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Abstract
We present analytical results for a set of time- and ensemble-averaged physical
observables in the non-Hookean Gaussian network model (GNM)—a general-
ization of the Rouse model to elastic networks with links that display a certain
degree of extensional and rotational stiffness. We focus on a set of coarse-
grained observables that may be of interest in the analysis of GNM in the context
of internal motions in proteins and mechanical frames in contact with a heat
bath. A C++ computer code is made available that implements all analytical
results.

Keywords: conformation dynamics, projected physical observables, elastic net-
work, network models of macromolecules, Fokker–Planck equation, occupation
time, covariance matrix

(Some figures may appear in colour only in the online journal)

1. Introduction

Proteins utilize their unique dynamic character encoded in internal motions to execute a biolog-
ical function [1]. These motions span fs to s time-scales and their study thus requires a multitude
of experimental and/or computational methods [1]. The most detailed, atomically resolved
information about these motions comes—with a grain of salt because of an underlying approx-
imate, empirical potential energy function—from molecular dynamics (MD) simulations
[2, 3]. However, even if the state-of-the-art hardware and highly parallel algorithms allow to
reach ms time-scales [4] a substantial time-scale gap remains. In addition, the sheer amount
of detail in such tour de force simulations [4] often poses a challenge if one aims at extracting
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minimal, ‘leading order’ physical principles underlying protein internal motions. Moreover,
physical or even topological properties alone may accurately predict selected features of protein
dynamics [5, 6].

To describe internal motions in proteins on an effective, coarse-grained level disregarding
chemical details Tirion introduced the so-called elastic network model (ENM) [7] akin to the
seminal works of Rouse [8] and Flory [9] in polymer physics. The basic idea underlying ENMs
is a tridimensional elastic network connecting those residues, more precisely the respective Cα
atoms, that lie within a cutoff distance typically chosen in the range 7–16 Å. Subsequent works
considered various alternative models, e.g. so-called Gaussian network model (GNM) [10, 11]
and the anisotropic network model (ANM) [12–14].

ENMs in various forms have been successfully applied (and extended) to refine NMR- [15]
and x-ray crystallography-derived protein structures [16], derive NMR-structural order param-
eters [17], investigate structural correlations [18], function [19–22], conformational transitions
[23], and allosteric effects [24] in proteins, and to identify and decompose protein domains
[25]. Further applications involve improving MD simulations [26], the study of protein evolu-
tion [27], investigations of smart polymers [28, 29], viruses [30], membrane channels [31, 32],
and nucleic acids [33], as well as the prediction of rupture points in single-molecule pulling
experiments [34],

Most of these works rely on ‘standard’ normal mode analysis (NMA) [12, 35], i.e. on
spectral characteristics of the underlying mechanical vibration spectrum. In the particular
context of proteins NMA has been used predominantly to identify the large-scale collective
motions encoded in the eigenvector corresponding to the principal eigenvalue of the Hes-
sian. Notably, the low-frequency modes are quite insensitive to the precise value of the cutoff
distance [36].

Here we go beyond and present analytical results for time- and ensemble-average char-
acteristics of internal ‘reaction coordinates’ in GNM in contact with a heat bath at a finite
temperature. More precisely, we consider the non-Markovian dynamics of internal distances
at equilibrium. Our results may be relevant for interpreting single-molecule spectroscopy data
or MD simulations.

2. The GNM

The Rouse model [8] is one of the earliest ‘elastic network’ models of flexible linear poly-
mers (later on extended to more general network structures [9]). It neglects excluded volume
effects and hydrodynamic interactions. Within this theoretical framework beads are connected
by ideal, Hookean springs with vanishing resting length (i.e. at T = 0 the beads’ positions
would coincide). The strength of the springs is proportional to the temperature T of the heat
bath. The model does not accurately capture the features of molecules with a non-negligible
internal rigidity.

ENMs [7] extend these core ideas by including a non-zero resting length, i.e. at T = 0 the
residues are assumed to have distinct positions that are fixed in space. This idea is consistent
with the results of NMR and x-ray crystallography that yield a set of positions R0 = {r0

i } of
the N + 1 residues to which we refer as ‘the structure’ of a protein (NMR experiments in fact
yield an ensemble of such structures). These experiments are able to probe the positions of
all atoms of a macromolecule at cryogenic temperatures, and are typically deposited in the
protein data bank. We will assume that these experimentally determined positions form the
set R0.

In GNMs a pair of residues i, j within a cutoff distance (i.e. |r0
i − r0

i | � rc) are assumed to
be connected by identical but non-Hookean springs with a constant K. The interaction energy
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as a function of the particles’ positions R = {ri} is written as

UGNM({ri j}) =
K
2

∑
〈i, j〉

(ri j − r0
i j)

T(ri j − r0
i j), (1)

where the sum spans all connected pairs. We now introduce for convenience the deviation from
the equilibrium ‘structure’, ΔR = {Δri ≡ ri − r0

i }. The main simplifying hypothesis of the
GNM is that ΔR at temperature T corresponds to an isotropic Gaussian random vector, where
each element Ri = ri − r0

i is a tridimensional vector describing the displacement of bead i
from its equilibrium position r0

i , i.e.

P(ΔR) =
[
(2π)NK̃ detΓ−1

]−3/2
exp

(
− K̃

2
ΔRTΓΔR

)
, (2)

where K̃ ≡ K/kBT is the dimensionless strength (in units of thermal energy kBT) and Γ is a
3(N + 1) × 3(N + 1) block matrix in which each diagonal block is the positive semi-definite
Laplacian (or Kirchhoff) matrix Γ with elements

Γi j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, if i �= j and |r0
i − r0

j | � rc

0, if i �= j and |r0
i − r0

j | > rc

−
N+1∑
j; j�=i

Γi j, if i = j.

(3)

Two pictorial representations of the connectivity matrix obtained from a pair of protein struc-
tures are shown in figure 1. The dynamics of the beads’ positions (i.e. deviations from the
equilibrium ‘structure’) is assumed to follow the Itô equation

dΔR(t) = −ξKΓΔR(t)dt +
√

2D dW(t), (4)

where D is the diffusion coefficient and ξ ≡ D/kBT the mobility that are both assumed to
be equal for all beads for the sake of simplicity, and dW(t) is the increment of the multi-
dimensional Wiener process (i.e. Gaussian white noise) with zero mean and covariance
〈dWi(t)dW j(t′)〉 = δi jδ(t − t′). Henceforth we measure energy in units of thermal energy kBT
(i.e. U → U/kBT), distances in units of the cutoff distance rc (i.e. ΔRi →ΔRi/rc) and time in
units of the diffusion time, tD ≡ r2

c/D—the time required for a bead with a diffusion coefficient
D to diffuse a distance rc (i.e. t → t/tD).

In order to generalize the GNM one may consider non-equal spring constants, i.e. K → Ki j.
In this case the matrixΓ loses the simple structure in equation (3) and corresponding symmetric
spectral characteristics. However, it has been shown that such complications do not lead to any
appreciable improvements [7, 12]. Alternatively, ANM in addition to an anisotropic stiffness
Ki j display the distinguishing characteristic that the interaction energy is given by [12]

UANM({ri j}) =
1
2

∑
〈i, j〉

Ki j(|ri j| − |r0
i j|)2, (5)

such that UANM({ri j}) is invariant with respect to bond orientations in absence of changes of the
bond lengths. We are not able to treat the ANM model analytically. Notably, it has been found
that the predictions of the GNM often agree better with experimental data than the predictions
of the ANM [11, 37]. It is conceivable that this is rooted in the fact that interactions between
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Figure 1. Panels (a) and (b) depict a cartoon and the molecular surface (gray) of the
two protein structures, called (a) ‘the closed’ configuration 1AKE and (b) ‘the open’
configuration 4AKE. Panels (c) and (d) show the corresponding connectivity matrices
for 1AKE and 4AKE, respectively. The blue and cyan square enclose, respectively, the
NMP and LID residues. The cutoff distance used to obtain these matrices was 8 Å.

sets of chemical groups in general depend on the orientation [7] (e.g. the effective electrostatic
interactions between groups of charges that represent individual beads depend on the center of
mass distance between the groups and the respective mutual orientation, which follows trivially
from a multipole expansion).

It is convenient to pass to the vector of normal tridimensional coordinates Q = {qk} that
diagonalize Γ, i.e. QTΓQ = diag(μ) with (Q)i j ≡ Qi j𝟙, 𝟙 being the 3 × 3 identity matrix and
where the matrix Q diagonalizes the Kirchoff matrix, i.e. QTΓQ = diag(μi), and therefore
diag (μ)ii = μi𝟙. With a few exceptions that are, e.g. a highly symmetric and/or display a sim-
ple topology (like the rouse chain), or for very small networks (N < 5) the diagonalization of
the Kirchhoff matrix cannot be performed analytically. This is the only step that may require
a numerical evaluation. For convenience we let k ∈ {0, . . . , N} with μ0 = 0 and Qi,0 referring
to the center of mass motion, while i ∈ {1, . . . , N + 1} such that

Δri =

N∑
k=0

Qikqk, ∀ i{1, . . . , N + 1}. (6)
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In this notation the Itô equation corresponds to the Fokker–Planck equation describing N
independent isotropic three-dimensional Ornstein–Uhlenbeck processes [38]. Neglecting the
center of mass motion we obtain the following equation for the Green’s function (i.e. transition
probability density function)

∂tG(Q, t|Q0) =
N∑

k=1

[
∂2

qk
+ μk∂qk qk

]
G(Q, t|Q0), (7)

with localized initial condition G(Q, t = 0|Q0) = δ(Q − Q0) and natural boundary conditions
lim

|Q|→∞
G(Q, t|Q0) = 0. We solve equation (7) by means of an eigendecomposition [38] yielding

G(Q, t|Q0) =
∑

N

ΨR
N(Q)ΨL

N(Q0)e−ΛNt, (8)

where ΛN denote eigenvalues, N being a multiset of integer-triples {n1, . . . , nN} with
ni = {nix , niy, niz} such that

ΛN =

N∑
i=1

(nix + niy + niz)μi, (9)

and ΨL
N(Q) and ΨR

N(Q) are the corresponding left and right eigenfunction given by

ΨL
N(Q) =

N∏
i=1

ψni(qi), ΨR
N(Q) = Peq(Q)

N∏
i=1

ψni (qi), (10)

where Peq(Q)
∏N

i=1(μi/2π)3/2e−μiq2
i /2 is the equilibrium probability density function of normal

coordinates and

ψni (qi) =
Hnix (μiqx

i /2)Hniy(μiq
y
i /2)Hniz(μiq

z
i/2)√

2nix+niy+niz nix!niy!niz!
, (11)

where qx, qy and qz are the components of the vector q, and Hn(x) denotes the nth ‘physicist’s’
Hermite polynomial [39]. Using Mehler’s formula [40]

∞∑
n=0

(y/2)n

n!
Hn(x)Hn(z) =

1√
1 − y2

exp

(
−y2[x − z]2

1 − y2

)
(12)

and recalling that μ0 = 0 we can also write equation (8) in a closed form [41]

G(Q, t|Q0) =
N∏

i=1

(
μi

2π(1 − e−2μit)

)3/2

exp

(
−μi(qi − qi0 e−μit)2

2(1 − e−2μit)

)
, (13)

where the equilibrium probability density function corresponds

Peq(Q) ≡ lim
t→∞

G(Q, t|Q0). (14)

In what follows we will use both forms of the Green’s function, i.e. equations (8) and (13).

3. Conformational dynamics

Throughout we are interested in conformational motions encoded in the dynamics of some
internal distance d, e.g. the distance between two beads i and j, l = |ri − r j| or the distance
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between the center of masses of two sets of beads Ω1,Ω2 with Ω1 ∩ Ω2 = {0}, lΩ1,Ω2 =
|
∑

i∈Ω1
ri/card(Ω1) −

∑
i∈Ω2

r j/card(Ω2)| where card(Ωi) is the cardinality the set Ωi. With-
out loss of generality we may thus focus on the distance between two arbitrary beads. Note
that in absence of any dynamics in an equilibrium at T = 0 such a distance is constant and
equal to d0. Expressed in normal coordinates we in turn have

l ≡ ri − r j =
N∑

k=1

(Qik − Q jk)qk + r0
i − r0

j ≡
N∑

k=1

Akqk + d0, (15)

where in the second equality we have defined Ak and d0 and omitted the labels i, j to simplify
the notation. Note, moreover, that l ≡ |l| and the generalization to lΩ1,Ω2 follows by linear
superposition.

We will focus on four types of observables. The first one is the (non-Markovian) conditional
probability density of the time series of the coordinate, lt, defined as

Gd0 (l, t|l0) ≡ P(lt ∈ l dl|lt=0 ∈ l0 dl) =
〈δ(l(Qt) − l)δ(l(Q0) − l0)〉Qt

〈δ(l(Q0) − l0)〉eq
, (16)

with lim
t→∞

Gd0 (l, t|l0) ≡ Peq
d0

(l) = 〈δ(l(Q) − l)〉eq, and where in the second equality we have used

the law of conditional probability and introduced the expectation over all Markovian paths of
the full system evolving from equilibrium 〈·〉Qt , i.e.

〈B〉Qt ≡
∫

dQ
∫

dQ0 B(Q, Q0)G(Q, t|Q0)Peq(Q0). (17)

and the expectation of any observable B(Q) over the equilibrium measure 〈·〉eq is 〈B〉eq ≡∫
dQB(Q)Peq(Q). The second observable is the normalized equilibrium autocorrelation func-

tion

Cd0 (t) ≡ 〈l(t)l(0)〉 − 〈l(t)〉〈l(0)〉
〈l2〉eq − 〈l〉2

eq
, (18)

where we have introduced the expectations moments

〈l(t)l(0)〉 ≡ 〈l(Qt)l(Q0)〉Qt =

∫ ∞

0
dl
∫ ∞

0
dl0 ll0Gd0 (l, t|l0)Peq

d0
(l0),

〈l(t)〉 ≡ 〈l(Qt)δ(l(Q0) − l0)〉Qt

〈δ(l(Q0) − l0)〉eq
=

∫ ∞

0
dll Gd0 (l, t|l0),

〈ln〉eq ≡ 〈ln(Q)〉eq =

∫ ∞

0
dlln Peq

d0
(l). (19)

The third observable is the 3(N + 1) × 3(N + 1) position-covariance matrix [42] whose
elements are defined as

Ci j
αβ(t, t0) = 〈(ri,α(t + t0) − r0

i,α)(r j,β(t0) − r0
j,β)〉Qt , (20)

where ri,α is the α = {x, y, z} component of the position vector of bead i, ri.
The fourth, time-average observable is a functional of the projected path lτ evolving from

lτ=0 called the fraction of occupation time or ‘empirical density’ [43]

θd0 (l; t) ≡ t−1
∫ t

0
δ(lτ − l)dτ. (21)

6
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Note that all observables defined above are assumed to evolve from equilibrium. However,
except for Ci j

αβ(t, t0), the initial distribution in fact corresponds to equilibrium constrained to a
given value of the tagged distance l0, i.e. from all those equilibrium configurations drawn from
Peq(Q) that are compatible with l0. This introduces memory in the dynamics of lt [44].

3.1. Projected propagator

The non-Markovian projected propagatorGd0 (l, t|l0) defined in equation (16) denotes the prob-
ability density that the distance between the two tagged beads is equal to l at time t given that
it was initially equal to l0. Introducing the auxiliary functions

ηt ≡
N∑

k=1

A2
k

2μk
e−μkt, Ξt(d0, l, l′) ≡ erfi

(
d0(η0 − ηt) + ηt(l + l′)

2
√
ηt(η2

0 − η2
t )

)
(22)

we find (for details of the calculation see appendix A)

Peq
d0

(l0)Gd0 (l, t|l0) =
ll0 exp

(
− (l2+l20)ηt+(η0−ηt )d2

0
4ηt(η0−ηt)

)
8
√
πηtd0(η0 − ηt)

[Ξt(d0,−l,−l0)

− Ξt(d0,−l, l0) + Ξt(d0, l, l0) + Ξt(−d0,−l, l0)] , (23)

where erfi(x) is the imaginary error function [39] and

Peq
d0

(l) =
l

d0

e−(l2+d2
0)/4η0

√
πη0

sinh

(
ld0

2η0

)
. (24)

We also derive the spectral expansion of Gd0 (l, t|l0) that reads (see appendix B)

Gd0 (l, t|l0) = V00(l0; d0)−1
∑

N

V0N(l; d0)VN0(l0; d0)e−ΛN t, (25)

where the overlap elements V0N and VN0 admit a closed-form expression that is, however,
somewhat complicated and thus given in appendix B. Note that ‘the ground state’ element is
simple and corresponds to V00(l; d0) = Peq

d0
(l).

3.2. Equilibrium distance autocorrelation function

The (normalized) autocorrelation function defined in equation (18) is made explicit by means
of the following results

〈l〉eq = 2

√
η0

π
e−d2

0/4η0 +

(
d0 +

2η0

d0

)
erf

(
d0

2
√
η0

)
, (26)

〈l2〉eq = d2
0 + 6η0, (27)

where erf is the error function. Equation (27) follows from direct integration of the last line of
equation (19) with the aid of equation (24). Conversely, an analytic computation of 〈l(t)l(0)〉
is possible only using the spectral expansion in equation (25) and yields,

〈l(t)l(0)〉 =
∑

N

Vd0
0NV

d0
N0 e−ΛN t, (28)

7
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Vd0
0N =

∫ ∞

0
dll V0N(l; d0), Vd0

N0 =

∫ ∞

0
dll VN0(l; d0). (29)

The analytic expression of the coefficients Vd0
0N is lengthy and can be found in appendix D.

Plugging equations (29) and (27) into equation (18) delivers an exact analytical result for the
equilibrium distance autocorrelation function Cd0(t). Alternatively one may also evaluate Cd0 (t)
by numerical integration of the first line of equation (17) using equation (23), which may in
fact be numerically more convenient than implementing the analytical solution.

3.3. Position covariance matrix

In the analysis of atomistic MD simulations one often focuses on the position covariance
matrix Ci j

αβ(t, t0) [42] and its eigendecomposition. The trajectory derived from an MD stim-
ulation is then projected on the eigenvector (or principal component) corresponding the largest
eigenvalue of the covariance matrix with the aim to identify the most important (potentially
functionally relevant) motion in a protein [42]. To facilitate a comparison between the afore-
mentioned analysis of MD simulation with GNM we compute Ci j

αβ(t, t0) analytically. Passing
as before to normal coordinates we find

Ci j
αβ(t, t0) = 〈

N∑
k=1

Qikqkα(t + t0)
N∑

l=1

Q jlqlβ(t0)〉, (30)

where the matrix elements Qi j do not depend on the spatial coordinate because the GNM is
isotropic. Each process qk,α corresponds to an independent Ornstein–Uhlenbeck process, i.e.
the solution of the Itô integral [45] (setting all constant to unity)

qkα(t) =
√

2
∫ t

0
e−μk(t−s) dWkα(s). (31)

Since by construction (i.e. as a result of isotropy) only the elements of the same spatial coor-
dinate for any given normal mode survive the averaging in equation (30), the elements of the
covariance matrix read explicitly

Ci j
αα(t, t0) =

N∑
k=1

QikQ jk

μk
e−μk|t−t0|. (32)

Each entry of the covariance matrix Ci j
αα(t, t0) is stationary (i.e. depends only on the time

difference, Ci j
αα(t, t0) = Ci j

αα(|t − t0|)).

3.4. Fluctuations of occupation time

Single molecule experiments typically probe time-averaged observables. For example, Förster
resonance energy transfer [46] and plasmon ruler experiments [47] have been used to extract
information about conformational motions of macro-molecules. A fundamental quantity that
underlies this kind of observables is the fraction of occupation time, θd0 (l; t), defined in equation
(21) [43, 48–52]—the random fraction of time a time-series (in our case an internal distance
between two beads or between two center of masses) of length t attains a given value of l.

In previous publications we have shown how to obtain the mean and the variance of
θd0 (l; t) [43, 52]. Along these lines we here focus on the mean, 〈θd0 (l; t)〉, and the variance,

8
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σ2
θ;d0

(l; t) ≡ 〈θ2
d0

(l; t)〉 − 〈θd0 (l; t)〉2, of the occupation time fraction at equilibrium that read,
respectively (for a derivation see appendix F)

〈θd0 (l)〉 = Peq
d0

(l), (33)

σ2
θ;d0

(l, t) =
2
t

∑
N �=0

V0N(d; d0)VN0(d; d0)
ΛN

(
1 − 1 − e−ΛNt

ΛNt

)
. (34)

Note that 〈θd0 (l; t)〉 corresponds to the equilibrium probability density for all times t since we
are considering an ergodic system evolving from equilibrium initial conditions. The variance
of the occupation time fraction can equivalently be obtained from (see e.g. [53])

σ2
θ;d0

(l, t) =
2
t
Peq

d0
(l)

[∫ t

0
(1 − τ/t)Gd0 (l, τ |l) − Peq

d0
(l)

]
dτ. (35)

The integral in equation (35) does not admit an explicit solution. However, it can easily be
computed via numerical quadrature. Moreover, it is possible to expand Gd0 (l, τ |l) for short
times (details are given in appendix E) yielding the small deviation limit

Gd0 (l, t|l) t→0
= 2

√
1
π

(
2√
κt

+

√
κt

l2

)
+O(t3/2), (36)

where we have introduced the shorthand notation κ =
∑N

k=1 A2
k . Plugging equation (36) into

equation (35) and performing the integral in turn yields

σ2
θ;d0

(d, t)
t→0� 2Peq

d0
(l)

(
8

3
√
κπt

+
4

15l2

√
κt
π

− Peq
d0

(l)

)
. (37)

Since the dynamics of every stable system at equilibrium can be ‘linearized’ for sufficiently
small times t the small deviation asymptotic in equations (37) and (36) is in fact a general result
for the (large) fluctuations of θd0 (l; t) at sufficiently short times.

4. Examples

We now apply the result of the previous section to the analysis of a GNM of a protein called
adenylate kinase (ADK) and the analysis of toy-model mechanical frames.

4.1. GNM of ADK

ADK is an enzyme catalyzing the reversible phosphorylation reaction that transforms adeno-
sine monophosphate to adenosine triphosphate. The structure of ADK has been resolved
using x-ray crystallography that uncovered two distinct conformations of the protein that are
deposited in the protein data bank (PDB ID: 1AKE [54] and PDB ID: 4AKE [55]) and shown
in figure 1.

ADK consists of 214 residues divided in three macro-domains called CORE (residues 1–29,
68–116, and 160–214), LID (residues 118–160), and NMP (residues 30–67). Distinct studies
suggest the function to be coupled to open-closed transitions of both, LID and NMP domains
with respect to the CORE domain [54, 55]. These transitions have been observed even in
absence of nucleotides [56, 57]. However, there is a lively debate in the biophysical community
about the precise mechanism and rate-limiting steps in the catalytic function of ADK [58].

9
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Table 1. Distance between the center of masses of the three domains for both structures
of ADK. All distances are expressed in units of the cutoff distance rc = 8 Å.

d0[rc] 1AKE 4AKE

CORE–LID 2.6 3.8
CORE–NMP 2.3 2.7
LID–NMP 2.6 4.5

Here we analyze the autocorrelation functions of distances between the center of mass of
LID, NMP, and CORE using the results described in the previous sections. Note that each GNM
describes only a single stable structure and therefore cannot capture transitions between the
two structures. Nevertheless, the comparison between the two respective GNMs may highlight
some differences of the dynamics around the two distinct stable minima.

We obtain the connectivity matrices (shown in figure 1) of the two GNMs using the Prody
package [59] with a cutoff distance rc = 8 Å. The static (zero-temperature) distances between
the center of masses of the three domains in both structures are given in table 1.

Figure 2 shows the equilibrium probability density function Peq
d0

(l) (panels (a) and (b)) as
well as the autocorrelation function Cd0(t) (panels (c) and (d)) for all considered distances
of the two GNMs representing the two conformational states of ADK. The structure 1AKE
is evidently more compact than 4AKE and its corresponding autocorrelation functions consis-
tently decay faster. Moreover, the CORE–NMP distance autocorrelation function decays faster
compared to the other two distances whose autocorrelation functions are almost identical (see
figure 2(d)). This difference in relaxation is a result of differences in the respective projection,
i.e. whereas the eigenvalues of the underlying generator are identical (see equation (29)) the
numerical coefficients Vd0

0N and Vd0
N0 depend strongly on the particular type of projection and

thus modify the relaxation rate substantially [60].
The lines in figures 2(c) and (d) have been obtained by means of a numerical integration

of the first line of equation (19) using the Gauss–Kronrod quadrature [61]. Unfortunately the
evaluation of the integrand is challenging for very short-times because it is a function sharply
peaked along the diagonal of the l, l0-plane. This feature prohibits us to obtain reliably (that is,
due to numerical imprecision) the autocorrelation function for very short times.

Next we inspect the covariance matrix in equation (32) to identify the dominant, potentially
functional important, motions in ADK. In order to reduce the information content while retain-
ing the most essential physics about the extent of local fluctuations and how much the motion
of each bead correlated to the motion of other beads we introduce the covariance-time defined
as

τi jα =

∫ ∞

0
Ci j
αα(t)dt, (38)

which may be interpreted in a manner analogous to the correlation time [62–64], i.e. as a
measure of how much the motion between the beads i and j is correlated over time. To measure
how much the motion of a single bead is correlated with the rest of the system we consider
the total covariance-time τ tot

i,α ≡
∑

j�=i|τi jα|. Conversely, the total variance-time is quantified
directly by τ iiα. Note that the model is isotropic and thus independent of α. The results are
shown in figure 3.

Notably, one can immediately observe that those residues that are involved in the large-
scale open-closed motion (i.e. residues with a large τ iiα) also participate in correlated motions
denoted by large values τ tot

i,α . For the open structure 4AKE (see figures 3(a) and (b)) the two

10
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Figure 2. Panels (a) and (b) show the equilibrium probability density function for the
three center-of-mass distances for both structures (see table 1 for the numerical values
of d0). Panels (c) and (d) depict the respective distance autocorrelation functions. Note
that the first structure is more compact and its Cd0 (t) decorrelates faster. Moreover, panel
(d) reveals that the CORE–NMP distance decorrelates faster than the remaining two
distances.

ends of the LID and NMP domains move in a particularly correlated fashion. These residues
are in fact those that move toward the core region in the functional open-closed motion of the
protein [56, 57]. A remnant of this collective motion can also be seen in the closed structure
1AKE (figures 3(c) and (d)), where the same beads as in 4AKE have a larger τ tot

i,α . This is likely
a result of a higher local connectivity.

Note that such results may also be compared to MD simulations [65–68]. A rigorous com-
parison would in general require exceedingly long simulations [65], which is only feasible for
small very small proteins [3, 4]. However, some may equilibrate locally on shorter time-scales
(see e.g. [60]) thus potentially lifting the requirement on excessively long simulations. Ignor-
ing potential issues with respect to the computational feasibility we may expect, according to
previous results on GNM, no major qualitative differences between GNM and MD simulations.

The analytical results for the covariance matrix are simple, only require the numerical diag-
onalization of the Kirchhoff matrix and sums involving N terms, and can therefore be rapidly
evaluated in a matter of seconds or minutes on a laptop, in contrast to the large computer power
required for MD simulations.

Only in the case of huge macromolecules composed of millions of residues the computations
presented here could become challenging. However the Kirchhoff matrix of larger proteins is
often sparse and/or a coarser representation may be justified [69]. In this case the evaluation
of the low-lying μk is still computational efficient using iterative methods, yet would imply a
truncation of the sums in equation (32). The same arguments may apply to the computation of
the variance and correlation function of occupation time fractions of the intra-bead distance.
In fact equation (23) can be easily computed as well (see appendix G for details), and the

11
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Figure 3. (a) and (c) depict τ iiα and (b) and (d) τ tot
i,α for each bead in the 4AKE and 1AKE

structures, respectively. Notably, the beads in the LID and NMP domains in the 4AKE
structure display a particularly large covariance-time.

integrals in equations (35) and (19) can be evaluated numerically efficiently. Conversely, the
implementation and computational complexity of the results based on the series expansion are
more nuanced and we refer the reader to appendix G.

4.2. Simple mechanical frames

Although GNMs were originally developed to describe proteins they can in fact be used to
model any mechanical system in which some underlying network of links imposes constraints
on the position of nodes while allowing small, Gaussian fluctuations driven by thermal noise.
Examples may include nano-machines such as piezoelectric actuators that move probe-tips in
atomic force microscopes [70, 71].

In the generic context of ‘mechanical frames’ the theory of structural rigidity deals with the
question of whether frames are rigid or not [72]. A frame is said to be rigid if one cannot change
the distance between pairs of nodes without simultaneously altering the length of at least one
connection. A structure that is not rigid is in turn said to allow for inextensional mechanisms.
These arise due to a too low number or a particular arrangement of links. In addition, in frames
with redundant links there exist states of self-stress. Under given circumstances these states of
self-stress impart stiffness to inextensional mechanisms [73].

12
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Figure 4. A schematic representation of a stable (left) and an unstable (right) frame we
consider below.

Figure 5. Distance autocorrelation function Cd0 (t) for various values of the rest length
d0 for the rigid (top panel) and non-rigid (bottom panel) frames depicted in figure 4.
The black dots depict Cd0 (t) in the Rouse limit d0 = 0 (see appendix D for details). The
vertical dashed lines corresponds to the time tc at which Cd0 (tc) = e−1. Note that the
unstable structure relaxes slower.

As anticipated by Maxwell such a classification of mechanical frames is often non-trivial
and may require more information than encoded in the topology of the network [74]. A
complete analysis of the mechanisms of a given frame can be obtained by a ‘singular value
decomposition’ of the respective equilibrium matrix A [75] that relates forces f on the nodes
with tensions t in the links

At = f. (39)

Singular value decomposition of A allows (among other things) to determine the rank r of A
and thereby the number of inextensional mechanisms m and states of self-stress s via s = b − r
and m = 3 j − 6 − r, where j is the number of joints and b the number of links in the structure,

13
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Figure 6. Panels (a)–(c) show the equilibrium probability density Peq
d0

(l) for the stable
(full lines) and unstable (dashed lines) structure for several values of d0. Panels (e)–(f)
depict the variance of the occupation time σ2

θ;d0
(l, t) for the stable (full lines) and unsta-

ble (dashed lines) structure, respectively, for different values of d0. The length of the
trajectory t increases from (d) to (f).

and note that there are in general six rigid-body motions in three spatial dimensions. Maxwell’s
well-known formula b = 3j − 6 is then extended to:

b − 3j + 6 = s − m. (40)

To illustrate the concept we consider two toy-model frames depicted in figure 4. Both have
j = 4 nodes and s = 0 states of self-stress. The rigid structure with b = 6 links has no inexten-
sional mechanism (i.e. 6–12–6 = 0–0) while the structure with b = 5 links has exactly m = 1
mechanism (i.e. 5–12–6 = 0–1).

To highlight the role of rigidity and to investigate the effect of a heat-bath we first analyze
the autocorrelation function between the blue beads (see figure 4) as a function of the rest-
length d0. Notably, in a GNM such distance fluctuations depend on the equilibrium structure
R0 only via the equilibrium distance between the tagged beads, d0 = |r0

i − r0
j |. In turn there is

a redundancy—many distinct equilibrium structures R0 may yield the same result that depends
only on the connectivity matrix Γ and d0.

The (normalized) distance autocorrelation function Cd0(t) (see equation (18)) for the two
frames is shown figure 5. For d0 � 0.5 (in dimensionless units) Cd0(t) depends only very weakly
on d0. For larger values of d0 the relaxation time (see dashed vertical lines in figure 5) increases.
This observation may be explained by noticing that entropy dominates the motion for small d0.
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That is, in the limit of small d0 the rest length may be neglected and the ‘Rouse limit’ suffices to
explain the dynamics essentially quantitatively. Conversely, as d0 increases a certain ‘stiffness’
emerges in the frame and the (random) oscillations become localized around the equilibrium
value d0. Note that the entropic contribution to Cd0 (t) is more important for the non-rigid frame
(see right panel in figure 5) as we increase the value of d0 (see figure 5(b)). Conversely, the
departure from the Rouse limit toward the ‘large stiffness’ case is faster in the stable frame
(see figure 5(a)). A larger d0 leads to a slower decay of the autocorrelation function Cd0 (t).

Next we consider the fraction of occupation time θd0 (l; t) [43]. We assume that the ini-
tial condition evolves from equilibrium and therefore 〈θd0 (l; t)〉 = Peq

d0
(l) whereas σ2

θ;d0
(l, t)

depends on time (see equation (34) as well as [43, 52]). The aforementioned dominance of
the entropic (heat bath) contribution at small values of d0 is also noticeable the fluctuations of
θd0 (l; t) as depicted in figure 6. Notably, as d0 increases the support of σ2

θ;d0
(l, t) progressively

shifts toward larger l and concentrates near d0.
Notably, the variance of the occupation time fraction σ2

θ;d0
(l, t) changes shape from uni-

modal, at short times t, d to bimodal at long t. Such a behavior is characteristic for stochastic
process in spatial confinement [43], i.e. fluctuations of θd0(l; t) are larger in the vicinity of
confining boundaries (even if these boundaries are ‘soft’).

Moreover as d0 increases the shape of both, Peq
d0

(l) as well as σ2
θ;d0

(l, t) becomes more sym-
metric. The reason seems to be that the effect of the confining boundary at l = 0 becomes
irrelevant as the support of σ2

θ;d0
(l, t) begins to concentrate near a substantial d0. In other words

although the projection of the dynamics of a link in three-dimensional space onto a (one-
dimensional) distance destroys the Gaussian behavior, the latter becomes (partially) restored
at large values of d0.

5. Conclusions

We presented analytical results (up to a numerical diagonalization of a symmetric matrix) for
a selection of relevant time- and ensemble-averaged physical observables in the GNM. One
may think of GNM as certain generalization of the Rouse model to networks with links with
a certain degree of extensional and rotational stiffness. We determined a set of coarse-grained
observables—internal distances—that may be of interest in the analysis of GNM in the context
of internal motions in proteins or mechanical frames in contact with a heat bath. We hope
that our results will enable and motivate a more systematic analysis of GNM derived from
proteins [59]. To this end a C++ computer code is provided in the supplementary material
that implements all result (for more details about the implementation see appendix G).
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Appendix A. Derivation of the equilibrium probability density

The equilibrium probability density function of any link-vector l is defined by

Peq
d0

(l) = V00(l; d0) ≡
∫

dQΨR
0 (Q)δ

(
N∑

k=1

Akqk + d0 − l

)
ΨL

0 (Q). (A.1)

Applying the Fourier transform f̃ (s) = 1
2π

∫∞
−∞dx f (x)e−isx component-wise to equation (A.1)

(i.e. l → s) yields

1
(2π)3

∫
dQ

N∏
k=1

( μk

2π

)3/2
exp

(
−

N∑
k=1

μk

2
q2

k + i(Akqk + d0)s

)
= (A.2)

1
(2π)3

e−s2∑N
k=1 A2

k/2μk+id0s. (A.3)

Inverting the Fourier transform we obtain, defining η0 =
∑N

k=1 A2
k/(2μk),

Peq
d0

(l) = V00(l; d0) =
1

(2π)3

(
π

η0

)3/2

e−(l−d0)2/4η0 . (A.4)

Since we are only interested in the distance and not the direction we need to marginalize over
angles, i.e.

∫ ∞

0
dx x2

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)V00(x)δ(|x| − x), (A.5)

where φ is the polar angle, θ is the azimuthal angle and without loss of generality we choose a
frame of reference such that the vector d0 is parallel to the z-axis. The solution of this integral
finally gives equation (24):

Peq
d0

(l) = V00(l; d0) =
1

√
πη0

l
d0

e−(l2+d2
0)/4η0 sinh

(
ld0

2η0

)
. (A.6)

Appendix B. Spectral solution for Gd0

In the spectral solution for the Green’s function in equation (25) we have defined the elements
V0N(l; d0), VN0(l; d0) which are derived as follows. Let

V0N(l; d0) =
∫

dQΨR
N(Q)δ

(
N∑

k=1

Akqk + d0 − l

)
ΨL

0 (Q), (B.1)

VN0(l; d0) =
∫

dQΨR
0 (Q)δ

(
N∑

k=1

Akqk + d0 − l

)
ΨL

N(Q). (B.2)
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Fortunately, the above elements V0N and VN0 are identical (cf equation (10)). Therefore what
we need to solve for is

VN0(l; d0) =
N∏

k=1

∫
dqk

( μk

2π

) 3
2

√
1

2nkx+nky+nkz nkx!nky!nkz!

× Hnkx

(√
μk

2
qx

k

)
Hnky

(√
μk

2
qy

k

)
Hnkz

(√
μk

2
qz

k

)

× e−μkq2
k/2δ

(
N∑

k=1

Akqk + d0 − l

)
. (B.3)

It is convenient to define the auxiliary variables {q′
k} ≡ {qx

k − dx
0, qy

k − dy
0, qz

k − dz
0}, and then

perform the Fourier transform l → s to obtain

1
(2π)3

N∏
k=1

∫
dq′

k

( μk

2π

) 3
2

√
1

2nkx+nky+nkz nkx!nky!nkz!

× Hnkx

(√
μk

2
q′x

k

)
Hnky

(√
μk

2
q′x

k

)
Hnkz

(√
μk

2
q′z

k

)

× e−μkq′2k /2−iAks·q′k . (B.4)

Factorizing in the three spatial dimensions, completing the square in the exponential, and
changing the variable to th

k =
√
μkq′h

k /
√

2 (where the subscript h denotes the respective spatial
coordinate) we find

1
(2π)3

N∏
k=1

(
1
π

) 3
2

3∏
h=1

√
1

2nkhnkh!
e−s2

h(Ak )2/2μk

×
∫ ∞

−∞
dth

k Hnkh(th
k ) exp

(
−
[

th
k −

(
− iAk√

2μk
sh

)]2
)

(B.5)

whose solution is [76]

1
(2π)3

N∏
k=1

3∏
h=1

√
2nkh

nkh!

(
− iAk√

2μk
sh

)nkh

e−s2
h(Ak)2/2μk . (B.6)

It turns out to be convenient to write equation (B.6) as

1
(2π)3

[
N∏

k=1

3∏
h=1

√
2nkh

nkh!

(
− iAk√

2μk

)nkh
]

3∏
h=1

s
∑N

k=1 nkh
h e−s2

h

∑N
k=1 (Ak)2/2μk , (B.7)
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and to define1

M ≡
N∏

k=1

3∏
h=1

√
2nkh

nkh!

(
− iAk

2μk

)nkh

=

√
2
∑N

k=1
∑3

h=1 nkh∏N
k=1

∏3
h=1 nkh!

(−i)
∑N

k=1
∑3

h=1 nkh

N∏
k=1

(
Ak√
2μk

)nkx+nky+nkz

. (B.8)

We now invert the Fourier transform

M
(2π)3

3∏
h=1

∫ ∞

−∞
dsh s

∑N
k=1 nkh

h e−η0s2
h+ishdh . (B.9)

Completing the square in the exponential and defining th =
√
η0sh, we can write:

M
(2π)3

3∏
h=1

e−d2
h/4η0

√
η0

∑N
k=1 nkh+1

∫ ∞

−∞
dth t

∑N
k=1 nkh

h e−(th−idh/2
√
η0)2

, (B.10)

the integral in the previous equation can be solved analytically [76]

M
(2π)3

3∏
h=1

e−d2
h/4η0

√
η0

∑N
k=1 nkh+1

√
π(2i)−

∑N
k=1 nkh(−1)

∑N
k=1 nkhH∑N

k=1 nkh

(
lh

2
√
η0

)
.

(B.11)

Using the definition of M in equation (B.8), defining Nh =
∑N

k=1 nkh and N = Nx + Ny + Nz,
and going back to the original, non-shifted coordinates we arrive at the following form of
equation (B.3)

V0N(l; d0) =
1

(2
√
π)3

√
1

2N∏N
k=1 nkx!nky!nkz!

N∏
k=1

(
Ak√
2μk

)nkx+nky+nkz

× 1
√
η0

N+3 HNx

(
lx − dx

0

2
√
η0

)
HNy

×
(

ly − dy
0

2
√
η0

)
HNz

(
lz − dz

0

2
√
η0

)
e−(l−d0)2/4η0. (B.12)

To integrate over the angular part it is convenient to use the following expansion of the Hermite
polynomials [39]:

Hn(x) = n!

� n
2 �∑

m=0

(−1)m

m!(n − 2m)!
(2x)n−2m. (B.13)

1 We use the convention 00 = 1 for terms

(
Ak√
2μk

)nkx+nky+nkz

.
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If we rotate our frame of reference such that ẑ‖dz
0, (i.e.: dx

0 = 0, dy
0 = 0 and dz

0 = d0) we find

V0N(l; d0) =
1

(2
√
π)3

√
1

2N∏N
k=1 nkx!nky!nkz!

N∏
k=1

(
Ak√
2μk

)nkx+nky+nkz

× 1
√
η0

N+3 Nx!Ny!Nz!e
−

d2+d2
0

4η0

×
�Nx/2�∑

a=0

�Ny/2�∑
b=0

�Nz/2�∑
c=0

(−1)a+b+c

a!b!c!(Nx − 2a)!(Ny − 2b)!(Nz − 2c)!

×
(

lx

√
η0

)Nx−2a( ly
√
η0

)Ny−2b( lz − d0√
η0

)Nz−2c

el·d0/2η0 . (B.14)

Using the binomial expansion of (lz − d0)/
√
η0)Nz−2c we obtain

V0N(l; d0) =
1

(2
√
π)3

√
1

2N∏N
k=1 nkx!nky!nkz!

N∏
k=1

(
Ak√
2μk

)nkx+nky+nkz

× 1
√
η0

N+3 Nx!Ny!Nz!e−(l2+d2
0)/4η0

×
�Nx/2�∑

a=0

�Ny/2�∑
b=0

�Nz/2�∑
c=0

(−1)a+b+c

a!b!c!(Nx − 2a)!(Ny − 2b)!

×
(

lx

√
η0

)Nx−2a( ly
√
η0

)Ny−2b

el·d0/2η0

×
Nz−2c∑
m=0

1
m!(Nz − 2c − m)!

(
lz

√
η0

)Nz−2c−m(
− d0√

η0

)m

. (B.15)

At this point we can integrate over the angles of l fixing the length, hence

V0N(l, d0) =
1

(2
√
π )3

√
1

2N∏N
k=1 nkx!nky!nkz!

N∏
k=1

(
Ak

2k

)nkx+nky+nkz

× 1

ηN+1
0

Nx!Ny!Nz!e−(l2+d2
0)/4η2

0

×
�Nx/2�∑

a=0

�Ny/2�∑
b=0

�Nz/2�∑
c=0

(−1)a+b+c

a!b!c!(Nx − 2a)!(Ny − 2b)!

×
(

l
η0

)Nx+Ny−2(a+b)+2

×
∫ 2π

0
dφ(sin φ)Ny−2b(cos φ)Nx−2a
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×
Nz−2c∑
m=0

1
m!(Nz − 2c − m)!

(
l
η0

)Nz−2c−m(
−d0

η0

)m

×
∫ π

0
dθ(sin θ)Nx+Ny−2(a+b)+1(cos θ)Nz−2c−m ecos θld0/2η2

0 . (B.16)

The first integral is∫ 2π

0
dφ cosn φ sinm φ =

πn!m!

2n+m−1
(

n
2

)
!
(

m
2

)
!
(

n+m
2

)
!
, (B.17)

and is non-zero only if n and m are even [77]. Therefore Nx and Nx must be even. While the
second integral reads [77]∫ π

0
dθ(sin θ)n(cos θ)mek cos θ =

√
π

4
γ

(
1 + n

2

)

×
[

2(1 + (−1)m)γ

(
1 + m

2

)

× 1F̃2

(
1 + m

2
;

1
2

,
2 + m + n

2
;

k2

4

)

− (−1 + (−1)m)kγ
(

1 +
m
2

)

× 1F̃2

(
2 + m

2
;

3
2

,
3 + m + n

2
;

k2

4

)]
, (B.18)

where we have introduced the Euler’s gamma function γ(x) as well as the regularized hyper-
geometric function pF̃q (a1, . . . , ap; b1, . . . , bq; x) [39]. Putting all together we finally arrive at

V0N(l; d0) =
1
16

√
1

2N∏N
k=1 nkx!nky!nkz!

N∏
k=1

(
Ak√
2μk

)nkx+nky+nkz

× 1
√
η0

N+1 Nx!Ny!Nz!e−(d2+d2
0)/4η0

×
Nx/2∑
a=0

Ny/2∑
b=0

�Nz/2�∑
c=0

(−1)a+b+c

a!b!c!
(

Nx−2a
2

)
!
(

Ny−2b
2

)
!2Nx+Ny−2(a+b)

×
Nz−2c∑
m=0

1
m!(Nz − 2c − m)!

×
(

l
√
η0

)N−2(a+b+c)−m+2(
− d0√

η0

)m

×
[

2(1 + (−1)Nz−2c−m)γ

(
1 + Nz − 2c − m

2

)

× 1F̃2

(
1 + Nz − 2c − m

2
;

1
2

,
3 +N − 2(a + b + c) − m

2
;

l2d2
0

16η2
0

)
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− (−1 + (−1)Nz−2c−m)
ld0

2η0
γ

(
1 +

Nz − 2c − m
2

)

× 1F̃2

(
2 + Nz − 2c − m

2
;

3
2

,
4 +N − 2(a + b + c) − m

2
;

l2d2
0

16η2
0

)]
; (B.19)

which finally allows us to write down the non-Markovian Green’s function expressed as an
infinite series in equation (25). In addition, the series expansion allows us the compute the
cross conditioned Green’s function

Gd0,d′0
(l, t|l′) = V00(l′; d′

0)−1
∑

N

V0N(l; d0)VN0(l′; d′
0)e−ΛNt (B.20)

that is the probability that the distance between the beads i and j is equal to l at time t condi-
tioned to the fact that the distance between the beads k and l at time 0 was equal to l′, assuming
that these two distances have rest lengths d0 and d′

0, respectively. In particular in order to eval-
uate VN0(l′; d′

0) we need to consider that the distance l′ is expressed via the normal coordinates
as

d′ = rk − rl =

N∑
i=1

Biqi, (B.21)

and we in turn use these coefficients to define ζt =
∑N

k=1 B2
k/2μke−μkt and ζ0 =

∑N
k=1 B2

k/2μk

instead of ηt and η0.

Appendix C. Closed form solution for Gd0

In order to obtain the equivalent result in a closed form solution we should consider the
following integral:

Jd0 (l, t; l1) =
∫

dQ
∫

dQ1 G(Q, t|Q1)Peq(Q1)

× δ

(
N∑

k=1

Akq1k + d0 − l1

)
δ

(
N∑

k=1

Akqk + d0 − l

)
. (C.1)

Performing the first Fourier transform, between l1 → u the above integral becomes

∫
dQδ

(
N∑

k=1

Akqk + d0 − l

)
e−id0·u

×
(

1
2π

)3 ∫
dq1k

N∏
k=1

(
μ2

k

2π

)3/2(
μk

2π(1 − e−2μkt)

)3/2

× exp

[
− μk

2(1 − e−2μ2
k t)

(
q2

k + q2
1ke−2μkt − 2qk · q1k e−μkt

)]

× e−i Akq1k ·u e−μkq2
1k/2; (C.2)
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and the integration yields

(
1

2π

)3 ∫
dQδ

(
N∑

k=1

Akq + d0 − l

)
e−id0·u

N∏
k=1

(
μ2

k

2π

)3/2

exp

[
−μk

2

(
q2

k + 2i
Ak

μk
e−μktu · qk

+
A2

k

μ2
k

(1 − e−2μkt)u2

)]
. (C.3)

Performing the second Fourier transform l → v we find

e−id0·(u+v)

(
1

2π

)6 N∏
k=1

∫
dqk

( μk

2π

)3/2
exp

[
−μk

2

(
q2

k + 2i
Ak

μk
(e−μkt u + v) · qk

+
A2

k

μ2
k

(1 − e−2μkt)u2

)]
, (C.4)

that reads

e−id0·(u+v)

(
1

2π

)6 N∏
k=1

exp

[
− A2

k

2μk
(u2 + v2) + 2

A2
k

2μk
e−μkt u · v

]
. (C.5)

It is convenient to define

N∑
k=1

A2
k

2μk
e−μkt = ηt →

N∑
k=1

A2
k

2μk
= η0 (C.6)

so the Fourier transform of the joint-density is:

J̃ d0 (v, t; u) =
1

(2π)6
exp

(
−η0u2 − η0v2 + 2ηtu · v + id0 · (u + v)

)
. (C.7)

The inversion of the two Fourier transforms gives straightforwardly

Jd0 (l, t; l1) =
1

26π3

(
1

η2
0 − η2

t

)3/2

× exp

[
−η0(l − d0)2 + η0(l1 − d0)2 − 2ηt(l − d0) · (l1 − d0)

4(η2
0 − η2

t )

]
. (C.8)

We now marginalize over the angles

Jd0 (l, t; l1) ≡
∫

dd
∫

dd1

∫
dd0 δ(|d0| − d0)δ(|l1| − l1)δ(|l| − l)Jd0 (l, t; l1), (C.9)

by moving to a frame of reference where d0 is parallel to the z axis, and express all the vectors
in spherical coordinates. This removes all delta-functions and d0 in the new frame of reference
is just a scalar. By doing so we obtain

Jd0 (l, t; l1) =
1

26π3

(
1

η2
0 − η2

t

)3/2

exp

(
−η0l2 + η0l21 + 2(η0 − ηt)d2

0

4(η2
0 − η2

t )

)
l2l21

×
∫ 2π

0
dφ
∫ 2π

0
dφ′
∫ 1

−1
d(cos θ)

∫ π

0
d(cos θ′)
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× exp

[
(η0 − ηt)ld0

2(η2
0 − η2

t )
cos θ +

(η0 − ηt)l1d0

2(η2
0 − η2

t )
cos θ′ +

ηtll1
2(η2

0 − η2
t )

×
(
cos φ cos φ′ sin θ sin θ′

+ sin φ sin φ′ sin θ sin θ′ + cos θ cos θ′
)]

. (C.10)

The two integrals overφ andφ′ (keeping in mind that cos(φ− φ′) = cosφ cosφ′ + sinφ sinφ′)
give us

1
16π

(
1

η2
0 − η2

t

)3/2

exp

(
−η0l2 + η0l21 + 2(η0 − ηt)d2

0

4(η2
0 − η2

t )

)
l2l21

×
∫ 1

−1
d(cos θ)

∫ π

0
d(cos θ′) exp

×
[

(η0 − ηt)ld0

2(η2
0 − η2

t )
cos θ +

(η0 − ηt)l1d0

2(η2
0 − η2

t )
cos θ′

+
ηt ll1

2(η2
0 − η2

t )
cos θ cos θ′

]
I0

×
(

ηtll1
2(η2

0 − η2
t )

√
1 − cos2 θ

√
1 − cos2 θ′

)
, (C.11)

where I0(x) is the modified Bessel function of the first kind. The first integral in cos θ′ is
solvable [76], and by changing the variable cos θ → x we are left with

1
8π

(
1

η2
0 − η2

t

)3/2

exp

(
−η0l2 + η0l21 + 2(η0 − ηt)d2

0

4(η2
0 − η2

t )

)
l2l21

×
∫ 1

−1
dx e

(η0−ηt)ld0
2(η2

0−η2
t )

x
sinh

(√
(η0−ηt )2l21d2

0+η2
t l2l21+2ηt (η0−ηt )ll21d0x

4(η2
0−η2

t )2

)
√

(η0−ηt )2l21d2
0+η2

t l2l21+2ηt (η0−ηt)ll21d0x

4(η2
0−η2

t )2

. (C.12)

And the final integral yields [77]

Jd0 (l, t; l1) =
1

16
√
π

(
1

η2
0 − η2

t

)3/2

exp

(
−η0l2 + η0l21 + 2(η0 − ηt)d2

0

4(η2
0 − η2

t )

)

× l2l21
e−ab/c−c/4a

√
ac

[
erfi

(
2a

√
b − c − c
2
√

ac

)

− erfi

(
2a

√
b − c + c
2
√

ac

)

+ erfi

(
c − 2a

√
b + c

2
√

ac

)
+ erfi

(
c + 2a

√
b + c

2
√

ac

)]
(C.13)
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having defined

a =
(η0 − ηt)ld0

2(η2
0 − η2

t )
, (C.14)

b =
(η0 − ηt)2l21d2

0 + η2
t l2l21

4(η2
0 − η2

t )2
, (C.15)

c =
ηt(η0 − ηt)ll21d0

2(η2
0 − η2

t )2
; (C.16)

the direct substitution of these auxiliary variables gives, upon division by Peq
d0

and some
simplification, equation (23).

Appendix D. Derivation of equilibrium autocorrelation function

In order to compute the autocorrelation function in equation (29) the following integrals must
be evaluated

Vd0
0N =

∫ ∞

0
dx V0N(x, d0)x, Vd0

N0 =

∫ ∞

0
dx VN0(x, d0)x. (D.1)

These two integrals are identical and the integration yields [76]

Vd0
0N =

1
16

√
1

2N
∏N

k=1 nkx!nky!nkz!

N∏
k=1

(
Ak√
2μk

)nkx+nky+nkz

× 1
√
η0

N+1 Nx!Ny!Nz!e−d2
0/4η0

×
Nx/2∑
a=0

Ny/2∑
b=0

�Nz/2�∑
c=0

(−1)a+b+c

a!b!c!
(

Nx−2a
2

)
!
(

Ny−2b
2

)
!2Nx+Ny−2(a+b)

×
Nz−2c∑

l=0

1
l!(Nz − 2c − l)!

(
− d0√

η0

)l

×
[

(1 + (−1)Nz−2c−l)γ

(
1 + Nz − 2c − l

2

)
2N−2(a+b+c)−l+4η0γ

×
(
N − 2(a + b + c) − l + 4

2

)

× 2

˜

F2

(
1 + Nz − 2c − l

2
,
N − 2(a + b + c) − l + 4

2
;

1
2

,

× 3 +N − 2(a + b + c) − l
2

;
d2

0

4η0

)

− (−1 + (−1)Nz−2c−l)d0
√
η0γ

(
1 +

Nz − 2c − l
2

)

× 2N−2(a+b+c)−l+3 γ

(
N − 2(a + b + c) − l + 5

2

)
24



J. Phys. A: Math. Theor. 54 (2021) 355601 A Lapolla et al

× 2

˜

F2

(
2 + Nz − 2c − l

2
,
N − 2(a + b + c) − l + 5

2
;

3
2

,
4 +N − 2(a + b + c) − l

2
;

d2
0

4η0

)]
.

(D.2)

If we are instead interested in the cross-correlation the more general equation (B.20) must be
used and the two integrals differ in therms of some constants, i.e. they are obtained by changing
the following variables d0 → d′

0, {Ak} → {Bk} and ηt → ζ t.

D.1. Rouse-limit autocorrelation function

In figure 5 we showed how the autocorrelation for a GNM compares to the autocorrelation in
the Rouse limit (i.e. d0 → 0). The latter can be obtained in a closed form [60]

C(t) =
〈l(t)l(0)〉 − 〈l〉2

〈l2〉 − 〈l〉2
; (D.3)

〈l(t)l(0)〉 =
4
[
3ηt

√
η2

0 − η2
t + 2(η2

0 + η2
t ) arctan(ηt/(η2

0 − η2
t ))
]

πηt
, (D.4)

〈l〉 = 4
√
η0/π, 〈l2〉 = 6η0. (D.5)

Appendix E. Short-time expansion of Gd0

Introducing the auxiliary variable φ(t) = ηt/η0 in equation (23) we can write the return joint-
density as and expanding to linear order in t using

φ(t)
t→0� 1 −

∑
k=1 A2

k t
2η0

φ2(t)
t→0� 1 −

∑
k=1

A2
k

t
η0

; (E.1)

we find the partial limits

exp

(
−2d2φ(t) + (1 − φ(t))d2

0

4η0φ(t)(1 − φ(t))

)
t→0∼ e−1/t → 0, (E.2)

erfi

(
±2dφ(t) + d0(1 − φ(t))

2
√
η0φ(t)(1 − φ(t)2)

)
t→0∼ erfi(±t−1/2) →±∞, (E.3)

erfi

(
d0(1 − φ(t))

2
√
η0φ(t)(1 − φ(t)2)

)
t→0∼ erfi(

√
t) → 0; (E.4)

where all the convergencesare of exponential order. Therefore, while we can neglect the second
erfi, we need to retain the product between the exponential and the two diverging erfis and
only then plug them into in equation (E.1). Thus considering the expansion for large and real
arguments of erfi [39]

erfi(x)
x→±∞,x∈R� ∓ i +

(
1
x
+

1
2x3

+ O(x−5)

)
ex2

√
π

, (E.5)
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and explicitly, multiplying by the remaining exponentials equation (23) becomes (note that
Peq

d0
(l)Gd0(l, t|l) ≡ Jd0 (l, t; l))

Jd0 (d, t; d)
t→0� d2

8πd0
e−(l2+d2

0)/2η0(1+φ(t))

×
{[

2
√

1 + φ(t)√
1 − φ(t)η0(−2 dφ(t) + d0(1 − φ(t)))

+ 4
φ(t)

√
1 − φ(t)(1 + φ(t))3/2

(−2 dφ(t) + d0(1 − φ(t)))3

]
e−ld0/η0(1+φ(t))

+

[
2
√

1 + φ(t)√
1 − φ(t)η0(2 dφ(t) + d0(1 − φ(t)))

+ 4
φ(t)

√
1 − φ(t)(1 + φ(t))3/2

(2 dφ(t) + d0(1 − φ(t)))3

]
eld0/η0(1+φ(t)) ]

}
. (E.6)

Using equation (E.1) and expanding t = 0 and introducing κ =
∑N

k=1 A2
k we finally arrive at

equation (36).

Appendix F. Evaluation of the variance of the occupation time
fraction
The direct implementation of equation (34) suffers from slow convergence issues. We suspect
that this problem has his roots in the (well-known) slow convergence of series involving Her-
mite polynomials [78]. We therefore combine the analytical short-time asymptotics in equation
(37) with the spectral solution. Defining a small cutoff time ts � 1 and rewriting equation (35)
(using the linearity of integration) as

σ2
d0

(l, t) =
2Peq

d0
(l)

t

∫ ts

0
dτ (1 − τ/t)Gd0 (l, τ |l) +

2Peq
d0

(l)

t

×
∫ t

ts

dτ (1 − τ/t)[Gd0 (l, τ |l) − Peq
d0

(l)]. (F.1)

We can explicitly evaluate the first addend using equation (37) and evaluate the second term
using the spectral expansion (25). Note that the first term in the series (with Λ0 = 0) must be
treated in a manner different than the rest. Therefore σ2

d0
(l, t) can be conveniently written (and

implemented) in the form

σ2
d0

(d, t) = 2Peq
d0

(l)

(
8

3
√
κπt

+
4

15l2

√
κt
π

− Peq
d0

(l)

)
+

2
t2

∑
N�=0

VN0(l; d0)V0N(l; d0)

×
[

(t − ts)
e−ΛNts

ΛN
− e−ΛNts − e−ΛNt

Λ2
N

]
+ Peq

d0
(l)2

( ts
t
− 2

) ts
t
. (F.2)
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Appendix G. Notes on the numerical implementation of the results

Accompanying this article there is a C++ implementation of all analytical results. The code
allows the computation the Green’s function Gd0 , the mean 〈θt(l, d0)〉 and variance σ2

d0
(d, t)

of the occupation time fraction, as well as the autocorrelation function Cd0(t) for a generic
Gaussian Network. The connectivity matrix of the network Γ must be provided as a plain
text file and is diagonalized using the Armadillo library [79, 80]. A closed-form expression
of the joint density in equation (23) is implemented in the available C++ code. However, for
numerical stability and speed of computation it is convenient to implement equation (C.12)
and perform the final integral numerically using a Gauss-Kronrod quadrature routine [61].

The results based on the evaluation of both, equations (B.19) and (D.2) require the eval-
uation of the less common regularized hypergeometric functions pF̃q . A notable exception is
the Arblib library [81], that implements several ‘special’ functions using arbitrary precision
arithmetic. The reliable evaluation of such functions is challenging and often requires several
different methods to cover the entire domain [82]. Unfortunately this higher reliability comes
with a higher computational cost compared to machine precision arithmetic. However hyperge-
ometric functions converge on the entire complex plane if p � q [82]. In addition, we only need
to evaluate them when all the parameters are positive real numbers. Therefore we implemented
the series definitions of these function directly since in our case these converge reasonably fast
to a desired accuracy as long as the parameters are not too large.

Many of our results, in particular the autocorrelation function and the variance of the fraction
of occupation time, can only be expressed fully analytically using the eigendecomposition of
the Fokker–Plank operator. Unfortunately the computational effort required in the generation
of all necessary terms to achieve convergence is huge. In addition, this number scales non-
polynomially with the number of beads in the network. Therefore the attached program should
be used with care as it does not generate reliable results when the size of the network becomes
too large.
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