
1. Introduction
The global carbon budget (GCB) of CO2 can be decomposed into anthropogenic emissions and natural 
sinks. Anthropogenic emissions are mostly due to fossil fuel burning and fossil carbonates (EFF), but also 
from land-use induced land cover change and land management (“land-use change emissions” in the fol-
lowing, ELUC). The emitted CO2 is then distributed into three natural sinks: it is either assimilated by the 
land surface via ecosystem productivity (SLAND), absorbed by the ocean via diffusion and photosynthesis 
of marine organisms (SOCEAN) or accumulated in the atmosphere (atmospheric growth: GATM) leading to 
increased atmospheric CO2 concentrations (Friedlingstein et al., 2020; Le Quéré et al., 2013).

One of the key goals of the Global Carbon Project (GCP) is to evaluate anthropogenic perturbations on 
the global carbon cycle and to understand the response of the natural carbon sinks to increasing fossil 
emissions and land-use changes (e.g., Friedlingstein et al., 2020; Le Quéré, Andrew, Friedlingstein, Sitch, 
Hauck, et al., 2018; Le Quéré, Andrew, Friedlingstein, Sitch, Pongratz, et al., 2018). These GCBs, conducted 
almost every year since 2007 (Canadell et al., 2007), provide an important understanding of the efficiency 
and potential saturation of the natural sinks. This, in turn, is essential knowledge for predicting the future 
sink capacities and, therefore, the required strength for future climate mitigation targets and of “allowable” 
emissions under given climate targets. A comprehensive understanding of uncertainties in these budgets is 
essential for guiding policy and decision-making.

The components of the GCP carbon budgets are associated with large uncertainties, which are based on a 
combination of observation and model uncertainties. Fossil emissions are based on energy and fuel con-
sumption data whereby the uncertainties lie in the fuel consumption, fuel carbon content, and combustion 
efficiency (Andres et al., 2012). The ELUC estimate is based on three bookkeeping models, in which estimates 
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of land-use transitions are combined with observation-based carbon densities to track terrestrial emissions 
and removals according to empirical temporal response curves for each ecosystem (Hansis et  al.,  2015; 
Houghton & Nassikas, 2017). The corresponding estimates for ELUC uncertainty have low confidence and 
are based on expert knowledge, which considers the bookkeeping models and the range of the 17 global 
dynamical vegetation models (DGVMs; Friedlingstein et al., 2020). The ocean sink estimate is based on the 
standard deviation of nine global ocean biogeochemical models and their consistency with observed CO2 
partial pressure-based flux estimates. The terrestrial sink in earlier budgets was estimated as a residual from 
all other terms or based on DGVMs from the 2019 budget onwards. The estimates of both SLAND and SOCEAN 
are evaluated to have medium confidence (Friedlingstein et al., 2020). When estimating the land sink with 
DGVMs, the GATM cannot be matched, leading to a “budget imbalance” term of ∼0.4 Pg C yr−1. While atmos-
pheric measurements of CO2 concentration are relatively more accurate, there are substantial interannual 
variations (IAV) driven by natural climate variability (Conway et al., 1994; Dlugokencky & Tans, 2018).

From such GCBs, it is possible to quantify the future emissions to stay within a given trajectory of climate 
change (Millar et al., 2017; Rogelj et al., 2016). However, estimating these “allowable emissions” from his-
torical budgets actually requires considering an additional source of uncertainty: the internal variability of 
the climate system. The uncertainties in the GCP budgets are related to observational and model uncertain-
ties while uncertainties associated with internal climate variability are not directly addressed.

Much of the IAV in CO2 concentration and its impacts on the regional (Zhu et al., 2018) and global carbon 
sinks (Ballantyne et al., 2012; Bastos et al., 2013) is driven by internal variability in the climate system. In-
ternal variability arises from stochastic processes and feedbacks in the coupled ocean-atmosphere system 
(e.g., El Niño-Southern Oscillation [ENSO]) and is difficult to predict due to high sensitivity to initial con-
ditions and the chaotic evolution of the Earth system (Deser et al., 2012). Traditionally, internal variability 
in weather and climate forecasts is accounted for by performing ensemble forecasting, that is, running 
multiple simulations of the same (or several) models started from perturbed initial conditions, in order to 
estimate the distribution of future climate states (Deser et al., 2012).

The importance of considering the full range of potential climate states due to internal climate variability 
is particularly pertinent to future estimates of the carbon budget, where the exact climate state (and conse-
quently the strength of the natural sinks) in a given year is unknown. Using only one realization may not 
robustly capture these future states. Furthermore, we cannot assume that the variance of the natural CO2 
fluxes is stationary under increasing atmospheric CO2. It is not possible to estimate the range of plausible 
carbon budget fluxes due to internal climate variability using only one instance of historical observations or 
observationally forced model simulations. Using ensemble simulations will allow for a more robust calcula-
tion of future trends in the mean and variability of the carbon budget terms (e.g., Kay et al., 2015).

Since the historical observation-based carbon budget uncertainty only considers one realization of internal 
climate variability, the influence of internal climate variability on each budget term is unknown. Therefore, 
we ask the following research questions:

•  How large is the uncertainty from internal climate variability in the global carbon budget (GCB) terms 
and how does it compare to the variability of the latest GCB (GCB2020) values?

•  How likely were the historical carbon fluxes with respect to the distribution of possible fluxes from in-
ternal climate variability and what drove those anomalies?

•  How will the carbon budget components and their internal variability change in the future (e.g., under 
RCP4.5)?

In this study, we estimate uncertainties associated with internal climate variability for each component 
of the carbon budget using a large ensemble of single-model simulations from the Max Planck Institute 
Grand Ensemble project (MPI-GE; Maher et al., 2019). We compare the results of the estimates for internal 
climate variability uncertainties to the uncertainties of the recent GCB2020 (Friedlingstein et al., 2020). 
Furthermore, we discuss the suitability and possible limitations of using a large ensemble of simulations for 
better understanding variability and uncertainties associated with ELUC and SLAND and how many ensemble 
members are required to answer these questions.
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2. Methods
2.1. Overview of Models and Simulations

The methods used to generate the ensemble of climate realizations as part 
of the MPI-GE project are fully described in Maher et al. (2019). There-
fore, we only give a summary here. The MPI-GE is a single-model large 
ensemble project that uses the Max Planck Institute Earth System Model 
(MPI-ESM; for a full description see Giorgetta et al., 2013) version 1.1. 
The MPI-ESM is composed of an atmospheric component provided by 
ECHAM 6.3.01p3 (Stevens et al., 2013) run at T63L47 resolution (∼1.8° 
and 47 vertical layers), an ocean component provided by MPIOM 1.6.1p1 
(Marsland et al., 2003) run at GR15L40 resolution (∼1.5°), the ocean bio-
geochemistry model HAMOCC5.2 (Ilyina et al., 2013), and the land com-
ponent JSBACH3 (Goll et al., 2015; Reick et al., 2013). Hundred ensemble 
members are generated by branched initialization (every ∼6–24  years) 
from a subsample of years from a pre-industrial control (piControl) simu-
lation. The piControl simulation, as well as the subsequent historical and 
future simulations, follow the protocol of concentration-driven Earth sys-
tem model runs of the Coupled Model Intercomparison Projects (CMIP), 
in this case specifically CMIP5 (Taylor et al., 2012).

The JSBACH3 component simulates transitions in land cover types with respect to both natural vegetation 
dynamics and land-use changes. However, we utilize a smaller standalone sub-component of JSBACH3 
called Carbon Balance ALONE (CBALONE) to differentiate the emissions due to land-use change from the 
remaining net land sink (as is done in, e.g., Roeckner et al., 2010). As in all Earth system model simulations 
that perform historical or scenario simulations, anthropogenic and natural effects occur concurrently, that 
is, the simulations only provide the net land-atmosphere exchange (i.e., SLAND + ELUC). Only instantaneous 
emissions to the atmosphere can be derived directly from the historical or scenario simulations (as, e.g., 
in Lawrence et al., 2012). These, however, neglect legacy emissions that result in particular from the slow 
decay of wood products, harvested material left on site, and the adjustment of soil carbon stocks to the 
altered land-use over decades to centuries, but also comprise slow carbon uptake in processes like forest 
regrowth. In order to capture all fluxes from land-use change (instantaneous and legacy), additional sim-
ulations are essential that exclude the land-use change forcing, such that by difference to the historical or 
scenario simulation ELUC can be isolated (Pongratz et al., 2014). Note that effects of altered atmospheric CO2 
concentrations by ELUC, with emissions creating a compensating carbon sink in land and ocean (the “land-
use feedback”), are excluded in our concentration-driven feedback (Pongratz et al., 2014). Similarly, since 
CBALONE is driven by the climate from the coupled simulation, changes in surface climate due to land-use 
change also act the same way in both simulations. Thus, the difference between the simulations with (MPI-
GE) and without land-use change (CBALONE) cancels these effects (apart from secondary-order terms) and 
excludes resulting feedbacks. This is essential to make our estimates consistent with the methodology used 
in the GCB2020 for the terrestrial budget terms.

CBALONE includes only the long-term dynamics associated with carbon turnover rates and vegetation 
biogeography. We force CBALONE with daily data from 100 climate realizations taken from the MPI-GE, 
both with and without anthropogenic land-use change (LUC and noLUC simulations, respectively) com-
parable to the approach taken by the GCP (Friedlingstein et al., 2020). The land-use change transition data 
utilized by MPI-GE and CBALONE are taken from the Land-Use Harmonization 2 project (LUH2; Hurtt 
et al., 2011). While the carbon fluxes from CBALONE did not exactly match JSBACH3 estimates, they con-
sistently simulate JSBACH3 fluxes to within 5% accuracy (Figure S6). Therefore, the CBALONE simulations 
with land-use change are required so that ELUC could be calculated independent of the small CBALONE 
error (in absence of the error, the net land-atmosphere exchange could have been directly provided by the 
MPI-GE simulations).

The climate realizations used to force CBALONE were taken from existing daily output from the MIP-
GE historical and RCP4.5 scenarios (1850–2099; Table 1). We chose the RCP4.5 scenario as a scenario of 
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LUC No LUC

Historical (1850–2005)  mpige-LUC-hist
 cbal-LUC-hist

cbal-noLUC-
hist

RCP4.5 (2006–2099)  mpige-LUC-rcp4.5
 cbal-LUC-rcp4.5

cbal-noLUC-
rcp4.5

Note. Each experiment has 100 ensemble members. The MPI-GE 
simulations have been labeled with the prefix “mpige,” while the 
CBALONE simulations are labeled as “cbal.” The scenarios are labeled 
with the suffix “hist” for the historical scenario and “rcp4.5” for the future 
scenario. Both scenarios for CBALONE are simulated with land-use 
change (labeled with LUC) and without land-use change using 1850 land-
use throughout the simulation (labeled with noLUC). There are only 97 
ensemble members for the CBALONE RCP4.5 scenario because a few 
MPI-GE output files required by CBALONE contained erroneous data.
Abbreviations: CBALONE, Carbon Balance ALONE; MPI-GE, Max 
Planck Institute Grand Ensemble.

Table 1 
Experiment Simulations
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medium climate change that estimates the CO2 emissions under climate 
policies designed to limit global warming to no more than 3 C over pres-
ent-day temperatures, allowing us to create uncertainty estimates of fos-
sil emissions that are consistent with this goal. The daily model output 
variables that are used to force CBALONE include 2 m air temperature, 
soil temperature, precipitation, net primary productivity (NPP) per plant 
functional type (PFT), leaf area index (also per PFT), and maximum 
wind. These variables are marked as “environmental” in Figure 1.

2.2. Carbon Budget Decomposition

The carbon budget is decomposed here into the various source and sink 
terms as in Friedlingstein et al. (2020), utilizing output from the MPI-GE 
and the CBALONE simulations. The monthly CBALONE output is aggre-
gated to annual values for comparison to the GCB2020. The cbal-noLUC 
simulation provides land-atmosphere exchange that would occur with-
out land-use changes, and thus SLAND is calculated as the net biome pro-
ductivity (NBP) from this simulation. Equation  1 clarifies components 
of NBP taken from the model, where NPP is NPP, RH is heterotrophic 
respiration, fFire is carbon flux due to wildfires, fHarvest is carbon flux 
due to crop and wood harvest, fGrazing is carbon flux due to herbivorous 

grazing, and fLCC is the instantaneous emissions from land-use induced land cover changes. The fLCC 
term is zero in the cbal-noLUC simulations.

      LANDNBP S NPP RH fFire fHarvest fGrazing fLCC (1)

ELUC is calculated as the difference in NBP between the cbal-LUC and cbal-noLUC simulations (Equation 2; 
note that fluxes to the natural sinks are negative values and fluxes to the atmosphere are positive consistent 
with Friedlingstein et al., 2020). Correspondingly, the NBP from the cbal-LUC simulation is equivalent to 
the net land-atmosphere exchange (NETLAND).

   LUC cbal LUC cbal noLUC LAND LANDE NBP | NBP | NET S‐ ‐ (2)

GATM and SOCEAN are taken directly from the MPI-GE output. The implied “compatible” emissions (also 
EFF) are calculated as the residual of all other terms in the budget (Equation 3; Figure 1), as described in C. 
Jones et al. (2013) and Roeckner et al. (2010). These are the emissions that would need to occur for CO2 to 
be conserved given particular atmospheric concentration, land-use emissions, and natural sink fluxes. This 
is different from the GCB2020 approach, where all terms were determined independently based on model 
or observational estimates, which requires a budget imbalance term to be added.

   FF LUC ATM OCEAN LANDE E G S S (3)

We calculated the full decomposition of the carbon budget for each ensemble member of the historical and 
RCP4.5 scenarios and compare it to the GCB2020 (Friedlingstein et al., 2020) as the best estimate of the real 
global carbon cycle. Decadal averages of the MPI-GE ensemble mean and standard deviation are calculated 
for a direct comparison with the decadal mean and uncertainties presented in the GCB2020. To assess the 
magnitude of the uncertainties due to internal climate variability compared to the magnitude of the budget 
terms, we further calculate the signal-to-noise ratio (SNR) of each term as the ensemble mean divided by 
the ensemble standard deviation.

2.3. Interannual Variability

While internal climate variability may contribute to IAV in carbon fluxes to the natural sinks, there are also 
variations driven by non-internal climate-related factors, for example, changes in anthropogenic activity 
(EFF + ELUC) and volcanism. An assessment of uncertainties based on temporal standard deviations would 
be a mixture of internal and non-internal variability, while an ensemble standard deviation at a given time 
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Figure 1. Workflow schematic for simulations and carbon budget 
decomposition for each ensemble member. Variables from Max Planck 
Institute Grand Ensemble (MPI-GE) labeled “environmental” include leaf 
area index, net primary productivity (NPP), topsoil temperature, maximum 
10 m wind speed, air temperature, and precipitation (see Section 2.2).
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step would reflect variations only due to internal climate variability. In order to assess future uncertainties, 
it is important that the model can simulate historical IAV appropriately. Here, we assess the ability of indi-
vidual MPI-GE and CBALONE ensemble members to adequately represent the temporal standard devia-
tion of the historical year-to-year climate variations in each GCB2020 budget term. Therefore, we define a 
reference IAV as the temporal standard deviation of annual fluxes over the base period 1961–1990 (World 
Meteorological Organization standard reference period). All models have unique imperfections in their 
ability to simulate the statistical properties of the carbon fluxes such as mean and standard deviation, which 
we refer to as model bias. Furthermore, each may have a different trend over the base period which would 
artificially alter the IAV. To remove the model biases in the ensemble mean of the MPI-GE, we detrend the 
budget terms of each ensemble member before calculating IAV using an ordinary least-squares regression 
(OLR) of the ensemble mean over the historical period 1959–2005. We also detrended each model used in 
the GCB2020 and calculate the IAV over the same period.

2.4. Probability of Exceedance of Past Budget Terms

To evaluate how likely past carbon fluxes were compared to the range of possible climate states due to in-
ternal variability, we describe here a measure of the probability of exceedance. Supposing a relatively small 
amount of CO2 uptake by the land surface in a particular year, it is quite likely that under more favorable 
climate conditions for carbon storage this land CO2 uptake would be exceeded. Therefore, we aim to calcu-
late the probability that the MPI-GE members are greater than the GCB2020 multi-model mean (which we 
assume to be the closest estimate to historical CO2 fluxes). Each budget term for the MPI-GE and GCB2020 
is OLR detrended in the same way as described above (Section 2.3) except that we use the 1959–2018 period 
(i.e., the longest available common period for GCB2020 and the MPI-GE simulations). For each year and 
budget term, we calculate the corresponding cumulative distribution functions (“exceedance”) of the MPI-
GE ensemble members using a kernel density estimator (Scott, 2015). We then evaluate the GCB2020 terms 
on the complement of the cumulative distribution functions (1—Pr.) to find their occurrence probability 
(e.g., see Figure S3). Since we use a cumulative distribution, the complement probability is the “exceedance 
probability” of the ensemble spread being larger than the historical value. Unusually large historical fluxes 
will therefore have low probability of exceedance. This is similar to the probability of exceedance calcula-
tions from studies on climate extremes (e.g., Suarez-Gutierrez et al., 2020).

Finally, we assess the relationship of the GCB2020 exceedance probabilities for SLAND and SOCEAN flux-
es to ENSO, since this is the most prominent mode that drives internal climate variability (Dannenberg 
et al., 2015; Zhang et al., 2019). We use the annual mean Niño 3.4 index from the NOAA Climate Prediction 
Center (Climate Prediction Center, 2017) which uses ERSST V5 (Huang et al., 2017) sea surface tempera-
tures averaged over the region 5°N–5°S, 170°–120°W. We then calculate the Pearson's correlation coefficient 
and the OLR between the exceedance probabilities of the natural sinks and the Niño 3.4 index. We test 
the significance of this correlation using a two-sided t-test under the null hypothesis that a relationship 
between the exceedance probabilities of the GCB2020 fluxes and ENSO state can be rejected at the 95% con-
fidence level. Since these methods assume normally distributed data, we beforehand tested the normality of 
the budget terms and their probabilities using the Shapiro-Wilk test for normality (Shapiro & Wilk, 1965). 
We found that all budget terms (except for GATM) are normally distributed in the 1850–2018 period.

3. Results
3.1. Temporal Evolution of Budget Components and Internal Climate Variability Uncertainties

The historical period and RCP4.5 scenario have globally increasing CO2 fluxes from the atmosphere to the 
land and ocean sinks until about 2040 before decreasing thereafter (see Figure 2) due to assumed RCP4.5 
mitigation measures. The decrease in land and ocean sink is because GATM in RCP4.5 decelerates after 2040 
resulting in an atmospheric concentration of ∼525 ppm CO2 by 2100 (Thomson et al., 2011). The compatible 
fossil emissions in the MPI-GE (EFF in Figure 2) share similar temporal evolution of the natural sinks. On 
the other hand, ELUC is driven by the LUH2 land-use data set and is independent of fossil emissions, which 
increases until about 1990 before becoming a weak net sink from around 2020 onward under the RCP4.5 
scenario (Figures 2 and S1b). Within the period 1970–2010, the ensemble means of the GATM and EFF terms 
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show annual to decadal-scale variations, which are a known feature of the CO2 concentration forcing used 
in the historical period (caused by the introduction of additional CO2 observation stations in the 1960s, see 
Figure 10 of Meinshausen et al., 2017) and are not internally driven variations in the MPI-ESM. The SLAND 
and SOCEAN do not immediately respond to such rapid changes in GATM since they are dominated by the 
climate state and its variability. It then follows that these variations are evident in the residual EFF term.

The budget terms in Figure  2 are stacked for SLAND and GATM, and hence the shown standard devi-
ation of the ensemble members for these terms aggregates according to a normal sum distribution 
(i.e., σ[SOCEAN + SLAND] = √[σ2{SOCEAN} + σ2{SLAND}]). The atmospheric concentration is prescribed to be the 
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Figure 2. Stacked decomposition of the CO2 budget terms from the Max Planck Institute Grand Ensemble (MPI-GE) 
for the historical (1850–2005) and RCP4.5 (2006–2099) scenarios (a) (unstacked plots of the individual terms can be 
found in Figure S1). Thick lines mark the ensemble mean and shading marks the range of the ensemble ±1 standard 
deviation. Overlaid are the global carbon budget (GCB)2020 budget terms for comparison. Vertical lines mark the end 
of the historical period (2006) and the end of the latest Global Carbon Project (GCP) budget (2019). An alternative 
budget using the Coupled Model Intercomparison Project (CMIP)5 EFF taken from Andres et al. (2012) is also provided 
(b). The pink line shows the reflected net emissions, the difference with the net natural sinks would give the simulated 
BIM term in Figure S1f.
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same for all ensemble members, and so GATM has no ensemble standard deviation. The standard deviation 
of residual EFF is inherited directly from the net natural sinks and ELUC because it is calculated as a residual 
in the budget. SOCEAN has a stable standard deviation of ∼0.15 Pg C yr−1 (Figure 3c), which does not have 
a trend. SLAND has the largest standard deviation throughout the historical period and the RCP4.5 scenario 
(see Figure 3d), therefore, the standard deviation of the net of natural sinks in Figure 2 (and consequently 
residual EFF) mostly originates from SLAND. Standard deviation increases with time for residual EFF and 
SLAND (Figures 3a and 3d) from ∼1 Pg C yr−1 in 1850 to ∼1.5 Pg C yr−1 in 2100. ELUC standard deviation 
gradually increases from almost 0 to ∼0.2 Pg C yr−1 by 2010 and later (Figure 3b).

The importance of internal climate-driven variations (Figure 3) relative to the ensemble mean state can be 
better understood by analyzing the SNRs (Figure 4). Values greater than one indicate that the mean state 
dominates the signal, whereas values less than one indicate that the internal climate variability uncertainty 
is the dominant factor in the carbon fluxes. For residual EFF and SLAND (Figures 4a and 4d), internal varia-
tions are more relevant up until 1970. After that, the mean carbon fluxes (i.e., the forced signal) are much 
larger than the variations due to internal climate variability, for example, ∼2.5–3 times greater for SLAND. 
SOCEAN generally follows the same pattern (Figure 4c); the internal climate variability remains several times 
smaller than the mean carbon flux to the ocean from about 1890 onward. On the other hand, the standard 
deviation in ELUC is as large as the mean from 2010 onward (Figure 4b), however, this is likely a consequence 
of the simulation setup: land-use changes begin in 1850 but the full range of variation from the legacy 
emissions of land-use change does not manifest until several decades later. This means the ELUC SNR is 
effectively only valid under the future scenario when the mean ELUC is small.

3.2. Comparison to GCB2020

3.2.1. Comparison of Means

We compare here the GCB2020 mean of each budget term to the ensemble mean of the MPI-GE for each 
decade, before comparing the variances in the following sections. First, the residual EFF mean increases 
faster in the MPI-GE than observed in the GCB2020 (Figure 5a). Initially, MPI-GE residual EFF in the 1960s 
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Figure 3. Yearly ensemble standard deviation for each carbon budget term. The emissions are on the top ((a) residual EFF and (b) ELUC) and the natural sink 
terms are on the bottom ((c) SOCEAN and (d) SLAND).
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Figure 4. Yearly signal-to-noise ratio (SNR) for each budget term in the Max Planck Institute Grand Ensemble (MPI-GE). Dashed lines delineate ratio 1, where 
the standard deviation of the respective flux equals the mean flux. ELUC has an inset plot with the post-2010 period zoomed in, when variations from legacy 
land-use fluxes have fully established.

Figure 5. Decadal average of carbon flux budget terms (bars), and the uncertainty expressed as ±1 standard deviation from the mean (error whiskers). The 
Max Planck Institute Grand Ensemble (MPI-GE) uncertainties are ensemble standard deviations and the global carbon budget (GCB)2020 uncertainties are 
multi-model standard deviations. The dark bars are the MPI-GE and the lighter bars are the GCB2020 values taken from Friedlingstein et al. (2020). The top 
row (a) and (b) are the emissions and the simulated budget imbalance term (c) as shown in Figure 2b, and the bottom row (d, e, and f) are the sink terms.
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is less than the GCB2020 estimate by 0.8 Pg C yr−1 while it is greater than it by 1.3 Pg C yr−1 in the 2010–2018 
decade. However, the range of GCB2020 means is well within the range of values simulated by the MPI-GE. 
Second, there are large differences in the mean ELUC fluxes between MPI-GE and GCB2020 (Figure 5b). 
MPI-GE ELUC is larger compared to GCB2020 in decades prior to 2000, however, these values are also within 
the large uncertainty ranges of the GCB2020. In recent decades, the MPI-GE estimates lower ELUC than 
the GCB2020. Third, SLAND tends to be slightly higher in the MPI-GE for almost all decades (Figure 5e). 
Fourth, SOCEAN mean fluxes in MPI-GE and GCB2020 are very similar (Figure 5d). Lastly, GATM in MPI-GE 
has similar decadal variations as GCB2020, both displaying a dip in the 1990s, and there is no consistent 
bias (Figure 5f).

3.2.2. Un-Bias-Corrected Comparison of Uncertainties

The uncertainty ranges in Figure 5 are based on ensemble standard deviations for MPI-GE (and therefore 
reflect internal climate variability uncertainties) and multi-model standard deviation for GCB2020. These 
ranges can tell us two things: how realistic the MPI-GE range of fluxes is compared to observations, and 
how large uncertainties associated with internal climate variability are compared to other sources of un-
certainty (e.g., from observational measurements or the differing process representations in the different 
GCB2020 models). Therefore, we will determine here whether the GCB2020 mean state lies outside the 
MPI-GE uncertainty ranges for each budget term.

Residual EFF, BIM (based on the budget in Figure 2b) and SLAND (Figures 5a, 5c and 5e) have larger standard 
deviations in the MPI-GE compared to GCB2020, that is, internal variability is a larger source of error than 
observational and model uncertainty (more detail follows in Section 3.2.3). The GCB2020 mean for these 
budget terms falls within the uncertainty range due to internal climate variability, demonstrating the capa-
bility of MPI-GE to capture the observed carbon flux.

On the other hand, ELUC and SOCEAN have a narrower range of internal climate variability uncertainty in the 
MPI-GE compared to the modeled uncertainty in the GCB2020 (Figures 5b and 5d). While the GCB2020 
mean is within the MPI-GE uncertainty for SOCEAN for most decades (indicating consistency between the 
two), ELUC GCB2020 means are outside the corresponding MPI-GE ranges for nearly all decades. However, 
the uncertainty ranges of MPI-GE and GCB2020 overlap for both SOCEAN and ELUC, that is, certain ensemble 
members match certain GCB2020 models. Only, the ELUC 2009–2018 mean and standard deviation of the 
GCB2020 is outside the standard deviation range of uncertainty due to internal climate variability, indicat-
ing clear inconsistency (see discussion Section 4.1).

There is no uncertainty range for GATM from MPI-GE (Figure 5f) since all ensemble members are prescribed 
with the same atmospheric CO2 concentration. The error whiskers in the GATM GCB2020 are derived from 
various observational uncertainties, which are very small compared to the terms that are simulated by dy-
namical models (SLAND, SOCEAN, and ELUC). Because the MPI-GE CO2 concentration starting 2006 is derived 
from the Global Change Assessment Model (GCAM; Thomson et al., 2011), the difference in GATM between 
MPI-GE and the GCB2020 for the last two decades may in part be due to the differences in carbon cycle 
processes that are represented in MPI-ESM and GCAM.

3.2.3. Bias-Corrected Comparison of Uncertainties

To more directly evaluate the magnitude of the historical uncertainties associated with internal climate 
variability compared to the GCB2020, Figure 6 shows the standard deviations where the biases in the means 
have been removed (centered). The models used in the GCB2020 estimates are forced by only one realiza-
tion of the climate state—the actual historical climate evolution. Therefore, the plausible carbon fluxes 
under different climate states cannot be inferred using only the GCB2020, and while the models used in 
the GCB2020 do contain internal climate variability, the multi-model standard deviations only account for 
model uncertainty, but not that from natural variability. If we assume that there is no or negligible uncer-
tainty due to internal climate variability associated with the multi-model GCB2020 standard deviation and 
that the standard deviation of the MPI-GE is entirely due to internal climate variability, then we can find the 
proportion of the total uncertainty attributable to internal climate variability (i.e., the sum of GCB2020 and 
MPI-GE uncertainties; red lines in Figure 6). The importance of internal climate variability decreases with 
time for SLAND and residual EFF and the MPI-GE land sink uncertainty increases faster than the multi-model 
uncertainty in the GCB2020. For the 2009–2018 decade, the contribution of internal climate variability to 
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total uncertainty is 70% for the residual EFF and 60% for SLAND. A constant multi-model uncertainty was 
assumed for ELUC in the GCB2020 and therefore the MPI-GE ELUC uncertainty increases gradually relative 
to it. By the 2009–2018 decade, the uncertainty due to internal climate variability would account for 22% of 

the total ELUC uncertainty. Lastly, approximately 20% of total uncertainty 
is from internal climate variability uncertainty for SOCEAN.

3.2.4. Interannual Variability

The ability of individual ensemble members to capture the IAV (in the 
base period 1961–1990) for each term compared to the GCB2020 IAVs is 
shown in Figure 7. The ranges of the IAVs generally have good overlap 
for the ELUC and SOCEAN budget terms. This means that individual MPI-
GE members can simulate a plausible range of IAV values that are not 
significantly different from the published values from the GCB2020. 
SLAND, however, shows some IAV bias in the MPI-ESM compared to other 
models in the GCB2020. IAV in MPI-GE SLAND tends to be on average 
0.4 Pg C yr−1 larger than other models. A higher IAV may contribute to 
the large ensemble spread in the MPI-GE for SLAND (compare to Figure 5). 
There are large differences between MPI-GE and GCB2020 for EFF, and 
GATM (Figure 7). Evaluation of GATM is difficult because there is no asso-
ciated uncertainty range; the GCB2020 only has one potential realization 
of past emissions and observed CO2 concentration, and the MPI-GE at-
mospheric CO2 concentrations are prescribed. The observationally-based 
GCB2020 uncertainties are only 0.02  Pg  C  yr−1 for GATM and at most 
0.5 Pg C yr−1 for residual EFF and if we use these values as a range on top 
of the GCB2020 IAV, MPI-GE is still outside these ranges.

LOUGHRAN ET AL.

10.1029/2021GB007019

10 of 17

Figure 6. Centered standard deviation of carbon flux from the multi-model global carbon budget (GCB)2020 (solid 
lines) and ensemble standard deviation from the Max Planck Institute Grand Ensemble (MPI-GE) (dashed lines). The 
relative contribution of internal climate variability uncertainty is marked in red (dot-dashed lines corresponding to the 
right-hand axis). The color-coding is the same as that used in Figures 2–5.

Figure 7. Box and whisker plots of interannual variability (IAV) 
calculated as the standard deviation over the base period 1961–1990 for 
the Max Planck Institute Grand Ensemble (MPI-GE; blue) and the global 
carbon budget (GCB)2020 (red). The ranges shown here are derived from 
the ensemble members for MPI-GE, and from multiple model simulations 
for the GCB2020. The boxes mark the median and inter-quartile range, and 
the whiskers mark the full range of values.
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3.3. The Relationship of Historical Probabilities to ENSO

To investigate a potential source of the IAV and uncertainty from internal 
climate variability, we examine here the exceedance probabilities and the 
relationship to ENSO. Figure 8 shows the probability of the magnitude of 
the past carbon fluxes in GCB2020 with respect to the distribution of the 
MPI-GE. Higher values indicate years where the carbon flux for the re-
spective sink was unusually small compared to the MPI-GE distribution 
and thus were more likely to be exceeded under more favorable climate 
conditions. SLAND and SOCEAN have large annual variations in exceedance 
probability. For example, since 1960 there were three years where the 
historical SLAND was so high, related to La Niña, that it had a chance of 
less than 20% to be exceeded and 5 years with SLAND so low that it had a 
chance of more than 80% to be exceeded (Figure 8a). This highlights the 
importance of using a large ensemble to capture the high variability in 
SLAND (see Section  4.5). The cause of these year-to-year variations may 
come from a variety of internal climate variability modes. To investigate 
potential drivers, Figure 9 shows that there are significant correlations 
between the Niño 3.4 index and SOCEAN or SLAND exceedance probability of 
−0.61 and 0.56 respectively (see also Text S1 and Figure S2).

4. Discussion
In summary, SLAND has the largest uncertainty, which emphasizes the 
dominant role of internal climate variability on the land sink (Fig-
ure 3d). This uncertainty gradually increases over time to approximately 
±1.5 Pg C yr−1. While the global SLAND flux and CO2 concentration in-
creases until the middle of the 21st century (Figure 2), afterward its SNR 
of the mean flux nevertheless decreases (Figure 4b). The internal climate 
variability uncertainty in ELUC is relatively smaller at approximately 
±0.2 Pg C yr−1 (Figure 3b). However, the trend in ELUC variability is likely 
due to a combination of sensitivity to initial conditions and the time delay 
associated with legacy land-use change emissions. The SOCEAN variations 
from internal climate variability are similarly small as those in ELUC but 
show almost no trend (Figure 3c). The SLAND internal climate variability 
accounts for about 70% of the total uncertainty that results from both 
internal variability and uncertainties from models and observations 
(Figure 6d), much more than for ELUC (approximately 22%) and SOCEAN 
(approximately 19%). The standard deviations of the MPI-GE compare 
well with the uncertainty ranges of the GCB2020 for most budget terms: 

with respect to the ensemble standard deviation against multi-model standard deviations (usually at least 
an overlap, Figure 5), and with respect to individual ensemble IAV against individual model IAV in the 
GCB2020 (Figure 7). Finally, we show that the effect of internal climate variability on the historically ob-
served exceedance probabilities of carbon fluxes to the land and ocean have significant but moderate corre-
lations to ENSO (Figure 9).

4.1. Differences Between MPI-GE and GCB2020

One of the most striking differences between the MPI-GE and the GCB2020 estimates is in ELUC, where the 
forced ensemble mean signal from land-use change in the RCP4.5 scenario differs from the observed LUH2 
data in the last historical decade. The MPI-GE ELUC transitions to a net sink at around 2020, while the forcing 
used in GCB2020 estimates sustained ELUC until this period (Bastos et al., 2020; Friedlingstein et al., 2020). 
Given that the variance of ELUC ensemble members is quite small compared to the forced mean response, 
the disparity between the RCP4.5 land-use change and the GCB2020 becomes evident. The RCP4.5 scenario 
is characterized by a high CO2 price that encourages investment into agricultural intensification rather than 
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Figure 8. Probability of exceedance that the Max Planck Institute Grand 
Ensemble (MPI-GE) carbon fluxes are greater than the historical global 
carbon budget (GCB)2020 mean. Lower values indicate years where the 
carbon flux to the respective sink was unusually high compared to the 
MPI-GE distribution (vice versa for large values). The vertical lines mark El 
Niño (red) and La Niña (blue) years where Niño 3.4 index is greater than 1 
standard deviation from the mean.
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expansion. Consequently, re-/afforestation would occur following widespread abandonment of agricultural 
lands and substantial deforestation reduction since 2007 (Thomson et  al.,  2011). Despite the process of 
forest regrowth (such as that in North America and Europe; Doelman et al., 2020) being slow, the MPI-
GE reduction in ELUC associated with stopping deforestation globally (in particular the Amazon and other 
tropical regions) is quick and modeling studies simulate substantial carbon uptake by re-/afforestation and 
reduced deforestation. For example, Sonntag et al. (2016) estimate an uptake of about 200 Pg C over the 21st 
century with RCP4.5 land-use change in an RCP8.5 climate compared to unmitigated deforestation. How-
ever, the trajectory of RCP4.5 land-use change has not been followed until now, and so the land-use-related 
mitigation potential remains untapped. This explains the large divergence of our results from the GCB2020 
estimates for the last 15 years.

There are also considerable differences in the “compatible” residual EFF in the MPI-GE compared to the 
GCB2020 values. If we assume the GCB2020 estimate to be the closest estimate to the mean in reality, then 
the MPI-GE first underestimates the EFF then overestimates it. The discrepancy may arise due to the closure 
of the carbon balance and the consequent effect that SLAND has on the compatible emissions. On the other 
hand, the GCB2020 has an imbalance term that includes carbon fluxes that remain unaccounted for. This 
term would include errors introduced by the calculation of budget terms independently (e.g., model bias 
errors in ELUC and SLAND, e.g., Dai & Fung, 1993), errors from incomplete coverage of observations, and 
minor terms that are not included in the budget decomposition. For these reasons, we would not expect the 
MPI-GE to accurately reproduce EFF.

Lastly, another approach to evaluating the MPI-GE against the GCB2020 is to verify that there are no trends 
in the budget imbalance relative to the GCB2020. If the compatible residual EFF in the MPI-GE budget is 
replaced with the CMIP5 EFF values (Figure 2b), a budget imbalance term (BIM) can be calculated that is 
the residual carbon flux that is not accounted for under each ensemble member's climate state. This simu-
lated BIM term (Figure S1f) derived from the MPI-GE is largely consistent with the BIM from the GCB2020 
and shows no significant long-term trends over the analysis period. Both MPI-GE and GCB2020 show as 
a positive BIM around the 1950s and again more briefly in the 1990s (suggesting either an overestimate in 
the emissions or underestimate in the sinks). While Friedlingstein et al. (2020) could not directly attribute 
a cause to the BIM, they suggest that its variations originate mostly from SLAND and SOCEAN. Specifically, they 
suggest that it could originate from internal variability which models cannot capture with a single realiza-
tion. However, the multiple realizations in the MPI-GE BIM range also show positive values in the 1950s, 
which suggests that it is more likely from common deficiencies in model physics, resolution, or forcing data. 
In particular, the land-use forcing could explain the 1950s BIM, as the LUH2 forcing creates large emissions 
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Figure 9. Regression and correlation analysis between Niño 3.4 index and the probability of exceedance for carbon fluxes (a) SOCEAN and (b) SLAND. The units of 
the slope are in °C−1.
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in the 1950s (e.g., Hansis et al., 2015) not captured by datasets based on other land-use forcing such as FAO 
(Houghton & Nassikas, 2017).

4.2. Allowable Emissions Under RCP4.5

The standard deviations in the MPI-GE (Figure 2) are derived either directly from the ensembles or are in-
ferred from other budget terms, and therefore they should be interpreted with care. The standard deviation 
of residual EFF is mostly derived from SLAND due to its calculation as a residual. In this case, the ranges here 
are merely a range of emissions that are compatible with the likely range of climate states and the corre-
sponding strengths of the ocean and land sinks. Therefore, the residual EFF uncertainty estimates from MPI-
GE should not be interpreted as variations in fossil fuel emissions due to internal climate variability-related 
global demand.

The net sinks and the corresponding compatible residual EFF range are still useful when deciding what 
the allowable future emissions may be. They indicate the allowable emissions (accounting for internal 
climate variability) if appropriate policies are implemented to successfully mitigate climate change in a 
manner that is consistent with the RCP4.5 scenario. Therefore, the maximum and minimum ensemble 
ranges of 9–18 Pg C yr−1 in residual EFF at 2050 denote allowable emissions under this scenario (2019 was 
9.95 Pg C yr−1 as per the GCB2020). In Figure 2, the ±1 standard deviation range of the ensemble is shown 
instead. In the comparison, it is clear that extreme outliers occur mainly at the maximum end. These max-
imum values may occur before fossil emissions have to drop steeply in the MPI-GE and level off at around 
5 Pg C yr−1 if the 3 C target is to be met by 2100. This evolution matches well the fossil emissions estimates 
from GCAM (Thomson et al., 2011) but allows some higher peak emissions than the Integrated Assessment 
Model assumed, suggesting smaller assumed sinks and slightly larger ELUC in the simplified carbon cycle of 
this assessment model (see Figure 2 to compare to EFF and ELUC from GCAM).

As highlighted by Mankin et al. (2020), decision makers need to be provided the full range of possible out-
comes in order to make appropriate decisions. For example, policy decisions based only on the most likely 
outcome may lead to a blowout of greenhouse gas inventory targets, particularly if SLAND performs poorly 
within a given 5-year accounting period of the Paris Agreement's Global Stocktake (UNFCCC, 2015, 2017). 
On the other hand, caution should be taken when considering the efficacy of past decision-making be-
cause internal variability uncertainties can potentially obfuscate emission reduction efforts such as re-/
afforestation.

4.3. Trends in Uncertainty

The increase in standard deviation in the ensemble members for SLAND may be due to an increase in the 
variability in the climate state as is expected under a warming climate. For example, Maher et al. (2019) find 
an increase in the global mean precipitation variability in the MPI-GE 1% CO2 scenario. The trend in SLAND 
internal variability can also potentially arise from the increase in the magnitude of fossil emissions, which 
is initially forced in the MPI-GE as the prescribed atmospheric CO2 concentration. Larger emissions would 
result in higher atmospheric CO2 concentrations and increased potential carbon uptake by vegetation via 
so-called CO2 fertilization (Walker et al., 2021). This combined with the effect of unfavorable climatic con-
ditions (i.e., heat and drought stress) on the carbon uptake by plants acting on an increased carbon stock, 
results in a larger variance depending on the climate conditions. The increasing internal variability makes it 
more likely that SLAND becomes near-neutral by the end of the century compared to the start of the historical 
period (Figure S1d). This contrasts somewhat with SOCEAN, which has a relatively lower variance and does 
not have a trend in the historical or future periods under the RCP4.5 scenario (a similar standard deviation 
is found by Li & Ilyina, 2018). However, under higher emissions scenarios SOCEAN has been shown to also 
have increasing trends in CO2 flux standard deviation (see Figure 1 of Maher et al., 2019).

The trend in ELUC may arise for several reasons. First, the legacy effects of land-use change (mostly from 
wood harvest) take time to manifest. The anthropogenic pools in which CBALONE stores deforested bio-
mass decay to the atmosphere at time scales of 1–100 years. The variance of the ensemble members there-
fore not only depends on the climate variability of the current year but also on that of preceding years. Con-
sequently, it would take at least 100 years for the full variance due to land-use change to manifest. Similarly, 
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the carbon pool of woody, slowly decomposing litter left on site after 
clearing or harvesting will build up over time as land-use transitions oc-
cur. Thus, more litter is available to react to the climate-dependent micro-
bial decomposition. Note that while the study of Yue et al. (2020) includ-
ed this effect in their assessment of the contribution of land-use to the 
interannual variability of the land carbon pools, their high IAV of ELUC 
(30%–45% of net land exchange IAV, compared to 15% in this study) also 
originates from attributing part of SLAND (the part on managed land) to 
ELUC. Internal variability alone, our study shows, is about 0.25 Pg C yr−1 
standard deviation for ELUC in recent decades (Figure 3) or 20% of the 
total uncertainty (model plus internal; Figure 6). IAV of ELUC in the MPI-
GE is only slightly larger than in the GCB2020 (Figure 7), indicating that 
the main driver is not internal climate variability, but land-use forcing.

While the data analyzed in this study is annual and much of the anal-
ysis concerns IAV, we conducted simulations for several centuries, and 
therefore, the longer time scale variations must also be considered. There 
are centennial-scale internal variations in the land carbon content in JS-
BACH3 and CBALONE (see Figure 2 in Schneck et al., 2013) which could 
influence trends and variability of SLAND and ELUC for simulations that 

run for several hundred years. These variations have a periodicity of ∼250 years and consist of a change in 
the total land carbon content of ∼8 Pg C. This corresponds to an average land carbon flux of 0.03 Pg C yr−1 
or roughly 2% of the MPI-GE SLAND standard deviation. Schneck et al. (2013) suggest that these long-dura-
tion variations in land carbon content are linked to variations in anthropogenic land cover changes, and the 
modulation of soil respiration by long-term changes in temperature from volcanism and solar forcing. Since 
the duration of the MPI-GE and CBALONE simulation in this study is 250 years, it is possible that these 
long-term variations may affect the estimates of internal climate variability uncertainty in SLAND.

4.4. ENSO as a Potential Source of Variability

ENSO is positively correlated with SLAND exceedance probabilities and negatively correlated with SOCEAN 
exceedance probabilities, which is consistent with how ENSO affects CO2 fluxes to the land surface and 
ocean. During La Niña, cool and moist mean global conditions tend to encourage vegetative productivity on 
land and increase land carbon storage, while El Niño drought conditions put widespread stress on ecosys-
tems and suppress productivity (Gonsamo et al., 2016; C. D. Jones et al., 2001). Meanwhile, over the ocean, 
stronger pacific equatorial up-welling during La Niña brings dissolved inorganic carbon-rich subsurface 
water to the surface, thereby favoring CO2 outgassing and reducing net CO2 uptake (Feely et al., 1999; Jones 
et al., 2001). The cooler sea surface temperatures during La Niña events can increase the dissolution of CO2 
and can reduce CO2 outgassing, but this is a smaller term relative to the up-welling-induced CO2 outgas-
sing. This could explain the diverging response of SOCEAN to ENSO compared to that of SLAND. The moderate 
correlation suggests that while ENSO may have a considerable impact on IAV in CO2 fluxes, it is very likely 
that other climate modes and internal dynamics are also important. No significant correlations with other 
climate modes could be found at the global scale, however, the impacts of climate modes on regional budg-
ets may be considerable.

4.5. Importance of Ensemble Size

Lastly, it is important to discuss the effect of ensemble size on the results and whether or not using 100 mem-
bers is enough or more than necessary. A framework to assess this is demonstrated in Milinski et al. (2020). 
In accordance with this framework, our goal is to quantify variability using the metric of ensemble standard 
deviation, to within 5% accuracy of the full 100-member variance. We estimate standard deviation using 
30 iterations of subsample sizes from 3 to 100 members without replacement. Figure 10 suggests that at 
least 40 ensemble members are required to capture the standard deviation of SLAND to within ±5% accuracy. 
Since SLAND has the largest standard deviation of all budget terms, the accuracy of a sub-sample of the car-
bon budget decomposition would depend on this term. The other budget terms (Figure S5) do not display 
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Figure 10. Range of ensemble standard deviation (2080–2100) as a 
function of sample size from 30 subsamples for SLAND.



Global Biogeochemical Cycles

variations as large as SLAND, and therefore, 40 members are sufficient for those terms. Whether this result is 
representative of other models that simulate internal variability through ensemble simulations depends on 
the budget terms. In the absence of extensive multi-model large ensemble projects that provide the full suite 
of budget terms, including the split into SLAND and ELUC, we evaluated this based on the IAV in the models 
participating in the GCB2020 simulations that are forced with observed climate (Figure 7). A key assump-
tion is that MPI-GE is capable of accurately representing IAV, and the fact that MPI-GE slightly overesti-
mates SLAND IAV by 0.4 Pg C yr−1 compared to other models in the GCB2020 suggests that the minimum 40 
ensemble members required here may be a conservative estimate.

5. Conclusion
In this study, we use a large ensemble of single-model simulations from the MPI-GE and a subcomponent 
of JSBACH3 (called CBALONE) to decompose the global anthropogenic carbon budget into fossil and land-
use change emissions, atmospheric growth, and natural land and ocean sinks. Through its 100 ensemble 
members, the MPI-GE captures the uncertainties associated with internal climate variability, which we 
compare to the 2020 GCB's uncertainty and interannual variability, and calculate exceedance probabilities 
of the past carbon fluxes with respect to a full range of climate variability states. We estimate about 40 
ensemble members are required to capture internal variability in SLAND, and thus, all budget components. 
Contrary to SLAND, to reduce uncertainty in SOCEAN and ELUC estimates, we must prioritize reducing observa-
tional error and model spread rather than capturing internal variability. Despite its high internal variability, 
SLAND (or SOCEAN) is likely not the reason behind the high budget imbalance found in previous studies for the 
1950s, which suggests common model deficiencies or biases in the land-use forcing.

We also present a novel estimate of the uncertainty in land-use change emissions associated with internal 
climate variability at approximately ±0.2 Pg C yr−1, which we estimate would account for about 20% of the 
total (internal and multi-model) land-use change emissions uncertainties. Land-use change emissions thus 
contribute little to interannual variability of the annual carbon budget and are driven rather by land-use 
forcing than by climate variability.

We investigate future changes in the GCB under RCP4.5 and demonstrate upper and lower bounds on the 
allowable future CO2 emissions depending on climate variations. The RCP4.5 scenario exemplifies a future 
where climate policies are implemented to limit warming to less than 3 C over present-day conditions. Our 
study largely confirms that the allowable emissions under the assumptions of the socioeconomic model 
GCAM are compatible with RCP4.5, though slightly higher emissions of up to 13 Pg C yr−1 on average 
would be allowed in the MPI-ESM. The minimum of the full ensemble range is 9 Pg C yr−1 and would be 
the lower risk limit to ensure we stay below 3°C warming for all possible climate states, while the maximum 
of 18 Pg C yr−1 would be the higher risk limit for the climate states leading to stronger land CO2 uptake. 
Our results suggest that internal variability of the natural land sink increases over the 21st century, which 
puts the steady persistence of carbon removal by land ecosystems at risk. We also show that even when 
accounting for random variations in climate and natural sinks, the emissions in recent decades for land-use 
change—characterized by continuing global deforestation—are dangerously inconsistent with the RCP4.5 
goals and further erode our ability to successfully mitigate future warming.
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