123.1,122.2,121.9,115.4,115.0,79.1,56.9,55.5$, $54.8,52.5,47.4,46.6,45.2,41.6,40.5,40.4,38.5,37.3,37.0,35.1,30.7,28.8,28.7,28.4,28.1,27.3,27.3$, 27.1, 26.5, 26.3, 25.6, 25.2, 24.4 ppm; IR (film) $\tilde{v}=2959,2852,1253,1116,1082,869,612 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI): $m / z: 1089\left[M+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{69} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}\left[M+\mathrm{H}^{+}\right]$: 1089.21116, found: 1089.21061.

Compound 59. DIBAL-H (1.0 m in hexane, $0.4 \mathrm{~mL}, 0.40 \mathrm{mmol}$) was added to a solution of $\mathbf{S 1 5}$ (64.0 mg ,
 $0.0586 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , the cooling bath was remved and the mixture stirred at $20^{\circ} \mathrm{C}$ for 80 min [Note: The reaction time should be strictly followed; longer reaction times will result in serious over-reduction of the vicinal dibromide].

The mixture was diluted with tert-butyl methyl ether $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction quenched with sat. Rochelle's salt solution (0.4 mL). The resulting mixture was vigorously stirred for 5 h . DDQ (13.3 $\mathrm{mg} / \mathrm{mL}$) was added to the mixture until the color became brown. The mixture was then filtered through a cartridge (Agilent, Bond Elut$\mathrm{NH}_{2}, 500 \mathrm{mg}, 3 \mathrm{~mL}, 40 \mu \mathrm{~m}$, pre-equilibrated with of $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of ca. one column length each)), eluting with MeOH . Evaporation of the solvent provided a white solid which was subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}$, $\mathrm{MeOH} / 20 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{HCO}_{3} \mathrm{PH} 9=98: 2,35$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=29 \mathrm{~min}$) to provide the corresponding amine product as a yellow solid material.

Zn powder ($44.0 \mathrm{mg}, 0.673 \mathrm{mmol}$) was added to a solution of this compound in THF/HOAc ($1.05 \mathrm{~mL}, 20: 1$) at ambient temperature. The mixture was stirred for 1 h before the reaction was carefully quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.2 \mathrm{~mL})$. The resulting mixture was passed through a cartridge (Agilent, Bond Elut- NH_{2}, $500 \mathrm{mg}, 3 \mathrm{~mL}, 40 \mu \mathrm{~m}$ (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of one column length each); the product was eluted with MeOH to provide a white solid after evaporation of the solvent. The crude material was subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH} / 20 \mathrm{mmol}$ $\mathrm{NH}_{4} \mathrm{HCO}_{3} \mathrm{pH} 9=98: 2,35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=7.8 \mathrm{~min}$) to afford the title compound as a white solid $(19.7 \mathrm{mg}, 44 \%) .[\alpha]_{\mathrm{D}}^{20}=210\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{dd}, \mathrm{J}$ $=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ $(\mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.44-3.16(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{td}, J=$ 12.9, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.22(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{tt}, \mathrm{J}=7.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 4 \mathrm{H})$, $1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}$, 9 H), 1.39-1.31 (m, 9H), 1.30-1.18 (m, 6H), $1.00(\mathrm{dd}, \mathrm{J}=12.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5,155.8,146.8,142.9,136.4,130.6,129.7,128.4,126.2,125.8,124.1,123.5,121.6,79.3,79.3$, $75.5,75.3,59.3,57.1,56.2,55.8,50.2,49.8,45.8,42.9,40.4,38.7,37.7,36.5,36.3,29.0,28.9,28.5,28.4$, $27.3,27.0,26.8,26.3,26.0,25.4,23.7,18.8,18.6,3.5,3.4 \mathrm{ppm}$; IR (film) $\tilde{v}=3315,2930,1562,1406,1023$,
$762,649 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 759\left[M+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 759.55715, found: 759.55745.

Compound 71. A flame-dried two-necked flask connected to a reflux condenser was charged with
 activated powdered molecular sieves ($5 \AA, 200 \mathrm{mg}$) and toluene (4 mL). The suspension was purged with argon at room temperature for 15 min . After the purging had been stopped, the mixture was heated to $110^{\circ} \mathrm{C}$ for 30 min before a solution of diyne $59(7 \mathrm{mg}, 0.009 \mathrm{mmol})$ in toluene (0.5 mL) was added, followed by dropwise addition of a solution of the Mocomplex $31(2.0 \mathrm{mg}, 0.003 \mathrm{mmol})^{[3]}$ in toluene (0.4 mL). The resulting suspension was stirred at $110^{\circ} \mathrm{C}$ for 20 min . Ethanol (1 mL) was added to quench the reaction and the crude mixture was cooled to room temperature and filtered through a plug of Celite, which was carefully rinsed with EtOAc. The solvent was evaporated in vacuo and the crude product was purified by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH} / 20 \mathrm{mmol} \mathrm{NH}_{4} \mathrm{HCO}_{3} \mathrm{pH} 9=98: 2,35 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}, \mathrm{t}=7.6 \mathrm{~min}$) to afford the title compound as a white solid ($6.4 \mathrm{mg}, 98 \%$). $[\alpha]_{\mathrm{D}}^{20}=23.0$ ($\mathrm{c}=0.3, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.17$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.05(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.55$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=10.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}$, 1 H), $3.36(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{pd}, J=9.2,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{dd}, \mathrm{J}=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (ddd, $J=24.4$, $12.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 5 \mathrm{H})$, 2.03-1.97 (m, 3H), 1.96-1.85 (m, 3H), 1.82-1.62 (m, 5H), 1.52-1.39 (m, 15H), 1.38-1.26 (m, 8H), 1.26-1.13 $(\mathrm{m}, 1 \mathrm{H}), 1.07-0.93(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5,155.8,146.8,142.9,136.3,130.6$, 129.7, 128.4, 126.3, 125.8, 124.2, 123.6, 120.5, 80.6, 80.2, 79.2, 59.4, 57.3, 56.8, 55.8, 49.6, 49.3, 45.6, $42.9,40.4,38.7,37.5,36.8,36.4,29.0,28.4,27.9,27.7,27.5,27.4,27.1,26.4,25.4,24.6,23.7,18.2,17.8$ ppm; IR (film) $\tilde{v}=2926,2857,1703,1455,1365,1171,758,678 \mathrm{~cm}^{-1} ;$ MS (ESI): m/z: $705\left[\mathrm{M}+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 705.51020, found: 705.51087.

Nominal Njaoamine I ((+)-4). HCl ($0.48 \mathrm{mmol}, 120 \mu \mathrm{~L}, 4 \mathrm{M}$ in 1,4-dioxane) was added dropwise to a solution
 of compound $71(9.0 \mathrm{mg}, 12.8 \mu \mathrm{~mol})$ in EtOAc $(0.42 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 2 h at this temperature. The solvent was evaporated in high vacuum to provide the HCl salt of njaoamine I. The HCl salt was passed through an amino cartridge (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (three volumes of three column length each)), eluting the product with MeOH . After evaporation of the solvent, the free amine was subjected to preparative HPLC (150 mm YMC Triart C18 $5 \mu \mathrm{~m}$, 10.0 mm i.D., Methanol/ 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}=55: 45,4.7 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}=1.6 \mathrm{~min}$) to afford the title compound as a white solid (8.6 mg , quant.). $[\alpha]_{\mathrm{D}}^{20}=69.3$ ($c=0.2, \mathrm{CHCl}_{3}$); for the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table S9; IR (film) $v=2936,1677,1202,1182,1133$, 938, 761, $708 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $605\left[\mathrm{M}+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 605.45777$, found: 605.45765 .

NMR Assignment and Structure Confirmation of Synthetic Nominal Njaomine I ((+)-4)

The complete assignment of synthetic njaoamine I (+)-4 was achieved on a sample containing 2.6 mg of the material dissolved in [D_{5}]-pyridine inside a 3 -mm tube, to meet the conditions used in ref. [10]. All measurements were performed on a Bruker Avance III 600 spectrometer equipped with a cryogenically cooled 5 mm TCI probehead. Using a classical set of $1 \mathrm{D}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and $2 \mathrm{D}\left({ }^{13} \mathrm{C}-\mathrm{HSQC}, \mathrm{HMBC}, \mathrm{COSY}, \mathrm{TOCSY}\right.$, ROESY and ${ }^{15} \mathrm{~N}$-HMBC) experiments, as well as $1 \mathrm{D}^{1} \mathrm{H}$ selective TOCSY and ${ }^{13} \mathrm{C}$-HSQC-TOCSY for fragment C , all nuclei could be assigned including the stereotopic ${ }^{1} \mathrm{H}$ in the tricyclic core. Figure S 4 shows the key correlations (${ }^{3}{ }_{\mathrm{HH}}(\mathrm{COSY}),{ }^{3}{ }^{\mathrm{CH}}$ (HMBC) and NOEs(ROESY) in the three fragments A, B and C (following the fragmentation used in ref. [10]).

Fragment A:

Fragment B:

Fragment C:

Figure S4. Summary of the 2-and 3-bond connectivities established by NMR for all three fragments. The important through-space NOE contacts in the tricyclic core are also displayed for fragment B.

Figure S5. HSQC-TOCSY strips in from the carbons in the C12-chain (fragment C) showing TOCSY correlations to the corresponding ${ }^{1} \mathrm{H}$-spin-system.

Due to important overlap and mixed phase nature of their cross-peaks, the COSY and HMBC data were particularly difficult to interpret for Fragment C (C12-chain). However, a clear assignment could still be achieved based on selective TOCSY and HSQC-TOCSY experiments. In Figure S5, each strip from the HSQCTOCSY corresponds to the sequential ${ }^{13} \mathrm{C}$ in the C_{12}-chain (C33-C44) and contains cross-peak correlations to all ${ }^{1} \mathrm{H}$ within the uninterrupted CH_{2} spin-system and with intensities roughly inversely related to their distance.

Table S9. Summary of all chemical shifts and correlations for the synthetic nominal njaoamine I ((+)-4)

Atom	$\begin{array}{\|l\|} \hline \boldsymbol{\delta} \\ \text { (ppm) } \\ \hline \end{array}$	J	COSY	HSQC	HMBC	NOESY
1 N						
2 C	160.59				13a, 13b	
3 C	131.26				11a, 11b, 13b, 31	
4 C	141.84				6,11a, 11b	
5 C	126.69				6, 7, 9, 11a, 11b	
6 C	124.96			6	8	
H	8.25	8.3(7)	7	6	4, 5, 8, 10	7,11a, 11b, 12b
7 C	126.88			7	9	
H	7.44	6.8(8), 8.3(6)	6,8	7	5,9	6
8 C	129.34			8	6	
H	7.63	8.3(9), 6.8(7)	7,9	8	6,10	9
9 C	130.35			9	7	
H	8.31	8.3(8)	8	9	5,7	8
10 C	147.78				6,8	
11 C	28.44			11a, 11b	12a, 12b	
Ha	3.85	$\begin{aligned} & 12.3(12 a), \\ & 5.6(12 b), 12.3(11 \mathrm{~b}) \end{aligned}$	11b, 12a, 12b	11	3, 4, 5, 12	6,11b
Hb	3.68	$\begin{aligned} & 12.3(11 a), \\ & 4.8(12 a), 12.2(12 b) \end{aligned}$	11a, 12a, 12b	11	3,4,5	6, 11a, 32
12 C	39.72			12a, 12b	11a	

Ha	3.59	$\begin{aligned} & \text { 12.2(12b), } \\ & \text { 12.3(11a), 4.8(11b) } \end{aligned}$	11a, 11b	12	11	
Hb	3.53	$\begin{aligned} & 12.2(12 a), \\ & 5.6(11 a), 12.2(11 b) \end{aligned}$	11a, 11b	12	11	6
13 C	39.14			13a, 13b		
Ha	3.26	$\begin{aligned} & 12.9(13 \mathrm{~b}), \\ & 12.8(14 ?), 4.8(14 ?) \\ & \hline \end{aligned}$	13b, 14a	13	2,15	32
Hb	3.14	12.9(13a)	13a, 14a, 14b	13	2, 3, 14	
14 C	26.29			14a, 14b	13b, 16a	
Ha	2.42		$\begin{aligned} & \text { 13a, 13b, 14b, 15a, } \\ & \text { 15b } \end{aligned}$	14		14b
Hb	1.60		13b, 14a	14		14a, 16a
15 C	27.32			15a, 15b	13a	
Ha	1.52		14a, 16a	15		
Hb	1.43		14a, 16a, 16b	15		18
16 C	56.51			16a, 16b	18, 26b	
Ha	2.42	12.7(16b)	15a, 15b, 16b	16	14	14b, 16b, 18
Hb	2.02	$\begin{aligned} & \text { 12.7(16a), } \\ & 12.7(15 ?), 3.1(15 ?) \end{aligned}$	15b, 16a	16		16a
17 N						
18 C	57.09			18	26a, 28, 29b	
H	2.72			18	$\begin{aligned} & 16,19,20,24,25, \\ & 26,27,28,29,33 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 15b, 16a, 20a, 29b, } \\ & 33 b \end{aligned}$
19 C	44.12				$\begin{aligned} & \text { 18, 20a, 23a, 25, } \\ & 29 a \end{aligned}$	
20 C	49.84			20a, 20b	18, 29a, 44a	
Ha	3.47	12.4(20b)	20b	20	19, 22, 24	18, 20b
Hb	2.19	12.4(20a)	20a	20	29,44	20a, 23b
21 N	353.20		22b			
22 C	49.25			22a, 22b	20a, 44a	
Ha	3.59		22b, 23b	22		22b, 24
Hb	3.07		22a, 21	22		22a, 23b
23 C	24.46			23a, 23b	24	
Ha	1.60		23b, 24	23	19	23b, 24
Hb	1.17		22a, 23a	23	25	20b, 22b, 23a, 28
24 C	41.79			24	18, 20a, 26a, 26b	
H	1.17		23a	24	23, 25, 28, 29	$\begin{aligned} & \text { 22a, 23a, 25, 26a, } \\ & \text { 29a } \end{aligned}$
25 C	37.20			25	$\begin{aligned} & 18,23 b, 24,26 a, \\ & 26 \mathrm{~b}, 28 \end{aligned}$	
H	2.12	6.5(28), 2.3(26b)	26a, 26b, 28	25	19, 27, 28	24, 26a, 26b, 28
26 C	57.37			26a, 26b	18	
Ha	3.07	9.0(26b)	25, 26b	26	18, 24, 25, 28	24, 25, 26b
Hb	1.75	9.0(26a), 2.3(25)	25, 26a	26	16, 24, 25, 28	25, 26a
27 C	143.16				18, 25	
28 C	122.12			28	18, 24, 25, 26a, 26b	
H	5.84	6.5(25)	25	28	18, 25, 33	23b, 25, 34a, 34b

29 C	36.64			29a, 29b	18, 20b, 24, 31	
Ha	2.33	$\begin{aligned} & \hline 12.4(29 b), \\ & 12.4(15 ?) \end{aligned}$	29b, 30a, 30b	29	19, 20, 30, 31	24, 29b, 30b
Hb	1.96	12.4(29a)	29a, 30a	29	18, 30, 31	18, 29a
30 C	24.04			30a, 30b	29a, 29b, 31, 32	
Ha	2.83		29a, 29b, 30b	30		31
Hb	1.96		29a, 30a, 31	30	31, 32	29a, 31
31 C	136.89			31	29a, 29b, 30b	
H	6.07	11.1(32)	30b, 32	31	3,29, 30	30a, 30b
32 C	124.94			32	30 b	
H	6.46	11.1(31)	31	32	30	11b, 13a
33 C	36.74			33a, 33b	18,28	
Ha	1.83		33b	33		
Hb	1.40		33a	33	34, 35	18
34 C	24.98			34a, 34b	33b, 36	
Ha	1.40			34		28
Hb	1.21			34		28
35 C	28.01			35a, 35b	33b, 36	
Ha	1.33			35		
Hb	1.21			35	36	
36 C	28.15			36	35b, 37	
H2	1.27			36	34, 35, 37, 38	
37 C	18.33			37	36	
H2	2.10			37	36,38	
38 C	81.38				36, 37	
39 C	80.52				40, 41a, 41b	
40 C	17.80			40	41a, 41b	
H2	2.10			40	39	
41 C	27.09			41b	42a, 42b, 43a, 43b	
Ha	1.41				39, 40, 42, 43	
Hb	1.31			41	39, 40, 42, 43	
42 C	25.64			42a, 42b	41a, 41b, 43a, 43b	
Ha	1.39			42	41	
Hb	1.38			42	41	
43 C	22.59			43a	41a, 41b, 44a, 44b	
Ha	1.81	11.8(44b)	44a, 44b	43	41, 42, 44	
Hb	1.77	5.0(44b)	44a, 44b	44	41, 42	
44 C	59.31			43b, 44a, 44b	20b, 43a	
Ha	3.23	11.9(44b)	43a, 43b, 44b	44	20, 22, 43	44b
Hb	2.98	$\begin{aligned} & \hline 11.9(44 a), \\ & 11.8(43 a), 5.0(43 b) \\ & \hline \end{aligned}$	43a, 43b, 44a	44	43	44a

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	1

${ }^{1} \mathrm{H}$ NMR: Top: Isolated Njaoamine I (ref. ${ }^{10}$); bottom: Synthetic Nominal Njaoamine I ([D5]-pyridine, ca. $7.0 \mathrm{mg}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of Synthetic Nominal Njaoamine I at Different Temperatures ($\mathbf{2 . 6} \mathbf{~ m g}$ of the TFA salt in [$\left.\mathrm{D}_{5}\right]$-pyridine)

${ }^{13} \mathrm{C}$ NMR Spectrum of Synthetic Nominal Njaoamine I at Different Temperatures (2.6 mg of the TFA salt in [$\left.\mathrm{D}_{5}\right]$-pyridine)

${ }^{1}$ H NMR Spectrum of Synthetic Nominal Njaoamine I at Different Concentrations

9	85	80	75	70	65	6.0	5.5	5	45	4.0	35	3.0	25	20	15	1.0	0.5
		8.0	7.5			6.0	5.5			4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{1} \mathrm{H}$ NMR Spectrum of Synthetic Nominal Njaoamine I at Different pH Conditions

	160	150	140	130		110			80	70	60					
70	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \text { f1 } \end{gathered}$	80	70	60	50	40	30	20	10

Comparison of Synthetic Nominal Njaomine I ((+)-4) with Native Njaoamine I

Table S10 places all known chemical shifts from the above assignment (synthetic "nominal" Njaoamine I) next to those reported from the natural product (isolated Njaoamine I) as reported in ref. [10]. This Table shows inconsistencies between both assignments with differences up to approx. 3.3 ppm in ${ }^{13} \mathrm{C}$ and up to 0.2 ppm in ${ }^{1} \mathrm{H}$. Small chemical shift variations are usually expected based on subtle sample differences such as concentration, temperature, basicity, water and impurities, but in this case the possibility that the original report contains either mis-assignments or simply an incorrect structure needed to be taken into consideration. It is notable that the most significant differences cluster in the C_{12}-alkyne fragment (Fragment C).

Table S10. Comparison of the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shifts of the isolated natural product njaoamine I and synthetic compound (+)-4; significant shift differences are highlighted

	Fragment A					
	Njaomine I		Synthetic (+)-4			
	סC	$\delta \mathrm{H}$	סC	$\delta \mathrm{H}$	$\|\Delta \delta C\|$	$\|\Delta \delta \mathrm{H}\|$
2 C	160.50		160.59		0.04	
3 C	131.20		131.26		0.07	
4 C	142.40		141.84		0.69	
5 C	126.60		126.69		0.04	
6 C	124.90		124.96		0.07	
H		8.25		8.25		0.02
7 C	127.00		126.88		0.25	
H		7.42		7.44		0.00
8 C	129.50		129.34		0.29	
H		7.59		7.63		0.02
9 C	129.90		130.35		0.32	
H		8.28		8.31		0.01
10 C	147.20		147.78		0.45	
11 C	28.40		28.44		0.09	
Ha		3.83		3.85		0.00
Hb		3.68		3.68		0.02
12 C	39.70		39.72		0.11	
Ha		3.55		3.59		0.02
Hb		3.55		3.53		0.04
13 C	38.70		39.14		0.31	
Ha		3.22		3.26		0.02
Hb		3.15		3.14		0.03
14 C	26.10		26.29		0.06	
Ha		2.40		2.42		0.00
Hb		1.57		1.60		0.01
15 C	27.50		27.32		0.31	
Ha		1.39		1.52		0.11
Hb		1.39		1.43		0.02
16 C	56.30		56.51		0.08	
Ha		2.39		2.42		0.01
Hb		1.99		2.02		0.01
29 C	36.30		36.64		0.21	
Ha		2.28		2.33		0.03
Hb		1.92		1.96		0.02
30 C	24.10		24.04		0.19	
Ha		2.78		2.83		0.03
Hb		1.93		1.96		
31 C	136.90		136.89		0.14	
H		6.07		6.07		0.02
32 C	124.70		124.94		0.11	
H		6.45		6.46		0.01

	Fragment B					
	nominal Njaomine I		synth. Njaomine I (+)-4			
	סC	ठH	סC	ठH	$\|\Delta \delta \mathrm{C}\|$	$\|\Delta \delta \mathrm{H}\|$
18 C	57.10		57.09		0.14	
H		2.65		2.72		0.05
19 C	43.80		44.12		0.19	
20 C	49.10		49.84		0.61	
Ha		3.32		3.47		0.13
Hb		2.25		2.19		0.08
22 C	48.10		49.25		1.02	
Ha		3.50		3.59		0.07
Hb		3.10		3.07		0.05
23 C	25.10		24.46		0.77	
Ha		1.60		1.60		0.02
Hb		1.13		1.17		0.02
24 C	41.20		41.79		0.46	
H		1.12		1.17		0.03
25 C	37.20		37.20		0.13	
H		2.05		2.12		0.05
26 C	57.10		57.37		0.14	
Ha		3.04		3.07		0.01
Hb		1.72		1.75		0.01
27 C	143.00		143.16		0.03	
28 C	122.60		122.12		0.61	
H		5.80		5.84		0.02
	Fragment C					
	nominal Njaomine I		synth. Njaomine I (+)-4			
	סC	ठH	ठC	ठH	$\|\Delta \delta C\|$	$\|\Delta \delta \mathrm{H}\|$
33 C	36.40		36.74		0.21	
Ha		1.68		1.83		0.13
Hb		1.38		1.40		0.00
34 C	25.60		24.98		0.75	
Ha		1.45		1.40		0.07
Hb		1.27		1.21		0.08
35 C	24.60		28.01		3.28	
Ha		1.21		1.33		0.10
Hb		1.21		1.21		0.02
36 C	27.60		28.15		0.42	
Ha		1.30		1.27		0.05
Hb		1.30		1.27		0.05
37 C	18.40		18.33		0.20	
Ha		2.14		2.10		0.06
Hb		2.08		2.10		0.00
38 C	80.60		81.38		0.65	
39 C	81.50		80.52		1.11	
40 C	18.90		17.80		1.23	
Ha		2.00		2.10		0.08
Hb		2.00		2.10		0.08
41 C	29.70		27.09		2.74	
Ha		1.27		1.41		0.12
Hb		1.17		1.31		0.12
42 C	25.20		25.64		0.31	
Ha		1.41		1.39		0.04
Hb		1.26		1.38		0.10
43 C	22.50		22.59		0.04	
Ha		1.69		1.81	0.00	0.10
Hb		1.69		1.77	0.00	0.06
44 C	57.50		59.31		1.68	
Ha		3.16		3.23		0.05
Hb		3.16		2.98		0.20

At this point, we were fortunate that PharmaMar (Dr. Marta Perez Alvarez) kindly provided us with a small amount of the original natural product. A straightforward assessment for matching structures is to mix the natural product with its synthetic version into a single sample, which should then reveal a single set of signals. For this purpose, 0.2 mg of each material were mixed in $60 \mu \mathrm{~L}\left[\mathrm{D}_{5}\right]$-pyridine. Since the sample concentration is very low, only $1 \mathrm{D}-{ }^{1} \mathrm{H}$ spectra were measured for comparison.

Figure S6. A sample of the trifluoroacetate salts of the isolated natural product ($\approx 0.2 \mathrm{mg}$) and synthetic nominal njaoamine $\left((+)-4, \approx 0.2 \mathrm{mg}\right.$) were mixed and the ${ }^{1} \mathrm{H}$ NMR spectrum ($\left[\mathrm{D}_{5}\right]$-pyridine) recorded at different temperatures; subtle inequivalences are visible in the entire temperature range (see arrows)

In the spectrum shown in Figure S6, signal doubling can clearly be observed, with H18 (singlet, 2.70 ppm) or H 6 (doublet, 8.25 ppm) being prime examples (see arrows). In order to exclude that the signal doubling is due to a poor equilibration between materials (from widely different sources), the mixture sample was heated step wise from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ and back. Figure S 6 shows important temperaturedependent shifts (with signals even crossing) but the expected sustained merging of doubled signals was never observed.

Figure S7. Second Doping Experiment: A sample of the isolated natural product (free base) ($\approx 0.2 \mathrm{mg}$) and synthetic nominal Njaoamine ($(+)-4$, free base, $\approx 0.2 \mathrm{mg}$) were mixed and the ${ }^{1} \mathrm{H}$ NMR spectrum ([D5]-pyridine) recorded at ambient temperature; subtle inequivalences are visible in the aromatic region

To exclude that the differences are due to a different counterion in the natural sample, the salt was transformed into the free base by preparative HPLC and the comparison repeated. As shown in Figure S7, a mismatch was also visible in this case. Therefore, one must conclude that there is a subtle yet true mismatch and that the structure assigned to njaoamine I needs to be revised. The chemical shift differences compiled in Table S10 point to fragment C (C12-chain) as the most probable site of mismatch.

Structure Revision of Njaoamine I Based on a Re-Assessment of an Authentic Sample

A targeted NMR assignment of the C12-chain in the natural product the Njaoamine I was undertaken, as it appears to be the most probable source of observed NMR disagreement between the natural product and the synthesized end-product. The labelling of the atoms from C33 to C44 follows the original publication, ${ }^{10}$ in which the authors suggest that the alkyne is positioned exactly mid-way at position C38 (triple bond: C38 $=\mathrm{C} 39$).

PharmaMar (Dr. Marta Perez Alvarez) kindly provided us with a sample of the original natural product Njaoamine I for this study. The sample contained less than 1 mg of material, which was dissolved in [D5]-pyridine and measured on a 600 MHz NMR Avance III spectrometer (Bruker) equipped with a cryogenically-cooled probehead (TCl) for best available sensitivity and resolution.

The complete assignment of the entire C12-chain proved challenging. For one, the poor sensitivity offered by the dilute sample rendered heteronuclear long-range correlation experiments (in particular HMBC) impractical. Secondly, the limited resolution impeded assignment, particularly among the overlapping coupled spin-systems in the aliphatic region, with 20 methylene protons and one methane proton between 1.1-1.7 ppm. There are also two very similar methylene ${ }^{13} \mathrm{C}$-chemical shifts at 27.7 and 27.8 ppm , whose correlations can only be separated by very high-resolution multidimensional experiments.

Figure S8. Excerpt from HSQC showing all ${ }^{1} J_{\mathrm{CH}}$ correlation in the C12-chain of njaoamine I.

The approach used was first to clearly identify the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of each of the 10 methylene $\left(\mathrm{CH}_{2}\right)$ groups belonging to the C12-chain. For this, a high resolution HSQC (2048 by 2048 points, 50% non-uniform sampling, 32 scans per increment, 7 hours) was measured. This experiment allowed the clear identification of all ${ }^{1} \mathrm{H}$ attached to the 10 methylene carbons, as shown in Figure S 8 .

Figure S9. Subplot from the CLIP-COSY of njaoamine I. Labels show the expected ${ }^{3} J_{\mathrm{HH}}$ correlations. Inset above: summary of the observed correlations.

Secondly, a CLIP-COSY experiment ${ }^{11}$ was used to survey the methylene chain via ${ }^{3} J_{H H}$, in order to link the terminal H 44 and H 33 to one of the two CH_{2}-groups flanking the alkyne. The absorptive CLIP-COSY offers better resolution than the classical COSY (in magnitude mode) and its in-phase cross-peaks have better signal intensities compared to the anti-phase DQF-COSY. It however suffers from signal artefacts in cases of strongly coupled spins. ${ }^{11}$ This is the case for the quasi-overlapping H34b and H35a, which cause antiphase signals at the position of the expected cross-peaks between H 34 a and H 35 b. Figure S9 displays the aliphatic region of the CLIP-COSY and a summary of the correlations observed for the C12-chain (insert). Clearly, ambiguity persists in the center of both aliphatic chains.

Thirdly, we measured a long, high-resolution HSQC-TOCSY experiment (2048x2048, 57\% non-uniform sampling, 64 scans per increment, 2.5 d spectrometer time) with a mid-range mixing time of 80 ms . This experiment makes use of the ${ }^{13} \mathrm{C}$ signal dispersion to resolve and identify uninterrupted coupled ${ }^{1} \mathrm{H}$ spin systems. In effect, each ${ }^{13} \mathrm{C}$ carbon should exhibit the same set of correlations with all protons within the associated spin-system. Figure S10 displays ordered strips corresponding to each methylene ${ }^{13} \mathrm{C}$, and presents the ladder-type peak patterns corresponding the attached ${ }^{1} \mathrm{H}$ spin system. It is expected that closer neighbors (2-3 bonds) generally have more intense cross-peaks then distant ones (4+ bonds).

Figure S10. Ordered strips from the HSQC-TOCSY experiment: each ${ }^{13} \mathrm{C}$-atom exhibits correlation cross peaks to related subset of ${ }^{1} \mathrm{H}$ present in the associated spin-system (color-coded). This clearly supports an asymmetric C12-chain with the alkyne at position C37-C38.

A set of selective $1 \mathrm{D}{ }^{1} \mathrm{H}$-TOCSY were also

njaoamine I (nominal)

njaoamine I (revised assignment) measured with a long mixing-time (140 ms) and with selective irradiation on the terminal methylene protons H 44 and H 33 a as well as on the methylene protons H 39 and H36 flanking the alkyne (data not shown). The pattern of correlations also corroborates with the HSQCTOCSY results shown above. From these observations, we are confident to propose a revised structure, in which the alkyne is at position C37 (triple bond: C37 \equiv C38). The displacement of the rigid section within the otherwise flexible chain likely explains the small chemical shift differences between the natural product and the synthesized compound (nominal njaoamine I, (+)-4)) (see above).

For completeness, Table S11 presents the NMR assignments for the isolated natural product njaoamine I, with all observed correlations from TOCSY, COSY, HSQC, HMBC and ROESY experiments.

Table S11. Revised set of chemical shifts and correlations for the natural product njaoamine I

Atom	$\begin{array}{\|l\|} \hline \boldsymbol{\delta} \\ \text { (ppm) } \\ \hline \end{array}$	J	COSY	TOCSY	HSQC	HMBC	ROESY
1 N							
2 C	160.84					13a, 13b	
3 C	131.40					11a, 11b, 13b, 31	
4 C	141.95					11a, 11b	
5 C	126.83					7, 9, 11a, 11b	
6 C	125.05				6	8	
H	8.26	8.4(7)	7		6	8,10	11a, 11b, 12b
7 C	127.05				7	9	
H	7.42	8.4(6), 6.9(8)	6, 8		7	5,9	
8 C	129.50				8	6	
H	7.60	6.9(7)	7		8	6,10	
9 C	130.60				9	7	
H	8.29				9	5,7	
10 C	147.95					6,8	
11 C	28.60				$\begin{aligned} & \hline 11 \mathrm{a}, \\ & 11 \mathrm{~b} \end{aligned}$		
Ha	3.85	$\begin{aligned} & \text { 5.4(12a), } \\ & 12.2(12 b), \\ & 12.5(11 b) \end{aligned}$	11b, 12a, 12b	11b, 12a	11	3, 4, 5, 12	6,11b

Hb	3.71	$\begin{aligned} & \text { 12.5(11a), } \\ & 12.0(12 a), \\ & 4.5(12 b) \end{aligned}$	11a, 12a	11a, 12a	11	3, 4, 5, 12	6, 11a, 32
12 C	39.94				12a	11a, 11b	
Ha	3.59	$\begin{aligned} & \hline 12.5(12 \mathrm{~b}), \\ & 5.4(11 \mathrm{a}), \\ & 12.0(11 \mathrm{~b}) \\ & \hline \end{aligned}$	11a, 11b, 12b	11a, 11b	12		
Hb	3.53	$\begin{aligned} & \text { 12.5(12a), } \\ & 12.2(11 a), \\ & 4.5(11 \mathrm{~b}) \\ & \hline \end{aligned}$	11a, 12a				6
13 C	39.29				$\begin{aligned} & \hline 13 a, \\ & 13 \mathrm{~b} \end{aligned}$		
Ha	3.23	$\begin{aligned} & 12.9(13 \mathrm{~b}) \\ & 3.7(14 ?), 3.7(14 ?) \end{aligned}$	13b, 14a, 14b	$\begin{aligned} & \text { 13b, 14a, 14b, 15a, } \\ & \text { 15b, 16a, 16b } \end{aligned}$	13	2	14a, 14b
Hb	3.12	12.9(13a)	13a, 14a, 14b	$\begin{aligned} & 13 \mathrm{a}, 14 \mathrm{a}, 14 \mathrm{~b}, 15 \mathrm{a}, \\ & \text { 15b, 16a, 16b } \end{aligned}$	13	2, 3, 14	14b, 32
14 C	26.39				$\begin{aligned} & \hline 14 \mathrm{a}, \\ & 14 \mathrm{~b} \end{aligned}$	13b, 16a	
Ha	2.40		$\begin{aligned} & \hline 13 \mathrm{a}, 13 \mathrm{~b}, 14 \mathrm{~b}, \\ & \text { 15a, 15b } \end{aligned}$	13a, 13b, 16a, 16b	14		13a, 14b, 15a, 29a
Hb	1.57		$\begin{aligned} & \hline 13 \mathrm{a}, 13 \mathrm{~b}, \quad 14 \mathrm{a}, \\ & \text { 15a, 15b } \end{aligned}$	13a, 13b, 15b, 16a, 16b	14		13a, 13b, 14a, 16b
15 C	27.45				$\begin{aligned} & \hline 15 \mathrm{a}, \\ & 15 \mathrm{~b} \\ & \hline \end{aligned}$		
Ha	1.48		$\begin{aligned} & \hline 14 \mathrm{a}, \quad 14 \mathrm{~b}, \quad 15 \mathrm{~b}, \\ & 16 \mathrm{a}, 16 \mathrm{~b} \end{aligned}$	13a, 13b, 16a, 16b	15		14a, 16b, 18
Hb	1.40		$\begin{array}{lll} \hline 14 \mathrm{a}, & 14 \mathrm{~b}, & 15 \mathrm{a}, \\ 16 \mathrm{a}, 16 \mathrm{~b} & \\ \hline \end{array}$	$\begin{aligned} & \text { 13a, 13b, 14b, 16a, } \\ & 16 \mathrm{~b} \end{aligned}$	15		16a, 18
16 C	56.59				$\begin{aligned} & \hline 16 \mathrm{a}, \\ & 16 \mathrm{~b} \end{aligned}$	18, 26b	
Ha	2.37		15a, 15b, 16b	$\begin{aligned} & \text { 13a, 13b, 14a, 14b, } \\ & \text { 15a, 15b, 16b } \end{aligned}$	16	14	15b, 16b, 18, 26b
Hb	1.98		15a, 15b, 16a	$\begin{aligned} & \text { 13a, 13b, 14a, 14b, } \\ & \text { 15a, 15b, 16a } \end{aligned}$	16		14b, 15a, 16a, 26b
17 N							
18 C	57.38				18	26a, 29b	
H	2.67			25, 26a, 26b, 28	18	$\begin{aligned} & 16,19,24,26,27, \\ & 28,29,33 \end{aligned}$	$\begin{array}{lll} \begin{array}{lll} 15 \mathrm{a}, & 15 \mathrm{~b}, & 16 \mathrm{a}, \\ \text { 20a, } & 20 \mathrm{~b}, & 29 \mathrm{~b}, \\ 33 \mathrm{a}, & 33 \mathrm{~b}, & 34 \mathrm{a} \end{array} \end{array}$
19 C	44.07					$\begin{aligned} & 18,20 a, 20 b, 23 a, \\ & 25 \end{aligned}$	
20 C	49.32				$\begin{aligned} & 20 \mathrm{a}, \\ & 20 \mathrm{~b} \end{aligned}$	29a	
Ha	3.32	12.5(20b)	20b	20b	20	19, 22, 24, 29	18, 20b, 29b, 30a
Hb	2.23	12.5(20a)	20a	20a	20	19, 29, 44	$\begin{aligned} & 18,20 \mathrm{a}, 24,28, \\ & 43 \mathrm{~b}, 44 \end{aligned}$
21 N							
22 C	48.30				$\begin{aligned} & 22 \mathrm{a}, \\ & 22 \mathrm{~b} \end{aligned}$	20a, 44	
Ha	3.51		22b, 23a, 23b	$\begin{aligned} & \text { 22b, 23a, 23b, 24, } \\ & 25 \end{aligned}$	22		22b, 23a, 23b, 29b
Hb	3.08		22a, 23a, 23b	22a, 23a, 23b, 24	22		22a, 23b
23 C	25.32				$\begin{aligned} & \text { 23a, } \\ & 23 \mathrm{~b} \end{aligned}$	24	
Ha	1.59		22a, 22b, 24	22a, 22b, 23b	23	19	22a, 23b, 24, 25
Hb	1.12		22a, 22b, 24	22a, 22b, 23a	23		$\begin{aligned} & \text { 22a, 22b, 23a, 25, } \\ & 28 \end{aligned}$
24 C	41.46				24	18, 20a, 26a, 26b	
H	1.11		23a, 23b, 25	22a, 22b, 25, 28	24	23, 28, 29	$\begin{aligned} & \text { 20b, 23a, 25, 26a, } \\ & 29 a, 29 b \end{aligned}$
25 C	37.45				25	26a, 26b, 28	
H	2.06	7.0(28)	24, 26a, 26b, 28	18, 22a, 24, 26a, 28	25	19, 27	$\begin{aligned} & \text { 23a, 23b, 24, 26a, } \\ & 26 \mathrm{~b}, 28 \end{aligned}$

26 C	57.38				$\begin{aligned} & 26 \mathrm{a}, \\ & 26 \mathrm{~b} \\ & \hline \end{aligned}$	18,28	
Ha	3.03	9.0(26b)	25, 26b	18, 25, 28	26	18, 24, 25, 28	$\begin{aligned} & \text { 24, 25, 26b, 29a, } \\ & 30 \mathrm{a} \end{aligned}$
Hb	1.71	9.0(26a)	25, 26a	18,28	26	16,24, 25	$\begin{aligned} & 16 \mathrm{a}, 16 \mathrm{~b}, 25,26 \mathrm{a}, \\ & 28 \end{aligned}$
27 C	143.28					18, 25, 33b	
28 C	122.77				28	18, 24, 26a, 33b	
H	5.78	7.0(25)	25	18, 24, 25, 26a, 26b	28	25, 26	$\begin{aligned} & \text { 20b, 23b, 25, 26b, } \\ & 34 \mathrm{a}, 34 \mathrm{~b}, 35 \mathrm{a} \end{aligned}$
29 C	36.57				$\begin{aligned} & 29 a, \\ & 29 b \end{aligned}$	$\begin{aligned} & 18,20 a, 20 b, 24, \\ & 31 \end{aligned}$	
Ha	2.28		29b, 30a, 30b	30a, 31, 32	29	20,30,31	$\begin{aligned} & 14 a, 24,26 a, 29 b, \\ & 31 \end{aligned}$
Hb	1.93		29a, 30a, 30b	30b, 31, 32	29	18, 30, 31	$\begin{aligned} & 18,20 a, 22 a, 24, \\ & 29 a, 30 a, 31 \end{aligned}$
30 C	24.29				$\begin{aligned} & \hline 30 \mathrm{a}, \\ & 30 \mathrm{~b} \end{aligned}$	29a, 29b, 31, 32	
Ha	2.79		29a, 29b, 31	29a, 30b, 32	30		$\begin{aligned} & \text { 20a, 26a, 29b, } \\ & 30 \mathrm{~b}, 31 \end{aligned}$
Hb	1.93	8.7(31)	29a, 29b, 31	29b, 30a, 31, 32	30		30a, 31
31 C	137.03				31	29a, 29b	
H	6.06	8.7(30b), 11.0(32)	30a, 30b, 32	29a, 29b, 30b, 32	31	3, 29, 30	29a, 29b, 30a, 30b
32 C	125.11				32		
H	6.45	11.0(31), 2.5(?)	31	$\begin{aligned} & \text { 29a, 29b, 30a, 30b, } \\ & 31 \end{aligned}$	32	30	11b, 13b
33 C	36.63				$\begin{aligned} & 33 \mathrm{a}, \\ & 33 \mathrm{~b} \end{aligned}$	18	
Ha	1.66		33b, 34a, 34b	$\begin{aligned} & \text { 33b, 34a, 34b, 35a, } \\ & 35 \mathrm{~b}, 36 \end{aligned}$	33		18, 33b, 34a, 34b
Hb	1.37		33a, 34a, 34b	$\begin{aligned} & 33 a, 34 a, 34 b, 35 a, \\ & 35 b, 36 \end{aligned}$	33	27, 28	18, 33a, 36
34 C	25.84				$\begin{aligned} & \hline 34 a, \\ & 34 b \\ & \hline \end{aligned}$		
Ha	1.45		$\begin{aligned} & \text { 33a, 33b, 34b, } \\ & \text { 35a, 35b } \end{aligned}$	$\begin{aligned} & \text { 33a, 33b, 34b, 35a, } \\ & \text { 35b, } 36 \end{aligned}$	34		$\begin{aligned} & 18,28,33 a, 35 a, \\ & 35 b \end{aligned}$
Hb	1.27		33a, 33b, 34a	$\begin{aligned} & 33 a, 33 b, 34 a, 35 b, \\ & 36 \end{aligned}$	34		28, 33a
35 C	29.86				$\begin{aligned} & 35 a, \\ & 35 \mathrm{~b} \end{aligned}$		
Ha	1.27		34a, 35b, 36	$\begin{aligned} & 33 a, 33 b, 34 a, 35 b, \\ & 36 \end{aligned}$	35		28, 34a, 36, 39a
Hb	1.16		34a, 35a, 36	$\begin{aligned} & \text { 33a, 33b, 34a, 34b, } \\ & 35 a, 36 \end{aligned}$	35		34a, 36
36 C	19.17				36		
H2	2.00		35a, 35b	$\begin{aligned} & \text { 33a, 33b, 34a, 34b, } \\ & \text { 35a, 35b } \end{aligned}$	36		33b, 35a, 35b
37 C	81.73						
38 C	80.84					39b	
39 C	18.65				$\begin{aligned} & \hline 39 a, \\ & 39 b \end{aligned}$		
Ha	2.14		39b, 40	$\begin{aligned} & 39 b, 40,41,42 a, \\ & 42 b, 43 a, 43 b, 44 \end{aligned}$	39		35a, 40
Hb	2.06		39a, 40	$\begin{aligned} & 39 a, 40,41,43 a, \\ & 43 b, 44 \end{aligned}$	39	38	40
40 C	27.81				40		
H2	1.29		39a, 39b, 41	$\begin{aligned} & 39 a, 39 b, 41,42 a, \\ & 42 b, 43 a, 43 b, 44 \end{aligned}$	40		39a, 39b, 43a
41 C	27.73				41	42a, 42b, 43a, 43b	
H2	1.37		40, 42a, 42b	$\begin{aligned} & 39 a, 39 b, 40,42 a, \\ & 42 b, 43 a, 43 b, 44 \end{aligned}$	41		42b, 43b

$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { 42 C } & 24.88 & & & \begin{array}{l}42 a, \\ 42 b\end{array} & 43 a, 43 b\end{array}\right]$

As a final inspection, Table S12 compares the original assignment as published by the isolation team in ref. [10], with the revised assignment of native njaoamine I, in order to confirm the matching identity of the sample and to highlight the corrected assignments.

As can be seen, seven ${ }^{13} \mathrm{C}$ NMR signals were reassigned in the following way:

- peak at 29.86 ppm was originally assigned to C41(29.7 ppm) and is now assigned to C35
- peak at 19.17 ppm was originally assigned to C40(18.9 ppm) and is now assigned to C36
- peak at 81.73 ppm was originally assigned to C39(81.5 ppm) and is now assigned to C37
- peak at 18.65 ppm was originally assigned to $\mathbf{C 3 7}(18.4 \mathrm{ppm})$ and is now assigned to C39
- peak at 27.81 ppm was originally assigned to C36(27.6 ppm) and is now assigned to C40
- peak at 24.88 ppm was originally assigned to C35(24.6 ppm) and is now assigned to C42

A single ${ }^{13} \mathrm{C}$ signal at 27.73 ppm , assigned here to C 41 , did not have any equivalence in the original assignment probably due to its closeness to C40 (27.81 ppm). Inversely, the original assignment reports a signal at 25.2 ppm , which is not observed in the present assignment. It is unlikely that they correspond to each other, as this would be the largest shift difference (+2.5ppm) among all 41 carbons. More likely is that the peak at 25.1 ppm (C23) was originally interpreted to contain a second carbon signal, and its attached $1 \mathrm{H}(1.45,1.27 \mathrm{ppm})$ were identified as HSQC cross-peaks overlapping with those of C34 ($\left.{ }^{13} \mathrm{C}: 25.6 \mathrm{ppm} ;{ }^{1} \mathrm{H}: 1.41,1.26 \mathrm{ppm}\right)$.

In effect, comparing spectra directly shows very similar shifts throughout, especially in the problematic aliphatic region as depicted in the overlayed $1 \mathrm{D}{ }^{13} \mathrm{C}$ and HSQC spectra shown in Figure S11.

B

Figure S11. Comparison of the crowded aliphatic region of native njaoamine I: (A) 1D ${ }^{13} \mathrm{C}$ NMR spectra: top: original report (ref. [10], SI p. S5) vs. bottom: this report. (B) ${ }^{13} \mathrm{C}$-HSQC spectrum: Green contours (original report, ref. [10], SI pS6) vs black ellipses indicating positions of signals in this report.

Table S12. Comparison of the revised and original (ref. 10) assignment of njaoamine I.

Two Concurrent RCAM Reactions

Compound 72. L-Selectride (1 M in THF, $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to a solution of compound 68
 $(250 \mathrm{mg}, 0.114 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 12 h before it was quenched by cautious addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was loaded onto an amino cartridge (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of three column length each)) and then eluted with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(90: 10)$ to provide a white solid.

HOAc ($0.02 \mathrm{~mL}, 0.349 \mathrm{mmol}$) was added to a solution of this secondary amine and aldehyde 52 (320 mg ,
$0.841 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at ambient temperature. After stirring for 30 min at this temperature, $\mathrm{NaBH}(\mathrm{OAc})_{3}(84 \mathrm{mg}, 0.396 \mathrm{mmol})$ was added and stirring was continued for 3 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. After removing the solvent under argon, the crude product was then subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=95: 5$, $35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=4.2 \mathrm{~min}$) to afford the title compound as a white solid ($165 \mathrm{mg}, 67 \%$). $[\alpha]_{\mathrm{D}}^{20}=-23.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, \mathrm{J}=8.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (ddd, $J=8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dd, $J=6.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.37(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dt}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-$ $3.10(\mathrm{~m}, 4 \mathrm{H}), 3.03(\mathrm{ddd}, \mathrm{J}=20.0,7.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{ddd}, \mathrm{J}=11.5,8.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}$, 4 H), 2.20-2.02 (m, 10H), 2.02-1.97 (m, 1H), 1.95-1.88 (m, 1H), 1.88-1.78 (m, 3H), 1.78-1.74 (m, 6H), $1.72-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{dd}, \mathrm{J}=5.8,3.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 14 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.8,163.3,156.0,147.1,146.1,144.7,129.5,129.2,126.2,125.9,123.8,122.3$, 117.7, 95.6, 79.8, 79.4, 79.2, 79.1, 76.1, 75.5, 75.3, 74.9, 62.5, 58.0, 55.6, 52.2, 47.7, 45.3, 44.2, 40.4, $39.1,37.9,35.0,30.8,29.7,29.1,28.8,28.8,28.7,28.4,27.0,26.8,26.2,26.1,18.7,18.6,14.7,4.9,3.5$, 3.5 ppm ; IR (film) $\tilde{v}=3319,2929,2857,1708,1627,1568,1496,1436,1404,1390,1365,1272,1251$,
 m / z : calcd. for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{3}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]: 825.56772$, found: 825.56785 .

Compound 73. A flame-dried two-necked flask connected to a reflux condenser was charged with
 activated $5 \AA$ molecular sieves (powder, 400 mg) and toluene (11 mL). The suspension was purged with argon at room temperature for 30 min . Next, the mixture was stirred at $110^{\circ} \mathrm{C}$ for 30 min before a solution of tetrayne 72 ($20.0 \mathrm{mg}, 0.024 \mathrm{mmol}$) in toluene $(0.9 \mathrm{~mL})$ was added. In a separate flame-dried Schlenk tube under argon, Mocomplex 29 ($9.7 \mathrm{mg}, 0.015 \mathrm{mmol}$) was dissolved in toluene (0.5 mL) and transferred via syringe into another Schlenk tube containing the trisilanol $\mathbf{3 0}$ ($12.4 \mathrm{mg}, 0.016 \mathrm{mmol})$. The resulting mixture was stirred for 30 s , before it was added dropwise to the suspension of the substrate and the molecular sieves in toluene at $110^{\circ} \mathrm{C}$. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 30 min , before the reaction was quenched by the addition of ethanol (1 mL). The mixture was cooled to room temperature and filtered through a plug of Celite, which was carefully rinsed with EtOAc. The combined filtrates were evaporated in vacuo and the residue purified by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35$ $\mathrm{mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major product, $\mathrm{t}=4.8 \mathrm{~min}$; minor product, $\mathrm{t}=4.0 \mathrm{~min}$) to afford the title compound 73 ($6.1 \mathrm{mg}, 35 \%$ yield) and an isomer $\mathbf{S 1 8}$ ($3.0 \mathrm{mg}, 17 \%$ yield) as a white solid each. Analytical and spectral data of compound 73: $[\alpha]_{\mathrm{D}}^{20}=-7.3\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\right.$ $\mathrm{MeOH}): \delta=8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.85(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=13.1,8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}$, $J=18.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=9.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.59-$ $2.48(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 6 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=9.8,6.8,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.41$ $(\mathrm{m}, 5 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 9 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.16(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right):$ $\delta=174.3,165.6,158.4,149.1,146.7,146.0,130.7,129.0,127.7,127.2,125.4,122.4,119.3,103.8$, 81.9, 80.4, 80.0, 76.6, 62.9, 56.3, 54.9, 53.5, 45.0, 41.2, 38.9, 38.6, 38.3, 36.7, 32.1, 31.4, 30.2, 28.9, $28.8,28.8,28.7,28.4,28.4,26.3,25.4,19.6,18.7,14.0 \mathrm{ppm} ; \operatorname{IR}(f i l m) \tilde{v}=2930,2850,1705,1634,1423$, 1159, $759 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 717 [$\left.M+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{3}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$: 717.47382, found: 717.47373.

\$H (CDCl3, 400.12 MHz)

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$


```
H (CDCl3, 400.12 MHz)
```


$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$

f H (CDCl $3,400.12 \mathrm{MHz}$)

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$

- V

```
N\mp@code{N゙N}
```


	1	17					1			1		10							
90	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

1-H (CDCI $3,400.12 \mathrm{MHz}$)

"

13C (CDCI3, 100.62 MHz)

f $\mathrm{H}(\mathrm{CDCl} 3,400.12 \mathrm{MHz})$

1H (CDCl3, 400.12 MHz)

13 C (CDCI3, 100.62 MHz)
-

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$

$$
\stackrel{\stackrel{\infty}{\stackrel{\infty}{0}}}{\stackrel{\sim}{\circ}}
$$

$$
-170.88
$$

No $\stackrel{\sim}{\sim}$

 $\stackrel{y}{i}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
																			30	20	10	0	-1

$9 \mathrm{H}(\mathrm{CDCl} 3,400.12 \mathrm{MHz})$

"

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$

$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \dot{\sim} \end{aligned}$	\#
1	\|

													90	80	70			40		20			
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	100	90	80	70	60	50	40	30	20	10	0	-:

13 C (CDCl3, 100.62 MHz$)$ $\stackrel{\vec{W}}{\stackrel{\rightharpoonup}{d}}$
$\stackrel{0}{0}$

$\underset{\sim}{\text { M }}$
$\stackrel{\infty}{\infty}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

IH (CDCl3, 400.12 MHz)

©

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$
Vo

$\stackrel{\text { inn }}{\stackrel{\infty}{\infty}} \stackrel{n}{\sim}$

守

		170			140		1			90	80	70	60	50	10	10	10			
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1 \text { (ppm) } \end{gathered}$	80	70	60	50	40	30	20	10	0	-1(

\＄H（CDCl3，400．12 MHz）

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$
号示

 $\underbrace{\substack{\infty \\ \infty}}_{\text {N }}$

f $\mathrm{H}(\mathrm{CDCl} 3,400.12 \mathrm{MHz})$

（CDCl3， 100.62 MHz ）

$\stackrel{N}{ } \underset{\sim}{n}$			$\begin{aligned} & \hat{N} \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \stackrel{\sim}{m} \end{aligned}$	さّ
Y	Y	\／	\}	\}

fi (CDCl $3,400.12 \mathrm{MHz}$)

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$

 $\underbrace{\infty} \underbrace{\infty}$

13 C (CDCI3, 100.62 MHz)

$\begin{aligned} & \text { 뭉 } \\ & \text { 움 } \end{aligned}$	$\begin{aligned} & \tilde{m} \\ & \stackrel{\sim}{0} \end{aligned}$			$\begin{aligned} & \hat{m} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{N} \end{aligned}$
Y	\|	\/	V	\}

32

13 C (CDCI3, 100.62 MHz)

$$
\begin{array}{ll}
\stackrel{\rightharpoonup}{n} & \vec{n} \\
\underset{\sim}{n} & \stackrel{y}{7} \\
\mid & \stackrel{1}{1}
\end{array}
$$

デ

180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-1

13 C (CDCI3, 100.62 MHz)

						1				1		10	1			1				
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	10

y $\mathrm{H}(\mathrm{CDCl} 3,600.22 \mathrm{MHz})$

13C (CDCl3, 150.94 MHz$)$

~

$9 \mathrm{H}(\mathrm{CDCl} 3,400.12 \mathrm{MHz})$

13 C (CDCI3, 100.62 MHz)
No

$\underbrace{\text { on on }}$

$9 \mathrm{H}(\mathrm{CDCl} 3,400.12 \mathrm{MHz})$

$13 \mathrm{C}(\mathrm{CDCl} 3,100.62 \mathrm{MHz})$

13C (CDCI $3,100.62 \mathrm{MHz}$)

$9 \mathrm{H}(\mathrm{CDCl} 3,600.22 \mathrm{MHz})$

13C (CDCl3, 150.94 MHz$)$

$\underbrace{\text { nn }}$

1H (MeOD, 600.20 Migz)

(+)-keramaphidin B ((+)-(1))

13C (MeOD, 150.94 MHz)

$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	¢ ¢ ¢ ¢ ¢ f
	ल్ల్ల $\sim \sim \sim \tilde{\sim}^{\sim}$
	M1

HSQC Spectrum of Keramaphidin B(+)-(1) ([D] $\left.\left.\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

HMQC Spectrum of Keramaphidin B (+)-(1) ([D] $\left.\mathbf{D}_{4}-\mathrm{MeOH}\right)$

NOESY Spectrum of Keramaphidin B (+)-(1) ([D] $\left.\left.\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

$9 \mathrm{H}(\mathrm{CDCl} 3,600.22 \mathrm{MHz})$

$13 \mathrm{C}(\mathrm{CDCl} 3,150.94 \mathrm{MHz})$

COSY Spectrum of Keramaphidin $B(+)-1\left(\mathrm{CDCl}_{3}\right)$

HSQC Spectrum of Keramaphidin B(+)-1 ($\left.\mathrm{CDCl}_{3}\right)$

HMQC Spectrum of Keramaphidin B(+)-1 ($\left.\mathrm{CDCl}_{3}\right)$

NOESY Spectrum of Keramaphidin B(+)-1 (CDCl ${ }_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $45\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 45 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

!10	200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30			
	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{19} \mathrm{~F}$ NMR Spectrum of $45\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\infty}{\circ}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 7}$ ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 47 (101 MHz , [D $\left.\left.\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

${ }^{19}$ F NMR Spectrum of 47 ($\left.282 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $48\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $48\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR Spectrum of $\mathbf{4 8}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{5 0}$ ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR Spectrum of $\mathbf{5 0}$ ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

[^0]
${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 1\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]${ }^{1} \mathrm{H}$ NMR Spectrum of 52 ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of $52\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathrm{S} 4\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture)

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 4}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of 53 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of 53 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S5}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 6}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $54\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 54 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $55\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 55 ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathrm{S} 7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 7}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathrm{S} 8\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 8}\left(\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 9}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

".
$\stackrel{0}{0}$
0
0

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 9\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathrm{S} 10\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

哭

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 1 0}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $56\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 56 ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $57\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 57 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $58\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $58\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 1 1}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 1 1}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $61\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $61\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 1 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 1 2}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ハ

${ }^{1} \mathrm{H}$ NMR Spectrum of $62\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $62\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $63\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $63\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
年

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{6 4}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $64\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 1 3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $65\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

吡

${ }^{13} \mathrm{C}$ NMR Spectrum of 65 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $67\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

吡

${ }^{13} \mathrm{C}$ NMR Spectrum of $67\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{S 1 4}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 1 4}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $68\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { M }}{0}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $68\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{6 9}$ ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of 69 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{7 0}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{7 0}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\left.\mathbf{S 1 5} \mathbf{(6 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{S 1 5}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HMBC Spectrum of $\mathrm{S} 15\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of 59 ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of 59 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $71\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 71 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]${ }^{1} \mathrm{H}$ NMR Spectrum of Njaoamine I (600 MHz , ca. 7.0 mg in [D_{5}]-pyridine)

${ }^{13} \mathrm{C}$ NMR Spectrum of Njaoamine I (151 MHz, ca. 7.0 mg in [$\left.\mathrm{D}_{5}\right]$-pyridine)

HSQC Spectrum of Njaoamine I (ca. 7.0 mg in $\left[\mathrm{D}_{5}\right]$-pyridine)

${ }^{1} \mathrm{H}$ NMR Spectrum of Njaoamine I (600 MHz , ca. 2.6 mg in [D_{5}]-pyridine, 298 K)

${ }^{13} \mathrm{C}$ NMR Spectrum of Njaoamine I (151 MHz, ca. 2.6 mg in [D D_{5}]-pyridine, 298 K)

HSQC Spectrum of Njaoamine I (ca. 2.6 mg in [D D_{5}]-pyridine, 298 K)

HMBC Spectrum of Njaoamine I (ca. 2.6 mg in [$\left.\mathrm{D}_{5}\right]$-pyridine, 298 K)

NOESY Spectrum of Njaoamine I (ca. 2.6 mg in [$\left.\mathrm{D}_{5}\right]$-pyridine, 298 K)

${ }^{15} \mathrm{~N}$-HMBC Spectrum of Njaoamine I (ca. 2.6 mg in [$\left.\mathrm{D}_{5}\right]$-pyridine, 298 K)

${ }^{1} \mathrm{H}$ NMR Spectrum of 72 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of 72 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of 73 ($\left.600 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 73 ($\left.126 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$

References

1. Hickmann, V.; Alcarazo, M.; Fürstner, A., Protecting-Group-Free and Catalysis-Based Total Synthesis of the Ecklonialactones. J. Am. Chem. Soc. 2010, 132 (32), 11042-11044.
2. Meng, Z.; Fürstner, A., Total Synthesis Provides Strong Evidence: Xestocyclamine A is the Enantiomer of Ingenamine. J. Am. Chem. Soc. 2020, 142 (27), 11703-11708.
3. Hillenbrand, J.; Leutzsch, M.; Yiannakas, E.; Gordon, C. P.; Wille, C.; Nöthling, N.; Copéret, C.; Fürstner, A., "Canopy Catalysts" for Alkyne Metathesis: Molybdenum Alkylidyne Complexes with a Tripodal Ligand Framework. J. Am. Chem. Soc. 2020, 142 (25), 11279-11294.
4. Kaname, M.; Yoshifuji, S.; Sashida, H., An Efficient Transformation of Cyclic Ene-carbamates into m-(N-Formylamino)carboxylic Acids by Ruthenium Tetroxide Oxidation. Chem. Pharm. Bull. 2008, 56, 1310-1313.
5. Kobayashi, J.; Tsuda, M.; Kawasaki, N.; Matsumoto, K.; Adachi, T., Keramaphidin B, a Novel Pentacyclic Alkaloid form a Marine Sponge Amphimedon sp.: A Plausible Biosynthetic Precursor of Manzamine Alkaloids. Tetrahedron Lett. 1994, 35, 4383-4386.
6. Kong, F.; Andersen, R. J., Ingenamine Alkaloids Isolated from the Sponge Xestospongia Ingens: Structure and Absolute Configurations. Tetrahedron 1995, 51, 2895-2906.
7. Baldwin, J. E.; Claridge, T. D. W.; Culshaw, A. J.; Heupel, F. A.; Lee, V.; Spring, D. R.; Whitehead, R. C., Studies on the Biomimetic Synthesis of the Manzamine Alkaloids. Chem. - Eur. J. 1999, 5, 3154-3161.
8. Sørensen, U. S.; Falch, E.; Krogsgaard-Larsen, P., A Novel Route to 5-Substituted 3-Isoxazolols. Cyclization of N,O-DiBoc β-Keto Hydroxamic Acids Synthesized via Acyl Meldrum's Acids. J. Org. Chem. 2000, 65 (4), 1003-1007.
9. Ghosh, A. K.; Li, J., An Asymmetric Total Synthesis of Brevisamide. Org. Lett. 2009, 11 (18), 41644167.
10. Urda, C.; Pérez, M.; Rodríguez, J.; Fernández, R.; Jiménez, C.; Cuevas, C., Njaoamine I, a cytotoxic polycyclic alkaloid from the Haplosclerida sponge Haliclona (Reniera) sp. Tetrahedron Lett. 2018, 59 (26), 2577-2580.
11. Koos, M. R. M.; Kummerlöwe, G.; Kaltschnee, L.; Thiele, C. M.; Luy, B., CLIP-COSY: A Clean InPhase Experiment for the Rapid Acquisition of COSY-type Correlations. Angew. Chem. Int. Ed. 2016, 55 (27), 7655-7659.

[^0]:

[^1]:

[^2]: 90
 $\mathrm{f} 1(\mathrm{ppm})$
 80

