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The real-time monitoring of reductions of economic activity by
containment measures and its effect on the transmission of the
coronavirus (COVID-19) is a critical unanswered question. We
inferred 5,642 weekly activity anomalies from the meteorology-
adjusted differences in spaceborne tropospheric NO2 column con-
centrations after the 2020 COVID-19 outbreak relative to the baseline
from 2016 to 2019. Two satellite observations reveal reincreasing
economic activity associated with lifting control measures that
comes together with accelerating COVID-19 cases before the winter
of 2020/2021. Application of the near-real-time satellite NO2 obser-
vations produces a much better prediction of the deceleration of
COVID-19 cases than applying the Oxford Government Response
Tracker, the Public Health and Social Measures, or human mobility
data as alternative predictors. A convergent cross-mapping suggests
that economic activity reduction inferred from NO2 is a driver of
case deceleration in most of the territories. This effect, however,
is not linear, while further activity reductions were associated with
weaker deceleration. Over the winter of 2020/2021, nearly 1 million
daily COVID-19 cases could have been avoided by optimizing the
timing and strength of activity reduction relative to a scenario based
on the real distribution. Our study shows how satellite observations
can provide surrogate data for activity reduction during the COVID-
19 pandemic and monitor the effectiveness of containment to the
pandemic before vaccines become widely available.

COVID-19 | machine learning | satellite observation | air pollution |
pandemic management

The outbreak of COVID-19 in the winter of 2019/2020 has
spread over the globe, leading to >83 million cases and >1.8

million deaths by 1 January 2021, with resurgence possibly in 2021
and even 2022 in the Northern Hemisphere (1). Nonpharmaceutical
interventions (NPIs) in general and confinements in particular are
demonstrated to be effective in containing this pandemic (2–7).
However, many governments chose to suppress confinement and
lift mobility restrictions soon after cases decreased, with a poor
understanding of the relationship between activity recovery and

acceleration of COVID-19 cases under lagging effects of lifting
controls (8). The probability of resurgence is 97% in China if
controls were lifted 14 d after the first day with zero ascertained
cases (3) and 95% in Europe if activity reopened without coordinated
deconfinement strategies (4). Facial masking, social distancing,
and “test–trace–isolate” strategies affect microbehavior of individuals,
while their effectiveness depends on small-scale conditions and rate
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of adoption (9). However, the effectiveness of limiting economic
activity and social interactions during COVID-19 confinement
depends on larger-scale circumstances. For example, Sweden ini-
tially slowed down the epidemic spread of COVID-19 without a strict
lockdown, likely due to the high share of single-person households
and low population density (10), whereas India put into place strict
lockdowns to cut off the path of COVID-19 transmission, given
the large household sizes and high population density (11). Recent
studies have suggested a potential association between air pollution
and COVID-19 mortality and infectivity, but the direction of
causality has not been examined (12–14).
The effects of NPIs to mitigate the spread of COVID-19 have

been verified (2–7), but the relationship between activity reduction
and case deceleration is yet unquantified. In epidemiological studies,
the effects of NPIs are characterized by government response
indicators (15), mobility networks (16), volume of travelers (17),
average distance traveled by passengers (5), and flight bookings
(18). However, indicators such as government responses (15) lack
details in space, and the impact of imperfect compliance and
voluntary actions cannot be quantified (19). Sectorial statistics leave
blind spots to elucidate the coupling between activity recovery and
acceleration of new cases as they do not cover the entire economy
(20). Unlike bottom-up activity data, being sector-specific and
not always geolocalized, spaceborne observations of atmospheric
tracers can be used to track changes in industrial, mobile, residential,
commercial, and agricultural activities (21–25). Nitrogen oxides
are emitted from fossil-fuel combustion, biomass burning, agri-
cultural practices, and aircrafts (26). We extended this method to
211 territories by analyzing tropospheric vertical column con-
centrations of nitrogen dioxide (NO2) measured by two satellites:
Ozone Monitoring Instrument (OMI) (27) for 2016 to 2020 and
Tropospheric Monitoring Instrument (TROPOMI) (28) for 2019
to 2020. NO2 with a short lifetime (∼1 d) in the atmosphere is
temporally correlated with variations in economic activity and
mobility, which is a good indicator of social interactions (25, 26,
29, 30). SI Appendix, Fig. S1 shows that NO2 is spatially correlated
with purchasing-power-parity gross domestic product (GDP) across
142 countries (R = 0.73 using OMI and 0.69 using TROPOMI)
and 21,556 0.5° × 0.5° pixels (R = 0.51 using OMI and 0.50 using
TROPOMI).
We used the meteorology-adjusted weekly NO2 changes after

the 2020 COVID-19 outbreak relative to the 2016 to 2019 baseline
(ΔNO2) as a proxy of activity anomalies to predict the weekly
deceleration (Eq. 6) of COVID-19 cases with a machine-learning
model. NO2 data from two satellites, OMI and TROPOMI, were
used. The coverage is for 211 territories, including 31 provinces
in China, 51 states (including the District of Columbia) in
the United States, and 129 countries. The model is evaluated
by fourfold and leave-one-out cross-validation and performs bet-
ter than the same model using alternatively NPI indicators (15, 31)
or human mobility (32, 33) as predictors. The model predicts the
trends in cases over the first 60 d after the COVID-19 outbreak
in each territory and is then used to predict the evolution of cases
in the winter of 2020/2021. By recognizing the regional differ-
ences in the sensitivity of new daily COVID-19 cases to activity
reduction, we optimized the regional distribution of activity re-
duction required to maximize reduction of cases, which informs
policies to improve the efficacy of global joint actions to contain
COVID-19. Our approach analyzes the coupling between activity
reduction and deceleration of COVID-19 cases, but neither iden-
tifies measures that induce the activity changes nor accounts for
changes at the microlevel such as mask wearing and social dis-
tancing. The adoption of microbehavior such as facial masking and
social distancing is a crucial factor, but the compliance (19) cannot
be measured and considered in such analysis. Our method helps to
overcome limitations for territories lacking statistical data.

Results
Global Activity Reductions Following the Outbreak of COVID-19. Re-
gionally and globally, NO2 decreased after the COVID-19 out-
break (30, 34, 35). We used a fixed-effects model (36) to estimate
the meteorology-adjusted differences in NO2 (ΔNO2) by week from
OMI in 2020 relative to 2016 to 2019 (or 2019 for TROPOMI). In
this fixed-effects model, the COVID-19 outbreak explains reduc-
tions in NO2 from 2016 to 2019 to 2020 of 6% in China, 8% in the
United States, 5% in Europe, and 6% globally (SI Appendix, Fig. S2).
We ultimately mapped the variations in ΔNO2 as a marker of
economic activity over space and time (Fig. 1 for OMI and
SI Appendix, Fig. S3 for TROPOMI).
The observed NO2 in 31 provinces in China decreased by 35 to

80% in the second week after the outbreak, of which the upper
bound (average + SE) became negative in all provinces (Fig. 1C).
By contrast, in the United States, the upper bound of ΔNO2 in the
second week after the outbreak in each territory was negative
in only 20 of 51 states (including the District of Columbia). In
European countries, such a decrease was observed in 14 of 37
European countries and in the rest of the world for 20 of 90
countries (Fig. 1 D–H). During the 4 wk after the COVID-19
outbreak, NO2 was reduced by 47% in China, 15% in the United
States, and 7% in Europe in the 10% of pixels with the highest
GDP, compared to a reduction of 20%, 18%, and 34% in the 10%
of pixels with the lowest GDP, respectively (Fig. 1A). This result
suggests a larger impact of confinement on activity over richer
regions with a higher population in China. From 11 October to
8 November 2020 (i.e., the last day of NO2 observations in this
study), ΔNO2 was, however, positive over most of territories except
in India and the Indochinese Peninsula (Fig. 1B). As a sign of
global reopening (8), ΔNO2 in the 10% of pixels with the highest
GDP was +27% in China, +15% in the United States, and +31%
in Europe from 11 October to 8 November 2020. Using NO2
measured by TROPOMI over 2019 to 2020 (rather than OMI over
2016 to 2020) produces a similar map of ΔNO2, yet with a regional
difference of 10 to 35% relative to OMI (SI Appendix, Fig. S3).
Meanwhile, a fixed-effects model without filtering the effects of
meteorology overestimates ΔNO2 by 12 to 42% in Europe, eastern
China, and India (SI Appendix, Fig. S4), because interannual
weather variability (37) alone could lead to higher NO2 in 2020
relative to 2016 to 2019.

Relationships between the Observed Activity Reduction and theWeekly
Deceleration of Daily COVID-19 Cases.Along with ΔNO2, we compiled
daily COVID-19 cases from local data for China and the United
States and national data for 129 countries from the European
Centre for Disease Prevention and Control (ECDPC). Weekly
velocity (V, in percent·day−1) and acceleration (A, the second
derivative of cases in percent·day−2) of daily cases (Eq. 6) are es-
timated by logarithmic regressions. Our calculated A is correlated
with real-time effective reproduction number (38) of COVID-19
(R2 = 0.50) (SI Appendix, Fig. S5), and a transparent calculation of
A circumvents the need to make assumptions (39) in the trans-
mission rate of COVID-19. For example, studies estimating effec-
tive reproduction number assumed that the timing of transmission
follows a constant distribution of serial intervals, which was proven
to be biased using real-time data (39). The relationship between
A and effective reproduction number needs to be interpreted with
caution.
The value of V was initially high but decreased as ΔNO2 became

negative since the second week after the outbreak of COVID-19
in China, the fifth week in the United States, and the sixth week
in Europe (Fig. 1 C, E, and F). The value of V decreased slowly
in other countries with stabilized ΔNO2 (Fig. 1 D, G, and H). For
different territories, a lower ΔNO2 was associated with a lower V
(R = 0.093, P < 0.001) and a lower A (R = 0.14, P < 0.001) (SI
Appendix, Fig. S6), but the low correlation coefficient (R) suggests
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that the effectiveness of reducing activity diagnosed from NO2

to decelerate cases depends on regional socioeconomic and
environmental indicators.
While uncertainty in indicators of government responses (15, 31)

due to imperfect compliance (19) is difficult to quantify, uncertainties
in satellite NO2 data (27, 28) are estimated in our fixed-effects
model (36) (SI Appendix, Fig. S7). According to the sign of upper
bound (mean + SE) in ΔNO2 (ΔNO2

+) and the velocity (V+) or
acceleration (A+) of COVID-19 cases, we divided 5,642 wk after
the COVID-19 outbreak across 211 territories into four regimes
(SI Appendix, Fig. S6). In total, 14% and 40% of data are distrib-
uted in regimes I (ΔNO2

+ < 0 and A+ < 0) and III (ΔNO2
+ ≥ 0 and

A+ ≥ 0), where activity reduction/recovery is coupled with decel-
eration/acceleration of COVID-19 cases. The effect of confinement
could be suppressed when it follows the lifting of one control due to
lagging effects (4). If we define ΔNO2

+ < 0 in a week with negative
ΔNO2

+ lasting for three consecutive weeks before this week, the
fraction of data in regimes I/III increases from 54 to 72% (SI Ap-
pendix, Fig. S6). This suggests that the effect of activity reduction is
to manifest itself under the condition that the reduction lasts for at
least 3 wk. The relationship between ΔNO2

+ and A+ is robust when
using NO2 measured by the TROPOMI (rather than OMI) or new
COVID-19 cases reported by the World Health Organization

(WHO) (rather than ECDPC), where the fraction of data in re-
gimes I/III varies from 71 to 72% (SI Appendix, Fig. S8).
We applied a convergent cross-mapping method (40) to ex-

amine the causation between A and ΔNO2 in two steps. First, we
calculated the Pearson’s correlation coefficient to evaluate the
cross-mapping skill between A and ΔNO2 by a convergent cross-
mapping algorithm (41). The skill in cross-mapping generally
converges to a high positive level (Fig. 2 A and B). The skill
mapping A from the ΔNO2 time series (correlation >0.4 for 67 of
78 territories) is better than the reverse (correlation >0.4 for 43 of
78 territories) for most of the territories, while 58 of 78 data points
are below the 1:1 line (Fig. 2C). It suggests that economic activity
reduction is the driver of case deceleration for most of the terri-
tories. Second, we also examined the causality between air pol-
lution and the spread of COVID-19. Since air pollution has been
suggested to exert an impact on the transmission (12–14, 42, 43) of
COVID-19, we performed a sensitivity test in the cross-mapping
between A and NO2 concentration without removing the effect of
meteorology on NO2 (Fig. 2 D and E). The level of skill mapping
A from the ΔNO2 time series (correlation >0.4 for 67 of 78 terri-
tories) is higher than that mapping A from the time series of NO2

concentration (correlation >0.4 for 6 of 78 territories) (Fig. 2F).
It suggests that economic activity reduction inferred from air

D
Δ N

O
2

(%
)

East Asia (excluding China)

E

Δ N
O
2

(%
)

North America

C

Δ N
O
2

(%
)

China

No COVID-19
cases

F

Week number in 2020

Δ N
O
2

(%
)

Europe

G

Week number in 2020

Δ N
O
2

(%
)

H

Week number in 2020

Δ N
O
2

(%
)

Singapore

Singapore

France
Italy

Spain

Germany

UK

Vietnam
Thailand

California
New York

Washington

Wuhan
Beijing

Shanghai

0 Fr
ac

tio
n

of
 Δ
NO
2+ >

0
(%

)

100
Re-lockdown

Thailand

Latin America

Peru
Argentina

Brazil

South Asia, Middle East and Africa

India
Iran

Iraq

South Africa
Turkey

80

60

40

20

Period of 
lockdown

C
as

es
ve

lo
ci

ty
(%

 d
ay

-1
)

20

10

0

-10

-200 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

The first four weeks after the outbreak The last four weeks (11 Oct – 8 Nov)A B

N
O
2

(%
)

Deciles of GDP

-25

-50

0 Europe

USA
China

N
O
2

(%
)

25

0

50

Deciles of GDP

Europe

USA
China

1 3 52 4 6 7 8 9 101 3 52 4 6 7 8 9 10

GDP weighted by ΔNO2
(US$ billion month-1)

0

0.5

-0.5

0.25

-0.25
0

0.5

-0.5

0.25

-0.25

-100

0

-50

50

100

-100

0

-50

50

100

-100

0

-50

50

100

-100

0

-50

50

100

-100

0

-50

50

100

-100

0

-50

50

100

R
ed

uc
ed

ac
tiv

ity

In
cr

ea
se

d
ac

tiv
ity

GDP weighted by ΔNO2
(US$ billion month-1)

Fig. 1. Use of NO2 as an indicator for activity changes (ΔNO2) during the COVID-19 pandemic in 2020 relative to the same weeks in 2016 to 2019. (A and B)
Spatial distribution of GDP weighted by ΔNO2 in the first 4 wk after the COVID-19 outbreak in each territory (A) or the last 4 wk in this study (B). (Insets) ΔNO2 as
an average for 10 deciles of gridded GDP density in China, the United States, and Europe. (C–H) Weekly variations in ΔNO2 from 1 January to 8 November 2020
in 31 provinces in China (C), 11 East Asian countries excluding China (D), 51 states in the United States (including the District of Columbia) and Canada (E ),
37 countries in Europe (F), 57 countries in southern Asia, the Middle East, and Africa (G), and 23 countries in Latin America (H). The color of the circles
evolves from green to red as the weekly velocity of COVID-19 cases increases. The color of the background evolves from black to white as the fraction of
territories with a negative upper bound (mean + SE) of ΔNO2 (ΔNO2

+) increases. The periods of confinement in representative territories are shown as bars
(SI Appendix, Table S1).

Xing et al. PNAS | 3 of 11
Predicting the effect of confinement on the COVID-19 spread using machine learning
enriched with satellite air pollution observations

https://doi.org/10.1073/pnas.2109098118

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S
EN

V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

at
 M

ax
-P

la
nc

k 
G

es
el

ls
ch

af
t M

P
D

L 
on

 S
ep

te
m

be
r 

2,
 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://doi.org/10.1073/pnas.2109098118


pollution (ΔNO2), rather than air pollution itself, is the driver of
case deceleration in our study.

Dependence of the Weekly Deceleration of COVID-19 Cases on
Socioeconomic and Environmental Indicators. The functioning of
environment, humans, and viruses is complex (1–7), making it
hard to predict the deceleration of new COVID-19 cases. To repre-
sent the continuity of confinement, we defined a discrete variable (κ)
for each week that takes value of 3, 2, and 1 for ΔNO2

+ ≥ 0 lasting for
1, 2, and 3 wk before this week or 4, 5, and 6 for ΔNO2

+ < 0 lasting for
1, 2, and 3 wk (Fig. 3 A and B). For example, A is close to zero in a
branch where ΔNO2

+ > 0 lasts for 3 wk (κ = 1), indicating a persistent
spread of COVID-19 in the absence of control measures. The terri-
tories with negative ΔNO2

+ for 3 wk are distributed over southern and
northern China, western Europe, Canada, and the central and eastern
United States (Fig. 3B). In a branch with ΔNO2

+ < 0 lasting for 3 wk
(κ = 6), longer travel time required to reach the nearest urban center
(44) (R2= 0.47), shorter delay in confinement (R2= 0.51), lower GDP
per capita (R2 = 0.42), and lower planetary-boundary-layer (PBL)
height (R2 = 0.56) favor a faster deceleration of COVID-19 cases
(Fig. 3 C–E and SI Appendix, Fig. S9). We expect that the ob-
served correlation between A and environmental indicators such
as PBL height and temperature to be a proxy of the impact of
synoptic weather patterns on COVID-19 transmission. For in-
stance, when the winter is chillier under a larger boundary layer
height people tended to stay indoors with a greater risk of con-
tamination (45), leading to a faster acceleration of COVID-19

cases. These relationships remain robust when using NO2 measured
by the TROPOMI (rather than OMI) or COVID-19 cases reported
by the WHO (rather than ECDPC) (SI Appendix, Fig. S10).
There are at least two factors that can influence the effect of

ΔNO2 on A. First, it is likely that the effect of ΔNO2 on A is different
for countries due to noneconomic factors. To examine this impact,
we took the difference in distinguishing local vs. imported cases,
social distancing, and facial masking as covariates in our model to
predict A from ΔNO2. As a result, the coefficient of determination
(R2) was increased by more than 0.1 for 17 of 78 territories with
the length of data >10 wk (SI Appendix, Fig. S11). Second, there
are variations in the effect of ΔNO2 on A between communities in
large countries with spatial inhomogeneity in industry. To examine
this impact, we compiled subnational data for the United States,
China, Brazil, and Argentina (we did not consider other countries
due to a lack of continuous subnational data of daily COVID-19
cases). It led to a higher correlation between ΔNO2 and A for 38 of
51 states in the United States, 3 of 7 provinces in China, 6 of 33
states in Brazil, and 10 of 21 states in Argentina than the correlation
taking each country as a whole (SI Appendix, Fig. S12). These
results indicate that the correlation between ΔNO2 and A can be
improved by distinguishing local vs. imported cases, considering
social distancing and facial masking and using cases at a higher
spatial resolution. However, the limitation of applying our global
model developed across countries to some countries/regions such
as Paraguay with a poor performance in the prediction (Fig. 2A)
should be noted. It is likely that there are other factors such as
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the indoor environments (46), religious events (13), and surveillance
of the cold-chain food (47); more studies could consider these other
factors to explain differences in the model performance between
countries. Nevertheless, high-resolution ΔNO2 can be developed as
an early warning indicator to monitor the effect of containment,
even when detailed data of daily cases are unavailable.

Prediction of the Weekly Deceleration of Daily COVID-19 Cases from
the Observed Activity Reduction.We fit a “best model” to predict A
for 5,642 wk in 211 territories from ΔNO2 and 10 socioeconomic

and environmental indicators by a gradient-boosting-decision-
tree (GBDT) regression (48). The fitted model predicts A with a
coefficient of determination (R2) of 0.54 (n = 5,642) based on
weighted squared errors (49) in leave-one-out cross-validation
(Fig. 4), which is higher than R2 of 0.33 using a multiple linear
regression (SI Appendix, Fig. S13). R2 in our study is comparable
with R2 of ∼0.4 in another machine-learning model predicting
changes in COVID-19 transmission rate after implementation of
the measure from NPI indicators across 79 territories (9). It
should be noted that this study by Haug et al. (9), which took the

Albania
United Arab
Argentina
ArmeniaAustraliaAustria Azerbaijan

Belgium

Burkina FasoBangladeshBulgariaBosnia and 
Belarus

Brazil
Central African 

Canada

Switzerland

ChileC?te d'IvoireDemocratic 
ColombiaCosta RicaCzech Republic

GermanyDjibouti

Denmark
Dominican Algeria

Ecuador
EgyptEthiopiaFinlandFranceUnited Kingdom
GeorgiaGhana

Guinea

Greece
Guatemala

Honduras
CroatiaHaiti

Hungary
IndonesiaIndiaIrelandIran IraqIsraelItaly JamaicaJordan

Japan KazakhstanKenyaKyrgyzstanSouth Korea
KuwaitLebanon

Liberia

Libya
Sri LankaLithuania

Luxembourg
MoroccoMoldova

Madagascar
Mexico

MacedoniaMali

Myanmar
Montenegro

Mozambique
Malawi

MalaysiaNamibia

NigeriaNetherlandsNorway Nepal
New ZealandOman

PakistanPeruPhilippines
Poland

Puerto Rico

PortugalQatarRomaniaRussia
Saudi ArabiaSudan

Senegal
Sierra Leone

El SalvadorSerbia
Suriname

Slovakia

Slovenia

SwedenTogoThailand
TajikistanTurkeyUgandaUkraineUzbekistanSouth Africa

Zimbabwe
WashingtonMontana

MaineNorth Dakota
South Dakota

Wyoming
Wisconsin

Idaho
Vermont

MinnesotaOregonNew HampshireIowaMassachusettsNebraska

New York
Pennsylvania

ConnecticutRhode Island
New Jersey

Indiana
NevadaUtahCaliforniaOhioIllinois

District of
Delaware

West VirginiaMarylandColoradoKentuckyKansasVirginiaMissouriArizona
Oklahoma

North Carolina
TennesseeTexas

New Mexico
AlabamaMississippiGeorgia

South Carolina
Arkansas

Louisiana
Florida

MichiganAlaska
Canada

Denmark

United Kingdom

Israel

Italy

Lebanon
Macedonia

Beijing

HebeiHeilongjiang
Shanghai

JiangsuZhejiang
Anhui

Jiangxi

Shandong

Henan

Hubei

Hunan

Shaanxi

HawaiiNorth Dakota

Pennsylvania

Connecticut

Rhode Island

New Jersey

District of Columbia
Delaware

Georgia

Albania
United Arab 

Argentina
ArmeniaAustraliaAustriaAzerbaijan

Belgium

Burkina FasoBangladesh BulgariaBosnia and 
Belarus

Brazil
Central African 

Canada

Switzerland

Chile
C?te d'IvoireDemocratic 

ColombiaCosta Rica Czech Republic
GermanyDjibouti

Denmark Algeria
Ecuador EthiopiaFinlandFranceUnited Kingdom

Georgia Ghana

Guinea

Greece

GuatemalaCroatia

Hungary
Indonesia IndiaIreland Iran IraqIsraelItaly

Jordan
Japan KazakhstanKenyaKyrgyzstanSouth Korea

KuwaitLebanon

Liberia

Libya
Sri LankaLithuania

Luxembourg
MoroccoMoldova

Madagascar
Mexico

Macedonia Mali

Myanmar
Montenegro

Mozambique
Malawi

Malaysia Namibia

NigeriaNetherlandsNorwayNepal
New Zealand Oman

PakistanPeruPhilippines
PolandPortugalRomaniaRussia

Saudi ArabiaSudan
Senegal

Sierra Leone
El SalvadorSerbiaSlovakia

Slovenia

SwedenTogoThailand
TajikistanTurkeyUganda UkraineUzbekistanSouth AfricaWashington Montana

Maine North Dakota
South Dakota

Wyoming
Wisconsin

Idaho
Vermont

MinnesotaOregonNew HampshireIowaMassachusettsNebraska

New York
Pennsylvania

ConnecticutRhode Island
New Jersey

Indiana

Nevada
UtahCaliforniaOhioIllinois

District of 
Delaware

West VirginiaMaryland ColoradoKentucky KansasVirginiaMissouri
ArizonaOklahoma

North Carolina
Tennessee Texas

New Mexico

AlabamaMississippiGeorgia
South Carolina

Arkansas
Louisiana

Florida
MichiganAlaska

Canada

Denmark

United Kingdom

Israel

Italy

Jordan
South Korea

Lebanon
Macedonia

Beijing

Hebei

HeilongjiangJiangsuZhejiangAnhui

Jiangxi

Shandong

Henan

Hubei

Hunan

Guangdong

Sichuan

Shaanxi

North Dakota

Pennsylvania

Connecticut

Rhode Island

New Jersey

District of Columbia
Delaware

Georgia

Territories with 
positive ΔNO2 for 

three 
consecutive 
weeks (κ=1)

Territories with 
negative ΔNO2 for 

three 
consecutive 
weeks (κ=6)

Effective control 
of activities

1

0

-2

-3

-1

10 100 1000
Travel time to city (min)

O
bs

er
ve

d 
ac

ce
le

ra
tio

n 
of

 d
ai

ly
 

C
O

V
Id

-1
9 

ca
se

s 
(%

 d
ay

-2
)

1

0

-2

-3

-1

-80 -40 0 40
ΔNO2 (%)

1

0

-2

-3

-1

200 600 14001000
PBL height (m)

30 300

Sichuan

κ=1

κ=6

R2=0, P=0.65

R2=0.41, P<0.001

Albania
United Arab Emirates

Argentina
ArmeniaAustraliaAustria Azerbaijan

Belgium

Burkina FasoBulgariaBosnia and
Belarus

Brazil
Central African

Canada

Switzerland

Chile
C?te d'Ivoire Democratic Republic

ColombiaCosta RicaCzech Republic
Germany Djibouti

Denmark
Dominican RepublicAlgeria

Ecuador
Egypt

EthiopiaFinlandFranceUnited Kingdom
GeorgiaGhana

Guinea

Greece

Guatemala
Honduras

CroatiaHaiti
Hungary

IndonesiaIndiaIreland IranIraqIsraelItaly JamaicaJordan
Japan KazakhstanKenya Kyrgyzstan

KuwaitLebanon

Liberia

Libya
Sri LankaLithuania

Luxembourg
MoroccoMoldova

Madagascar
Mexico

Macedonia Mali

Myanmar
Montenegro

Mozambique
Malawi

Malaysia Namibia

NigeriaNetherlands NorwayNepal
New ZealandOman

Pakistan PeruPhilippines
Poland

Puerto Rico

PortugalQatar Romania Russia

Saudi Arabia

SudanSenegal
Sierra Leone

El SalvadorSerbia
Suriname

Slovakia

Slovenia

SwedenTogoThailand
TajikistanTurkeyUgandaUkraine UzbekistanSouth Africa

Zimbabwe
WashingtonMontana
MaineNorth Dakota
South Dakota
Wyoming
Wisconsin
Idaho
Vermont
MinnesotaOregonNew HampshireIowaMassachusettsNebraska

New York
Pennsylvania
ConnecticutRhode Island
New Jersey
Indiana
NevadaUtahCaliforniaOhioIllinois
District of Columbia
Delaware
West VirginiaMarylandColoradoKentuckyKansasVirginiaMissouriArizona
Oklahoma
North Carolina
TennesseeTexas
New Mexico
AlabamaMississippiGeorgia
South Carolina
Arkansas
Louisiana
Florida
MichiganAlaska

Canada

Denmark

United Kingdom

Israel

Italy

Jordan

Lebanon
Macedonia

Beijing

Hebei
Heilongjiang

Shanghai

Jiangsu
ZhejiangAnhui

Jiangxi

Shandong

Henan

Hubei

Hunan

Guangdong

Sichuan
Shaanxi

Hawaii
North Dakota

Pennsylvania

Connecticut

Rhode Island

New Jersey

District of Columbia

Delaware

Georgia
Azerbaijan

R2=0.02, P=0.06

R2=0.47 P<0.001

Azerbaijan

R2=0.06, P=0.003

R2=0.56 P<0.001

Belgium Belgium

Azerbaijan

Bangladesh Bangladesh

Belgium

Bangladesh

κ=1 κ=1

κ=6 κ=6

A B

DC E

Fig. 3. Relationship between the weekly acceleration of daily COVID-19 cases (A) and socioeconomic and environmental indicators. (A and B) Spatial dis-
tribution of territories with the upper bound (mean + SE) of ΔNO2 (ΔNO2

+) being positive (blue, κ = 1) (A) or negative (red, κ = 6) (B) for 3 wk before one week in
2020. (C–E) The observed weekly acceleration of daily COVID-19 cases (A) is plotted against the estimated ΔNO2 (C), the average travel time of residents to the
nearest urban center (D), and the PBL height as an indicator of air advection (E). Each indicator is averaged for weeks in a territory where the upper bound
(mean + SE) of ΔNO2 (ΔNO2

+) is positive (blue, κ = 1) or negative (red, κ = 6) for 3 wk before these weeks. The reported COVID-19 cases in Azerbaijan, Ban-
gladesh, and Belgium were suspected to be biased and excluded from our analysis (Materials and Methods).

P
re

di
ct

ed
 a

noi tarelecc
of

 d
ai

ly
 C

O
V

ID
-1

9 
ca

se
s

(%
 d

ay
-2

)

n=5642
R2=0.44

MSE=1.73

-2 -1-3 10 2 3
Observed acceleration of daily

COVID-19 cases (% day-2)

PHSM NPIs

-4

n=5642
R2=0.43

MSE=1.76

-2 -1-3 10 2 3
Observed acceleration of daily 

COVID-19 cases (% day-2)

Mobility

-4

-1

1

-3

0

-2

Observed acceleration of daily 
COVID-19 cases (% day-2)

n=5642
R2=0.44

MSE=1.74

-2 -1-3 10 2 3

OxCGRT NPIs

-4

OxCGRT

PHSM

Mobility

ΔNO2

n=5642
R2=0.54

MSE=1.40

-2 -1-3 10 2 3
Observed acceleration of daily 

COVID-19 cases (% day-2)

ΔNO2

-4

-1

1

-3

0

-2

-1

1

-3

0

-2

-1

1

-3

0

-2

Observed acceleration of daily 
COVID-19 cases (% day-2)

n=1586
R2=0.62

MSE=0.71

-2 -1-3 10 2 3-4

-1

1

-3

0

-2

ΔNO2 (filtering
data with wet 
air and low
NO2)

B CA D E

Fig. 4. Comparison of the predicted and observed acceleration of COVID-19 cases over 5,642 wk for 211 territories in leave-one-out cross-validation. (A–D)
Weekly acceleration of daily COVID-19 cases (A) is predicted using (A) the OxCGRT NPIs, (B) PHSM NPIs, (C) human mobility, or (D) alternatively NO2 change
(ΔNO2) as predictors, while other predictors including 10 socioeconomic and environmental indicators are identical. To evaluate the skill in predicting the
deceleration of COVID-19 cases, the MSE is weighted by a function of (0.99)h, where h is the rank of the observed A. For example, the weighting factor
decreases from 0.99 for the lowest A to 0.0000436 for h = 1,000. The coefficient of determination (R2) is defined as 1 minus the ratio of MSE to variance in the
observation. Moving averages of A at an interval of 50 are shown by thick lines in different colors. (E) As in D, except for using the data filtered by precipitable
water content in the air above the median and NO2 concentration below the median.

Xing et al. PNAS | 5 of 11
Predicting the effect of confinement on the COVID-19 spread using machine learning
enriched with satellite air pollution observations

https://doi.org/10.1073/pnas.2109098118

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S
EN

V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

at
 M

ax
-P

la
nc

k 
G

es
el

ls
ch

af
t M

P
D

L 
on

 S
ep

te
m

be
r 

2,
 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109098118/-/DCSupplemental
https://doi.org/10.1073/pnas.2109098118


rate difference as a predictand, did not explain variation in the
transmission rate within a period with/without confinement.
To show the advantage of using satellite NO2, we compared

the prediction of A using ΔNO2 as a predictor with three benchmark
models replacing ΔNO2 with the NPI indicators from the Oxford
COVID-19 Government Response Tracker (OxCGRT) (15) or
the WHO Public Health and Social Measures (PHSM) (31), or
the Google/Baidu human mobility data (32, 33). The performance
is comparable for the NPI indicators from the OxCGRT (R2 =
0.44) and PHSM (R2 = 0.44) or the global mobility data (R2 =
0.43), which are poorer than our model using ΔNO2 as the pre-
dictor (R2 = 0.54) (Fig. 4 A–D). Particularly, average squared error
for A < –1.5% d−2 is reduced from 1.71 using OxCGRT NPIs, 1.70
using PHSMNPIs, and 1.81 using human mobility as the predictor
to 1.21 using ΔNO2 as the predictor (SI Appendix, Fig. S14). These
results suggest that satellite NO2 is more capable than either
national NPI indicators or spatially explicit human mobility in
predicting the effects of activity reduction on decelerating new
COVID-19 cases in these territories.
While spaceborne tropospheric NO2 column concentration

can be developed as an early-warning indicator for the spread of
COVID-19, limitation in obtaining satellite data should be noted
(27, 28). To show the impact, we compared the prediction of A
from ΔNO2 and 10 socioeconomic and environmental indicators
by filtering data with a threshold (SI Appendix, Fig. S15). For
instance, R2 of A increases from 0.54 to 0.63 by filtering data with
precipitable water content in the air above the median to reduce
noises in satellite NO2 data (28) and to 0.60 by filtering data with
NO2 concentration below the median to reduce the impact of
nonlinear relationships between emissions and NO2 at low con-
centrations (50) (SI Appendix, Table S2). Applying these two
thresholds together, R2 of A predicted from ΔNO2 would be 0.62
(Fig. 4E), which is still higher than 0.58 or 0.57 obtained by using
either NPIs or human mobility as the predictor (SI Appendix, Fig.
S15). The impact of filtering data on the prediction of A from
ΔNO2 remains robust when using alternative thresholds or indi-
cators (SI Appendix, Table S2).

Effects of Activity Reductions to Contain COVID-19 in the Winter of
2020/2021. By predicting A from ΔNO2, we tried to answer when
and where limiting activity could be more effective in containing
COVID-19. For instance, we identified territories such as Hubei,
New York, Turkey, New Jersey, and the Philippines with the largest
number of cases in the third week after the outbreak, where re-
ducing 50% of NO2 as an indicator for economic activity could
decelerate the rate of new COVID-19 cases by >0.5%·d−2 (Fig. 5 A
andD). The median of this sensitivity of A to ΔNO2 in 211 territories
decreased from 0.74%·d−2 in the third week after the outbreak to
0.34%·d−2 on 8 November 2020 as the last day of NO2 obser-
vations in this study (Fig. 5 B and E). The percentage of GDP
under high sensitivity (>1.0%·d−2) of A to ΔNO2 in 211 territories
decreased from 35% in the third week after the outbreak to 13%
on 8 November 2020 as the last day of NO2 observations in this study
(Fig. 5 C and F). It indicates the sensitivity could be dampened over
time, supporting the statement that it is more effective to contain the
spread of COVID-19 by taking policies of confinement at an earlier
stage of the pandemic (3, 21). It indicated that the chain of con-
finement to containment could have been broken (7) when controls
were lifted in territories before new cases became zero (8).
We simulated the trend in daily COVID-19 cases over 8 wk since

the end of the third week after the outbreak (R2 = 0.76 between
predicted global cases and the observations). At the end of this
hindcast simulation, global COVID-19 cases could be reduced from
0.658 million·d−1 in a hypothetical scenario without limiting ac-
tivity to 0.136 million·d−1 in the real scenario, or 0.184 million·d−1

in an alternative scenario with 50% activity limited in the 10% of
territories with the highest sensitivity of A to ΔNO2 (SI Appendix,

Fig. S16A). The effect in reducing COVID-19 cases is remarkable
by reducing ΔNO2 from 0 to –10% and from –10% to –20% but
becomes weaker if ΔNO2 is further reduced by the same margin in
a forecast simulation over the winter of 2020/2021 (SI Appendix,
Fig. S16B). The global COVID-19 cases on the last day of the
forecast simulation (21 January 2021) would decrease from 1.67
million·d−1 to 0.976 million·d−1 by limiting 10% of activity, to 0.193
million·d−1 by limiting another 10%, and to 0.187 million·d−1 by
limiting a further 10%.
By identifying a regional difference in the effect of ΔNO2 on A,

we optimized the distribution of ΔNO2 that would maximize the
reduction of global cases. Namely, a marginal increase in ΔNO2 is
found for one week in a territory where the largest number of
new cases is reduced (Materials and Methods). Global COVID-19
cases on 21 January 2021 (the last day of the forecast simulation)
is predicted to be 0.916 million·d−1 if the real distribution of
ΔNO2 on 8 November 2020 (the last day of NO2 observations)
continues without change in policies as a baseline scenario.
Under this scenario, global GDP weighted by ΔNO2 amounts to
–6.5% of global GDP from the OMI NO2 (Fig. 6A) or –9.5% from
the TROPOMI NO2 (SI Appendix, Fig. S17A). If we adopted the
optimal distribution of ΔNO2, global daily cases on 21 January 2021
will decrease by 80% from 0.916 to 0.187 million, shifting the
trend of new cases from an increase to a decline (SI Appendix, Fig.
S16B). We ultimately mapped the difference between the real and
optimized distributions of ΔNO2 in the winter of 2020/2021
(Fig. 6 B–D). It informs the territories where activity could be
further limited to improve the efficacy of global joint actions in
containing COVID-19. It is worth noting that the effectiveness of
activity reduction depends on the discrete variable (κ), which
represents the continuity of confinement. The effect of reducing
activity could be offset by >80% due to lagging effects of lifting
controls in any scenarios by holding κ = 1 (Fig. 6A). Using the
TROPOMI NO2 or the WHO cases of COVID-19 as model inputs
changes the number of reduced cases, but the effect of optimizing
ΔNO2 remains robust (SI Appendix, Fig. S17).

Concluding Remarks
Measures to contain the spread of COVID-19 at the microlevel
such as facial masking and social distancing are not universally
applicable and difficult to globally enforce (18). Other NPIs by
limiting mobility are tied to the economic activities and social in-
teractions by closing factories, restaurants, and schools, restricting
mobility of road vehicles and aircrafts, suspending infrastructure
construction, interrupting agricultural practices, limiting religious
celebrations, and freezing tourism (51). Quantification of the re-
lationship between activity reduction or recovery and the decel-
eration or acceleration of COVID-19 cases was hindered by a
delay of data availability to monitor activity anomalies for the
entire economy. This complexity is manifested when comparing
the effects of NPIs among different countries. We found that re-
ductions in spaceborne tropospheric NO2 column concentration,
as a proxy of economic activity, could be a significant predictor for
deceleration of COVID-19 cases. This method has three impor-
tant applications. First, it can be applied to identify territories
where containment can effectively decelerate the increase in
COVID-19 cases. This application allows us to achieve global joint
actions by realizing that “policy action should become better tar-
geted to where it is needed most and to strengthen the recovery”
(52). Second, this method can be applied to evaluate the effects of
large-scale activity reduction and microlevel NPIs (53, 54). This
application is particularly important for territories where limiting
activity is less effective for containing COVID-19 under current
circumstances. At subnational levels in large countries other than
China and the United States, the high-resolution data of NO2 can
be used to interpret the changes in the transmission rate of
COVID-19 locally (5, 11) and to optimize the activity reduction
within the country during lockdown easing as we did for the globe.
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Third, this method can be combined with atmospheric inversion
models (25) to attribute the observed changes in NO2 to specific
economic sectors, since the real-time NO2 can be achieved at a
high resolution from space to match the resolution (50 to 100 km)
of transport models. This application will provide information on
the sectors where activity could be limited before others in con-
taining the pandemic. Our study applying global real-time satellite
observations of air pollution to quantify the relationship between
activity reduction and the epidemic spread of COVID-19 provides
the possibility of monitoring the efficacy of limiting human social and
economic activity and of containing COVID-19 and other emerging
public-health risks before the vaccines are widely available.

Materials and Methods
Code and Data Availability. Code and materials are available on the GitHub
repository: https://github.com/rongwang-fudan/COVID-2019_EEC_Global.

Global Data of Satellite-Based NO2 and Meteorology. NO2 is emitted from the
combustion of fossil fuels and biomass in all industrial, mobile, residential, and
commercial activities. With a short lifetime in the atmosphere, atmospheric
NO2 concentrations are less sensitive to background concentrations than are
other long-lived tracers (e.g., carbon dioxide), making it possible to correlate
changes in NO2 to human activity in the economy (25, 26, 29, 30). We used NO2

retrieved from backscattered radiance and solar irradiance measured by the
OMI onboard the US NASA Aura satellite (27) or the TROPOMI onboard the
European Copernicus Sentinel-5 Precursor satellite (28). The TROPOMI instru-
ments provide data at a finer spatial resolution than do the OMI instruments.

Daily NO2 data from the OMI product version 3.0 (OMI/Aura NO2 Cloud-
126 Screened Total and Tropospheric Column L3 Global Gridded 0.25° ×
0.25° Version 3), available for 2016 to 2020 are compiled from the Earth
Observing System Data in the Information System Distributed Active Archive
Centers (https://earthdata.nasa.gov/). The pixel-level data are binned for sky
conditions (27) by removing data with a cloud fraction lower than 30%.

Daily NO2 below the random noises of the retrieval product (0.45 × 1015

molecules per centimeter−2) are excluded from our analysis to reduce errors
in observation at high solar-zenith angles and over snow or ice surfaces (27,
55). The daily gridded NO2 data from the TROPOMI product (Sentinel-5P
offline nitrogen dioxide), available for 2019 to 2020 (http://www.tropomi.eu/
data-products/nitrogen-dioxide) are compiled from the Google Earth Engine
cloud platform (56) (https://developers.google.com/earth-engine/datasets/
catalog), which provides global daily NO2 at a spatial resolution of 0.01° × 0.01°.

Accompanying NO2, global daily meteorological data for 2016 to 2020 are
compiled from the Google Earth Engine cloud platform (https://developers.
google.com/earth-engine/datasets/catalog). Relative humidity 2 m above the
ground, meridional and zonal winds 10 m above the ground, columnar pre-
cipitable water content in the air, air temperature 2 m above the ground, and
horizontal wind speed 10 m above the ground at a resolution of 0.25° × 0.25°
are obtained from the Global Forecast System of the National Center for
Environmental Prediction (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-forcast-system-gfs). In addition, atmospheric pressure
and the height of the PBL at a resolution of 0.2° × 0.2° are produced by the
Climate Forecast System of Climate Forecast System Reanalysis (https://
climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr).

The Fixed-Effects Model to Estimate the Impact of COVID-19 on Daily NO2 by
Week. We estimated the meteorology-adjusted changes in NO2 (ΔNO2) by
week for 1 January to 8 November 2020 relative to the same weeks in previous
years (2016 to 2019 for OMI or 2019 only for TROPOMI) using a fixed-effects
model (36). In this statistical model, the factor of interest can be considered
as a dummy variable to quantify the impact on the concentration of NO2

for days with or without the impact of COVID-19 for this study. For our study,
the predictand is the concentration of weekly NO2 and the predictors are the
dummy variables for COVID-19, meteorology, year, and season on each day.
Because the measurements of NO2 concentration by satellites are almost
identical for all weeks, they meet the criterion of applying the fixed-effects
model (https://www.meta-analysis.com/downloads/Meta-analysis%20Fixed-effect%
20vs%20Random-effects%20models.pdf). We noticed that this fixed-effects model
had been applied to attribute changes in the observed changes in NO2
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concentration to COVID-19 (34). Therefore, we applied this fixed-effects model
to quantify the change in NO2 due to COVID-19 for each spatial pixel in our
study. Considering nonlinear impacts of meteorology (50, 57) and linear im-
pacts of seasonality (30) and interannual trends (35), we fit the fixed-effects
model to predict the daily NO2 as

zit = F(Mit) + α yt + β st +∑
w

δwxt,w , [1]

where i is a grid, t is a day, yt is a year, st is a season, w is a given week in 2020,
and xt,w is a dummy variable (1 for week w in 2020 and 0 elsewhere). M is a
matrix of meteorological conditions (surface ambient temperature, atmospheric
pressure, zonal wind, meridional wind, relative humidity, horizontal wind speed,
precipitable water content in the air and PBL height). We used a GBDT method
(48) with 10 decision trees to find the nonlinear function (F) that returns the
lowest mean squared error in the prediction of daily NO2. Based on the fitted
model, we estimated the change in NO2 during the COVID-19 pandemic as an
indicator of activity change in week w (ΔNO2,w) due to COVID-19 as

ΔNO2 ,w =
ẑ2016−2020,w|xt,w=1 − ẑ2016−2020,w|xt,w=0

ẑ2016−2020,w|xt,w=0
, [2]

where ẑ2016−2020,w|xt,w=1 and ẑ2016−2020,w|xt,w=0 are the averages of the pre-
dicted daily NO2 with or without the impact of COVID-19 in week w for 2016
to 2020, respectively.

To indicate the activity change in a region of interest (I), we derived the average
of ΔNO2,w weighted by the gridded purchasing-power-parity GDP in a region as

ΔNO2 ,w,I = ∑igiΔTVCD,i,w

∑igi
, i∈ I, [3]

where gi is the predicted purchasing-power-parity GDP in grid i in 2020
exclusive of the impact of the COVID-19 outbreak (58) (available at

https://www.cger.nies.go.jp/gcp/population-and-gdp.html). Across differ-
ent territories, we defined the total GDP weighted by ΔNO2 (GWN), in units of
billion $2015, as

GWN = ∑
I

GDPw,IΔNO2,w,I. [4]

We compared the spatial distributions of ΔNO2 using NO2 measured by OMI in
Wuhan, China and Los Angeles, California to that using NO2 measured by
TROPOMI at different resolutions from 0.01° × 0.01° to 2° × 2° (SI Appendix,
Fig. S18). The resolution of ΔNO2 is finer using the high-resolution data mea-
sured by TROPOMI, but a higher requirement of data from TROPOMI leads to
a lower coverage of grid boxes. In addition, the TROPOMI data are only
available for 2019 to 2020. To demonstrate the influence exclusive of inter-
annual trends, the estimated ΔNO2 in Wuhan varies from –70% using the OMI
data for 2019 to 2020 to –90% if the same OMI data for 2016 to 2020 are used.
Nevertheless, the temporal trend of ΔNO2 is similar using the two measure-
ments from different instruments, which are both considered in this study
(SI Appendix, Figs. S3, S4, S8, S10, and S17).

Global Data of Daily COVID-19 Cases. Daily COVID-19 cases are compiled for
the 211 territories globally, including 31 provinces in China, 51 states (including
the District of Columbia) in the United States, and 129 countries for 1 January to
25 November 2020. These territories contribute to a total population of
6.88 billion in 2019 (90% of the global total), a total purchasing-power-parity
GDP of $114.56 trillion for 2016 to 2019 (94% of the global total), and a total
number of COVID-19 cases of 57.918 million for 1 January to 25 November
2020 (96% of the global total).

Daily COVID-19 cases in the 31 provinces in China are compiled by dis-
tinguishing between local and imported cases in three steps. First, local cases
of COVID-19 in 30 provinces (excluding Hubei) for 1 January to 29 February
2020 are compiled from the Harvard dataset (https://dataverse.harvard.edu/
dataverse/2019ncov). Second, local COVID-19 cases are obtained by subtracting
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the imported cases (https://datanews.caixin.com/interactive/2020/pneumonia-h5/
#live-data) from the total cases (http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.
shtml) for 1 March to 11 March 2020 in the 31 provinces and for 1 January to 11
March 2020 in Hubei province. Third, local COVID-19 cases for 12 March to 25
November 2020 are compiled from the National Health Commission of China
(http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml). A prison in Shandong
province reported 200 COVID-19 cases on 20 February 2020 (https://baijiahao.
baidu.com/s?id=1659113674465060786&wfr=spider&for=pc), which is excluded
from this analysis. The number of cases is multiplied by a factor of 1/0.23 = 4.34,
because of a 23% ascertainment rate of cases due to incomplete testing at the
early stage of the pandemic in Hubei (3).

Daily COVID-19 cases in 51 states (including the District of Columbia) in
the United States are compiled from the Johns Hopkins University Center for
Systems Science and Engineering COVID-19 Dataset (https://github.com/
CSSEGISandData/COVID-19/tree/master/csse_covid_19_data). In addition, daily
COVID-19 cases in 27 states in the Brazil are compiled from the COVID-
19-Brazil-timeseries dataset (https://github.com/elhenrico/covid19-Brazil-timeseries)
and the CORONAVÍRUS BRASIL reports (https://covid.saude.gov.br/). Daily COVID-
19 cases in 24 states in Argentina are compiled from the SistemasMapache
dataset (https://github.com/SistemasMapache/) and the Ministerio de Salud re-
port (https://www.argentina.gob.ar/coronavirus/informe-diario). For the remain-
ing 129 countries, daily COVID-19 cases are compiled from the ECDPC (https://
www.ecdc.europa.eu/en/publications-data). In addition, daily new cases in these
countries compiled from the WHO (https://covid19.who.int/table) are used for
comparison.

The time series of daily COVID-19 cases may contain breakpoints due to
changes in the criteria for COVID-19 testing (59). For example, the number of
daily cases in Equatorial Guinea reported by the ECDPC varies abruptly from
1,070 cases per day in a week centered on 3 July or 1,750 cases per day in a
week centered on 2 August to zero in the preceding and following weeks.
To reduce the impact of discrete data, we used a statistical procedure (60) to
identify outliers in the time series as Nd > (M + 3σ), which is replaced with
(M + 3σ), or Nd < (M – 3σ), which is replaced with (M – 3σ), whereM and σ are
the mean and SD of the time series, respectively.

Weekly Velocity and Acceleration of Daily COVID-19 Cases. The transmission
dynamics of COVID-19 were previously simulated using epidemiological
models (1–7), where the accuracy was improved by accounting for the sen-
sitivity of ordinary differential equations to observational data (5), reducing
uncertainties in the model parameters with full dynamics (3) and improving
the representation of variations in transmission rate (7). As an empirical
study, we did not run such an epidemiological model but estimated the
weekly velocity (V) and acceleration (A) of daily COVID-19 cases reported by
the ECDPC or WHO to quantify the empirical relationship between activity
reduction in COVID-19 confinement and the epidemic spread of COVID-19.
To reduce the cases ascertainment bias that may vary across jurisdictions due
to the surveillance and diagnostic capacity, we adopted a 7-d moving av-
erage to calculate the daily COVID-19 cases (61). However, this treatment did
not exclude the biases in daily cases reported by countries with consistently
low capacities in virus testing (62).

We estimated the velocity of daily cases (Vw) in week w using logarithmic
regression (63) within a 3-wk moving window as

Vw = dlnNd

dt
, [5]

where Nd is the number of confirmed daily cases as a 7-d moving average.
The deceleration of daily cases (Aw) in week w is estimated within a 3-wk
moving window as

Aw = dVw

dt
. [6]

The first day of the outbreak of COVID-19 varies from territory to territory,
which may be influenced by sporadic imported cases (62). To reduce the
impact of sporadic cases, we defined the first week (w0) in a territory when
the number of daily cases (Nw) increases continuously to 100 cases per day as

Nw<Nw+1, w0<w<w100 [7]

Nw0−1 ≥ Nw0 , w = w0 [8]

Nw0−4 ≥ Nw0−3 orNw0−3 ≥ Nw0−2 orNw0−2 ≥ Nw0−1, [9]

where w100 is the first week when daily cases (Nw) exceed 100 cases per day.
We considered the first day in week w0 as the time of the outbreak of

COVID-19 in this territory. The first peak of Nw (4,263 cases per day on 1 to 7
April 2020) in France reported by the ECDPC is much lower than the second
peak (48,720 cases per day on 4 to 11 November 2020), so we derived w100

from the second peak.
We tried to exclude data which were potentially biased. The Philippines

adopted two kinds of COVID-19 tests by June, so we used w0 for daily cases
reported after June to reduce the impact of the different testing (https://
www.philstar.com/headlines/2020/05/21/2015542/there-are-two-kinds-covid-
19-tests-used-philippines-how-are-they-different). The ECDPC-reported daily
cases fluctuated greatly in the United Arab Emirates (0, 16, 0, 14, 15, 0, and
11 cases per day on 7 to 13 March 2020, respectively), Serbia (13, 6, 17, 5, 9, 2,
and 15 cases per day on 12 to 18 March 2020, respectively), and Ukraine (2, 9,
5, 7, 0, 15, and 6 cases per day on 17 to 23 March 2020, respectively), where
the data from the first week are not used. In addition, because of a low
capacity of COVID-19 testing in Bangladesh (64) and the 2020 Nagorno-
Karabakh war between Armenia and Azerbaijan (65), data for Bangladesh
and Azerbaijan were excluded. Because unconfirmed cases were mixed up
with confirmed cases in Belgium (66), data for Belgium were also excluded.

Convergent Cross-Mapping Method. We examined the causal relationships
between ΔNO2 and A in three steps. First, the results of cross-mapping are
sensitive to the choice of the optimal embedding dimension (E), which de-
cides how many time lags are used to reconstruct the state space. We se-
lected the optimal E values based on the ΔNO2 and A time series for each
territory in a period with an increasing correlation for >5 wk to reduce the
impact of other factors using a phase space reconstruction method (67).
Second, the cross-mapping between ΔNO2 and A for each territory was per-
formed using the convergent cross mapping algorithm package “SugiLM” in
MATLAB (41). Third, the Pearson’s correlation coefficient was used to evaluate
the cross-map skill between ΔNO2 and A as a proxy for describing the causal
relationships between two variables (40, 68). The random noises in the time
series of ΔNO2 and A were reduced according to the upward and downward
trends in the correlation series. The code and data for the convergent cross-
mapping analysis are available on GitHub (https://github.com/rongwang-fudan/
COVID-2019_EEC_Global).

Government Response Indicators and Human Mobility Data. We compiled the
public health and social measures byweek after the outbreak of COVID-19 for
211 territories from the WHO PHSM data (31). This product combines data
from different data products including the ACAPS COVID-19 Government
Measures (https://www.acaps.org/), the OxCGRT (15), the US Centers for Disease
Control and Prevention (https://www.cdc.gov/coronavirus), the Complexity
Science Hub Vienna (https://www.csh.ac.at/), the Global Public Health Intelli-
gence Network (https://www.canada.ca/en/public-health.html), the WHO In-
ternational Health Regulations (https://www.who.int/health-topics), and the
Johns Hopkins University Coronavirus Resource Center (https://coronavirus.jhu.
edu/). This product provides 42 coded categories of NPI, including 6 types of
individual measures, 3 environmental measures, 5 surveillance and response
measures, 15 social and physical distancing measures, 9 international travel
measures, 2 drug-based measures, and 2 biological measures, which are con-
sidered in our study as predictors in the machine-learning model. In addition
to theWHO PHSMdata, we compiled the common policy responses released in
181 countries from the OxCGRT (15). In this product, the coded government
response indicators include nine indicators for containment and closure
policies and four indicators for economic policies, and seven indicators
record information on health system policies, which were used as predictors in
our machine-learning model.

We compiled global daily human mobility data by territory in two steps.
First, we compiled the daily workplace movement changes as an indicator of
human mobility for 128 countries except for China, which are published by
the Google community (32). Second, because the Google data do not cover
China, we compiled the daily human mobility data from the Baidu Qianxi
Web Platform (33) for 31 provinces in China. To ensure the consistency be-
tween different mobility records in the Google and Baidu engines, we de-
rived the ratio of human mobility after the outbreak of COVID-19 to the
average mobility during the 5 wk from 3 January to 6 February 2020 as a
baseline. This ratio of human mobility was adopted as a predictor in our
machine-learning model.

Prediction of the Weekly Acceleration of Daily COVID-19 Cases by Machine
Learning. To model the relationship between weekly acceleration of daily
COVID-19 cases (A) and 10 socioeconomic and environmental indicators, we
used a GBDT regression (48), which is described in the “Statistics and Machine
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Learning” toolbox in MATLAB environment software (https://www.mathworks.
com/help/stats/fitrensemble.html). GBDT adopts an ensemble learning algorithm
that models complex and nonlinear relationships between predictors (Xi) and
many response predictands (Y) by combining multiple regression trees with gra-
dient boosting. The decision tree is a popular type of universal approximators.
The universal approximation theory states that any piecewise continuous math-
ematical function with enough universal approximators and correctly tuned pa-
rameters can be approximated by the superposition of continuous functions of
variables (69). Apart from this theoretical guarantee, GBDT has been shown to be
effective in real-world applications including epidemiological studies (e.g., ref. 70).

We trained the model to fit the 5,642 observations of acceleration of
COVID-19 cases by week from 1 January to 8 November 2020 across the 211
territories globally based on the weekly changes in NO2 (ΔNO2,w), together with
another 10 socioeconomic and environmental indicators: relative humidity,
horizontal wind speed, precipitable water content, ambient temperature, PBL
height, average travel time of residents to the nearest urban center [data
provided by Weiss et al. (44)], delay in confinement as the number of weeks
with ΔNO2

+ > 0 after the outbreak of COVID-19, purchasing-power-parity GDP
per capita, the average population density of a territory, and the continuity of
confinement (the variable κ, defined above). The fitted model is evaluated by
fourfold cross-validation, where 25% of the samples are used as a test and the
remaining samples are designated to train the model, and by leave-one-out
cross validation, where one sample is used as a test and the remaining samples
are designated to train the model (71).

When we applied GBDT to predict weekly acceleration of daily COVID-19
cases from ΔNO2 and 10 socioeconomic and environmental indicators we con-
sidered the impact of the maximum depth of each tree, learning rate, and the
number of trees on the performance of the model using a mean squared error
(MSE) metric (71). Increasing the maximum depth of each tree produces a
sufficient residual current that fits well but reduces the efficiency in training
each tree. Increasing the learning rate improves the effect of model training by
increasing the contribution of each tree but leads to a risk of overfitting. In-
creasing the number of trees for each ensemble also improves the effect of
model training but leads to an overload of training data and increases the noise
in model training. To assess the impact of one parameter, we held the other
two parameters and vary only one parameter in different experiments (SI
Appendix, Fig. S19). In a fourfold cross-validation, MSE increased when we in-
creased the number of trees under a learning rate of 1. MSE decreased before
increasing when we increased the number of trees under a learning rate of
0.25, 0.5, and 1, and the curve became flatter under a higher number of trees.
This produces a lowest peak of MSE under a threshold number of trees under a
learning rate of 0.25, 0.5, and 1. However, the computing time increased dra-
matically when the learning rate increased. When the maximum depth of each
tree increased from 1 to 8 and to 64, the peak of MSE decreased. To ensure an
efficient learning of the model, we adopted 64 for the maximum depth of tree,
0.25 for the learning rate, and 7 for the number of trees in this study.

Hindcast and Forecast Simulations of COVID-19 Cases. Based on weekly ac-
celeration of daily COVID-19 cases predicted from ΔNO2 using the machine-
learning model, we simulated the evolution of daily COVID-19 cases fol-
lowing a simplified dynamic procedure as

lnNd+Δt = lnNd + VdΔt [10]

Vd+Δt = Vd + AwdΔt, [11]

where d is a day, w is a week, Δt is a time step (1 d in this study), Nd is the
daily cases, Vd is the velocity of daily cases, and Awd is the acceleration of
daily cases predicted from ΔNO2 using machine learning. We run a hindcast
simulation for 8 wk starting on the last day of the first 3 wk after the out-
break of COVID-19 in each territory and a forecast simulation for 25 No-
vember 2020, as the last day in this study, to 21 January 2020. We used the
estimated real-time SE of ΔNO2 to determine ΔNO2

+ and the real-time discrete
variable κ in the hindcast simulations. The SE of ΔNO2 estimated for the last
week (2 to 8 November 2020) in this study is used as a constant to determine
ΔNO2

+ and the discrete variable κ in the forecast simulations.

Optimization of the Regional Distribution of ΔNO2.We used a stepwise method
to optimize the global distribution of ΔNO2 as an indicator of changes in

activity due to confinement to achieve the highest efficacy of a global joint
action to contain COVID-19. The influence of reducing ΔNO2 from –20% to
–30% on the number of daily COVID-19 cases on 21 January 2021 is weak (SI
Appendix, Fig. S16B), so we considered ΔNO2 = –30% as an upper bound of
limited activity during confinement in the winter of 2020. The effect of limiting
activity on reducing daily COVID-19 cases accumulates over time by decelerating
the growth of new case (A), so we reasonably considered that limiting activity is
more efficient to reduce cases by reducing ΔNO2 in earlier weeks.

We considered a reduction of ΔNO2 by 10% in a week as a minimal interval
when reducing ΔNO2 in our optimizing procedure. Reducing ΔNO2 from 0 to
–30% in the following eight weeks leads to 24 intervals, which generates 25
scenarios of ΔNO2 for each territory. In the first scenario, ΔNO2 is 0 in all weeks. In
the second to fourth scenarios, ΔNO2 is –10%, –20%, and –30%, respectively, in
the first week and 0 in other weeks. In the fifth to seventh scenarios, ΔNO2 is
–30% in the first week, –10%, –20%, and –30%, respectively, in the secondweek,
and 0 in other weeks. Then, in the 23rd to 25th scenarios, ΔNO2 is –30% in the first
to seventh weeks and –10%, –20%, and –30% in the eighth week, respectively.

We run the 25 scenarios for each territory to estimate the reduced number
of daily cases for 21 January 2021 (ΔNk,i) in scenario k relative to the number
in the 25th scenario as

ΔNk,i = Nk,i − N25,i , [12]

where i is a territory, and Nk,i or N25,i is the number of daily cases for 21
January 2021 in the kth or 25th scenario, respectively, in territory i.

We chose a threshold (H) for the reduced number for 21 January 2021
(ΔNk) to find the scenario k, where ΔNk exceeds H as

ΔNk,i ≥ H andΔNk+1,i<H. [13]

As an advantage, this procedure ensures that the reduction in daily cases for
21 January 2021 by further reducing of ΔNO2 to –30% in this territory is <H.

We increased H continuously from 10 to 250,000 cases per day to determine
k for each territory and to obtain the distribution of ΔNO2 where activity can be
limited to achieve the largest reduction in daily cases for 21 January 2021.

We ultimately derived the global number of new cases on 21 January 2021
corresponding to each value of H, which is plotted as a function of total
purchasing-power-parity GDP weighted by ΔNO2 (Eq. 4) for the 211 territories
under the corresponding scenario (Fig. 6A).

Monte Carlo Ensemble Simulation. We ran the Monte Carlo ensemble simu-
lation (72) to propagate 1) uncertainty in the acceleration of case (A) pre-
dicted by the linear regression model (Eqs. 5 and 6) and 2) uncertainty in
the activity reduction (ΔNO2) from NO2 concentration changes predicted by
the fixed effect model (Eq. 1). These two uncertainties as the average for the
study period are mapped (SI Appendix, Fig. S7). Based on the means and SDs
of the predicted A and ΔNO2, we randomly generated 1,000 pairs of A and
ΔNO2 from normal distributions for each week in each territory. With each
pair of A and ΔNO2, we repeated the training of one machine-learning model
and the optimization of the regional distribution of ΔNO2 for the forecast
simulation from 9 November 2020 to 21 January 2021. Based on the Monte
Carlo ensemble simulations, the interquartile range of the predicted global
new COVID-19 cases on 21 January 2021 was derived as a measure of un-
certainty in the estimated effect of optimization (Fig. 6A).

Data Availability. Anonymized code and materials have been deposited in
GitHub (https://github.com/rongwang-fudan/COVID-2019_EEC_Global).
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