date: 2021-08-30T10:26:45Z pdf:PDFVersion: 1.7 pdf:docinfo:title: Altered DNA Methylation Profiles in SF3B1 Mutated CLL Patients xmp:CreatorTool: LaTeX with hyperref access_permission:can_print_degraded: true subject: Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis. dc:format: application/pdf; version=1.7 pdf:docinfo:creator_tool: LaTeX with hyperref access_permission:fill_in_form: true pdf:encrypted: false dc:title: Altered DNA Methylation Profiles in SF3B1 Mutated CLL Patients modified: 2021-08-30T10:26:45Z cp:subject: Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis. pdf:docinfo:subject: Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis. pdf:docinfo:creator: Alicja Pacholewska, Christina Grimm, Carmen D. Herling, Matthias Lienhard, Anja Königs, Bernd Timmermann, Janine Altmüller, Oliver Mücke, Hans Christian Reinhardt, Christoph Plass, Ralf Herwig, Michael Hallek and Michal R. Schweiger meta:author: Alicja Pacholewska, Christina Grimm, Carmen D. Herling, Matthias Lienhard, Anja Königs, Bernd Timmermann, Janine Altmüller, Oliver Mücke, Hans Christian Reinhardt, Christoph Plass, Ralf Herwig, Michael Hallek and Michal R. Schweiger meta:creation-date: 2021-08-28T12:40:26Z created: 2021-08-28T12:40:26Z access_permission:extract_for_accessibility: true Creation-Date: 2021-08-28T12:40:26Z Author: Alicja Pacholewska, Christina Grimm, Carmen D. Herling, Matthias Lienhard, Anja Königs, Bernd Timmermann, Janine Altmüller, Oliver Mücke, Hans Christian Reinhardt, Christoph Plass, Ralf Herwig, Michael Hallek and Michal R. Schweiger producer: pdfTeX-1.40.21 pdf:docinfo:producer: pdfTeX-1.40.21 pdf:unmappedUnicodeCharsPerPage: 17 dc:description: Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis. Keywords: chronic lymphocytic leukemia; CLL; DNA methylation; SF3B1 mutation; NOTCH; IKAROS access_permission:modify_annotations: true dc:creator: Alicja Pacholewska, Christina Grimm, Carmen D. Herling, Matthias Lienhard, Anja Königs, Bernd Timmermann, Janine Altmüller, Oliver Mücke, Hans Christian Reinhardt, Christoph Plass, Ralf Herwig, Michael Hallek and Michal R. Schweiger description: Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis. dcterms:created: 2021-08-28T12:40:26Z Last-Modified: 2021-08-30T10:26:45Z dcterms:modified: 2021-08-30T10:26:45Z title: Altered DNA Methylation Profiles in SF3B1 Mutated CLL Patients xmpMM:DocumentID: uuid:2ec740bb-5b56-4b1e-bd8d-d3da380ce20b Last-Save-Date: 2021-08-30T10:26:45Z pdf:docinfo:keywords: chronic lymphocytic leukemia; CLL; DNA methylation; SF3B1 mutation; NOTCH; IKAROS pdf:docinfo:modified: 2021-08-30T10:26:45Z meta:save-date: 2021-08-30T10:26:45Z Content-Type: application/pdf X-Parsed-By: org.apache.tika.parser.DefaultParser creator: Alicja Pacholewska, Christina Grimm, Carmen D. Herling, Matthias Lienhard, Anja Königs, Bernd Timmermann, Janine Altmüller, Oliver Mücke, Hans Christian Reinhardt, Christoph Plass, Ralf Herwig, Michael Hallek and Michal R. Schweiger dc:subject: chronic lymphocytic leukemia; CLL; DNA methylation; SF3B1 mutation; NOTCH; IKAROS access_permission:assemble_document: true xmpTPg:NPages: 20 pdf:charsPerPage: 3935 access_permission:extract_content: true access_permission:can_print: true meta:keyword: chronic lymphocytic leukemia; CLL; DNA methylation; SF3B1 mutation; NOTCH; IKAROS access_permission:can_modify: true pdf:docinfo:created: 2021-08-28T12:40:26Z