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Abstract

Automated image-based plant identification has experienced rapid development and has been already used in research 
and nature management. However, there is a need for extensive studies on how accurately automatic plant identification 
works and which characteristics of observations and study species influence the results. We investigated the accuracy of 
the Flora Incognita application, a research-based tool for automated plant image identification. Our study was conducted 
in Estonia, Northern Europe. Photos originated from the Estonian national curated biodiversity observations database, 
originally without the intention to use them for automated identification (1496 photos, 542 species) were examined. 
Flora Incognita was also directly tested in field conditions in various habitats, taking images of plant organs as guided 
by the application (998 observations, 1703 photos, 280 species). Identification accuracy was compared among species 
characteristics: plant family, growth forms and life forms, habitat type and regional frequency. We also analysed image 
characteristics (plant organs, background, number of species in focus), and the number of training images that were 
available for particular species to develop the automated identification algorithm. From database images 79.6 % of species 
were correctly identified by Flora Incognita; in the field conditions species identification accuracy reached 85.3 %. Overall, 
the correct genus was found for 89 % and the correct plant family for 95 % of the species. Accuracy varied among different 
plant families, life forms and growth forms. Rare and common species and species from different habitats were identified 
with equal accuracy. Images with reproductive organs or with only the target species in focus were identified with greater 
success. The number of training images per species was positively correlated with the identification success. Even though 
a high accuracy has been already achieved for Flora Incognita, allowing its usage for research and practices, our results can 
guide further improvements of this application and automated plant identification in general.

Keywords:   Artificial intelligence; automated plant species identification; citizen science; convolutional neural networks; 
deep learning; Estonian flora; Flora Incognita; identification application; plant identification.

  

Introduction
Knowledge about biodiversity is critical for nature 
conservation. In the age of consistent global loss of species 
and habitats (Ceballos et al. 2015), the need for trained experts 
with good species knowledge is of growing importance to 
enforce the necessary protection measures for the flora and 

vegetation. Unfortunately, the species knowledge has recently 
been receding amongst the public (Hopkins and Freckleton 
2002). Plant blindness—an individual’s inability to notice 
plants around them and appreciate their importance—has 
increased, especially among the youth (Jose et al. 2019). While 
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artificial intelligence such as readily available mobile device 
applications potentially makes plant identification more 
widely available, there is a need to test their promises and 
limitations, especially before using them in research and 
nature management.

Technical developments have gradually found their way 
into plant identification (Joly et  al. 2014; Goëau et  al. 2016; 
Lee et  al. 2015; Wäldchen and Mäder 2018; Christin et  al. 
2019). This is the result of the enormous achievements in 
the field of machine learning. The combination of increasing 
computer power and the recent boost in data availability 
led to significant advances in machine learning algorithms, 
notably deep learning technologies. From different deep 
learning methods, convolutional neural networks (CNNs) 
(LeCun et  al. 2015) allow the applications to have superior 
recognition performance (Krizhevsky et al. 2017; Russakovsky 
et  al. 2015) and therefore form the basis of successful and 
efficient automated plant identification (Wäldchen and 
Mäder 2018; Christin et  al. 2019). Deep CNNs have shown 
accuracies equivalent to human performance on general 
object recognition tasks (Russakovsky et  al. 2015) and on 
fine-grained species identification tasks (Bonnet et  al. 2018; 
Goëau et  al. 2018; Valan et  al. 2019). How deep learning has 
improved classification accuracy in plant identification is 
demonstrated in the results of the PlantCLEF challenges, 
a plant identification competition hosted since 2011 as an 
international evaluation forum (http://www.imageclef.org/). 
Identification performance improved year after year despite 
the task becoming more complex by increasing the number 
of plant species. A tremendous gain in classification accuracy 
is visible in 2015 when the identification accuracy increased 
from 45 to 65 % while the species correctly identified doubled 
from 500 to 1000 species. This improvement is attributed to 
the adoption of deep learning CNNs (Affouard et al. 2017).

These approaches resulted recently in usable tools for 
automated plant identification via mobile devices. Prominent 
examples here are Pl@ntNet (Goëau et  al. 2014), iNaturalist 
(iNaturalist 2021) and Flora Incognita (Mäder et al. 2021). All three 
are developed within a scientific context and already have a high 
popularity with several million downloads and could be a future 
way of accelerating the process of learning the species and 
collecting data about their distribution and dynamics (Bonnet 
et  al. 2020). In the current study we focus on Flora Incognita, 
which is a widely used application for automated image-based 
plant identification in Europe.

Automated image identification can be complemented by 
additional data, for example observation metadata such as 
location or time of the year. Pl@ntNet users can select a project 
from different regions, each project containing plants from 
a certain region (e.g. plants of Western Europe, North Africa 
etc.). iNaturalist and Flora Incognita give the seasonality of the 
observations for the taxon, making it easier for the user to select 
the correct species. Applications provide several images and 
website links to the suggested taxa, from which the users can 
check the identification validity. While Pl@ntNet and iNaturalist 
are evaluating the automatic recognition collaboratively by 
the user community, Flora Incognita has not yet integrated this 
mechanism. However, with the large number of observations, 
it will be more and more difficult in the future to evaluate each 
observation by humans.

For wider use (e.g. in citizen science projects or for plant 
species monitoring; Mahecha et al. 2021), it is critical to determine 
the applications’ accuracy. So far, plant image identification 
algorithms have mainly been tested and compared on different 

benchmark data sets (e.g. in the PlantCLEF challenge) but there 
have been just a few attempts to evaluate the applications’ 
performance under realistic use conditions. So far those have 
been staged in a laboratory environment (Lüdemann 2020); with 
pictures taken from a database (Biluk et al. 2020; Jones 2020) or 
have used a limited number of field observations (Schmidt and 
Steinecke 2019). Still, there is a lack of studies which evaluate 
artificial intelligence-based plant identification using a large 
number of both database and field observations comparatively 
and explore identification success among taxonomic and 
ecological groups. The possible impact of image characteristics 
(e.g. background, number of species in focus) would also be very 
valuable information to obtain a higher identification success.

The aim of this study is to determine the identification 
accuracy of Flora Incognita for the Estonian flora. We compared 
Flora incognita’s ability to identify plants from pictures taken from 
the Estonian curated biodiversity observations database and 
from field observations taken with the application. Furthermore, 
we examined the application’s performance across larger plant 
families, growth forms, Raunkiær’s life-form categories, species’ 
main habitat types and frequency in Estonia. We explored the 
importance of image characteristics (reproductive or vegetative 
organs, one or more species in the image, and background). 
Finally, we tested if the amount of training images per species is 
related to identification success.

Materials and Methods

Study area

Estonia is situated south of Finland and west from Russia beside 
the Baltic Sea. The elevation is quite flat, with a maximum height 
of 317 m over the sea level. While small in size (45 000 km2), the 
variation of climate and geological conditions make the local 
ecosystems rich in biological diversity (Paal 1998). The geology 
and soils are complex, with some of the soils situated on Silurian 
and Ordovician limestones, some on Devonian sandstone, the 
landscapes have been influenced by the last ice age 11 000 years 
ago. The climate conditions situate Estonia on the border of 
the taiga biome of Finland and Russia and deciduous forests 
of Central Europe. Estonian vegetation consists of coniferous 
and mixed forests (forest coverage of Estonia is about 50  %), 
wetlands (bogs and marshes, area coverage initially about 20 %, 
about quarter of them still relatively intact) and agricultural 
landscapes (fields and pastures), with some semi-natural 
habitats (wooded meadows, alvars) (Paal 1998). Estonian plant 
diversity hotspots are located mostly in Northern and Western 
Estonia (Kukk et al. 2020). However, Southern and Eastern part of 
the country have slightly distinct flora.

Natural Estonian flora consists of about 1500 species of 
vascular plants, 50 of them belong to Pteridophyta and four to 
Gymnosperma (Kukk 1999). The largest family is Asteraceae (354 
species), following by Cyperaceae (95), Poaceae (92) and Rosaceae 
(89). There are ca. 80 widely occurring naturalized plant species 
and 700 non-native species which sometimes occur in the 
wild. Thirteen alien vascular plant species have been listed 
as threatening natural biodiversity (https://www.riigiteataja.
ee/akt/12828512). A  third of the Estonian natural species have 
distribution areas in Europe and Siberia, 23 % in Europe and 16 % 
have circumpolar distribution (Kukk 1999). Estonia is located at 
the distribution border for one-third of the natural plant species. 
The most common is NE and N borders (both 8  %), followed 
by SW (4  %), NW and O (both 3  %), other borders have lower 
frequencies.
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The Flora Incognita application

We used Flora Incognita, a free application developed by the 
Technical University Ilmenau and the Max Planck Institute of 
Biogeochemistry (Fig. 1). Flora Incognita was originally developed 
for the German flora. In 2020, the application was already able 
to identify 4848 vascular plant species covering the Central 
European flora. Because of this geographic focus, this app 
seemed to be the most appropriate fort he current study, as the 
Estonian flora is largely a subset of the Central European flora.

Depending on the difficulty of identification, the application 
analyses one or several smartphone photos from predefined 
plant organs and perspectives. Images of the whole plant or 
of plant organs, such as flowers, leaves or fruits, are gradually 
transferred to the Flora Incognita server until the plant can be 
identified to species level and the result is then transferred 
back to the user’s device. Sometimes several taxa are suggested; 
rarely there are no suggestions when similarity to all species in 
the application’s database is low. The interactive classifier uses 
a task-specific CNN cascade, a standard choice for analysing 
images (LeCun et  al. 2015). Taxonomy for species is based on 
Catalogue of Life (CoL), with some complex genera (e.g. Hieracium, 
Rubus, Sorbus, Taraxacum) not fully resolved at the species level. 
A detailed description of the application can be found at Mäder 
et al. (2021).

Study settings

We used two different settings. Firstly, we took images from 
a database and had them identified with the Flora Incognita 
classifier. In the following referred to as the ‘database’ study. 
Secondly, we tested the application directly in the field. In the 
following called the ‘field’ study. Table 1 displays an overview of 
the two study settings.

Combined, our study consisted of 2494 observations with 
3199 images from 588 species, 365 genera and 89 families. The 
selected species were a subset of the 4848 species that can be 
potentially identified with the application. The database study 
initially also included images of Draba incana, Lychnis chalcedonica, 
Moehringia lateriflora, Rodgersia aesculifolia and Salix lapponica, 

which are not part of the Flora Incognita species list; thus, the 
machine learning model was not trained to classify them and 
these species were not included to further analyses. The Flora 
Incognita’s identification results for these species were evidently 
not successful and typically no species are displayed for the 
user. For information, we obtained the algorithm’s best matches 
for these images from the server (see Supporting Information—
Appendix 1 for more information).

Details of the database study

We used eBiodiversity—a portal for the taxa found in 
Estonia (https://elurikkus.ee/en/) in the database study. The 
eBiodiversity database is developed by University of Tartu 
Natural Museum and Botanical Garden, it consists of citizen 
and expert observations and is curated by expert moderators, 
assuring the quality of the data. The database uses the PlutoF 
Data management and Publishing Platform (Abarenkov et  al. 
2010).

Field-taken images of native or naturalized vascular plants 
were downloaded from eBiodiversity. Altogether over 2500 
photos were received, the photographs were manually sorted to 
determine the ones suitable for identification. Most exclusions 
were images with too low resolution, images of multispecies 
communities and photographs where the plant individual 
was out of focus. The selected photos were identified by the 
same algorithm the application uses but instead of uploading 
them to the application, the identification took place directly 
on the project server (service is not publicly available). The 
identification was conducted in March 2020.

Details of the field study

The fieldworks were concentrated to SE and NW Estonia (Fig. 2), 
as the first has soils on sandstone and the latter on limestone, 
thus having differences in plant species composition. The 
observations included plant individuals from varying habitats, 
including meadows, fields, forests and semi-natural habitats 
(alvars and wooded meadows). The fieldworks took place from 
March 2020 until August 2020, therefore including of species 

Figure 1.  Screenshots of the Flora Incognita application (left to right): title page, previous observations page, identification page and the list of species.
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with different life cycles and phenological periods, most of the 
observations were taken in June, July and August 2020.

An observation consisted of: (i) manual identification of 
the plant individual (using Estonian plant key book; Krall 
et  al. 2010). (ii) Automatic identification of the individual with 

the application. (iii) Inserting the observation into the PlutoF 
database via Legulus (a data collecting application for PlutoF; 
https://legulus.tools/#/), the experts of PlutoF database manually 
verified the traditional identifications. The observations were 
made with a Samsung Galaxy A40 phone camera. The resolution 

Figure 2.  A map of the observation locations of the field study in Estonia (study region marked on the inset map of Europe), the dot size is indicating the number of 

observations in logarithmic scale (ranging from 1 to 500).

Table 1.  Comparison of the database and field study settings.

Factor Database study Field study

Identification task Identification using only the 
classifier algorithm in a server 
without the application

Identification with the application 
directly in the field

Number of species 542 280

Number of observations 1496 (one image each) 998 (with 1703 images)

Number of genera 349 203

Number of families 89 72

Image perspective type No predefined perspective Predefined perspectives proposed by 
the application

Images per identification 
task

1 Depending on the certainty of 
identification, Flora Incognita required 
one or more images per identification

Replicates per species 1–16 images (median 2) 1–5 observations (median 4)

Verification of the 
identification

Record in database (confirmed 
by an expert)

Dichotomous key book + database 
expert confirmation

Plant organs: reproductive/
reproductive and 
vegetative/vegetative

496/720/280 332/450/216

Number of species in the 
image: single species/
multiple species

1168/328 776/222 

Background: no 
vegetation/non-natural/
vegetation

763/28/705 632/45/321
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of the camera was 16.0 megapixels and aperture F/1.7 (Galaxy 
A40 Enterprise Edition 2021) and it was used with 16:9 ratio and 
automatic ISO and white balance.

Data analysis

The taxonomy from the eBiodiversity database, key book 
identification and that of application’s suggestions were 
manually unified according to the Flora Incognita taxonomy. 
Synonyms were merged according to Global Biodiversity 
Information Facility (GBIF.org 2021), World Flora Online (WFO 
2021) and Plants of the World Online (POWO 2019). Subspecies 
and varieties were merged to species level. In some cases 
the species was used under wide definition, for example 
Dactylorhiza baltica was merged under Dactylorhiza majalis, as it 
can be considered a subspecies of D. majalis. World Flora Online 
taxonomy backbone version 2019.05 (WFO 2021) was used to link 
the species to the corresponding plant families and to match our 
data to species’ characteristics in other data sets, we used the R 
package WorldFlora (Kindt 2020). All observations were divided 
into four classes: (i) species correctly identified as the first 
suggestion, (ii) genus correctly identified as the first suggestion, 
(iii) family correctly identified as the first suggestion and (iv) no 
correct identification to family level. The identification results 
from both studies can be found in Zenodo.org repository (see 
Data Availability section).

We determined the percentages of species in each 
identification class. A  single species often had several 
observations in both database and field studies. Out of those 
observations we repeatedly selected a random one. Thus, each 
species was used once to find the percentages of different 
identification classes. The selection of one observation per 
species was iterated 1000 times. Results were averaged from the 
iterations.

To compare the identification results from database and field 
study, we only used the species which were present in both data 
sets (234 in total). Selection of replicates was identical to that 
of described above. We calculated for each identification class 
proportion of iterations where the percentage of species from the 
field study was higher than in the database study. Proportions 
<0.05 would indicate a significant difference between database 
and field study in a particular identification class (P < 0.05).

In the following analyses we merged the data from both 
database and field studies. To explore how plant identification 
varies across taxonomic groups, we selected 16 families 
(altogether 362 species) with 10 or more species. Percentages 
of identification accuracy were calculated with iterations as 
described above. We made a cross table of all combinations and 
used Fisher exact test in each iteration. Median and maximum 
P-value from 1000 iterations were calculated. We further tested 
which cell value (combination of identification accuracy class 
and family) is lower or higher than expected by random. For that 
we used the averaged occurrences in the table and generated 
1000 random tables with given marginals using R stat function 
r2dtable. This function uses Patefield’s randomization algorithm 
with fixed row and column sums (Patefield 1981). For each cell 
we calculated z-score as [(observed value − mean random value)/
standard deviation of random value]. Significance of z-score 
was obtained from probit function (normal distribution with 
mean = 0 and SD = 1). Probabilities <0.05 or >0.95 were marked 
on graphs.

Species frequency was estimated by counting 9 × 11 km grid 
cells from the Estonian Flora Atlas 2020 (Kukk et al. 2020). In each 
iteration we calculated the median of species frequency in each 
identification class. In addition, the null hypothesis was created 

by selecting the same number of species per identification 
class randomly and calculating median frequency from them. 
Significances (P-values) were found for each identification 
class as the proportion of iterations where randomized data 
(null model) gave a larger median than the median from the 
empirical data.

We compared our results with several characteristics of 
the species. Plant growth-form data were taken from the 
Flora Incognita application data set, Raunkiær life-form data 
originated from the BiolFlor database (Kühn et al. 2004) and was 
supplemented with data from the Info Flora database (Info Flora 
2021). The main habitat of species was taken from the Estonian 
flora (Eesti NSV floora 1959–1984). Differences were tested 
using the Fischer exact test and cell-based randomization, as 
described above.

All observations from both data sets were annotated 
according to image characteristics (based on one image in the 
database study and one or more images from the field study; 
Table 1). We noted presences and absences of reproductive 
and vegetative organs of the photographed plant individual 
(reproductive, both reproductive and vegetative, or vegetative). 
We marked whether only the pictured species was in focus or 
other plant species as well. Finally, we classified the background 
of the vegetation (images where only the pictured plant was 
in focus, background was either blurred or soil; an artificial 
background was used, e.g. book cover, photographer’s palm, 
buildings; or the pictured plant was within other vegetation).

The importance of image characteristics for identification 
was tested by logistic generalized mixed model (R package 
lme4, function glmer; Bates et  al. 2015). We used binomial 
study variable (identified to species or not) since models with 
ordered classes did not converge due to very uneven class 
sizes. In order to filter out the effect of species identity, species 
was used as a random factor. Data from species with at least 
three observations were used (2158 observations qualified). We 
used Analysis of Deviance (type III Wald chi-squared tests, R 
package car, function Anova; Fox and Weisberg 2019) to find the 
significance of three annotated image characteristics. We used 
estimated marginal means to test differences between factor 
levels (R package and function emmeans; Lenth 2021).

We tested if species-level identification success (proportion 
of observations identified to species) is related to the number 
of training images used for Flora Incognita (Pearson correlation, 
the number of training images was ln-transformed). To further 
interpret our results, we also explored if the number of training 
images is different among studied plant families, growth 
forms, life forms and main habitats (dispersal analysis of 
type III and estimated marginal means post hoc comparisons). 
The correlation between species frequency in Estonia and the 
number of training images per species was tested with Pearson 
correlation (the number of training images was ln-transformed).

Results
Both in the database and field study 79–85  % of observations 
were correctly identified to species (Fig. 3). The plants were 
identified to at least the correct genus as the first suggestion in 
over 89 % of the cases. The correct plant family was suggested 
on more than 95 % of the observations in both studies.

When we compared both studies by identification accuracy 
only using species common in both data sets, there was no 
significant difference in the accuracy of database and field 
identification (P-values for different identification classes were 
between 0.45 and 0.50). In the database study 85.9  % of the 
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species common in both data sets were identified to species 
level and in the field study the corresponding value was 86.1 %.

Identification accuracy varied greatly among the larger 
plant families (at least 10 species in the study). Fischer exact 
test gave a median P-value of <0.001, showing a very significant 
difference between larger plant families in the study (Fig. 4).  
Compared to random expectation, Fabaceae was more often 
identified at the species level, Ericaceae at genus level. Four 

families—Apiaceae, Poaceae, Polygonaceae and Rosaceae—
were identified to the species level less than was expected 
randomly. Polygonaceae was more often not identified even to 
the family level.

There is a total of 540 9 × 11 km grid cells on the Atlas of 
the Estonian Flora map. The number of cells gives an accurate 
representation of how frequent the species is in Estonia. We 
found that the median frequency of species from different 

Figure 4.  Identification accuracy of species in larger families (number of used species in parentheses). Cells in the table which have significantly larger or smaller 

values than expected by chance (P < 0.05) are marked by arrows up or down, respectively.

Figure 3.  Plant identification accuracy in database and field studies (identification percentages to species, genus and family level).
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identification classes did not differ from the random expectation 
(P-values ranging from 0.112 to 0.475). The main habitat of 
the species did not make a major difference in identification 
accuracy, the median P-value was 0.22.

The analysis on the growth form of species demonstrated 
that herbs were identified with 83.7  % accuracy to species 
level, being a higher value than expected by chance; the other 
categories remaining between 63.4 and 69.4 % (Fig. 5). Median 
P-value calculated with Fischer exact test was 0.0004, showing 
a significant difference. Ferns did not reach identification at 
family level more often than expected by chance.

The life-form analysis displays that hemicryptophytes were 
identified at the species level more often than expected (82.5 %) 
while hydrophytes and nanophanerophytes were identified less 
often, having values just over 60  % (Fig. 6). Fischer exact test 
median P-value was 0.005.

When analysing characteristics of observation images 
while controlling the effect of species, we found that the type 
of plant organs visible and the number of species in the image 
affected the identification success (to species level) while 
image background was not significant (Fig. 7). Images with 
reproductive organs (with or without vegetative organs) were 
identified more successfully than images with vegetative organs 
only. When there is only one species in the image, the image 
is identified more accurately than one with multiple species 
visible. Supporting Information—Appendix 2 presents some 
examples of these significantly different groups.

The number of training images per species used for Flora 
Incognita machine learning algorithm was positively correlated 
to identification success (percentage of images identified to the 
species level; Fig. 8). The number of training images differed 
among larger families, growth forms, life forms and species 
habitats, and it correlated positively with the species frequency 
in Estonia [see Supporting Information—Appendix 3].

Discussion
With extensive database and field studies we demonstrated 
that the artificial intelligence-based application Flora Incognita 
was able to identify a great majority of plant images from 
Northern Europe to the correct species, or at least identify the 
correct genus or family. The results are comparable to other 
studies, which, however, included far less species (Schmidt and 
Steinecke 2019; Biluk et  al. 2020; Jones 2020; Lüdemann 2020). 
In field identification, the accuracy of identifying to species 
was 85.3 %, which outperformed all above-mentioned studies. 
Although automatic identification already works well, there are 
still some limitations that need to be overcome in the following 
years. Our analyses of species and image characteristics that 

influence the identification accuracy can be used for such 
improvements.

Contrary to our expectations, the identification was equally 
good for single images taken from our database and observations 
taken in the field (often including several images). Moreover, rare 
and frequent species in Estonia were also identified similarly and 
the main habitat of the species did not affect the identification 
accuracy. The lack of difference between database and field study 
is probably due to the curation of the observations database, 
which allowed the images to be identifiable by experts. Such an 
equal performance of the application demonstrates that it could 
be used widely for several purposes, including identification of 
threatened plants or general evaluation of biodiversity, which 
depends largely on relatively common species (Pearmann 
and Weber 2007). If the quality of the images in a database is 
reasonable, then such algorithms could also help in identifying 
the increasing volumes of digitalized plant image collections.

Plant field guides are popular but difficult to use for 
amateurs (Hawthorne and Lawrence 2006). Identification 
applications could help bring people closer to plants, as it is 
common knowledge that key books are useful when the user 
knows the family of the observable plant, which the application 
did on 95 % of the cases, meaning that it has the potential to 
lead the observer on the correct track. Combination of the 
application and key book could a powerful tool in fieldworks by 
less experienced observers.

However, our study shows that there was a significant 
difference in identification accuracy among taxonomic groups, 
plant growth forms and life forms. Trees and shrubs (macro- and 
nanophanerophytes) have often been photographed only with 
leaves for identification. Overall, the same species got a higher 
identification success when photographed with reproductive 
organs. Hydrophytes could be identified less accurately 
because of fewer images in the training data [see Supporting 
Information—Appendix 3]. Similarly, automatic plant species 
identification reaches its limits with species that do not have 
conspicuous flowers (e.g. Poaceae or Polygonaceae). The lower 
performance can either be because the species were poorly 
photographed due to the fine structure of the flowers or that the 
typical perspective (e.g. photographing flowers from the top) is 
not optimal for the identification of the individual. At the same 
time, there are also difficulties with species that are very similar 
to each other (e.g. white-flowered Apiaceae species). Some 
progress is expectable, as some initial studies have already been 
conducted on the ideas how to obtain the most suitable images 
for automated plant identification (Rzanny et al. 2017, 2019).

The main challenge in automated plant species identification 
arises from the vast number of potential species (Wäldchen et al. 
2018). In Europe alone (including the Mediterranean basin) there 
are more than 20 000 vascular plant species. A possible solution 

Figure 5.  Identification accuracy of species according to the species growth form (number of species in the parentheses). Cells in the table which have significantly 

larger or smaller values than expected by chance (P < 0.05) are marked by arrows up or down, respectively.
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is to add geographical information of species’ distribution into 
the identification process (taken, e.g., from national flora lists or 
from international databases). Presenting species distributions 
in key books to support manual species identification has been 
a common feature. According to initial studies, geographically 
restricted identification is likely more successful in automated 
identification (Terry et al. 2020). So far, considering metadata like 
the location or the time of the observation and combining those 
with the image recognition results has been underused (Wittich 
et al. 2018; Wäldchen and Mäder 2018). However, as traditional 
key books are regionally specific, geographical restrictions in 

application should be communicated very clearly to the users. 
However, a challenge with using geographical information in 
identification is the dynamic nature of the species distributions, 
especially amidst global change (Thuiller et  al. 2008). Species 
spread actively new regions, and current distribution patterns 
can be outdated quickly.

In the future, an important development focus should be 
fine-grained species identification (Šulc and Matas 2017). This 
requires further development of deep learning technologies 
and extensive training data sets for these species. Our results 
confirmed that the number of training images available per 
species was positively correlated to the identification success. 
New data collection opportunities through citizen science (e.g. 
Crocker et al. 2020; Boho et al. 2020) can broaden the potential 
sources of labelled image data. Nevertheless, extensive image 
collection from experienced botanists will play a key role 
in improving the identification accuracy in the future. The 
number of training images per species was related to all species 

Figure 7.  The impact of image characteristics (photographed plant organs, 

number of species in the image and background) on the identification precision. 

The dots are displaying expected values when the effect of other variables was 

into taken account (including the difference between species), and the lines 

respective standard errors. Model output (chi-square values, degrees of freedom 

and P-values) is shown, and letters differentiate groups which are significantly 

different according to post hoc test (based on estimated marginal means).

Figure 8.  Relationship between identification success of species (percentage 

of images identified to the species level), and the number of training images 

used for Flora Incognita machine learning algorithm for particular species. The 

number of training images is in log-scale on the graph and log-transformation 

was applied prior to Pearson correlation.

Figure 6.  Identification accuracy of species according to the Raunkiær plant life-form categories (number of species in the parentheses). Cells in the table which have 

significantly larger or smaller values than expected by chance (P < 0.05) are marked by arrows up or down, respectively.
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characteristics we used (families, growth and life forms, main 
habitat, frequency). In the future there is a special need for 
additional training images for most plant families (especially 
for Orobanchaceae), species with low frequency, wetland 
plants, grasses, hydrophytes and therophytes [see Supporting 
Information—Appendix 3].

In addition to the technical advancements of the 
identification algorithms, the further development of the 
application user interfaces plays an important role. Plants in 
the wild are three-dimensional, and two-dimensional images 
potentially have limitations to capture all those variations. 
Images are usually taken in the field with varying external 
conditions, such as illumination, wind and precipitation. 
The perception of a human examines the three-dimensional 
object, not a two-dimensional snapshot of the plant (Wäldchen 
et al. 2018).

It is very important to provide the users with precise 
guidelines on how the pictures should be taken. The users 
must be made aware that the image quality and certain plant 
perspectives are essential for a reliable automated identification. 
There are initial studies investigating which plant perspectives 
are important for identification (Rzanny et  al. 2019). However, 
these must be expanded for further species groups. We found 
that images with a single plant species in focus obtained a 
higher identification accuracy compared to images when several 
species were present. Occasionally, the application identified 
another species than was intended by the observer. Plant 
background, however, was not affecting the results. Thus, when 
using plant image identification applications, it is recommended 
to prefer reproductive organs and keep just a single species in 
focus. It would be desirable if algorithms would inform the user 
directly in the field that the corresponding image does not meet 
the quality standards and ask the user to repeat the image 
acquisition.

The Flora Incognita application already gives the user precise 
instructions on which perspectives of the plants should be 
photographed. The choice of the perspective depends on different 
growth forms, which are previously selected by the user. With 
the ever-improving camera technology in smartphones, even 
better pictures will be possible in the future and will thus also 
increase identification rate. However, for future development of 
the applications, it should be considered to couple the automatic 
identification with a manual one. This means that in case of an 
uncertain automatic identification, a multicriteria key should be 
used to manually query characteristics of the potential species. 
The application sometimes suggests alternative species, and 
if we include those, the correct species is mentioned in over 
90 % of the cases (results not shown). We are confident that the 
combination of traditional and automated identification will be 
a promising avenue.

Plant identification applications have recently made 
rapid progress and are already usable for several purposes, 
especially if their capabilities and limitations are known. In 
particular, they can improve the situation concerning plant 
blindness and also foster citizen science. With the number of 
observations with photographs growing, high-quality training 
data for machine learning algorithms are increasing in number; 
therefore, the identification applications have the potential for 
even more accurate results in the near future. Our results can 
be used to improve Flora Incognita and other plant identification 
applications, for example, putting extra effort to increase 
training images for specific species groups, providing better 
guidelines for application users for photographing, or asking for 
additional information for specific taxa.

Supporting Information
The following additional information is available in the online 
version of this article—
Appendix 1. Results for the species not in database.
Appendix 2. Examples of image characteristics affecting the 
identification results.
Appendix 3. Analyses of training data per species used by Flora 
Incognita.
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