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1 INTRODUCTION

As countries around the world aim to counteract rising numbers of COVID-19 infections [2], over-
whelmingly growing evidence suggests that few infected people in infection hotspots, or super-

spreading events (SSEs), may be responsible for both explosive early growth of cases and sus-
tained transmission in later stages [6, 12, 32, 40, 51, 61]. For example, in Hong Kong, the largest
infection hotspots were traced back to four bars, which accounted for 32.5% of all locally acquired
infections from January 23 to April 28, 2020 [6]. In South Korea, an infection hotspot linked to a
church was responsible for at least 60% of all recorded cases by March 18, 2020, and over 1,000
infections were traced back to a single individual [3]. The first major outbreak in Germany oc-
curred after an infected couple attended a carnival festivity in Heinsberg, with super spreading
dynamics later verified by virus genome sequencing [74]. These lines of evidence suggest that, for
COVID-19, the number of infections caused by single infectious individuals is overdispersed—most
individuals infect a few and a few infect many, exhibiting greater variance than expected under
Poisson assumptions [21, 42, 83]. Using carefully annotated tracing data, this has been identified
as a root cause of SSEs [6, 32, 40, 51].

Most of the existing epidemiological models for studying containment measures, including those
developed and used in the context of the COVID-19 pandemic, neither explicitly represent sites
of transmission, nor do they characterize exposures as a function of individual mobility patterns.
While this coarseness may be useful for fitting aggregate case trends, it makes conventional ap-
proaches unable to model the effects of granular interventions such as contact tracing or testing.
Moreover, existing models either assume or result in a Poisson distribution of infections caused by
an infectious individual, also called secondary infections, which fails to capture the high dispersion
observed for COVID-19.1 As a result, these models have been of little use for identifying condi-
tions under which hotspots emerge [21, 40], helping design and study control measures tailored
to prevent SSEs [10], and predicting where infection hotspots are most likely to occur [83].

In this work, we take a first step towards addressing the above limitations and present a data-
driven framework for epidemiological modeling in the presence of overdispersed transmission
dynamics and fine-grained containment measures. Our main contributions are as follows:

(i) We introduce an event-based “check-in” mobility model that explicitly characterizes the fre-
quency and duration of each individual’s visits to specific sites, which can be configured
using a variety of publicly available data.

(ii) We develop a novel rate of transmission at sites that quantifies the influence of these individ-
ual mobility patterns as well as environmental drivers and containment measures on the risk
of exposure that each infected individual poses to others at a site. By using this transmission
model and an explicit representation of the visited locations, our framework can directly
characterize granular interventions that are targeted at particular sites and individuals (e.g.,
hygienic measures at workplaces, closures of schools, or contact tracing).

(iii) We derive an efficient sampling algorithm for our model, which allows us to simulate the
spread of COVID-19 under a variety of containment measures and counterfactual scenarios.
Building on this procedure, we show how to estimate the disease transmission parameters
using Bayesian optimization (BO) and longitudinal COVID-19 case data.

Our framework empirically scales to real-world cities and regions with hundreds of thousands of
inhabitants and can be applied whenever simulated or real mobility traces as well as basic disease
progression parameters (e.g., the incubation period and duration of infectiousness) are given.

1Overdispersion has also been observed in MERS and SARS [56, 63, 66].
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We showcase our approach using fine-grained demographic data and site locations from Bern,
Switzerland, and other regions in Germany and Switzerland. Our results demonstrate that the
number of individual disease transmissions—both overall and during a site visit—naturally emerges
to be overdispersed, i.e., exhibiting higher variance than expected under the common Poisson
assumption and that our model is able to robustly characterize the observed COVID-19 case trends.
These findings hint at the potential of our framework as a complementary policy tool for studying
the efficacy of containment measures, factors of disease transmission, and the nature of infection
hotspots—hand in hand with existing societal and ethical considerations. To facilitate research and
analyses in this area, we release an open-source implementation of our framework [57].

2 BACKGROUND

Temporal point processes are random processes whose realizationsH = {t1, t2, . . . , tn } consist of
discrete events localized in time ti ∈ R+ [5]. A temporal point process is commonly represented
as a counting process N (t ), which counts the number of events that occurred before time t

N (t ) =
∑

ti ∈H
u (t − ti ), (1)

where u (x ) is the unit step function and equals 1 if x ≥ 0 and 0 otherwise. Given a history of
eventsH (t ) = {ti ∈ H | ti ≤ t } until time t , we use a conditional intensity function λ(t ) to model
the arrival probability of the next random event in the process. More specifically, the conditional
intensity function λ(t ) models the probability of an event occurring in an arbitrarily small time
window after t . We write

P (dN (t ) = 1 | H (t )) = λ(t ) dt , (2)

where the differential is defined as dN (t ) = N (t + dt ) − N (t ) ∈ {0, 1}. Here, dt is an arbitrarily
small time interval, and only one event can occur in [t , t + dt ). The intensity function λ(t ) can be
interpreted as an instantaneous rate of events per unit of time, for example, λ(t ) = 5 visits/week
or λ(t ) = 1 infection caused/hour. Note that λ(t ) may be time-varying and conditional onH (t ).

In stochastic differential equations (SDEs) with jumps, the evolution of a set of state vari-
ables is characterized by the stochastic events of a set of counting processes. Jump SDEs are com-
monly used for modeling dynamical systems with discrete stochastic events in continuous time,
such as visits to sites or infections with a disease. To illustrate, let N (t ) represent a counting pro-
cess recording the number of emails sent to a person, and assume their inbox has a capacity of
1,000. Ignoring the deletion of emails, the change in the number of emails in the inboxX (t ) maybe
expressed by the SDE dX (t ) = u (1, 000 − X (t ))dN (t ), which increments X (t ) at every arrival of
N (t ) until reaching the limit of 1,000.

3 A SPATIOTEMPORAL EPIDEMIC MODEL

In this section, our goal is to develop an agent-based, compartmental epidemiological model under
which fine-grained spatiotemporal interventions can be expressed formally and the distribution
of secondary infections induced by the model can exhibit overdispersion.

To this end, our framework is composed of a collection of binary state variables that determine
the mobility pattern, epidemiological condition, and testing status of each single individual i ∈ V .
We model the state transitions using SDEs with jumps, a model class that captures (i) the stochastic
nature of infection events and mobility patterns, (ii) events in continuous time, i.e., not in aggregate
over a period, and (iii) discrete state transitions—an individual either does or does not get infected,
visit a site, or get tested positively.
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In the remainder of this section, we formally describe the dynamics of each state variable of the
model. To ease the exposition, we distinguish between variables related to mobility, epidemiology,
testing, and containment measures. Later, in Section 4, we then show how to generate random
forward simulations of the entire model by devising an efficient sampling algorithm.

3.1 Mobility

For each individual i ∈ V and a set of sites S that individuals can visit, let Pi,k (t ) = 1 if the
individual is at site k ∈ S at time t and Pi,k (t ) = 0 otherwise. We characterize the value of the
states Pi,k (t ) using the following SDE with jumps:

dPi,k (t ) = dUi,k (t ) − dVi,k (t ). (3)

Ui,k (t ) and Vi,k (t ) are counting processes that record the events of individual i arriving at and
leaving from site k ∈ S, respectively. Thus, Equation (3) captures that Pi,k (t ) increments to 1 after
person i arrives at site k and decrements to 0 after the person leaves. We define the dynamics of
the state transitions as

P
(
dUi,k (t ) = 1 | H (t )

)
= ηi,k (t )

∏
l ∈S

(1 − Pi,l (t )) dt

P
(
dVi,k (t ) = 1 | H (t )

)
= vk Ui,k (t ) dt

, (4)

where ηi,k (t ) is the rate at which individual i visits site k and 1/vk is the average duration of a
visit to site k . Equation (4) makes the state variable Pi,k (t ) ∈ {0, 1} well-defined by ensuring that
Pi,k (t ) = 1 for only one site k ∈ S at a time.

To configure the rates ηi,k (t ) and average duration 1/vk for every individual and site, one can
resort to publicly available data. In our simulations, we configure the individual mobility statis-
tics using the spatial distribution of real site locations, high-resolution population density data,
country-specific information about the household structure, and region-specific age demograph-
ics. We also assume that the probability that an individual i visits a specific site k decreases with
the distance between their household and the site, similar to the gravity model [85]. Figure 1 illus-
trates the sites S in a mobility model of Bern, Switzerland, which will be used for the case study
in Section 5.

3.2 Epidemiology

To model the health status of each individual i ∈ V while being in contact with others at sites
S of the mobility model, we build on recent variations of the Susceptible-Exposed-Infected-

Resistant (SEIR) compartment models that have been introduced in the context of COVID-19
modeling [37, 54]. More specifically, we define the epidemiological condition of each individual i ∈
V using the indicator state variables S(t ) = {Si (t ), Ei (t ), Ia

i (t ), Ip
i (t ), I s

i (t ), Hi (t ), Ri (t ), Di (t )}i ∈V
with each ∈ {0, 1}, whose meaning is specified in Table 1.

Exposure. First, we formally characterize the state transition of individual i ∈ V from being
susceptible (Si (t )) to being exposed (Ei (t )) using the following jump SDEs:

dSi (t ) = −dNi (t )

dEi (t ) = dNi (t ) − dMi (t ).
(5)

The counting process Ni (t ) models the exposure of individual i ∈ V and thus forms the core
component of our epidemiological model. Mi (t ) models the subsequent transition to the asymp-
tomatic or presymptomatic state.

To connect the epidemiological model to the mobility model, we assume that an individual’s in-

stantaneous rate of exposure increases by a constant site-specific transmission rate βk when in contact
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Table 1. Epidemiological State Variables S(t )

State Description Infected Contagious Symptoms
Si (t ) is susceptible - - -
Ei (t ) is exposed � - -
Ia
i (t ) is asymptomatic,

mild course of disease � � -
I

p
i (t ) is presymptomatic,

progresses to I s
i (t ) later � � -

I s
i (t ) is symptomatic � � �
Hi (t ) is hospitalized � � �
Ri (t ) is resistant and recovered - - -
Di (t ) has died - - -

Fig. 1. Site locations by category in the mobility model of Bern, Switzerland. The colored dots depict schools
and research institutes (blue), social places (orange), bus stops (green), workplaces (red), supermarkets
(purple).

with another infectious individual at a sitek ∈ S. Consequently, the exposure rate of each individual
i only depends on the individual’s contacts at sites k ∈ S based on the mobility traces Pi,k (t )—
and not the contacts of others. We capture this model of exposure by the following conditional
intensity function λi (t ) of the exposure counting process Ni (t ):

λi (t ) = Si (t )
∑
k ∈S

Pi,k (t )
∑

j ∈V\{i }

∫ t

t−δ

Kj,k (τ ) γe−γ (t−τ ) dτ , (6)

where

Kj,k (τ ) = Pj,k (τ ) βk

(
I

p
j (τ ) + I s

j (τ ) + μIa
j (τ )
)

and P (dNi (t ) = 1 | H (t )) = λi (t ) dt . In the above:

(i) βk ≥ 0 is the base transmission rate of presymptomatic and symptomatic individuals at site
k . Depending on the availability of labeled and unlabeled data, one may consider sharing
the same parameter for all sites k ∈ S or for sites of the same category, e.g., distinguishing
only indoors and outdoors. The scale μ ∈ [0, 1] denotes the relative transmission rate of
asymptomatic compared to (pre-)symptomatic individuals.
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(ii) Kj,k (τ ) ∈ {0, μβk , βk } captures the effective contribution of individual j to transmission at
site k and is non-zero if and only if j is both infected (symptomatic, presymptomatic, or
asymptomatic) and present at site k at time τ .

(iii)
∫ t

t−δ
Kj,k (τ ) γe−γ (t−τ ) dτ models environmental transmission by accounting for the fact that

the virus survives for some period of time δ on surfaces or in the air after an infected indi-
vidual has left a site [71].

Thus, while traditional epidemiological models constrain the number of exposures to homoge-
neous Poisson distributions, our model in Equation (6) employs a stochastic and dynamically ad-
justing exposure rate for each individual i ∈ V based on the mobility traces Pi,k (t ), under which
this constraint is lifted. Infections within households can be characterized by adding an analogous
term λH (i ) (t ) with household transmission rate ξ to λi (t ), which is outlined in Appendix A.

Disease progression. After an individual i ∈ V got exposed, the subsequent state transitions are
characterized by the counting processes Wi (t ), Yi (t ), Zi (t ), Ra

i (t ), and Rs
i (t ). Let ai ∼ Bern(αa )

indicate whether an infected individual i is asymptomatic or not. Then, in the asymptomatic case
where ai = 1, individual i progresses from exposed to asymptomatic (via Mi (t )) and ultimately to
recovered (via Ra

i (t ))

dIa
i (t ) = aidMi (t ) − dRa

i (t ). (7)

In the symptomatic case where ai = 0, the individual progresses from exposed to presymp-
tomatic (via Mi (t )), from presymptomatic to symptomatic (via Wi (t )) and from symptomatic to
resistant (via Rs

i (t )). In addition, symptomatic individuals may be hospitalized or die from the dis-
ease. Let hi ∼ Bern(αh ) indicate whether the individual eventually requires hospitalization, and
bi ∼ Bern(αb ) whether they eventually die from the disease. Then, a symptomatic individual may
also transition from symptomatic infected to hospitalized (via Yi (t )) and from symptomatic in-
fected to dead (via Zi (t )). All in all, the presymptomatic (Ip

i (t )), symptomatic (I s
i (t )) and resistant

(Ri (t )) state variables are characterized by

dI
p
i (t ) = (1 − ai )dMi (t ) − dWi (t )

dI s
i (t ) = dWi (t ) − (1 − bi )dRs

i (t ) − bidZi (t )

dRi (t ) = aidR
a
i (t ) + (1 − ai )dRs

i (t ).

(8)

Moreover, the hospitalized (Hi (t )) and dead (Di (t )) states are given by

dHi (t ) = hi I
s
i (t )dYi (t ) − (1 − bi )Hi (t )dRs

i (t ) − biHi (t )dZi (t )

dDi (t ) = bidZi (t ).
(9)

Since disease progression is disjoint from the mobility model, we follow the literature in model-
ing the above transition times using easy-to-sample log-normal distributions [52, 55]—starting at
the time Ei (t ), Ip

i (t ), Ia
i (t ), or I s

i (t ) become one, respectively, and terminating after their first event.
In practice, we fix their parameters based on estimates of the mean transition durations from the
clinical COVID-19 literature.

3.3 Testing

Individuals are tested according to a testing policy πtest (t ), e.g., testing only symptomatic or vul-
nerable people, at a rate λtest (t ), which can be chosen to match location-specific testing statistics.
The test outcomes are only known after a reporting delay Δtest. Formally, the counting process
T (t ) records the number of known test outcomes by time t . Let T +i (t ) and T −i (t ) be the number of
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times an individual i ∈ V has been tested positive and negative, respectively, by time t . Then, we
characterize the state variables T +i (t ) and T −i (t ) using the following SDEs:

dT +i (t ) =
(
Ei (t )+ Ia

i (t )+ I
p
i (t )+ I s

i (t )
)
di (t ) dT (t +Δtest),

dT −i (t ) =
(
Si (t )+Ri (t )

)
di (t ) dT (t +Δtest), (10)

where di (t ) ∈ {0, 1} ∼ πtest (t ) indicates whether i is tested at time t according to the policy. In the
above, a test result is positive if the individual is exposed (Ei (t )) or infected (Ia

i (t ) + I
p
i (t ) + I s

i (t )),
and negative if the individual is either susceptible (Si (t )) or recovered (Ri (t )). This can be relaxed
to account for test specificity and sensitivity.

3.4 Containment Measures

In the above context, we can formally model a variety of containment measures that not only affect
the broad populationV but also target specific sites or individuals, possibly in a time-variant fash-
ion. These may range from more granular (e.g., isolating individuals who have tested positive for
14 days or who had contact with a positively tested individual) to less granular (e.g., implementing
a state of “lockdown” for the entire population). The effect of mobility reduction and quarantine
can be characterized by reducing the rates ηi,k (t ) at which individuals visit sites in the mobility
model. Hygienic measures (e.g., face masks) can be implemented by reducing the transmission rate
βk at specific sites (e.g., workplaces). In all cases, the measures reduce the conditional intensities
λi (t ) of the exposure counting processes Ni (t ), possibly dynamically based on the values of other
state variables at time t .

Moreover, if desired, we may assume that contacts between individuals at sites are registered
by a peer-to-peer proximity-based tracing system, analogous to the smartphone-based Bluetooth
systems that have been implemented in the context of the COVID-19 pandemic [7]. A contact
between individuals i and j will be registered if (i) their visit times at a specific site k ∈ S overlap,
and (ii) both opt to use the proximity-based tracing system, e.g., by means of carrying a Bluetooth
device. Visit times are said to overlap when Pi,k (t ) = 1 and Pj,k (t ) = 1 for some site k ∈ S and time
t . When an individual i is tested positive, their registered contacts may be advised to isolate or seek
testing themselves as described in Section 3.3. For contact tracing, the type of intervention may
depend on the risk of exposure caused by the positively tested individual, which can be estimated
using our model. Appendix B provides further details.

4 MODEL SIMULATION AND ESTIMATION

4.1 Epidemiological Sampling Algorithm

Having formally defined the model dynamics in Section 3, we now introduce a procedure to sample
trajectories of the individual epidemiological states S(t ) over a time horizon t ∈ [0, tmax), which
ultimately allows us to empirically study the spread of the disease under a variety of scenarios.
The initial conditions S(0), a testing policy πtest (t ), and the mobility traces Pi,k (t ) are assumed to
be fixed a priori—from simulations of a synthetic mobility model as in Section 3.1 or real-world
data.

To sample a trajectory of the epidemiological state variables, we start by noticing that their
values change at—and only change at—events of the counting processes that model the transitions
in the model SDEs. Hence, all state variables S(t ) are constant between two consecutive events
when considering the event times of all counting processes in the model on one timeline. This
leads us to the backbone principle for generating random realizations of the model: we initialize
the state variables S(0), sample the next time of state transition for each i ∈ V , and push these
transition events onto one temporally-sorted priority queueQ that simultaneously tracks the next
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25:8 L. Lorch et al.

events for all individuals in the model. The algorithm then repeatedly loops through: (i) popping
the next event e from Q ; (ii) updating the state of individual i associated with e; (iii) sampling the
next time t of state transition e ′ for i; and (iv) pushing e ′ to Q with priority t .

As explained in Section 3, we fix the time-to-event distributions of all processes not concerning
exposure, i.e., excluding {Ni (t )}i ∈V , to independent, easy-to-sample distributions as estimated by
clinical COVID-19 literature. This means that once an individual is exposed, sampling the following
times of state transition, e.g., to symptomatic and recovered states, is trivial. However, sampling
the time of exposure of i , i.e., the first event time of Ni (t ), is hard because the rate λi (t ) dynamically
interacts with all other stochastic state variables S(t ) via the mobility model Pi,k (t ). To be able to
sample from Ni (t ), we decompose the intensity λi (t ) into a sum of contributions λj→i (t ) caused
by other individuals j:

λi (t ) = Si (t )
∑

j ∈V\{i }

∑
k ∈S

Pi,k (t )

∫ t

t−δ

Kj,k (τ )γe−γ (t−τ ) dτ =: Si (t )
∑

j ∈V\{i }
λj→i (t ), (11)

where the last summation over j ∈ V\{i} is sparse as it only indexes over contacts of individual i
after time t . Note that λj→i (t ) = 0 when i and j are not in contact directly or when j left site k ∈ S
more than δ -time before i arrived.

By Equation (11), if individual i is susceptible, the counting process Ni (t ) can be seen as a super-
position of several processes Nj→i (t ) with intensities λj→i (t ). This implies that the time-to-event
distribution of Ni (t ) is equivalent to the distribution of the time to the first arrival of all processes
Nj→i (t ) [5, 27]. Using the temporal ordering invariant of Q , we can thus process valid exposure
events on the fly. Whenever an individual j becomes infectious, i.e., Ia

j = 1 or Ip
j = 1, we sample

the next exposure event that j causes for every individual i in contact with j in the future at rate
λj→i (t ), and push these events onto Q . Later, when an exposure event e for individual i is popped
from Q in step (i), we check whether e is the first exposure of i by verifying Si (t ) = 1, and discard
subsequent exposure events for i .

To sample the next event time of the subprocess Nj→i (t ) after time t ′, we use the principle of
thinning [27]. We can generate a valid sample fromNj→i (t ) by repeatedly adding τ ∼ Expo(λmax

j→i ) to
t ′ and stopping with probability λj→i (t ′)/λmax

j→i at a given iteration, where λmax
j→i is an upper bound on

λj→i (t ). We skip zero-intensity windows whenever reaching λj→i (t ) = 0 during thinning, which
is sound by viewing Nj→i (t ) itself as a superposition of counting processes, one for each interval
of non-zero intensity, and skipping their initial zero-rate periods by the memoryless property.2

If j recovers, i.e., R j (t ) = 1, then λj→i (t ) in Equation (11) is dynamically set to 0 at the time of
recovery because Kj,k (t ) = 0. By the principle of thinning, all exposure events caused by j beyond
this point, sampled back when j got infectious, are discarded on the fly, i.e., when they get popped
from Q .

Combining the above, we arrive at an efficient sampling procedure for the epidemiological
model SDEs using a single priority queue Q , which is formally defined in Algorithms 2 and 3 of
Appendix D. In this context, we note that interventions like social distancing or hygienic measures
always reduce the rates λj→i (t ) and can thus likewise be implemented using thinning, i.e., rejecting
the affected exposure events with some probability.

Our sampling procedure is a Las Vegas algorithm, i.e., its runtime is a random variable but its
output, i.e., the sampled trajectory of state variables, is always faithful. This is because the number
of state transition events we sample and subsequently process depends on the number of infec-
tious individuals, which is itself a random variable. The following proposition bounds the expected

2If T ∼ Expo(λ), then P (T ≥ t + s | T ≥ s ) = P (T ≥ t ).

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 4, Article 25. Publication date: October 2022.



Quantifying the Effects of Contact Tracing, Testing, and Containment Measures 25:9

runtime of our sampling procedure under some mild technical assumptions on the mobility traces
Pi,k (t ). A proof is given in Appendix D.

Proposition 1. Assume that any given individual i ∈ V makes O (tmax) visits to sites S, the

mobility model is sparse, i.e., every individual i ∈ V has O (1) unique contact persons3, and there

are no containment measures. Then, the expected runtime of our sampling procedure for generating

a trajectory of the epidemiological states S(t ) over a time horizon [0, tmax) is given by

O
(
|V |
(
tmax log(tmax |V |) + 1

q
tmax log(tmax)

))
,

where q ∈ (0, 1) is a constant known a priori that depends on the parameters of the epidemiological

model.

The above result implies that, if the number of sites individuals visit increases linearly with
time and the number of unique contact persons is constant, then the expected runtime of our
sampling procedure is quasilinear in the number of individuals |V | and the length of the sampled
trajectory tmax. Moreover, it is worth pointing out that generating random rollouts of the model
can be embarrassingly parallelized. Finally, in our experiments, we have empirically found that
our sampling procedure scales to regions of more than one hundred thousand individualsV with
around one thousand sites S.

4.2 Parameter Estimation

Building on the sampling algorithm, we can estimate the unspecified epidemiological parameters
θ = {βk , ξ }, i.e., the transmission rate of individuals at sites and in their households, in a given
epidemiological scenario. More specifically, provided a set of initial conditions S(0), testing policy
πtest, a priori fixed mobility traces Pi,k (t ), and fixed parameters of the processes not concerning
exposure, i.e., excluding {Ni (t )}i ∈V , we find the parameters θ that provide the best fit to the ob-
served COVID-19 cases in a given region. To this end, we view the model simulation as a black
box and apply BO, which amounts to iteratively building a surrogate model of our objective and
evaluating at promising parameter settings [16].

Following the standard BO paradigm, we interpret the expected number of positive cases at time

t in our model as a black box function дt (θ ) where

дt (θ ) := ET ∼θ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
T +i ∈T

T +i (t )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

The expectation in Equation (12) is defined over realizations of the testing state variables
{T +i (t )} =: T ∼ θ of the model with exposure parameters θ . In practice, дt (θ ) is only observed
via noisy evaluations at different values of θ since the expectation is approximated using a Monte
Carlo estimate of J random simulations. T is stochastic not only due to the counting processes,
but in absence of real mobility traces also due to random seeds S(0) and synthetic Pi,k (t ), indepen-
dently simulated for each rollout.

The objective we aim to minimize is the mean daily squared error of cumulative positive cases
between the model predictions and the real observed COVID-19 cases of the region. This allows
us to form a link between the spatiotemporal states of each individual in the model and aggregate
longitudinal case data. The squared error has previously been considered in parameter estimation
for black-box models [11] and in the context of COVID-19 research [23]. Let c true

t be the cumulative
number of real COVID-19 cases at the end of the day t as provided by the national authorities. Then,

3This implies that the individuals V and sites S are not considered independently. Formally stated in terms of the mobility
model, we assume

∑
k∈S Pi,k = O (tmax) and

∑
j∈V
∑

k∈S Pi,k Pj,k = O (1).
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ALGORITHM 1: Parameter estimation using Bayesian optimization

Input: Black-box simulator дt (θ ), parameter domain dom(θ ), time horizon tmax, case data c true
t , hyperparameters J , M ,

N

1: s (x) := −∑tmax
t=1 (c true

t − xt )2

2: θ1:M ← first M quasi-random settings
3: D ← ∅
4: for i ∈ [M] do � Quasi-random initialization
5: Obtain daily sim. result дt (θi ) from J random roll-outs
6: D ← D ∪ {(θi , дt (θi )) }
7: while |D | ≤ N do � Bayesian Optimization
8: p (дt (θ )) | D) ← GaussianProcessPosterior(D)
9: θ ∗ ← arg maxθ ′∈dom(θ ) KnowledgeGradient(p, θ ′) [79]

10: Obtain daily sim. result дt (θ ∗) from J random roll-outs
11: D ← D ∪ {(θ ∗, дt (θ ∗)) }
12: return arg max(θ ,д1:tmax (θ ))∈D s (д1:tmax (θ ))

our objective f to be minimized is a composition of the squared error score and per-day black-box
functions дt (θ ) averaged over a time of tmax days:

f (θ ) =
1

T

tmax∑
t=1

(
c true

t − дt (θ )
)2
. (13)

The compositionality of f can allow for greater sample efficiency [11, 13], in particular when
estimating additional parameters. However, when only estimating θ = {{βk }, ξ } and βk held con-
stant across sites, we found it to be favorable for the BO surrogate model to directly learn f (θ ), as
opposed to the daily дt (θ ), as the black-box function. We use the knowledge gradient acquisition
function [79] to navigate parameter proposals, which often shows favorable performance in noisy
settings [13, 39]. Combining the above with the default BO procedure, our resulting parameter
estimation algorithm is summarized in Algorithm 1.

5 A CASE STUDY OF BERN, SWITZERLAND

In Sections 3 and 4, we introduced a framework for epidemiological modeling and transmission
parameter estimation in mobility models of any region of interest. In summary, the application
of our model presupposes (i) a set of mobility traces Pi,k (t ) from synthetic mobility simulations
or real-world data of the region, (ii) the time distributions for disease progression after infection,
(iii) initial conditions S(0) or assumptions about influx of infected individuals, and (iv) a testing
policy πtest (t ).

In the following, we showcase the flexibility of our framework in a case study of the city of Bern,
Switzerland, and analyze the overdispersion of secondary infections as well as the course of the
COVID-19 epidemic under various, fine-grained containment measures. We present supplemen-
tary results for additional regions of Germany and Switzerland in Appendix E. More generally,
the progression we follow in Sections 5.1 and 5.2 can be viewed as step-by-step instructions to
configure and calibrate the model to any desired region or disease variant.

5.1 Experimental Setup

Mobility traces. We leverage fine-grained demographic data and open-source site locations to
build a mobility model for Bern, Switzerland, that contains |V | = 133,790 individual inhabitants
visiting |S| = 2,174 real points of interest. The individuals V belong to one of nine age groups
according to the real demographics of the region. They are placed in households of up to five peo-
ple according to their age and reported household structure in Switzerland [18]. The households
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themselves are located across the spatial expansion of the city using high-resolution population
density data provided by Facebook Data for Good [1]. To obtain relevant site locations in the regions
of interest, we use geolocation data provided by OpenStreetMap [4]. Specifically, we retrieve the
location of all sites S in five site categories: education (schools, universities, research institutes),
social (restaurants, cafés, bars), transportation (bus stops), work (offices, shops), and groceries (su-
permarkets, convenience stores). The sites S are visualized in Figure 1.

Since real check-in traces Pi,k (t ) of the population of Bern are not publicly available, we simu-
late synthetic mobility traces from the model in Section 3.1 under the assumption of the gravity
model [85]. In particular, we assume that each individual i ∈ V visits only a constrained set of
unique sites Si ⊂ S, which are selected with probability inversely proportional to the squared dis-
tance from their homes. This reflects the fact that individuals typically study or work at only one
place, form habits regarding the public transportation they use, and social places or supermarkets
they visit. We set the check-in rate λi,k (t ) of Section 3.1 to a constant value that depends on the in-
dividual’s age group and site type; see Table 3 in the Appendix. The mean duration 1/vk at sites of
type education and work, social, transportation, and groceries are fixed to 120, 90, 12, and 30 min-
utes, respectively. We sometimes set these times to lower values than one would expect because
individuals are neither exposed to all others at a site nor continuously exposed during their visit.

Disease parameters. As described in Section 3.2, we fix the parameters for disease progression
after exposure based on recent estimates of the COVID-19 literature. The values we use are sum-
marized in Table 2. We set mortality and hospitalization rates per age group using COVID-19 case
data of the county-level administrative region [17] and previous studies [36].

Testing. To abstract away from testing criteria implemented in different regions, we assume that
only true symptomatic individuals are registered for testing and that tests have perfect accuracy.
We set the reporting delay Δtest to 30 minutes, accounting for the now frequently available4 rapid
tests [33], and assume that there is sufficient capacity to test all selected individuals. Moreover,
positively tested individuals and their household members are quarantined for 14 days in isolation
from each other.

5.2 Model Fit and Parameter Estimation

To estimate the transmission rate at sites β and in households ξ , we consider the time horizon
from early March 2020 until May 2020 since it includes both times before and during governmental
interventions in Switzerland, which occurred largely from March 16, 2020 to May 10, 2020 [28]. We
use COVID-19 case data of the county-level administrative region [17] to define the objective (13)
and run the procedure described in Section 4.2 for N ≥ 100 steps withM = 10 initial quasi-random
settings and J = 200 rollouts. During governmental interventions, the check-in frequencies of
individuals at sites in the mobility model are reduced as estimated by Google mobility data in the
region [41], and education and social sites are closed, i.e., not visited at all. In the model simulations
used for estimation, each of the J realizations is randomized across realizations of the synthetic
mobility traces and infection seeds. For parameter estimation, the initially exposed and infectious
individuals are heuristically selected as described in Appendix C based on knowledge about the
case numbers at the start date of the estimation period.

Figure 2 visualizes both the objective values f (θ ) obtained at various settings for the trans-
mission rates β and ξ as well as the model predictions for the cumulative cases during the time
window of parameter estimation. The contour plot indicates that there is a single and identifiable
optimal parameter regime, whose optimal values were estimated as β = 0.0337 and ξ = 0.0038.

4During parameter estimation, Δtest is set to 48 hours to account for the test delay early in the pandemic.
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Fig. 2. Transmission parameter estimation for the model of Bern, Switzerland. The left plot shows a contour
plot of the log objective in (13) as a function of the transmission rate at sites β and in households ξ . The es-
timated parameters β = 0.0337 and ξ = 0.0038 lie in the identifiable optimal region. The right plot shows the
predicted and real cumulative cases under the estimated parameters. The “lockdown” measures in Switzer-
land were implemented on March 16, 2020 as indicated by the dashed vertical line. The solid line indicates
the mean, the shaded areas one and two standard deviations across 100 random simulations, respectively.

Furthermore, we find that the simulations using the estimated parameters are able to accurately
match the observed longitudinal trend of cases during the estimation period early in the epidemic.
Beyond the model of Bern, Switzerland, Appendix E provides a collection of parameter estima-
tion results for four additional regional models of other urban and rural regions in Switzerland
and Germany [19, 50, 64]. These supplementary findings confirm a similarly identifiable optimal
parameter regime and demonstrate that both the epidemiological model and the transmission pa-
rameter estimation procedure are robustly applicable to other regional mobility models.

In the remainder of this section, we use the estimated transmission parameters for the model
of Bern in all of our experiments. We first empirically study the degree of overdispersion in the
number of secondary infections caused by infectious individuals under our mobility and fitted
transmission model. We then use our framework to quantify the effects of a range of containment
measures. To create a general epidemiological scenario, we assume a small but continual influx
of five untraceable exogenous exposures per 100,000 inhabitants and per week and simulate the
model state variables over a period of four months.

5.3 Overdispersion of Secondary Infections

As argued in Section 1, existing epidemiological models have predominantly built on homogeneous
Poisson transmission dynamics that fail to capture the overdispersion of secondary infections ob-
served for COVID-19. In addition, they do not explicitly model visits to sites where exposures
occur. As a result, these models have been of little use for studying and predicting where and
when infection hotspots are most likely to occur [10, 21, 40, 83].

In contrast to previous work, we find that overdispersion of the distribution of secondary infec-

tions emerges naturally under our model. Using the previously specified and estimated model pa-
rameters, we simulate the spread of COVID-19 under no containment measures other than the
testing of symptomatic and isolation of positively tested individuals. During these simulations,
we count the number of secondary infections caused by individuals that got infectious during
a 7-day window after 1 month of the model simulations. Using two goodness-of-fit tests for the
Poisson distribution, the Chi-squared (χ 2) and variance tests (VT) [24, 38], we are able to reject the
null hypothesis that the distribution of secondary infections, both overall and when stratified per
visit, follows a Poisson distribution. In particular, for both distributions of secondary infections,
we obtain pχ 2 < 10−8 and pVT < 10−8. With sample variance generally significantly exceeding the
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Fig. 3. Overdispersion of Secondary Infections. Panels (a) and (b) show a generalized negative binomial
model fitted by maximum likelihood estimation to the secondary infections caused by an infectious indi-
vidual, overall and stratified by site visits, respectively, and averaged over 100 random realizations. The sec-
ondary infections are counted for individuals that got infectious during a 7-day window after 1 month of the
simulation under no containment measures other than the testing of symptomatic and isolation of positively
tested individuals.

sample mean, both ways of counting the number of secondary infections naturally exhibit a higher
variance than expected under the Poisson assumption and are thus overdispersed.

To measure the degree of overdispersion, we follow recent work in the context of COVID-19 [12,
32] and fit a generalized negative binomial distribution NBin(r ,k ), an overdispersed generalization
of the Poisson, where r > 0 is the mean or reproduction number, and k is the dispersion parameter.
Figure 3 summarizes the results. Averaged over 100 random realizations, we find that the dispersion
parameter k < 1 both overall and when stratified per visit (k = 0.93 ± (0.08) and k = 0.26 ±
(0.02), respectively), evidence of substantial overdispersion [32]. We hypothesize that the higher
overdispersion observed when aggregating per visit is a direct effect of the interaction between
the stochastic check-in mobility model and our model of transmission at sites.

5.4 Efficacy of Containment Measures

Reducing contact at public sites by restricting individual mobility has been one of the most preva-
lent measures to counteract the spread of COVID-19 [46]. Our modeling framework allows us
to faithfully study how effective various variants of this approach are at, e.g., containing the dis-
ease, reducing peak hospitalizations, or changing the effective reproduction number Rt over time.
Instead of restricting the mobility of the entire population or only vulnerable groups, previous
work has, for instance, proposed to divide the population into two subgroups that get isolated on
alternating days [48, 58].

Figure 4 shows a comparative analysis of three of these variants: restricting the mobility of
everyone, only vulnerable groups, or one of two random subgroups on alternating days. The mea-
sures are implemented as described in Sections 3.3–3.4. For each variant, we consider different
levels of mobility restriction where individual check-in activity at sites in the mobility model is re-
duced by between 5% and 75%. In our simulations, the vulnerable groups are defined as individuals
older than 60 years, who typically suffer more complications from COVID-19 [17, 64]. Our findings
highlight the fact that the efficacy of each policy strongly depends on the degree to which indi-
vidual movement activity is reduced. While restricting the mobility of everyone is overall clearly
most effective, our findings suggest that isolating (i.e., reducing the mobility by 100%) one of two
subgroups on alternating days can reduce the effective reproduction number, averaged over the
phase of exponential case growth, and peak hospitalizations as much as reducing the mobility of
everyone by 50%. Moreover, our results also suggest that the morally debatable strategy of quaran-
tining only vulnerable groups does not live up to its expectation of reducing peak hospitalizations
significantly.
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Fig. 4. Mobility restrictions. Individuals of certain groups reduce their mobility, i.e., their frequency of visits
to sites by a certain proportion. Panel (a) shows the number of infected over time for different levels of
mobility restrictions. Panel (b) shows the effective reproduction number during the phase of exponential
growth of the number of infected. Panel (c) shows the reduction of peak hospitalizations compared to a
scenario without mobility restrictions. Points and lines represent the mean over 100 rollouts of the simulation.
Error bars and shaded regions correspond to plus and minus one and two standard deviations, respectively.

Orthogonal to various strategies that aim at reducing the number of contacts, the promise of
digital contact tracing has been to achieve fine-grained epidemic control without severe societal
or economical restrictions [37]. In this section, whenever an individual is tested positive, we use
contact tracing to identify all of their contacts in the 10 days leading up to the test result (see
Section 3.4). If a given contact was longer than 15 minutes—the time threshold used by the national
COVID-19 tracing apps in, e.g., France, Germany, Switzerland, and the United Kingdom [26, 35, 59,
69]—the contact person is tested and isolated from everyone in the mobility model for 14 days.

We analyze the effectiveness of digital contact tracing in combination with various degrees
of mobility restrictions for the entire population at different digital tracing adoption levels. The
findings shown in Figure 5(a) illustrate that the adoption of the digital tracing system and
the activity reduction due to social distancing have a complementary relationship in reducing
the cumulative number of infections, as already argued by previous work [25]. Furthermore, the
results suggest that, while contact tracing can provide a significant contribution to the mitigation
of an epidemic, even at high adoption levels of 75%, it requires a combination with activity reduc-
tions of 25% and above in order to achieve epidemic control (Rt < 1). The effective reproduction
numberRt shown in Figure 5(b) decreases over time at a constant adoption level due to the growing
number of recovered individuals in the population.

6 RELATED WORK

Our work builds upon previous work on compartmental epidemiological modeling, human mo-
bility models, and temporal point processes. Most of the classical epidemiological literature has
focused on developing population models [45], unable to capture heterogeneous transmission
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Fig. 5. Contact tracing. A certain proportion of the population has adopted a digital contact tracing system
and, in addition, everyone reduces their visit frequency to sites by a certain proportion. Quarantine measures
are imposed on traceable individuals who have been in contact with positively tested individuals for a min-
imum of 15 minutes. Panel (a) shows the reduction of the cumulative number of infections compared to a
scenario without interventional measures for different adoption levels of the tracing technology and various
degrees of mobility restrictions. Panel (b) shows the reproduction number over time for different adoption
levels at a fixed mobility reduction of 10%. Panel (c) shows the number of infected individuals over time for
different scenarios. Lines and shaded regions represent the mean and two standard deviations computed
over 100 rollouts of the simulation, respectively.

dynamics at the individual level. More recently, there has been research on agent-based epidemic
modeling [8, 20, 22, 72, 73], also in the context of COVID-19 [29, 36, 44, 49, 54, 60, 76]. These
models predominantly use multi-layer contact networks, discrete time, metapopulation, or Pois-
son transmission rate assumptions to characterize individual infections, rather than the frequency
and duration of each individual’s visits to specific sites, as our model does. Notable exceptions are
by Aleta et al. [9], who use check-in data of real sites, yet only to configure the layers of a multi-
layer contact network, and Ferreti et al. [37], who employ a time-varying transmission rate, but
average over individuals who infect few or many others. Chang et al. [23] consider specific points
of interest in US cities but only model transmission dynamics of metapopulations of up to 3,000
people rather than among single individuals. Ultimately, none of the above models, including these
three exceptions, can be faithfully used to characterize the dispersion of the number of individual
infections during a visit, or to straightforwardly study the course of a disease under fine-grained
intervention policies such as, e.g., contact tracing or testing. As a result, these models have not
been useful for studying conditions under which hotspots emerge [21, 40], analyzing measures to
prevent SSEs [10], or predicting where infection hotspots are most likely to occur [83].
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The literature on human mobility models has a rich history, which has been extensively re-
viewed by Barcosa et al. [14]. In our experiments, the spatial distribution of visits of our event-

based “check-in” mobility model follows the gravity model [85]. Analogous to previous COVID-19
research, these visits are synthetically generated in each simulation [15, 31, 48]. However, our
formulation is not restricted to this specific choice and one could think of designing event-based
mobility models with a spatial distribution of visits following, e.g., the radiation model [65] or
population-weighted opportunities model [81]. That said, the configuration of visit types, frequen-
cies, and durations are specific to event-based models like ours, where the existing body of work
on mobility models provides only very limited guidance [47, 82].

Finally, there has been a flurry of work on temporal point process modeling in the machine learn-
ing literature in recent years [70, 80, 84, 86]. They have been particularly successful in predicting
information propagation in social networks and the web, where they have achieved state-of-the-
art performances [30, 34]. However, the development of compartmental epidemiological models
based on temporal point processes has been lacking.

7 DISCUSSION

Motivated by multiple lines of evidence that strongly suggest for infection hotspots to play a key
role in the transmission dynamics of COVID-19, we have introduced a spatiotemporal epidemic
model that explicitly represents sites where infections occur and hotspots may emerge. Through a
case study that used fine-grained demographic data, site locations, mobility data as well as COVID-
19 case data from Bern, Switzerland, we have demonstrated that our model can allow individuals
and policy-makers to make more effective decisions concerning the implementation of contain-
ment measures, contact tracing, and testing—at the individual level and in the presence of overdis-
persion. To facilitate this, we have released an easy-to-use implementation of the entire framework
necessary to perform experiments for any desired region [57].

While the purpose of this work does not lie in providing mechanistic forecasts, we have shown
that an identifiable pair of only two fitted parameters, the transmission rates at sites and house-
holds, provides reasonable predictiveness over our estimation window. Importantly, we find that
our epidemiological model empirically exhibits overdispersion in the number of secondary infec-
tions, which suggests that our formulation characterizes the transmission dynamics at infection
hotspots—an epidemiological driver that effective containment measures would demand prevent-
ing [10, 21]. In this context, we do not intend to argue that our approach allows for a more accurate
fit to aggregate case data than existing meta-population or network-based compartmental models.
Instead, our results in Section 5 demonstrate that we are able to formally model fine-grained inter-
ventions and perform analyses that would not be possible within the mathematical formulation
used by existing meta-population models.

In this work, we have used fine-grained demographic data and site locations to configure our
mobility model. However, if contact tracing data become accessible to researchers, we believe
that the variance of our predictions could be lowered and that it would be possible to use our
framework to identify areas with higher risk of infection in real time. Beyond legal compliance
and gaining societal acceptance, the use of epidemic models with high spatiotemporal resolution
such as ours should respect each individual’s privacy. It is hence important to highlight that, both
during parameter estimation and contact tracing, we only need to compute the contact duration

of individuals with an infected person—the identity of the infected person is not required. As
a result, there are reasons to believe that such computations can be made in a decentralized and
privacy-preserving manner [68]. Ultimately, although our model has greater resolution than many
of those in use today, its predictions can only be faithfully considered when being aware of the
high variance observed across random realizations.
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APPENDICES

A HOUSEHOLD EXPOSURES

If information about households H (i ) that each individual i ∈ V belongs to is available, one
can account for exposures within households analogously to exposures at sites S by adding an
additional rate λH (i ) (t ) to the conditional intensity function λi (t ) of the exposure counting process
Ni (t ):

λH (i ) (t ) = Si (t ) ξ
∑

j ∈H (t )\i

∫ t

t−δ

KHi, j (τ ) γe−γ (t−τ )dτ , (14)

where

KHi, j (τ ) =
(
I s
j (τ ) + I

p
j (τ ) + μIa (τ )

) ∏
k ∈S

(1 − Pi,k (τ )) (1 − Pj,k (τ )), (15)

where ξ ≥ 0 is the base transmission rate within households. This intensity function models our
assumption that individuals within a household are in contact as long as they are not visiting any
site.

Exposure events caused by λH (i ) (t ) can be sampled analogously to the principles for sampling
exposure times introduced in Section 4.1. Their superposition with exposures at sites is handled
by the priority queue.

B EMPIRICAL PROBABILITY OF EXPOSURE

The exposure risk of others caused by an infectious individual can be computed under our model
and empirically approximated using location or contact data, e.g., from (manual) contact tracing.
Specifically, the probability of exposure p̂i←j (t0, tf ) during a time window [t0, tf ] associated with
j in the process Ni (t ) is given by

p̂j←i (t0, tf ) = 1 − exp
(
−K risk

j,i (t0, tf )
)
, (16)

with

K risk
j,i (t0, tf ) =

∑
k ∈S

βk

∫ tf

t0

Pi,k (t ′)

∫ t ′

t ′−δ

Pj,k (τ )γe−γ (t ′−τ )dτdt ′, (17)

and follows from the survival probability in a temporal point process [27]. The estimated proba-
bility of exposure is conservatively high by assuming that all contacts are (pre-)symptomatic and
not considering a possible scaling of μ for asymptomatic individuals. See Section 3.2.

C STATE VARIABLE INITIALIZATION

During the parameter estimation period, it is necessary to specify initial epidemiological condi-
tions S(0) that are consistent with the COVID-19 case data used in the objective. To this end,
we set the number of initially symptomatic individuals I s

init =
∑

i ∈V I s (0) equal to the real ob-
served COVID-19 cases in a region at the start date, or scaled proportionally to the population
size in an administrative region, and set all to be positively tested. Based on the above, we seed
Ia
init = αa/(1 − αa )I s

init individuals to be initially asymptomatic to obtain a proportion of recently
estimated αa = 0.4 asymptomatic seeds [37, 53, 62]. Assuming that infectious individuals have
exposed R0 others on average, we seed Einit = R0 (Ia

init + I s
init) initially exposed individuals, using

recent estimates of the basic reproduction number of approximately R0 ≈ 2.0 [37, 67, 78]. In any
simulation done for parameter estimation, Ei (0), Ia

i (0), I s
i (0) are seeded uniformly at random fol-

lowing the above heuristic counts. Neither asymptomatic nor symptomatic seeds cause further
exposures, and for simplicity, no other states are initially seeded.
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D SAMPLING PROCEDURE

D.1 Algorithms

ALGORITHM 2: Sampling algorithm for generating a trajectory of the epidemiological states
S(t )5

Input: Initial conditions S(0), mobility traces Pi,k (t ), parametersγ , δ , αa , αb , αh , μ and βk , rates λ ( ·) (t )
of the counting processes

1: tnow ← 0, Si ← 1, Q ← priority queue processing in temporal order of events
2: for all i ∈ V s.t. Si = 0 do � Initial conditions
3: Push initial state transition (0, ·, i,∅,∅) to Q

4: while Q not empty do � Priority queue Q contains (time, transition, i, infector, site) events

5: (tnow, e, i, j,k ) ← pop earliest from Q

6: if e is dE and R j (tnow) = 0 and D j (tnow) = 0 and Si = 1 then

7: if Interventions(i, j,k, tnow) then � Reject event and re-sample arrival time of event?
8: Call Algorithm 3 with (P , j, i, tnow, r = 1 − (1 − μ )Ia

j (tnow))

9: else � Person i exposed by infector j
10: Ei ← 1, Si ← 0, ΔM ∼ Expo(λM (tnow)), u ∼ Unif(0, 1)
11: if u ≤ αa then
12: Push (tnow + ΔM ,dI

a , i,∅,∅) event to Q
13: else
14: Push (tnow + ΔM ,dI

p , i,∅,∅) event to Q

15: else if e is dIp then � Person i presymptomatic
16: I

p
i ← 1, Ei ← 0, ΔZ ∼ Expo(λW (tnow))

17: Push (tnow + ΔW ,dI
s , i,∅,∅) event to Q

18: for u such that Su = 1 do
19: Call Algorithm 3 with arguments (P , i,u, tnow, r = 1)

20: else if e is dI s then � Person i symptomatic
21: I s

i ← 1, I
p
i ← 0, u,v ∼ Unif(0, 1)

22: if u ≤ αh then
23: ΔY ∼ Expo(λY (tnow)), Push (tnow + ΔY ,dH , i,∅,∅) to Q

24: if v ≤ αb then
25: ΔZ ∼ Expo(λZ (tnow)), Push (tnow + ΔZ ,dD, i,∅,∅) to Q
26: else
27: ΔR ∼ Expo(λRs (tnow)), Push (tnow + ΔR ,dR, i,∅,∅) to Q

28: else if e is dIa then � Person i asymptomatic
29: Ia

i ← 1, Ei ← 0, ΔR ∼ Expo(λRa (tnow))
30: Push (tnow + ΔR ,dR, i,∅) event to Q
31: for u such that Su = 1 do
32: Call Algorithm 3 with arguments (P , i,u, tnow, r = μ )

33: else if e is dH then � Person i hospitalized
34: Hi ← 1
35: else if e is dR then � Person i resistant
36: Ri ← 1, Ia

i ← 0, I s
i ← 0, Hi ← 0

37: else if e is dD then � Person i died
38: Di ← 1, I s

i ← 0, Hi ← 0

5For simplicity, we omit details about the procedure Interventions(i, j, k, t ), which applies thinning as explained in
Section 4.1 for possible interventional measures. Details can be found in our publicly available implementation [57].
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ALGORITHM 3: Push the next event of individual i exposing individual j in time window [t , tmax)
by considering only the contribution λi→j (t ) in (11) as described in Section 4.1.

Input: P , i , j, t , r
1: procedure InContact(u,v,τ )
2: return True if ∃k ∈ S s.t. Pu,k (τ ) = 1 and ∃τ ′ ∈ [τ − δ ,τ ] s.t. Pv,k (τ ′) = 1

else return False
3: procedure NextContact(u,v,τ )
4: return minτ ′>τ τ

′ s.t. InContact(u,v,τ ′)

5: procedure WillBeInContact(u,v,τ )
6: return True if ∃τ ′ ∈ [τ , tmax] s.t. InContact(u,v,τ ′)]

else return False
7: τ ← t
8: while WillBeInContact(j, i,τ ) do � Thinning loop
9: b ← InContact(j, i,τ )

10: if not b then

11: τ ← NextContact(j, i,τ )

12: ΔEj
∼ Expo

(
maxk {βk } r

∫ τ

τ−δ
γe−γ (τ−v )dv

)
13: τ ← τ + ΔEj

14: if InContact(j, i,τ ) then

15: k ← site of contact
16: p ←

(
βk r
∫ τ

τ−δ
γe−γ (τ−v )Pi,k (v )dv

) / (
maxk {βk } r

∫ τ

τ−δ
γe−γ (τ−v )dv

)
17: u ∼ Unif(0, 1)
18: if u ≤ p then � Accept/reject sampled event time
19: Push (τ ,dE, j, i,k ) event to Q
20: break

D.2 Proof of Proposition 1

The sampling algorithm and its subroutine are formally defined in Algorithms 2 and 3. In the
following, we assume that: (i) a given individual i ∈ V makes O (tmax) visits to sites S over the
horizon [0, tmax); (ii) the mobility model is sparse, i.e., every individual i ∈ V has O (1) unique
contact persons; and, (iii) there are no containment measures. This implies that there are a total
number of O (tmax) contact windows of i with all other individuals j ∈ V . Following our imple-
mentation [57], we assume that the mobility traces Pi,k (t ) are given as an unsorted list of time
intervals [t0, t1], where each time interval indicates a visit of an individual i ∈ V to a site k ∈ S
during the simulated time period.

Event queue. In any possible trajectory of the epidemiological state variables, there is a constant
number of events not concerning exposure that can be pushed to the event queueQ per individual.
This is because every individual transitions through at most a finite set of states. In addition, since
by assumption (ii) the mobility model is sparse, there is a constant number of exposure events
caused by and thus pushed per individual. Thus, the overall number of events pushed to the event
queue throughout the simulation isO ( |V |). This is an upper bound on the size of the queue at any
point in the simulation. Using the standard heap implementation of a priority queue, pushing to
and popping from the temporally-sorted event queueQ hence incur costO (log( |V |)) in the worst
case.

Preprocessing of contacts. Sampling exposures caused by an infectious individual i relies on
querying the contacts with other individuals j by checking their overlapping visits to sites S. To
do this efficiently, the mobility traces are preprocessed into efficient interval data structures called
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interval trees.6 For this, we initialize two dictionaries that store two kinds of interval trees, visits
by individuals and visits to sites, respectively. Both dictionaries are populated by iterating once
over all O (tmax |V |) site visits in the simulated period. For each visit, its time interval is inserted
both into the tree of visits by the corresponding individual i ∈ V as well as the tree associated to
the site k ∈ S. Then, by assumption (i), the interval trees stratified by individual have sizeO (tmax)
and intervals do not overlap by construction. Moreover, the interval trees stratified by site contain
O (tmax |V |) visits and, by assumption (ii), any interval overlaps with O (1) others. Thus, the total
time incurred for constructing all visit interval trees is O (tmax |V | log(tmax |V |)).

Using these two sets of visit interval trees, we build a collection of O (1) contact interval trees
for each individual i ∈ V . These contain the contact windows from i to each of its unique contact
persons j.7 To generate the contact trees for i , we iterate over all O (tmax) visits of i . For each visit,
we query the interval tree of the visited site in time O (log(tmax |V |)) to retrieve the O (1) contact
persons j during that visit. Given this, we update the individual contact interval tree from i to j in
timeO (log(tmax)). Like individual visit traces, the contact intervals do not overlap by construction.
The overall preprocessing cost remains O (tmax |V | log(tmax |V |)).

Handling events. The backbone of the sampling procedure in Algorithm 2 consists of processing
state transition events in the temporal order. All generic state transitions in the model, i.e., those
not transitioning to an infectious state, consist of updating the correct indicator variables of the
corresponding individual i or discarding events that became invalid due to thinning in constant
time. In addition, we push the next state transition of i to Q , which takes time O (log( |V |)). Since
there are O ( |V |) generic events in the worst case, handling all of them takes an overall time of
O ( |V | log( |V |)).

When an individual i first transitions to an infectious state, i.e., the presymptomatic I
p
i = 1 or

asymptomatic Ia
i = 1 state, an additional time cost is incurred because we sample the times of the

exposure events caused by i to all of its unique contact persons j in the future. This corresponds
to calls of Algorithm 3, where we continually iterate over allO (tmax) contact windows i has with j
after some time t until the first valid exposure event is sampled. Specifically, we sample a next time t
as t ← t+τ with τ ∼ Expo(λmax). If i is still in contact with j at time t , and if the event is not rejected
using thinning due to a lower site-specific exposure rate βk or asymptomatic infectiousness γ , the
exposure time is valid and we push the event toQ in timeO (log( |V |)). Otherwise, we repeat. Since
there are at most O (tmax) contact windows of i with j, each query to InContact as formalized in
Algorithm 3 incurs time O (log(tmax)) using the interval tree.

Let U be the random variable representing the runtime of Algorithm 3 incurred by one contact
window from i to j. In addition, let q ∈ (0, 1) be the probability that a given thinning sample gets
accepted. By the memoryless property of thinning, the expected value of U is given by

E[U ] = O (log(tmax)) + qO (log( |V |)) + (1 − q)E[U ]

=

∞∑
n=0

(1 − q)n
(
O (log(tmax)) + qO (log( |V |))

)
= O (log( |V |)) + 1

q
O (log(tmax)).

(18)

In the worst case, thinning is done for all O (tmax) contact windows from i to j until an exposure
event time gets accepted. Overall, Algorithm 3 is calledO (1) times per individual. Thus, the process-
ing of state transitions to infectious states of allO ( |V |) infectious individuals incurs an additional

6An interval tree containing n intervals allows for O (log n) insertion time. Using binary search, retrieving the subset of
stored intervals that intersect with a query interval [t0, t1] takes time O (m+ log n), where m is the number of intersecting
intervals.
7We denote a contact as being from i to j to be precise about non-contemporaneous infections (cf. Equation (6)). There is
an exposure-relevant contact from i to j if i left a site less than δ -time before j arrived.
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overall cost ofO ( |V |tmax (log( |V |) + 1
q
tmax log(tmax))). This also accounts for the cost of sampling

household exposures, which can be viewed as visits to an additional site with an additional set of
O (1) household contacts. We note that q is a constant that depends only on the exposure rate of
the epidemiological model, and any lower bound thereof across sites and individuals suffices for
Equation (18).

Expected runtime. Combining the preprocessing cost, the handling of all generic state transitions,
and the handling of transitions to infectious states, Algorithm 2 has a total expected runtime of

O
(
|V |
(
tmax log(tmax |V |) + 1

q
tmax log(tmax)

))
. (19)

�

Table 2. Epidemiological Model Parameters in Units of Days

Counting process Starts when logN parameters Source
Mi (t ) dEi (t ) = 1 (0.9470, 0.6669)† [52]
Rs

i (t ),Ra
i (t ) dI s

i (t ) = 1 (2.6365, 0.0713)‡ [43, 77, 78]
Wi (t ) dI

p
i (t ) = 1 (0.7463, 0.4161)‡ [43]

Yi (t ) dI s
i (t ) = 1 (1.9358, 0.1421)‡ [75]

Zi (t ) dI s
i (t ) = 1 (2.5620, 0.0768)‡ [55]

Value Description Source
μ 0.55 relative asymptomatic transmission rate [54]
γ 6.3013h−1 decay of infectiousness at sites§ [71]
δ 0.3654h non-contact contamination window¶ [71]
αa 0.4 proportion of asymptom. individuals [37, 53, 62]

Hospitalization and Fatality Rates αh and αb Mentioned in the Main Text are Estimated from COVID-19 Case Data in
the Region and is Age-dependent. Log-normal Parameters Denote the Underlying Normal Mean and Standard Deviation.
†Incubation period from [52], corrected by presymptomatic infectiousness [43].
‡Approximate log-normal parameters constructed because COVID-19 literature results only reported using mean or me-
dian time estimates.
§Assumes that transmission decays with a half-life 10 times shorter than estimated for aerosols under laboratory
conditions.
¶For computational purposes, set from γ by the time when rate of transmission drops below 10% after leaving a site.
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Table 3. Assumed Mean Number of Visits Per Week Per Site
Type by Individuals of Different Age Groups for Our

Event-based Gravity Mobility Model [85]

Age group Education Social Transport. Work Groceries
0–4 5 1 - - -
5–14 5 2 3 - -
15–34 2 2 3 3 1
35–59 - 2 1 5 1
60–79 - 3 2 - 1
80+ - 2 1 - 1

See Section 5.1.

Table 4. Summary and Estimated Parameters for Towns and Regions
Studied in Germany and Switzerland

Region Country |V | |S| Estimation period† Lockdown β ξ
Bern CH 133,790 2,174 03/06–05/10 03/16 0.0337 0.0038
Tübingen GER 90,539 1,446 03/12–05/03 03/23 0.0402 0.0664
Canton Jura CH 73,416 729 03/09–05/10 03/16 0.0131 0.0080
Rheingau-Taunus-Kreis GER 187,163 2,352 03/10–05/03 03/23 0.0010 0.0500
Kaiserslautern GER 104,044 1,525 03/15–05/03 03/23 0.0279 0.0061

Recall that β Denotes the Individual Transmission Rate at Public Sites and ξ in Households Estimated as Described
in Sections 4.2 and 5.1.
†Chosen such that a given region had approximately five to ten confirmed COVID-19 cases, allowing for
non-degenerate and comparable initial conditions. Dates are in 2020.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 4, Article 25. Publication date: October 2022.



Quantifying the Effects of Contact Tracing, Testing, and Containment Measures 25:23

E ESTIMATION RESULTS FOR ADDITIONAL REGIONAL MODELS

Figure 6 summarizes the parameter estimation results for four additional regions in Germany and
Switzerland: the cities of Tübingen and Kaiserslautern as well as the Canton of Jura and the district
Rheingau-Taunus. As for the model of Bern, the estimation procedure was executed as described
in Section 5.1. Table 2 lists the estimated optimal parameters as well as additional details about
each regional model.

Fig. 6. Transmission parameter estimation for additional regional models in Germany and Switzerland. In
each panel, the left plot shows the sites of the mobility model with colors used as in Figure 1. The right plots
show the contour plot of the log objective in Equation (13) as a function of the transmission rates β and ξ as
well as the predicted and real cumulative cases under the estimated parameters, analogous to Figure 2.
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Fig. 6. Continued
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