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In a finite system driven out of equilibrium by a constant external force the thermodynamic uncertainty
relation (TUR) bounds the variance of the conjugate current variable by the thermodynamic cost of
maintaining the nonequilibrium stationary state. Here we highlight a new facet of the TUR by showing that
it also bounds the timescale on which a finite system can exhibit anomalous kinetics. In particular, we

demonstrate that the TUR bounds subdiffusion in a single file confined to a ring as well as a dragged
Gaussian polymer chain even when detailed balance is satisfied. Conversely, the TUR bounds the onset of
superdiffusion in the active comb model. Remarkably, the fluctuations in a comb model evolving from a

steady state behave anomalously as soon as detailed balance is broken. Our work establishes a link between

stochastic thermodynamics and the field of anomalous dynamics that will fertilize further investigations of

thermodynamic consistency of anomalous diffusion models.

DOI: 10.1103/PhysRevLett.127.080601

Imagine an overdamped random walker (e.g., a molecu-
lar motor) moving a distance x, in a time ¢. If driven into a
nonequilibrium steady state [1] the walker’s mean dis-
placement grows linearly in time, (x,) = vt with velocity v,
whereas the variance o2(t) = (x?) — (x,)?> may exhibit
anomalous diffusion [2-6] with

o2 (t) ~ K 1* (1)

with anomalous exponent @ # 1 and generalized diffusion
coefficient K, having units m?>s~%. When a > 1 one speaks
of superdiffusion, which was observed, for example, in
active intracellular transport [7], optically controlled active
media [8], and in evolving cell colonies during tumor
invasion [9] to name but a few. Conversely, the situation
a < 1 is referred to as subdiffusion and in a biophysical
context was found in observations of particles confined to
actin networks [10,11], polymers [12], denaturation bub-
bles in DNA [13], lipid granules in yeast [14], and
cytoplasmic RNA proteins [15]. In these systems subdif-
fusion is often thought to be a result of macromolecular
crowding [16-18], where obstacles hinder the motion of a
tracer particle.

A paradigmatic example of anomalous diffusion is
the motion of a tracer particle in a single file depicted in
Fig. 1(a) where hard-core interacting particles are confined
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to a one-dimensional ring and block each others passage
effecting the well-known « = 1/2 subdiffusive scaling
[19-29] that was corroborated experimentally [30-32].
Subdiffusion in single file systems emerges more generally
in the presence of any repulsive interaction [20] such
as, e.g., in polymer chains [27,33,34] [see Fig. 1(b)].
More recently out-of-equilibrium anomalous transport
was studied in the context of single file diffusion in the
presence of a nonequilibrium bias (v # 0) [35-38] and in
active comb models [see Fig. 1(c)] that were shown, quite
surprisingly, to display accelerated diffusion [39] in stark
contrast to passive combs (see, e.g., Refs. [40-44]).

The span of anomalous diffusion in physical systems is
naturally bound to finite (albeit potentially very long)
timescales [45] as a result of the necessarily finite range
of correlations in a finite system that eventually ensure the
emergence of the central limit theorem [17].

We throughout consider a walker (e.g., a molecular
motor) that operates in a (nonequilibrium) steady state [1],
which means that the walker’s displacement x, is weakly
ergodic. That is, the centralized displacement x, — vt is
unbiased with vanishing “ergodicity breaking parameter”
[46] (see also Refs. [47,48]), i.e., as long as trajectories are
sufficiently long, ensemble- and time-average observables,
such as the centralized time averaged square mean dis-
placement (TAMSD) [49], coincide.

At sufficiently long times where diffusion becomes
normal, 62 (1) o ¢, the thermodynamic uncertainty relation
(TUR) [50,51] bounds the walker’s variance by [52]

2

t = Ct, (2)
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FIG. 1. Anomalous diffusion in finite systems. (a) Single file on
a ring driven by a force F. (b) Tagged-particle diffusion in a
harmonic chain. (c) Biased diffusion in a finite (periodic) comb.
The experimental observable is the unbounded displacement x, in
the direction of the force F. (d) The TUR, 62(¢) > Ct, delivers a
threshold time #* that imposes an upper bound on the duration of
subdiffusion (dashed blue line) or the earliest possible onset of
superdiffusion (dotted green line). The star denotes K, (r*)* =
Cr* in Eq. (3).

where W is the power dissipated by the walker, kpT is
the thermal energy, and in the last step we have defined the
constant C. Equation (2) is derived by assuming that the
underlying (full) system’s dynamics follows a Markovian
time evolution. The TUR was originally shown to hold in
the long time limit “# — oo™ [50,51] and later on also at any
finite time for a walker’s position evolving from a non-
equilibrium steady state [53,54]. Using aspects of infor-
mation geometry [55-57] Eq. (2) was recently shown to
hold for any initial condition [58]. Subsequent studies have
applied Eq. (2) to bound the efficiency of molecular motors
[59] and heat engines [60,61], and extended the TUR to
periodically driven systems [62—66], discrete time proc-
esses [67], and open quantum systems [68]. For a broader
perspective see Refs. [1,69-71].

Main result—We now show how the TUR (2) may be
used to obtain a thermodynamic bound on the duration of
anomalous diffusion. We first consider subdiffusion
(¢ < 1) and estimate the largest time #*, where Eq. (1)
must cease to hold as a result of thermodynamic consis-
tency. Namely, according to Eq. (2) subdiffusion in Eq. (1)
with constant exponent @ < 1 cannot persist beyond

Ka 1/(1-a)

see intersecting point in Fig. 1(d). Conversely, super-
diffusion with an exponent « > 1 in Eq. (1) cannot emerge
before t* [see Fig. 1(d)]. Equation (3) thus bounds the

extent of both sub- and superdiffusion. The bridge between
anomalous diffusion and stochastic thermodynamics
embodied in Eq. (3) is the main result of this Letter. We
note that the bound #* follows directly from the inequality
(2) and in general cannot be deduced from the long time
diffusion behavior (for an explicit counterexample see
Supplemental Material [72]). In the following we use the
three paradigmatic physical models depicted in Fig. 1 to
illustrate how to apply the bound (3).

Driven single file on a ring.—We first consider a single
file of N impenetrable Brownian particles with diameter d
and a diffusion coefficient D all dragged with a constant
force F described by the Langevin equation x;(1) =
y"'F + &(t) for i = 1,...N, where the friction coefficient
obeys the fluctuation-dissipation relation y = kzT/D and
(1) represents Gaussian white noise with zero mean and
covariance (;(1)&;(f')) = 2D5;;6(t —t'). The hardcore
interaction imposes internal boundary conditions x; <
X;.1 + d and the confinement to a ring with circumference
[ [see Fig. 1(a)] additionally imposes xy — x; < [ —d, i.e.,
the first particle blocks the passage of the last one. We refer to
this setting as “pseudo nonequilibrium” since the trans-
formation to a coordinate system rotating with velocity v =
y~ ' F virtually restores equilibrium dynamics with vanishing
current [72]. Nevertheless, the power required to drag the N
particles with velocity » = y~!' F against the friction force is
W™ = N x Fv and Eq. (2) in turn yields C = 2kgT/yN, a
result independent of F' (see also Ref. [77]).

It is well known that a tracer particle in a dense single-
file (1 < N < o0) exhibits transient subdiffusion according
to Eq. (1) with exponent a ~ 1/2 and generalized diffusion
constant K, ~2N~'Q.\/D/x (see, e.g., Refs. [19,21-29]
and experiments in Refs. [30-32]), where Q =1— Nd is
the free volume on a ring with circumference /. Therefore,
the inequality (2) implies that subdiffusion can persist at
most until a time * = (K,/C)"/(1-% ~Q?/(Dx) [see
vertical line in Fig. 2(a) and Eq. (3)].

Thermodynamic consistency limits the extent of sub-
diffusion to timescales ¢ < ¢*. To test the bound in Fig. 2(a)
we determined the centralized TAMSD (see symbols) of a
tracer particle from a single trajectory of length 7 = 103 x
(D/Q) generated by a Brownian dynamics simulation with
time increment dt = 107% x (D/Q), and independently
deduced o2 also from a mapping inspired by Jepsen [78]
(see lines, Supplemental Material [72] as well as
Refs. [79,80]). The results confirm that the TUR sharply
bounds the duration of subdiffusion terminating at time ¢*
(see intersection of the TUR bound and vertical line). If we
were to allow particles to overtake the long-time asymp-
totics would not saturate at the dashed line [see Figs. 10(a)—
10(c) in Ref. [81]]—in this scenario subdiffusion may
terminate before 7*.

Active single file.—A “genuinely” nonequilibrium
steady state is generated by pulling only the tagged particle
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FIG. 2. Variance of particle-displacement in a single file on a
ring [see Fig. 1(a)]. (a) All N particles are pulled by a force F
(here F = 0); (b) only the tagged particle is pulled by a force
FQ = f x kgT (the inset depicts the effect of F) with N = 10.
Symbols represent the centralized TAMSD [49] extracted from a
long trajectory 7 = 10° x D/Q? for each N. The lines are
deduced from a modified Jepsen mapping (see Supplemental
Material [72]). Parameters: D = kg7 =Q =1 and d =0, i.e.,
time is measured in units of D/Q? and displacements in units
of Q=1-Nd.

with a force F. The tagged-particle diffusion quantified by
o%(t) is shown in Fig. 2(b). Here the nonequilibrium
driving force f=F x Q/kgT increases the anomalous
exponent from a~0.58 to a~0.69. Nevertheless, the
TUR (dashed line) still tightly bounds the time subdiffusion
terminates. Moreover, the onset of subdiffusion is shifted
towards shorter times which may be explained as follows.
A strongly driven particle “pushes” the nonactive particles
thereby locally increasing density which in turn shifts the
onset of subdiffusion. The effect increases with the strength
of the driving [see inset “f = 100” in Fig. 2(b)]. This result
seemingly contradicts previous findings on active lattice
models at high density showing that all even cumulants
(incl. the variance) remain unaffected by the driving f [35]
(see also Ref. [36]). The contradiction is only apparent—
single file diffusion for any number of particles in fact
corresponds to the low density limit of lattice exclusion
models.

Gaussian chain (Rouse model).—We now consider a
harmonic chain with N beads [see Fig. 1(b)]. The equations

of motion (for the time being in absence of a pulling force)
correspond to Refs. [82-84] x(t) = —D >, Hyx,(t) +
& (1) where (H),, = Hy is the Hessian of U =
SN (xi = xi1)%/2. We set y™' =D, ie., kzgT =1. The
variance of the kth bead’s position reads (see, e.g.,
Ref. [85])

2 il ap(2k — 1)\ 1 — e 24!
200 2
ax(t)—N{Dt—l—Zcos ( ) ],

4)

where 1, = 4 sin?(zp/2N) [82-84]. The first term in Eq. (4)
corresponds to the center-of-mass diffusion.

Suppose now that we drag all particles with a constant
force F. In this case the force affects only the mean
displacements but not the variance [72]. In other words,
the left-hand side of Eq. (2) is not affected by F, whereas
the right-hand side becomes C = 2D/N since WSS =0vX
NF with v = y~'F = DF. By inspecting Eq. (4) directly
[note that all terms in Eq. (4) are non-negative] one can
verify that the TUR indeed bounds the diffusion of the kth
particle by 62(¢) > 2Dt/N at any time t.

In Fig. 3(a) we inspect the sharpness of the bound. For
example, tagging the 10th bead in a polymer with N = 100
we observe subdiffusion with an exponent a ~ 0.508 (see
thick black line) that terminates at 7 < t* (see vertical
arrow), i.e., faster than predicted by the TUR (see green
rectangle). Interestingly, the scaling of 62(¢) at this point
does not become normal with @ = 1 but instead turns to a
second, slightly larger anomalous exponent. Normal dif-
fusion is in fact observed at much longer times. This
example highlights that subdiffusion with an (initial)
exponent a cannot extend beyond ¢*. However, this does
not imply that * necessarily corresponds to the onset of
normal diffusion. Conversely, if we tag the first particle of
the chain [see Fig. 3(b)] the TUR bounds the overall
duration of subdiffusion quite tightly. According to Eq. (3)
the longest time subdiffusion can persist increases with N
as * « C™> « N? [see symbols in Fig. 3(b) as well as
Ref. [17]].

Superdiffusion in the active comb model—So far we
have discussed only systems exhibiting subdiffusion. To
address superdiffusion we consider the “active comb
model” depicted in Fig. 1(c) corresponding to diffusion
on a ring with side branches with a finite length L oriented
perpendicularly to the ring at positions separated by /. Within
the ring (but not in the side branches) the particle is dragged
with a constant force F. For simplicity we assume the
diffusion constant D to be the same in the ring and along
the side branches. The probability density and flux are
assumed to be continuous at the intersecting nodes such
that the steady state probability to find the particle in the ring
(i.e., in a “mobile state”) corresponds to ¢,, = /(I + 2L)
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FIG.3. (a)o? (t) from Eq. (4) for a dragged Gaussian chain with

N = 100 beads, where we tag the kth particle (k = 1, 2, 10, 50).
The TUR bound is shown as the dashed black line. Taking, e.g.,
k = 10 we find transient subdiffusion 62 (f) ~ K% (solid black
line) in the vicinity of ¢~ t,; = 10'; using Eq. (4) yields the
exponent a = 19, Ino*(t)|,_,  ~0.508 with K, = 16> (t,er).
The rectangle denotes the upper bound on the extent of
subdiffusion #* while the vertical arrow highlights the actual
time at which the subdiffusive regime for k = 10 terminates.
(b) 6%(¢) of the first bead (k = 1) for increasing N. Symbols
denote the TUR bound.

yielding a mean drift velocity v = fDF¢,,. Using WSS =Fv
alongside the TUR [Eq. (2)] we immediately obtain
o%(t) > 2¢,,Dt. It is known that infinite side branches
“L = 00” in the passive comb model (i.e., F = 0) break
ergodicity. That is, a nonequilibrium steady state ceases to
exist and subdiffusion with exponent a = 1/2 persists for
any fixed initial condition and time 7 (e.g., see Refs. [40-42]).
Conversely, a bias F # 0 in a finite comb (L < o0) was
found, quite counterintuitively, to enhance the long time
diffusion [39], which leads to transient superdiffusion as
discussed below.

The particle’s position along the ring does not change
while it is in a side branch. Therefore, only the (random)
“occupation time in the mobile phase” [86,87], 7,,(7) < 1, is
relevant. Its fraction is referred to as the “empirical density”
[87,88] since (7,,(t)) = Pt

The particle drifts with velocity fDF and diffuses with
diffusion constant D during the time 7,,(¢) it spends in the
ring. This implies a displacement distributed according to
x, ~pBDFz,(t) + /2D, (t)N, where N is a standard
normal random number, which eventually leads to (for an
alternative derivation see Ref. [39])

10°
104
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10t
100
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1073
104

10° ) 1011 F
1073 102 107! 100 10! 102 108

FIG. 4. 2 in the driven comb model [see Fig. 1(d)]. We
consider various driving forces F and side branches with length
L = 10 separated by a distance [ = 3 yielding a steady state
probability in the ring ¢,, =1/(l+2L) =3/23 ~0.13 with
D =p=1. The force-free case F =0 coincides with the
bound Ct in Eq. (2). The thick lines correspond to K,t* with
the maximal exponent « = max,td,Ino2(¢) depicted in the
inset. Symbols denote the time ¢* in Eq. (3), where K,#* and
Ct intersect. Long times ¢ — oo and strong driving
BFL> 1 yield 62 ~2D¢,,t + (BFD*(1 = ¢,,)°t/6.

oi(t) = 2Dt + (BDF)*c3 (1), (5)

where we used (N?) =1, (N) =0, (7,,(1)) = ¢,,t and
defined 62(1) = (z,,(1)?) — (z,,(2))?. To deduce o2(t) we
translated the equation of motion into a Markov jump system
according to Ref. [89] and used a spectral expansion [87]
which alongside Eq. (5) yields 62 (¢). The result for / = 3 and
L = 10[72] is shown in Fig. 4. The thick lines denote power
laws with a “maximal exponent” @ = max, 9, In 62(t) (see
inset for the respective values). At equilibrium (F = 0) the
diffusion is normal at all times. The presence of a force causes
transient superdiffusion with an exponent approaching the
ballistic regime a &~ 2 upon increasing F. Note that here the
TUR bounds the time of initiation of superdiffusion (see
symbols) and not the termination.

To explain this we must understand when &2 (¢) increases
nonlinearly with 7. One can show that for sufficiently small
times t — 0 the particle is found with high probability either
only in the ring or only in one of the side branches which
yields a vanishing variance 62(1) = O(t). Conversely, we
have recently found [87] that the dispersion of the fraction of
occupation time at long times, D = lim,_ ., 62()/t, is
entirely encoded in the (steady state) joint return probability,
P(m,t,m), i.e., the probability to be in the mobile region m
initially and again at time ¢

Dzz/”{P(m,z,m)— 2 14s
0

_ 4IL?[(BF)*IL + 3BFcoth(BF1/2) — 6]
B 3D(BF)*(1+2L)?

. (6)
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where the first line is shown in Ref. [87], and the second line
is derived in Ref. [72] (a similar result is found in Ref. [39]).
At strong driving BFI> 1 we find D~ P(1-¢,,)?/6
which interestingly enhances diffusion o (8F[)?(1 — ¢,,)*
by a magnitude that increases with the likelihood to reside
immobile. Superdiffusion thus arises from an interplay
between effectively “ballistic” transport in the ring and
pausing in the side branches, and becomes pronounced at
strong driving #F[> 1 and in the presence of long side
branches L > [, yielding 1 — ¢,, ~ 1. A similar effect gives
rise to the so-called Taylor dispersion [90] that occurs in
diffusion in a flow field [91-93].

Conclusion—We established a bridge between anoma-
lous diffusion and the TUR by explaining how the latter can
be utilized to (sharply) bound the temporal extent of
anomalous diffusion in finite systems driven out of equi-
librium. We used the TUR to demonstrate that a non-
equilibrium driving may in fact be required for anomalous
dynamics to occur such as e.g., in the comb model. We have
shown that the TUR can also bound the duration of
anomalous diffusion in systems obeying detailed balance
if we are able to construct a fictitious non-equilibrium
system with the same dynamics, which we demonstrated by
means of the passive and driven single file and the Rouse
polymer. In this context it will be useful to deepen the
connection between the TUR [94] and anomalous transport
[95,96] close to equilibrium, growing interfaces [97,98],
and to bound subdiffusion in flexible gel networks [99].

Finally, we point out that the TUR [Eq. (2)] and therefore
our results apply to overdamped systems (i.e., when
momenta relax “instantaneously”). If we include momenta
or consider the presence of magnetic fields the TUR requires
modifications [100,101]. Such extensions will allow to
bound the extent of anomalous diffusion in underdamped
systems [102—106]. Finally, the recent generalization of the
TUR [58,66,107] will allow applying the TUR to anomalous
diffusion and anomalous displacements arising from non-
stationary and nonergodic infinite systems [35].
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