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ROOT-MAX PROBLEMS, HYBRID EXPANSION-CONTRACTION,
AND QUADRATICALLY CONVERGENT OPTIMIZATION OF

PASSIVE SYSTEMS*

TIM MITCHELL\dagger AND PAUL VAN DOOREN\ddagger 

Abstract. We present quadratically convergent algorithms to compute the extremal value of
a real parameter for which a given rational transfer function of a linear time-invariant system is
passive. This problem is formulated for both continuous-time and discrete-time systems and is linked
to the problem of finding a realization of a rational transfer function such that its passivity radius
is maximized. Our new methods make use of a generalization of the hybrid expansion-contraction
algorithm, which we have extended to the setting of what we call root-max problems.

Key words. positive realness, passivity, robustness, rational transfer functions
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1. Introduction. Robustness measures play an important role in systems and
control. They provide margins for the perturbations that one can allow on a given
nominal dynamical system such that the perturbed system still performs as desired.
A classical example of such a measure is the so-called distance to instability [31],
which measures how much one can perturb a stable matrix before destabilization is a
possibility. A generalization of this is the complex stability radius (better known by its
reciprocal, the \scrH \infty norm), which measures how much (complex-valued) uncertainty
in a dynamical system with input and output can be tolerated before stability is no
longer guaranteed [34, 16]. Meanwhile, the real structured stability radius and \mu -value
further restrict the uncertainty to be real-valued or structured in a particular sense
[14, 15]. Such measures are often the subject of optimization in robust control, since
it is natural to desire that the robustness of models to uncertainty/perturbation be
maximized. Furthermore, in the area of model order reduction, the \scrH \infty norm is one
of the main indicators of how well a reduced-order surrogate mimics the behavior of
a larger (and often computationally unwieldy) system [11]. Numerical procedures for
computing these robustness measures have been developed in the last few decades
and have historically been focused on linear time-invariant systems described by their
generalized state-space model.

In this paper, we consider a problem that is linked to maximizing the passivity
radius [27], which measures how much one can can perturb a passive system model
before it may lose passivity. For a continuous-time linear time-invariant system that
is passive, the Hermitian part of its transfer function is positive semidefinite in the
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754 TIM MITCHELL AND PAUL VAN DOOREN

closed right half-plane; see Definition 4.1 later on here or [32, Theorem 1] for a com-
plete definition of passivity. When this transfer function is rational and is described
by a finite-dimensional state-space model\scrM := \{ A,B,C,D\} , those conditions can be
rephrased in terms of the state-space model parameters. In this paper, we consider
a state-space model\scrM \xi that is dependent on a real parameter \xi and look for an ex-
tremal value of the parameter for which the corresponding system is still passive. At
this extremal value, the parametric system switches from passive to nonpassive. Com-
putation of this extremal parameter value is important, as it allows one to construct
certificates for the passivity of the parametric passive systems. As discussed in [22,
21], these certificates play a crucial role in the solution of two important problems: (i)
finding a realization of a given passive system with optimal passivity radius and (ii)
finding the closest passive system to a given nonpassive system. The first algorithms
to compute this extremal value were recently proposed in [22] and [21], respectively,
for the continuous- and discrete-time cases, but no convergence analysis was done
nor were the methods tested experimentally. We address these issues, establishing
that these methods have at least a superlinear rate of convergence, while also demon-
strating some numerical issues with them. Most importantly, we present significantly
faster new algorithms with local quadratic convergence and much smaller constant
factors in their work complexities. Our new methods are also more numerically ro-
bust than the earlier techniques and have variants that are both the first algorithms
for large-scale use and guarantee approximations that are locally optimal in a certain
sense. Finding a nearby passive system to a nonpassive one has also been considered
in [10] and [9], but it was suggested in [22, 21] that techniques like the ones we develop
here could be applied to address that problem as well.

A core part of our new methods (from which they derive their quadratic con-
vergence) is our generalization of the hybrid expansion-contraction (HEC) algorithm.
HEC was first conceived as a way to approximate the \scrH \infty norm of large-scale sys-
tems [23, 24] and was subsequently extended to approximating the real structured
stability radius [12]. However, HEC and its convergence properties have only been
described for these two specific settings, while the structure of our problem of interest
here is quite different. Unlike the \scrH \infty norm, which is computed by obtaining a global
maximizer of a function in one real variable, the extremal value we consider here for
the optimization of passive systems is computed by iterating over two real variables.
Consequently, another contribution of this paper is to connect these seemingly dis-
parate things, namely, by (i) identifying that all of these problems are actually specific
instances of what we call root-max problems (or equivalently root-min problems) and
(ii) generalizing HEC and its convergence results to this broad new class. Besides
enabling our new methods here, we hope that our generalization of HEC will both in-
crease awareness for identifying root-max and root-min problems and ease facilitation
of new HEC-based methods.

The paper is organized as follows. We first establish notation and preliminary ma-
terial in section 2. Then, in section 3, we introduce root-max problems and generalize
HEC and its convergence results to this problem class. In section 4, we describe the
continuous-time version of our passivity radius problem and our corresponding new
algorithm to solve it, while the discrete-time case is handled in section 5. Numerical
experiments and concluding remarks are, respectively, given in sections 6 and 7.

2. Preliminaries. We begin with notation. The set of Hermitian matrices in
\BbbC n\times n is denoted by \BbbH n with A \succ 0 (A \succeq 0) additionally signifying that A \in \BbbH n

is positive (semi)definite. The spectrum of a square matrix A is denoted \Lambda (A), and
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 755

when A is Hermitian, we additionally use the shorthand \lambda min(A) to denote its smallest
eigenvalue. Furthermore, \alpha (A) := max\{ Re\lambda : \lambda \in \Lambda (A)\} denotes the spectral abscissa
of A, while \rho (A) := max\{ | \lambda | : \lambda \in \Lambda (A)\} denotes the spectral radius of A; note that
A is continuous-time (discrete-time) asymptotically stable if and only if \alpha (A) < 0
(\rho (A)< 1) holds. The real and imaginary parts of a complex matrix Z are denoted by
Re(Z) and Im(Z), respectively, while the (conjugate) transpose of a vector or matrix
V is denoted by V \sansT (V \sansH ). We use In for the n\times n identity matrix.

The models that we consider here are given by their standard state-space form,
which means that their associated transfer functions are proper (i.e., bounded at
infinity). In the continuous-time setting, the transfer function arises from the Laplace
transform of the system

\.x(t) =Ax(t) +Bu(t), x(0) = 0,
y(t) =Cx(t) +Du(t),

(2.1)

where A \in \BbbC n\times n, B \in \BbbC n\times m, C \in \BbbC p\times n, D \in \BbbC p\times m, and x(\cdot ), u(\cdot ), y(\cdot ) are time-
dependent vector-valued functions denoting, respectively, the state, input , and output
of the system. In the discrete-time setting, the transfer function arises from the
z-transform applied to

xk+1 =Axk +Buk, x0 = 0,
yk =Cxk +Duk,

(2.2)

where now xk, uk, and yk are vector-valued sequences denoting, respectively, the state,
input, and output of the system. In both cases, we denote these systems by 4-tuples
of matrices\scrM := \{ A,B,C,D\} and their associated rational matrices

(2.3) \scrT (\lambda ) :=C(\lambda In  - A) - 1B +D and \scrT \sansH (\lambda ) :=B\sansH (\lambda In  - A\sansH ) - 1C\sansH +D\sansH 

are, respectively, the associated transfer function and paraconjugate transfer function,
where the variable \lambda stands for the Laplace variable s in the continuous-time setting
and the delay operator z in the discrete-time case.

We restrict ourselves to system models which are minimal , i.e., the pair (A,B) is
controllable (for all \lambda \in \BbbC , rank

\bigl[ 
\lambda In  - A B

\bigr] 
= n), and the pair (A,C) is observable

(i.e., (A\sansH ,C\sansH ) is controllable). If the model is not minimal, one can always construct
a minimal realization by removing the uncontrollable and unobservable parts, which
can be done in a backward stable manner [30]. The conditions for passivity can then
be expressed in terms of a linear matrix inequality involving the matrices of the system
model\scrM . The passivity margin of the system model\scrM will then be shown to depend
on the extremal value of a real parameter \xi for which a particular parametric system
model\scrM \xi loses its passivity property.

3. Root-max problems and HEC. Let \scrD 1 \subseteq \BbbR be connected, \scrD 2 \subset \BbbR N be
compact, g :\scrD 1 \times \scrD 2\rightarrow \BbbR be a continuous function, and gx :\scrD 1\rightarrow \BbbR and g\varepsilon :\scrD 2\rightarrow \BbbR 
be the following restrictions of g:

gx(\varepsilon ) := g(\varepsilon ,x), where x\in \scrD 2 is fixed,(3.1a)

g\varepsilon (x) := g(\varepsilon ,x), where \varepsilon \in \scrD 1 is fixed.(3.1b)

Consider the following root-finding problem, which we call a root-max problem,

(3.2) determine an \varepsilon \in \scrD 1 : f(\varepsilon ) := max
x\in \scrD 2

g(\varepsilon ,x) = max
x\in \scrD 2

g\varepsilon (x) = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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756 TIM MITCHELL AND PAUL VAN DOOREN

where we assume that the functions g\varepsilon are bounded above for all \varepsilon \in \scrD 1. Suppose
that there exists \varepsilon lb, \varepsilon 0 \in \scrD 1 with \varepsilon lb < \varepsilon 0 and either f(\varepsilon lb) < 0 \leq f(\varepsilon 0) or f(\varepsilon lb) >
0\geq f(\varepsilon 0) holding. Then, by continuity of g, it is clear that (3.2) has at least one root
\varepsilon  \star \in (\varepsilon lb, \varepsilon 0]\subseteq \scrD 1 such that f(\varepsilon  \star ) = 0. Of course, if f(\varepsilon 0) = 0 holds, then we can take
\varepsilon  \star = \varepsilon 0. For our purposes in this section, it is convenient to assume the convention
that f(\varepsilon lb) < 0 and 0 \leq f(\varepsilon 0) hold, but note that each of these inequalities can be
modified to be (non)strict or reversed, e.g., f(\varepsilon lb)\geq 0> f(\varepsilon 0), as desired for a specific
setting.

Many well-known distance measures can be written in the form of the root-max
problem given by (3.2) or, equivalently, as a root-min problem, where the max func-
tions in (3.2) are switched to min functions and g\varepsilon must then be bounded below for
any fixed \varepsilon \in \scrD 1. For example, the distance to instability and the real stability radius
can be naturally expressed as root-max problems. As we explain later, our particular
problem of interest, the optimization of passive systems, also falls in this problem
class, although we find it more natural to use the root-min form for that context.

In this section, we show that the HEC algorithm of [23, 24], which was originally
conceived as a method for approximating the\scrH \infty norm, actually generalizes to address
the class of root-max and root-min problems that we have just defined here. We use
the root-max form to generalize HEC and its associated convergence properties, since
this maintains consistency with its initial usage as well as its name itself: HEC.

Assumption 3.1. We assume that the function g is continuously differentiable.

We use Assumption 3.1 to keep this section from becoming significantly more
technical. In Remark 3.9, we discuss how the convergence of HEC is not critically
reliant upon this smoothness condition and how it can be weakened.

Assumption 3.2. For any \varepsilon \in \scrD 1, we assume that we can obtain local maximizers
or stationary points of g\varepsilon and do so exactly, i.e., the norm of the gradient is zero, but
finding a global maximizer of g\varepsilon cannot be guaranteed. In other words, we cannot be
guaranteed to obtain the value of f(\varepsilon ) in practice, but we are guaranteed to obtain
(generally locally optimal) lower bounds to it, which may or may not agree with the
value of f(\varepsilon ).

Remark 3.3. Some comments on Assumption 3.2 are in order. Guaranteeing con-
vergence to global maximizers of general functions, e.g., nonconcave ones, is typically
not possible, and even in special cases where it is, techniques to do so are often pro-
hibitively expensive. If one could reliably compute the value of f(\varepsilon ), then (3.2) could
simply be solved using standard root-finding techniques with bracketing, e.g., regula
falsi. In contrast, as we elucidate below, under the much milder and more realistic as-
sumptions given in Assumption 3.2, standard root-finding techniques can break down
when trying to solve instances of (3.2), precisely because obtaining the value of f(\varepsilon ) is
not guaranteed. Having an algorithm for (3.2) that performs robustly and predictably
under Assumption 3.2 motivated the development of HEC, although it was not until
this paper that HEC was actually considered from this general perspective.

HEC was born out of the specific desire for a faster and more reliable alternative
to earlier state-of-the-art scalable methods for approximating the \scrH \infty norm. Prior to
its introduction, Guglielmi, G\"urb\"uzbalaban, and Overton [13] had proposed an \scrH \infty -
norm approximation method that attempts to compute the unique root of a particular
monotonically increasing function in one real variable; the reciprocal of this root is
the \scrH \infty norm. The main wrinkle here is that with existing techniques, evaluating the
function to guaranteed accuracy would actually be more expensive than computing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 757

the \scrH \infty norm directly, but crucially, Guglielmi, G\"urb\"uzbalaban, and Overton devised
a powerful, scalable subroutine that efficiently computes a lower bound to the function
value, which in practice, also often coincides with the true function value. Hence, they
proposed using their fast subroutine inside a Newton-bisection-based outer iteration in
order to compute the root of this function, and thus in turn, the \scrH \infty norm. However,
as first observed by the first author here [23, section 2.3] (see also [24, section 3.2]),
this root-finding approach of Guglielmi, G\"urb\"uzbalaban, and Overton actually can
sometimes break down, converging to arbitrarily bad approximations to the \scrH \infty norm
that are not even locally optimal. Moreover, when this breakdown happens, their
algorithm's typically fast local rate of convergence also degrades to linear.

In line with Remark 3.3, these breakdowns arise precisely because the function
whose root is sought is not guaranteed to be computed accurately, and so using a
standard root-finding method as the outer iteration is fraught with danger. The
crux of the matter in the method of Guglielmi, G\"urb\"uzbalaban, and Overton is that
the sometimes inaccurate estimates for the function values can cause the bracket
containing the root to be incorrectly and irrevocably updated, which in [23, 24] was
coined a bound mismatch error ; for a full description of how this comes about, see
[24, section 3.2]. HEC overcomes this critical problem by instead employing one-
sided convergence, which was motivated by a key observation [24, p. 994]: when only
lower bounds to the (recall monotonically increasing) function are guaranteed, if the
computed estimate is negative, the direction of the unique root cannot be determined,
but if the computed estimate is positive, one does know that the root lies to the left.
Thus, the HEC algorithm was designed to compute a decreasing sequence of upper
bounds in order to converge to a root.

In applications of HEC explored so far [24, 12] where Assumption 3.2 holds, HEC
often converges to roots of specific instances of (3.2), which is guaranteed if f(\varepsilon )
can always be computed accurately. However, under Assumption 3.2 as stated, HEC
instead guarantees convergence to what we call a pseudoroot of (3.2), which is either
an actual root of (3.2) or, roughly speaking, a locally optimal approximation to one;
we will define this notion exactly momentarily. In [23, 24], no name was given for this
concept as it was not considered in that context.

Although HEC uses bracketing, the facts that it (i) only ever updates its upper
bound and (ii) deliberately uses one-sided convergence to roots make HEC strikingly
different to other root-finding methods. But, as the upcoming theoretical results will
clarify, HEC's one-sided convergence does not come at the cost of sacrificing fast
local convergence; under mild smoothness assumptions, the local rate of convergence
of HEC is at least quadratic. In [24, p. 997], HEC is described as an ``adaptively
positively or negatively damped Newton method,"" which means that HEC sometimes
takes steps smaller or larger, respectively, than the regular Newton step. It may
seem unintuitive, but the local rate of convergence of HEC does remain at least
quadratic even when HEC takes smaller steps (positive damping). Meanwhile, the
ability of HEC to take larger steps (negative damping) is a good thing. Suppose that
HEC converges to a root \~\varepsilon .1 Due to the one-sided convergence, a step larger than
the Newton one can never overshoot \~\varepsilon , and so larger steps will always make more
progress towards \~\varepsilon than the corresponding Newton steps would. Thus, when negative
damping is frequent, HEC can be faster than Newton's method. For illustrations of
positive and negative damping, please see [24, Fig. 4].

1
When f has multiple roots, negative damping may bias HEC towards finding roots closer to \varepsilon \mathrm{l}\mathrm{b}

before its local convergence behavior sets in.
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758 TIM MITCHELL AND PAUL VAN DOOREN

3.1. The generalized HEC algorithm and its convergence properties.
Having put HEC and its properties in the context of its own history and root finding,
we now set to the task of precisely describing how HEC actually works and gener-
alizing it to root-max problems (3.2). The convergence properties that we establish
for our generalized version of HEC are, at a very high level, proved using similar
arguments to those given by the first author here and Overton in [24, section 4] for
the specific case of approximating the \scrH \infty norm. However, our generalization here
makes these convergence results far more accessible in terms of being much easier to
both understand and apply far more broadly.

Definition 3.4. Given \~\varepsilon \in \scrD 1 and \~x \in \scrD 2, (\~\varepsilon , \~x) is a pseudoroot of (3.2) if
g(\~\varepsilon , \~x) = 0 and \~x is a stationary point of g\~\varepsilon .

Defining pseudoroot in terms of a stationary point of g\~\varepsilon , as opposed to a local
maximizer, which might seem more intuitive, is intentional. The reason for this is
subtle and requires more context to explain, so we defer this discussion to Remark
3.8. As we see in the following simple result (whose proof we omit as it is elementary),
pseudoroots are intimately related to roots of (3.2).

Lemma 3.5. Let \~\varepsilon \in \scrD 1, \~x\in \scrD 2, and (\~\varepsilon , \~x) be a pseudoroot of (3.2). Then \~\varepsilon is a
root of (3.2) if and only if \~x is a global maximizer of g\~\varepsilon . Otherwise, 0< f(\~\varepsilon ).

As subroutines, HEC requires both a root-finding method with bracketing and an
optimization solver, and we assume these subroutines have the following properties.

Assumption 3.6. We assume that the root-finding and optimization subroutines
used by HEC are deterministic, i.e., they return the same answer for the same initial
data, converge exactly (see also Assumption 3.2), and the root-finding method uses
bracketing to ensure convergence to a root, while the optimization solver is mono-
tonic, i.e., it always increases the value of the objective function being maximized at
successive iterates until it reaches a stationary point.

Many root-finding methods use bracketing, while unconstrained optimization
solvers are typically monotonic by design. Most solvers for these problems are also de-
terministic, and so this set of assumptions is mild. The remaining assumption that the
subroutines converge exactly does not hold in inexact arithmetic, but this assumption
is only used to establish our theoretical results. In practice, good implementations of
HEC behave as the theory predicts as long as the subroutines are reasonably accurate.

We now are ready to describe how the (generalized) HEC algorithm works. As we
define the algorithm here, readers may also wish to refer to Figure 1, which illustrates
HEC converging to a pseudoroot (\~\varepsilon , \~x), where \~\varepsilon is indeed a root of f and \~x is a
maximizer of g\~\varepsilon . By construction, HEC generates a monotonically decreasing sequence
\{ \varepsilon k\} that converges to \~\varepsilon . For xk \in \scrD 2 fixed with gxk

(\varepsilon k)\geq 0, first note that we have

gxk
(\varepsilon lb)\leq f(\varepsilon lb)< 0\leq gxk

(\varepsilon k)\leq f(\varepsilon k).

The one-parameter contraction phase reduces \varepsilon k by finding a root \^\varepsilon k \in (\varepsilon lb, \varepsilon k] of
gxk

. By the inequalities above, there must be at least one root in this bracket. If
gxk

(\varepsilon k) = 0, the contraction phase simply returns \^\varepsilon k = \varepsilon k. Otherwise, bisection can
be used to find a root in (\varepsilon lb, \varepsilon k). But if gxk

is sufficiently smooth at \^\varepsilon k, then, e.g.,
Newton's or Halley's method could find it with far fewer iterations. Of course, these
faster root-finding methods are not guaranteed to converge and gxk

may not always
be sufficiently smooth, which is why, per Assumption 3.6, it is important to combine
both approaches, e.g., Newton-bisection. Bracketing and bisection ensure convergence
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C

E

Fig. 1. Illustration of HEC converging to a pseudoroot (\~\varepsilon , \~x) of (3.2), where \~\varepsilon is also a root
of (3.2). At iteration k, HEC has found the global maximizer xk of g\varepsilon k . The contraction phase,
denoted by ``C"" above, computes \varepsilon k+1 = \^\varepsilon k \leq \varepsilon k, which is a root of gxk in the interval (\varepsilon \mathrm{l}\mathrm{b}, \varepsilon k].
The subsequent expansion phase, denoted by ``E"" above, then computes the global maximizer xk+1

of g\varepsilon k+1 . The dashed curve x\mathrm{p} : \scrD 1 \rightarrow \scrD 2 denotes a continuous path of maximizers of g\varepsilon as \varepsilon is
varied, where x\mathrm{p}(\~\varepsilon ) = \~x corresponds to the pseudoroot (\~\varepsilon , \~x). Sufficiently close to (\~\varepsilon , \~x), it is typical
that HEC only encounters a single path x\mathrm{p} as depicted here.

to a root of gxk
, but the ability to also take Newton (or Halley) steps, assuming that

they fall inside the current bracket, can yield quadratic (or cubic) convergence when
sufficient smoothness holds. Subsequently, for \^\varepsilon k \in \scrD 1 now fixed and g\^\varepsilon k(xk) =
0, the multiparameter expansion phase attempts to maximize g\^\varepsilon k by initializing an
optimization solver at xk. If optimization returns xk+1 = xk, there is nothing to
do, e.g., when xk is a stationary point of g\^\varepsilon k . Otherwise, since the optimization
solver is monotonic by Assumption 3.6, the solver must converge to a stationary point
xk+1 of g\^\varepsilon k (typically a maximizer) such that g\^\varepsilon k(xk+1) > 0. Beyond the conditions
in Assumption 3.6, HEC does not specify a specific optimization method, though
fast methods should be used when possible. This process of alternating between
root finding (contraction) and optimization (expansion) is repeated in a loop and it
converges to a pseudoroot of (3.2). Pseudocode for HEC is given in Algorithm 3.1.

Theorem 3.7 (convergence of HEC). Under Assumptions 3.1 and 3.6 and given
valid initial data, Algorithm 3.1 generates the sequences \{ \varepsilon k\} converging monotonically
to a limit \~\varepsilon and \{ xk\} with at least one cluster point, where (\~\varepsilon , \~x) is a pseudoroot of
(3.2).

Proof. We assume that the conditional statement in line 4 of Algorithm 3.1 is
never met, as otherwise the theorem clearly holds. Since the algorithm ensures that
\{ \varepsilon k\} is a monotonically decreasing sequence that is bounded below by \varepsilon lb, it must
converge to a limit \~\varepsilon , and so it follows that limk\rightarrow \infty \^\varepsilon k = limk\rightarrow \infty \varepsilon k+1 = \~\varepsilon as well. By
construction, for all k \geq 1, the algorithm also ensures that g\varepsilon k(xk)> 0 with xk being
a stationary point of g\varepsilon k . Now suppose that limk\rightarrow \infty g(\varepsilon k, xk) \not = 0. Then there is a
subsequence \{ xki

\} for which \{ g(\varepsilon ki
, xki

)\} is bounded below by some \gamma > 0. Thus, by
taking a further subsequence if necessary, we may assume without loss of generality
that \{ xki\} converges to a limit \~x. By the continuity of g, it follows that \{ g(\varepsilon ki , xki)\} 
converges to g(\~\varepsilon , \~x)\geq \gamma . However, since \{ \^\varepsilon ki\} also converges to \^\varepsilon , then \{ g(\^\varepsilon ki , xki)\} 
must converge to the same limit g(\~\varepsilon , \~x), which is a contradiction, since by definition
of the contraction step, gxki

(\^\varepsilon ki
) = 0 must hold for all i. Thus, limk\rightarrow \infty g(\varepsilon k, xk) = 0

must hold. Although \{ xk\} may not converge, the sequence is bounded since \scrD 2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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760 TIM MITCHELL AND PAUL VAN DOOREN

Algorithm 3.1 HEC.

Input: εlb, ε0 ∈ D1 and x0 ∈ D2 such that f(εlb) < 0 ≤ g(ε0, x0) ≤ f(ε0)
Output: (ε̃, x̃) such that g(ε̃, x̃) = 0 and x̃ is a stationary point of gε̃

1: for k = 0, 1, 2, . . . do
2: // Contraction: deterministic root-finding method initialized at εk
3: ε̂k ← a root of gxk

with ε̂k ∈ (εlb, εk]
4: if xk is a stationary point of gε̂k then
5: (ε̃, x̃)← (ε̂k, xk)
6: return
7: end if
8: // Expansion: deterministic optimization method initialized at xk
9: xk+1 ← a stationary point of gε̂k with gε̂k(xk+1) > gε̂k(xk)

10: εk+1 ← ε̂k
11: end for

Note: If the conditional statement in line 4 is never satisfied, then by Theorem 3.7, HEC produces two
infinite sequences \{ \varepsilon k\} and \{ xk\} , with the former converging to \~\varepsilon and the latter having at least one
cluster point, any of which we denote as \~x. Contraction must use a root-finding method with bracketing,
e.g., Newton-bisection, to ensure a root of gxk

in the given bracket (\varepsilon \mathrm{l}\mathrm{b}, \varepsilon k] is found. The inequality in
the expansion phase is guaranteed by simply initializing the optimization at xk and using a monotonic
optimization solver. Finally, HEC can begin with either an expansion or contraction phase, and which
is more convenient may depend on the particular application.

is a compact subset of \BbbR N , and so \{ xk\} must have at least one cluster point. As
\| \nabla g\varepsilon k(xk)\| = 0 holds for all k\geq 1, clearly \| \nabla g\~\varepsilon (\~x)\| = 0 also holds, and so \~x is also a
stationary point of g\~\varepsilon , hence (\~\varepsilon , \~x) is a pseudoroot of (3.2).

Remark 3.8. Stationary points of g\^\varepsilon k computed in the expansion phases will
typically be maximizers, and some optimization solvers can guarantee convergence to
maximizers (under appropriate assumptions). However, while Theorem 3.7 guarantees
that HEC converges to a pseudoroot (\~\varepsilon , \~x) of (3.2), it does not guarantee that \~x is
a local maximizer of g\~\varepsilon , just that it is a stationary point. Nevertheless, whenever
the expansion phases consistently return local maximizers, we do observe in practice
that \~x is also a local maximizer; see [24, 12]. While it seems unlikely that \~x would
only be stationary, we do not believe it is impossible; e.g., it is easy to imagine that
the functions g\varepsilon k shown in Figure 1 could instead converge to a function g\~\varepsilon that is
constant in an interval about \~x.

Remark 3.9. It is only in the last sentence of the proof of Theorem 3.7 that
Assumption 3.1 is used. However, Theorem 3.7 can be extended to functions g\varepsilon 
that have some nonsmoothness, e.g., at maximizers, if one instead uses a concept of
stationarity that can both handle nonsmooth points and remains continuous so that
the limit argument in the proof still holds.

Although by construction, Algorithm 3.1 produces a monotonically decreasing
sequence \{ \varepsilon k\} , note that the sequence \{ g\varepsilon k(xk)\} produced by the expansion phases is
not necessarily monotonic, even though it must converge to zero. For example, if the
highest two curves in Figure 1 were to instead cross each other to the left and right
of the continuous path of global maximizers xp, then g\varepsilon k+1

(xk+1) > g\varepsilon k(xk) would
hold. Moreover, nonmonotonicity of \{ g\varepsilon k(xk)\} can also result from HEC encountering
multiple such paths of stationary points as it progresses. These paths can consist of
global or local maximizers or sometimes even both. Figure 2 shows a depiction where
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 761

Fig. 2. Illustration of HEC of encountering two different paths of stationary points, x\mathrm{p}1 :\scrD 1 \rightarrow 
\scrD 2 and x\mathrm{p}2 :\scrD 1 \rightarrow \scrD 2, with HEC eventually converging to a pseudoroot (\~\varepsilon , \~x) of (3.2) on path x\mathrm{p}1 ,
but \~\varepsilon is not a root of (3.2). Note that paths of stationary points do not necessarily need to contain a
pseudoroot (intersect with the x-axis), and although HEC may encounter and/or oscillate between
multiple such paths as the algorithm converges, this does not affect the convergence result for HEC
described by Theorem 3.7. For more details, see the caption of Figure 1.

xp1
and xp2

are two separate continuous paths of local maximizers of g\varepsilon and HEC
encounters both paths, but in this illustration, \{ g\varepsilon k(xk)\} is monotonically converging
to zero. Again, encountering multiple such paths does not affect the convergence
result of Theorem 3.7. However, to show that the sequence \{ \varepsilon k\} generated by HEC
converges quadratically to \~\varepsilon , it will be simpler to assume that HEC eventually only
encounters a single continuous path of local maximizers, like shown in Figure 1.

In the following results, we use the notion of Q-quadratic and Q-superlinear con-
vergence, where ``Q"" stands for ``quotient""; see [26, p. 619] for more details.

Theorem 3.10 (quadratic convergence of HEC). Suppose that Assumptions 3.1
and 3.6 hold, and so with valid initial data, Algorithm 3.1 converges as described in
Theorem 3.7. Additionally suppose that the sequence \{ xk\} only has a single cluster
point \~x, and \~x lies on an open continuous path xp :\scrD 1\rightarrow \scrD 2 of stationary points of g\varepsilon 
as \varepsilon varies with \~x= xp(\~\varepsilon ). If g and xp are twice continuously differentiable at (\~\varepsilon , \~x)
and \~\varepsilon , respectively, \~x is a local maximizer of g\~\varepsilon , and g\prime \~x(\~\varepsilon ) \not = 0, then the sequence \{ \varepsilon k\} 
converges Q-quadratically to \~\varepsilon .

Proof. We begin by defining the function

(3.3) h(\varepsilon ) := g(\varepsilon ,xp(\varepsilon )).

Note that h(\~\varepsilon ) = g(\~\varepsilon , \~x) = 0 as (\~\varepsilon , \~x) is a pseudoroot of (3.2). Since the sequence \{ xk\} 
only has one cluster point, there also exists some K such that for all k\geq K, all of the
following properties hold:

(i) point xk lies on path xp with xk = xp(\varepsilon k), and so h(\varepsilon k) = gxk
(\varepsilon k);

(ii) h\prime (\varepsilon k) = g\prime xk
(\varepsilon k) \not = 0;

(iii) h and gxk
are twice continuously differentiable at \varepsilon k.

By our assumptions, all of these statements also hold at \~\varepsilon . The agreement of the first
derivatives in (ii) follows from the envelope theorem (or more generally, [29, Theorem
10.31]), since maximizers of g\varepsilon do not occur at \infty as \scrD 2 is compact.

Having established the needed properties above, we now consider the correspond-
ing Newton steps for h and gxk

evaluated at \varepsilon k, which also must coincide, i.e.,
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762 TIM MITCHELL AND PAUL VAN DOOREN

(3.4) \varepsilon Nk := \varepsilon k  - 
h(\varepsilon k)

h\prime (\varepsilon k)
= \varepsilon k  - 

gxk
(\varepsilon k)

g\prime xk
(\varepsilon k)

.

However, Algorithm 3.1 sets \varepsilon k+1 := \^\varepsilon k, where gxk
(\^\varepsilon k) = 0. Separately applying

Taylor's theorem to h and gxk
, we have that

0 = h(\~\varepsilon ) = h(\varepsilon k) + h\prime (\varepsilon k)(\~\varepsilon  - \varepsilon k) +
1
2h

\prime \prime (\xi k)(\~\varepsilon  - \varepsilon k)
2

for some \xi k \in [\~\varepsilon , \varepsilon k] and

0 = gxk
(\^\varepsilon k) = gxk

(\varepsilon k) + g\prime xk
(\varepsilon k)(\^\varepsilon k  - \varepsilon k) +

1
2g

\prime \prime 
xk
(\eta k)(\^\varepsilon k  - \varepsilon k)

2

for some \eta k \in [\~\varepsilon , \varepsilon k]. Respectively dividing the two equations above by h\prime (\varepsilon k) and
g\prime xk

(\varepsilon k), and then subtracting the first from the second and using (3.4) along with
\varepsilon k+1 = \^\varepsilon k, we obtain

(3.5) \varepsilon k+1  - \~\varepsilon = ck(\~\varepsilon  - \varepsilon k)
2 + dk(\varepsilon k+1  - \varepsilon k)

2,

where

ck =
h\prime \prime (\xi k)
2h\prime (\varepsilon k)

and dk = - 
g\prime \prime xk

(\eta k)

2g\prime xk
(\varepsilon k)

.

To establish quadratic convergence, we need to bound \varepsilon k+1  - \varepsilon k in terms of \~\varepsilon  - \varepsilon k.
To do this, consider the Taylor expansions of h and gxk

but with only the first two
terms, i.e.,

0 = h(\~\varepsilon ) = h(\varepsilon k) + h\prime (\zeta k)(\~\varepsilon  - \varepsilon k)

for some \zeta k \in [\~\varepsilon , \varepsilon k] and

0 = gxk
(\^\varepsilon k) = gxk

(\varepsilon k) + g\prime xk
(\tau k)(\^\varepsilon k  - \varepsilon k)

for some \tau k \in [\~\varepsilon , \varepsilon k]. As h(\varepsilon k) = gxk
(\varepsilon k) and \varepsilon k+1 = \^\varepsilon k, it follows that

(3.6)
\varepsilon k+1  - \varepsilon k
\~\varepsilon  - \varepsilon k

=
h\prime (\zeta k)
g\prime xk

(\tau k)
,

which converges to 1 as k\rightarrow \infty , since h\prime (\zeta k) and g\prime xk
(\tau k) both

2 converge to h\prime (\~\varepsilon ) \not = 0.
Dividing (3.5) by (\varepsilon k  - \~\varepsilon )2 and taking the absolute value yields

| \varepsilon k+1  - \~\varepsilon | 
(\varepsilon k  - \~\varepsilon )2

=

\bigm| \bigm| \bigm| \bigm| \bigm| ck + dk

\biggl( 
\varepsilon k+1  - \varepsilon k
\varepsilon k  - \~\varepsilon 

\biggr) 2
\bigm| \bigm| \bigm| \bigm| \bigm| .

By (3.6), the squared term on the right converges to 1 as k\rightarrow \infty , while ck and dk also
converge since their numerators are bounded and their denominators each converge
to h\prime (\~\varepsilon ) \not = 0. Thus, Algorithm 3.1 converges Q-quadratically.

Remark 3.11. A key part of the proof of Theorem 3.10 is that the derivatives of h
and gxk

coincide at \varepsilon k, which holds because under Assumption 3.6, local maximizers
of gxk

are computed exactly. However, for some applications, it may actually be

2
Note that in [24, p. 1000], there is a typo: in the second to last line of the proof of Theorem

4.4, g\prime ukvk
(\varepsilon k) actually should be g\prime ukvk

(\tau k).
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 763

more efficient to solve the expansion phases inexactly at first, which in [24, section
4.3] is called early contraction. If the expansion phases are solved inexactly, but the
inexactness goes to zero in the limit, then HEC still converges at least Q-superlinearly;
see [23, sections 3.1 and 3.2] and [7]. This is useful because when the expansion
phases are expensive and require many iterations of optimization, the early contraction
strategy can significantly reduce the cost of the expansion phases while only slightly
increasing the total number of HEC iterations. This can result in significantly faster
overall runtimes; see [24, section 8]. As a final comment, note that the quadratic and
superlinear rate of convergence results for HEC discussed in this paper hold regardless
of how fast the contraction and expansions phases are solved; e.g., if the contraction
and expansion phases are solved with linearly convergent methods, HEC still has at
least quadratic convergence (or superlinear if early contraction is used).

Remark 3.12. If HEC converges to a finite number of cluster points of \{ xk\} ,
rather than a unique one as supposed in Theorem 3.10, then it is easy to see that if
all the other conditions of Theorem 3.10 hold for any subsequence \{ xki

\} converging
to a particular cluster point, then \{ \varepsilon ki\} must converge at least quadratically. Thus,
if these conditions also hold for any subsequence to any of the finitely many cluster
points, then we expect that the rate of convergence of \{ \varepsilon k\} should still be quadratic.

4. Continuous-time passive systems. Returning to the optimization of pas-
sive systems, we first consider the continuous-time case where the finite-dimensional
state-space model \scrM := \{ A,B,C,D\} is minimal and is given by (2.1) and its corre-
sponding transfer function \scrT (2.3) is thus proper. Furthermore, for the remainder of
the paper, we consider transfer functions \scrT of passive systems (so m= p). We begin
with the theoretical background defining the passivity optimization problem we wish
to solve, which as we will show, is equivalent to a root-min problem.

4.1. Passivity of continuous-time proper parametric systems. The ma-
terial here in this subsection is mostly drawn from [22] but is recalled here in a concise
way so that we can easily refer to it. We also briefly recall definitions and properties
following [32] and refer to the literature for proofs and more details.

Given \scrT , consider the following rational matrix function of s\in \BbbC :

\Phi (s) := \scrT \sansH ( - s) + \scrT (s),

which coincides with twice the Hermitian part of \scrT (s) on the imaginary axis:

\Phi (i\omega ) = [\scrT (i\omega )]\sansH + \scrT (i\omega ).

Definition 4.1. The continuous-time system\scrM with transfer function \scrT is
1. passive if \Phi (i\omega )\succeq 0 for all \omega \in \BbbR \cup \{ \infty \} and \alpha (A)\leq 0 with any eigenvalues

of A occurring on the imaginary axis being semisimple and with a transfer
function residue that is Hermitian and positive semidefinite;

2. strictly passive if \Phi (i\omega )\succ 0 for all \omega \in \BbbR \cup \{ \infty \} and \alpha (A)< 0.

Using the matrix

(4.1) Wc(X,\scrM ) :=

\biggl[ 
 - A\sansH X  - XA C\sansH  - XB
C  - B\sansH X D\sansH +D

\biggr] 
,

we have the following necessary and sufficient conditions for passivity of a finite-
dimensional continuous-time system in state-space form; see [32].
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764 TIM MITCHELL AND PAUL VAN DOOREN

Theorem 4.2. Let\scrM := \{ A,B,C,D\} be a continuous-time minimal system and
let its transfer function \scrT thus be proper. Then \scrM is (strictly) passive if and only if
there exists an X \in \BbbH n such that X \succ 0 and Wc(X,\scrM )\succeq 0 (Wc(X,\scrM )\succ 0).

In [22], the following class of systems, parameterized by \xi \in \BbbR , was considered:
\scrM \xi := \{ A\xi ,B,C,D\xi \} = \{ A+ \xi 

2In,B,C,D - \xi 
2Im\} ,(4.2a)

\scrT \xi (s) :=C(sI  - A\xi )
 - 1B +D\xi =C((s - \xi 

2 )In  - A) - 1B +D - \xi 
2Im,(4.2b)

\Phi \xi (s) := \scrT \sansH 
\xi ( - s) + \scrT \xi (s).(4.2c)

For perturbations \Delta \scrM = \{ \Delta A,\Delta B ,\Delta C ,\Delta D\} allowed in the system model\scrM , the size
of the smallest value of \| [\Delta A

\Delta C

\Delta B

\Delta D
]\| \sansF at which the perturbed model \scrM + \Delta \scrM loses

passivity depends on this scalar parameter \xi only; see [22]. It is therefore important
to compute the values of \xi for which these parametric systems are passive or strictly
passive. The following theorem, which is a combination of [22, Theorem 4.5 and
Lemma 6.2], classifies these values of \xi . Note that strict passivity of \scrM implies
regularity of the rational matrix function \Phi , since \Phi (\infty ) is invertible. Thus, \Phi \xi is also
guaranteed to be regular for almost all \xi , since \Phi \xi (\infty ) is invertible for almost all \xi .

Theorem 4.3. Let \scrM := \{ A,B,C,D\} be a continuous-time minimal system
model and let its transfer function \scrT thus be proper. Then, for any \xi \in \BbbR , the
parametric system\scrM \xi with transfer function \scrT \xi , as defined in (4.2), is also minimal
and

(4.3) \Xi := sup
 - \infty <\xi <\infty 

\{ \xi :\scrM \xi is strictly passive\} = max
 - \infty <\xi <\infty 

\{ \xi :\scrM \xi is passive\} 

is bounded. Moreover, the system \scrM \xi is strictly passive for \xi \in ( - \infty ,\Xi ), passive but
not strictly passive for \xi =\Xi , and nonpassive for \xi \in (\Xi ,+\infty ).

Proof. It is obvious that adding \xi 
2I to the matrix A does not affect controllability

or observability since it is a mere shift of the variable \lambda in the corresponding rank
conditions. The rest of the proof is based on the fact that passivity of\scrM \xi is linked
to the inequality Wc(X,\scrM )\succeq \xi diag(X,Im) for some X \succ 0, and that strict passivity
of \scrM \xi is linked to the strict inequality Wc(X,\scrM ) \succ \xi diag(X,Im) for some X \succ 0.
Consequently, for all \~\xi < \xi ,\scrM \xi being passive implies that\scrM \~\xi is strictly passive, and if
\scrM \xi is strictly passive, then\scrM \~\xi is also strictly passive in an open neighborhood about
\xi . This proves that the interval for \xi corresponding to strictly passive systems and
nonpassive systems are both open and connected, and that there is a single boundary
point \Xi that must be passive, but not strictly passive. The boundedness of \Xi follows
from the minimality of the realization for\scrM \xi . We refer to [22] for the details.

By computing \Xi , we can ascertain whether\scrM \xi is (strictly) passive or nonpassive
for all \xi \in \BbbR . For a given value of \xi , by Definition 4.1, \scrM \xi corresponds to a strictly
passive system if and only if \Phi \xi (i\omega )\succ 0 for all \omega \in \BbbR \cup \{ \infty \} , and \alpha (A\xi )< 0. Checking
asymptotic stability is done via computing \alpha (A\xi ). When n is not too large, the entire
spectrum of A\xi can be computed to obtain \alpha (A\xi ), while for large n, one can use,
e.g., eigs in MATLAB, to efficiently compute a globally rightmost eigenvalue of A\xi .
Checking the positive definiteness condition is more involved. For \xi ,\omega \in \BbbR , consider

(4.4) \gamma (\xi ,\omega ) := \lambda min(\Phi \xi (i\omega )) and
\gamma \xi (\omega ) := \gamma (\xi ,\omega ), where \xi \in \BbbR is fixed,

\gamma \omega (\xi ) := \gamma (\xi ,\omega ), where \omega \in \BbbR is fixed.

Clearly, \Phi \xi (i\omega )\succ 0 if and only if \gamma \xi (\omega )> 0, and at \omega =\infty , this is simply equivalent to
D\sansH 

\xi +D\xi \succ 0 with lim\omega \rightarrow \infty \gamma \xi (\omega ) = \lambda min(D
\sansH 
\xi +D\xi )> 0. If \alpha (A\xi )< 0, then \scrT \xi has no

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

7/
23

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 765

poles on the imaginary axis, and so neither does \Phi \xi , hence, \gamma \xi is a continuous function.
Thus, if D\sansH 

\xi +D\xi \succ 0 and \alpha (A\xi )< 0, then \gamma \xi (\omega 1)\leq 0 if and only if det\Phi \xi (i\omega 2) = 0 for
\omega 1, \omega 2 \in \BbbR with \omega 1 = \omega 2 not necessarily holding. Summarizing, we have the following
necessary and sufficient algebraic continuous-time conditions for the strict passivity
of\scrM \xi :

(C1) \alpha (A\xi )< 0 (asymptotic stability of A\xi =A+ \xi 
2In);

(C2) D\sansH 
\xi +D\xi =D\sansH +D - \xi Im \succ 0 (positive definiteness at \omega =\infty );

(C3) det\Phi \xi (i\omega ) \not = 0 for all \omega \in \BbbR (implying positive definiteness for all finite \omega 
provided that (C1) and (C2) also hold).

A bracket containing \Xi can be easily computed. A simple lower bound on \Xi is

(4.5) \Xi lb := \lambda min(Wc(In,\scrM )),

as clearly

Wc(In,\scrM \Xi \mathrm{l}\mathrm{b}
) =Wc(In,\scrM ) - \Xi lbIn+m \succeq 0

holds, and so by Theorems 4.2 and 4.3, \scrM \Xi \mathrm{l}\mathrm{b}
is passive. Meanwhile, (C1) and (C2)

will no longer be satisfied if \xi is too large: (C1) holds if and only if \xi < - 2\alpha (A), and
(C2) holds if and only if \xi < \lambda min(D

\sansH +D). Thus, a simple upper bound for \Xi is

(4.6) \Xi ub :=min
\bigl\{ 
 - 2\alpha (A), \lambda min

\bigl( 
D\sansH +D

\bigr) \bigr\} 
.

Let us now look at \xi \in [\Xi lb,\Xi ub), where for this half-open interval, \alpha (A\xi )< 0 and
D\sansH 

\xi +D\xi \succ 0. Therefore, in order to verify the strict passivity of\scrM \xi , one only needs
to verify condition (C3), i.e., that det\Phi \xi (i\omega ) \not = 0 for all \omega \in \BbbR . This condition can
be checked via the following result for\scrM \xi , which is well known in the literature for
general systems\scrM (see, e.g., [20]).

Theorem 4.4. Let \xi \in \BbbR , \scrM \xi and \Phi \xi be as defined in (4.2), and \omega \in \BbbC (not
only \BbbR ) be any point such that i\omega \not \in \Lambda (A\xi ). Then det\Phi \xi (i\omega ) = 0 if and only if
det(M\xi  - \omega N) = 0, where the regular Hermitian pencil M\xi  - \lambda N is defined by

(4.7) M\xi :=

\left[  0 A\xi B
A\sansH 

\xi 0 C\sansH 

B\sansH C D\sansH 
\xi +D\xi 

\right]  and N :=

\left[  0 iIn 0
 - iIn 0 0
0 0 0

\right]  .

Furthermore, if D\sansH 
\xi +D\xi is nonsingular, then det\Phi \xi (i\omega ) = 0 if and only if det(H\xi  - 

i\omega I2n) = 0, where H\xi is the Hamiltonian matrix

(4.8) H\xi :=

\biggl[ 
A\xi 0
0  - A\sansH 

\xi 

\biggr] 
 - 
\biggl[ 
B
C\sansH 

\biggr] \bigl( 
D\sansH 

\xi +D\xi 

\bigr)  - 1 \bigl[ 
C  - B\sansH 

\bigr] 
.

Proof. Writing

M\xi  - \omega N :=

\left[  0 A\xi  - i\omega In B
A\sansH 

\xi + i\omega In 0 C\sansH 

B\sansH C D\sansH 
\xi +D\xi 

\right]  ,

and using the Schur identity of determinants with respect to the leading 2n\times 2n block,
which by assumption is nonsingular, we obtain that

det(M\xi  - \omega N) = det

\biggl[ 
0 A\xi  - i\omega In

A\sansH 
\xi + i\omega In 0

\biggr] 
det\Phi \xi (i\omega ).
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766 TIM MITCHELL AND PAUL VAN DOOREN

As i\omega \not \in \Lambda (A\xi ), the first equivalence involving M\xi  - \lambda N holds, and since \Phi \xi (i\omega ) is
regular, this matrix pencil must be a regular one. To obtain the second equivalence,
we consider (H\xi  - i\omega I2n)

\bigl[ 
0  - In
In 0

\bigr] 
, which is the Schur complement of M\xi  - \omega N with

respect to the trailing m \times m block and requires the additional assumption that
D\sansH 

\xi +D\xi is nonsingular. Then, via the Schur identity of determinants, we have that

det(M\xi  - \omega N) = det(D\sansH 
\xi +D\xi )det

\biggl( 
(H\xi  - i\omega I2n)

\biggl[ 
0  - In
In 0

\biggr] \biggr) 
.

Corollary 4.5. Let \Xi lb and \Xi ub be as defined in (4.5) and (4.6), respectively,
and let \xi \in [\Xi lb,\Xi ub). Then the function \gamma \xi : \BbbR \rightarrow \BbbR defined in (4.4) has at most 2n
zeros, all of which must be finite.

Proof. If \gamma \xi (\omega ) = 0, then det\Phi \xi (i\omega ) = 0. Since \xi \in [\Xi lb,\Xi ub), (C1) and (C2) both
hold, and so the assumptions of Theorem 4.4 are met. Hence, det\Phi \xi (i\omega ) = 0 if and
only if det(H\xi  - i\omega I2n) = 0. Finally, as H\xi \in \BbbC 2n\times 2n, it has 2n (finite) eigenvalues.

Given the bracket [\Xi lb,\Xi ub], Theorem 4.4 immediately leads to a bisection method
for computing \Xi [22, p. 144]. For any \xi \in [\Xi lb,\Xi ub), (C3) can be verified by computing
the eigenvalues of either M\xi  - \lambda N or H\xi (the pencil form is preferred numerically,
since it only has a linear dependence on \xi ). Via the following result, Mehrmann
and Van Dooren also proposed a second improved algorithm for computing \Xi [22,
p. 146].

Theorem 4.6. Let \gamma : \BbbR \times \BbbR \rightarrow \BbbR and \gamma \xi : \BbbR \rightarrow \BbbR be as defined in (4.4) and \Xi lb

and \Xi ub be as defined in (4.5) and (4.6), respectively. Then \gamma is continuous on the
domain [\Xi lb,\Xi ub)\times \BbbR , and \gamma \xi has the following properties:

(i) if \xi \in [\Xi lb,\Xi ), then min\omega \in \BbbR \gamma \xi (\omega )> 0;
(ii) if \xi =\Xi , then min\omega \in \BbbR \gamma \xi (\omega ) = 0;
(iii) if \xi \in (\Xi ,\Xi ub) with \Xi <\Xi ub, then \gamma \xi (\omega )< 0 \forall \omega \in \scrS \subset \BbbR , where \scrS is the union

of a finite number of nonoverlapping open bounded intervals.

Proof. This was proven in [22, Theorem 5.1] except for the claim in (iii) that the
intervals are bounded, which follows directly from Corollary 4.5.

Mehrmann and Van Dooren's improved method computes a monotonically de-
creasing sequence \{ \xi k\} \rightarrow \Xi , where the initial estimate is \xi 0 =\Xi ub  - \tau for some small
tolerance \tau > 0. On the kth iteration, via Theorem 4.4 and computing the eigenvalues
of M\xi k  - \lambda N , the bounded intervals where \gamma \xi k is negative are obtained. Taking \^\omega 
to be the midpoint of the largest of these intervals with \gamma \xi k(\^\omega ) < 0 holding, \xi k+1 is
obtained by setting it to the smallest value of \xi such that \gamma \^\omega (\xi ) = 0; this is done by
computing all the eigenvalues of a matrix pencil closely related to M\xi k  - \lambda N (and of
the same order). This process is continued in a loop until convergence to \Xi ; see [22,
section 5] for more details.

4.2. An HEC-based algorithm for computing the continuous-time \Xi .
By Theorem 4.6, \Xi defined in (4.3) can instead be computed via this root-min problem

(4.9) determine the \xi \in \scrD 1 : f(\xi ) = min
\omega \in \scrD 2

\gamma (\xi ,\omega ) = min
\omega \in \scrD 2

\gamma \xi (\omega ) = 0,

where \scrD 1 = [\Xi lb,\Xi ub], \scrD 2 \subset \BbbR , and the function \gamma and its associated restriction \gamma \xi are
defined in (4.4). If \xi \not =\Xi ub, by Corollary 4.5 and Theorem 4.6, \scrD 2 can be taken to be
compact, since for all other values of \xi \in \scrD 1, \gamma \xi has at most 2n zeros, which are all
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 767

finite, and minimizers of \gamma \xi that occur where \gamma \xi is negative clearly must lie between
these zeros. Since \alpha (A\xi )< 0 for all \xi < \Xi ub, it follows that \gamma \xi is also bounded below
(and above) for all \xi < \Xi ub. Thus, (4.9) meets the criteria to be a valid root-min
problem, and so we can use HEC to find pseudoroots of it.

Remark 4.7. For a root-min problem, the initialization requirements for HEC,
using the notation of (3.2) and Algorithm 3.1, are \varepsilon lb, \varepsilon 0 \in \scrD 1 and x0 \in \scrD 2 such that
f(\varepsilon 0) \leq g(\varepsilon 0, x0) \leq 0 < f(\varepsilon lb). For computing \Xi , it will also be more convenient to
use the convention that f(\varepsilon 0)\leq g(\varepsilon 0, x0)< 0\leq f(\varepsilon lb) holds.

Remark 4.8. We wish to compute \Xi to a desired relative accuracy determined by
a relative error tolerance \tau \in (0,1). However, if \Xi = 0 happens to hold, the relative
error is undefined. In this case, our algorithm instead automatically estimates \Xi to
within an absolute error determined by \tau . In practice, one could use two parameters
to respectively determine acceptable accuracy in relative and absolute senses. For the
sake of simplicity, we assume that \Xi \not = 0 in order to avoid having to refer to both
relative and absolute errors.

First note that 0 \leq f(\Xi lb) always holds. If we have a \xi 0 \in [\Xi lb,\Xi ub) and \omega 0 \in \BbbR 
such that \gamma (\xi 0, \omega 0) < 0, then the initialization conditions of HEC are met, and so
HEC can be used to compute a pseudoroot (\~\xi , \~\omega ) of (4.9) with both \~\xi \in [\Xi lb, \xi 0) and
\Xi \leq \~\xi holding. To determine whether the estimate \~\xi is sufficiently close to \Xi , we do
the following. For our tolerance \tau , we set \xi = \~\xi  - \tau | \~\xi | (we assume that \Xi lb < \xi , as
otherwise we are done) and then compute the real eigenvalues of M\xi  - \lambda N . If this
matrix pencil has no real eigenvalues, then by Theorem 4.4, we know that \gamma \xi has no
zeros, and so by Theorem 4.6, \xi < \Xi must hold. Thus, \Xi \in (\~\xi , \xi ], and so \xi must
agree with \Xi to the desired number of digits.3 Otherwise, if M\xi  - \lambda N does have real
eigenvalues, then \gamma \xi has zeros, and if \gamma \xi is negative on at least one of the intervals
derived from these zeros, then \Xi < \xi holds by Theorem 4.6. Updating \omega 0 to be the
midpoint of one of these intervals where \gamma \xi is negative, obviously \gamma \xi (\omega 0) < 0 holds,
and so HEC can be restarted to find a new pseudoroot (\^\xi , \^\omega ) of (4.9) with \^\xi \in [\Xi , \xi ).
This process of running HEC and computing the real eigenvalues of M\xi  - \lambda N to find
regions where \gamma \xi is negative is repeated in a loop until estimate \xi , which is decreasing
monotonically, becomes sufficiently close to \Xi .

For initializing our new algorithm, it is required that we always choose \xi < \Xi ub;
e.g., evaluating \scrT \xi (i\omega ) requires solving linear systems with i\omega I  - A\xi , but this matrix
may not always be invertible when \xi = \Xi ub. Choosing \xi 0 = \Xi ub  - \tau | \Xi ub| as our first
estimate suffices, as this still allows us to obtain \Xi to the desired accuracy. Again, we
assume that \Xi lb < \xi 0, as otherwise we are done. The user provides some \omega 0 \in \BbbR as an
initial guess for HEC. If \gamma \xi 0(\omega 0)< 0 holds, then our algorithm as described above can
begin. Otherwise, we must find another point where \gamma \xi 0 is negative. This can be done
in multiple ways. We can evaluate \gamma \xi 0 on a grid or at randomly chosen points. We
could also initialize some optimization solver at these points to try to find a minimizer
\~\omega of \gamma \xi 0 such that \gamma \xi 0(\~\omega )< 0. If, after some reasonable amount of effort, such a point
has not been found, we then resort to computing the eigenvalues of M\xi 0  - \lambda N in
order to obtain all the zeros of \gamma \xi 0 . Then, as described above, we can determine if
there exists a point where \gamma \xi 0 is negative. Since evaluating \gamma \xi 0(\omega ) for a given value
of \omega is much cheaper than computing the eigenvalues of M\xi 0  - \lambda N (we elaborate on
this momentarily), it is generally beneficial in terms of the overall runtime to first

3
Note that when \~\xi is only sufficiently close to \Xi (and not equal), it does not necessarily follow

that \~\omega is close to the global minimizer(s) of \gamma \Xi .
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768 TIM MITCHELL AND PAUL VAN DOOREN

Algorithm 4.1 HEC-based algorithm for continuous-time \Xi .

Input: M, ω0 ∈ R, τ ∈ (0, 1), Ξlb (4.5), and Ξub (4.6)
Output: ξ such that |Ξ− ξ| ≤ τ |Ξ| for continuous-time Ξ for M

1: ξ ← Ξub − τ |Ξub|
2: if ξ ≤ Ξlb then
3: return
4: end if
5: find negative ← γξ(ω0) ≥ 0 // a boolean variable
6: while true do
7: if find negative then
8: Ω← {ω ∈ R : det(Mξ − ωN) = 0}
9: Ω← {ω ∈ Ω : γξ(ω) = 0}

10: if ∃ω1, ω2 ∈ Ω s.t. ω1 < ω2 and γξ(ω) < 0 ∀ω ∈ (ω1, ω2) then
11: ω0 ← 0.5(ω1 + ω2) // (C3) does not hold
12: else
13: return // γξ(ω) ≥ 0 ∀ω ∈ R and ξ ≈ Ξ to tolerance
14: end if
15: end if
16: // γξ(ω0) < 0 and Ξ ∈ [Ξlb, ξ) so run HEC with this initial data

17: (ξ̃, ω̃)← a pseudoroot of (4.9) obtained by HEC with Ξ ≤ ξ̃ < ξ
18: ξ ← ξ̃ − τ |ξ̃|
19: find negative ← true

20: end while
Note: Per Remark 4.8, we assume that \Xi \not = 0, and so at termination, \xi will agree with \Xi to the desired
relative tolerance \tau . When the matrices defining \scrM are all real, there is symmetry, i.e., \gamma (\xi , - \omega ) =
\gamma (\xi ,\omega ), and so the search domain for \omega can be reduced from \BbbR to \omega \in [0,\infty ). While taking advantage of
this symmetry does not affect the asymptotic work complexity, it can nevertheless reduce the constant
factors to speed up the overall run time.

try a decent number of points, possibly with optimization. This also increases the
chances that the first pseudoroot (\~\xi , \~\omega ) of (4.9) found by HEC also provides its root,
i.e., \~\xi = \Xi ; in this case, our algorithm only computes the eigenvalues of M\xi  - \lambda N
for a single value of \xi . In contrast, recall that the earlier algorithm of Mehrmann
and Van Dooren (described at the end of subsection 4.1), on every iteration, requires
computing the eigenvalues of M\xi  - \lambda N plus the eigenvalues of a second related matrix
pencil with the same order (2n+m).

Pseudocode of our new algorithm for continuous-time \Xi is given in Algorithm 4.1.
In practice, we observe that HEC is only restarted a handful of times, often just once.
By construction of the valid data to initialize HEC on every iteration of Algorithm 4.1,
it follows from Theorem 3.7 that HEC is indeed guaranteed to compute a pseudoroot
of (4.9) on every iteration. Under mild assumptions that generally hold in practice,
we now show that Algorithm 4.1 has local quadratic convergence to pseudoroots
of (4.9).

Theorem 4.9 (quadratic convergence of Algorithm 4.1). Let (\~\xi , \~\omega ) be any pseu-
doroot of (4.9) computed by HEC within Algorithm 4.1. If

(i) after some point, HEC only generates iterates that lie on a single open con-
tinuous path \omega p :\BbbR \rightarrow \BbbR of stationary points of \gamma \xi as \xi varies,

(ii) \~\omega = \omega p(\~\xi ) is a local maximizer of \gamma \~\xi ,
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 769

(iii) \gamma \prime 
\~\omega (

\~\xi ) \not = 0,
(iv) \gamma is twice continuously differentiable at (\~\xi , \~\omega ), and
(v) \omega p is twice continuously differentiable at \~\xi ,

all hold, then Algorithm 4.1 converges Q-quadratically to the pseudoroot (\~\xi , \~\omega ). Fur-
thermore, if (i)--(iii) hold and \gamma (\~\xi , \~\omega ) corresponds to a simple eigenvalue of \Phi \~\xi (i\~\omega )
and \gamma \prime \prime 

\~\xi 
(\~\omega ) \not = 0, then (iv) and (v) are automatically satisfied.

Proof. Conditions (i)--(v) implying the quadratic convergence of HEC is simply a
translation of Theorem 3.10 to the setting of (4.9). For the second part of the theorem,
if \gamma (\~\xi , \~\omega ) corresponds to a simple eigenvalue, then \gamma is analytic near (\~\xi , \~\omega ). Defining
the function g(\xi ,\omega ) := \partial 

\partial \omega \gamma (\xi ,\omega ), the path \omega p of stationary points of the functions \gamma \xi 
as \xi varies can be characterized by the equality g(\xi ,\omega ) = 0 in a neighborhood about
the pseudoroot (\~\xi , \~\omega ). Since g is analytic, if \partial g

\partial \omega | (\~\xi ,\~\omega ) \not = 0, it follows from the implicit
function theorem that we can rewrite our characterization as g(\xi ,\omega p(\xi )) = 0, where
\omega p is analytic near \~\xi .

Under the smoothness assumptions of Theorem 4.9, in a neighborhood of the
pseudoroot in question, the contraction and expansion phases within HEC can also
be solved with fast convergence rates. Moreover, even if these assumptions do not
hold, an extension of the analysis of Boyd and Balakrishnan [5] shows that near any
minimizer \omega , \gamma \xi is twice continuously differentiable with a Lipschitz second deriva-
tive, even if the minimizer is associated with an eigenvalue of \Phi \xi (i\omega ) of multiplicity
greater than one; for more details, see [25]. Thus, the expansion phases can always be
solved quickly using secant or Newton's method, and any use of the early contraction
technique discussed in Remark 3.11 should be limited, e.g., only in initial iterations
when one cannot necessarily expect to be sufficiently close to the fast convergence
regime.

For the contraction and expansion phases, we now describe how to compute the
first and second derivatives of the functions \gamma \xi and \gamma \omega defined in (4.4). Given a simple
eigenvalue of a Hermitian matrix H depending on a parameter t \in \BbbR , formulas for
the first and second derivatives of that eigenvalue can be found in, e.g., [18, 28]. The
matrix derivatives H \prime and H \prime \prime appear in these formulas, so we give below the first
and second matrix derivatives of both \scrT \xi (i\omega ) and \Phi \xi (i\omega ) with respect to \xi and \omega .
Via applications of standard matrix derivative formulas and the chain rule, we have
that

\partial 
\partial \xi \scrT \xi (i\omega ) = 1

2 (Z2  - Im), \partial 2

\partial \xi 2 \scrT \xi (i\omega ) = 1
2Z3,(4.10a)

\partial 
\partial \omega \scrT \xi (i\omega ) = - iZ2,

\partial 2

\partial \omega 2 \scrT \xi (i\omega ) = - 2Z3,(4.10b)

where Zk :=C((i\omega  - \xi 
2 )In  - A) - kB, and so

\partial 
\partial \xi \Phi \xi (i\omega ) =

1
2 (Z2 +Z\sansH 

2 ) - Im, \partial 2

\partial \xi 2\Phi \xi (i\omega ) =
1
2 (Z3 +Z\sansH 

3 ),(4.11a)

\partial 
\partial \omega \Phi \xi (i\omega ) = - iZ2 + iZ\sansH 

2 ,
\partial 2

\partial \omega 2\Phi \xi (i\omega ) = - 2(Z3 +Z\sansH 
3 ).(4.11b)

Following a technique of Laub [19], we can compute the Hessenberg form A=UHU\sansH ,
where U is unitary and H is Hessenberg, and then substitute it into Z1, which yields
Z1 = CU((i\omega  - \xi 

2 )In  - H) - 1U\sansH B. Computing U and H is \scrO (n3) work but only
needs to be done once. Thereafter, the inverses appearing in Zk can actually be
applied to a vector in just \scrO (n2) work since changing the values of \xi and \omega cannot
cause the Hessenberg structure to be lost. Thus, \Phi \xi (i\omega ) and its matrix derivatives
given in (4.11) can be obtained in \scrO (mn2 +m2n) work. Using the convention that
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770 TIM MITCHELL AND PAUL VAN DOOREN

computing the eigenvalues and eigenvectors of a matrix is an atomic operation with
cubic complexity, the total cost to evaluate \gamma (\xi ,\omega ) and its first and second derivatives
with respect to \xi and \omega is \scrO (mn2 +m2n+m3) work.

The cost of Algorithm 4.1 is dominated by computing the zeros of \gamma \xi . Since
HEC generally converges quickly, as do its expansion and contraction phases, we
can consider that the total number of evaluations of the function \gamma is bounded by a
constant. Hence, in Algorithm 4.1, HEC does \scrO (mn2+m2n+m3) work. Meanwhile,
finding the zeros of \gamma \xi involves computing all the eigenvalues of M\xi  - \lambda N , which itself
is \scrO ((n + m)3) work. Thus, for all but the smallest values of n, the HEC portion
of Algorithm 4.1 should only be a fraction of the cost to compute the eigenvalues of
M\xi  - \lambda N .

The ``improved"" algorithm of Mehrmann and Van Dooren has the same asymp-
totic work complexity as our method, but the hidden constant factor for their algo-
rithm is much larger. This is partly because on each iteration, their algorithm solves
two large eigenvalue problems of order 2n+m. However, it also often requires more
iterations than Algorithm 4.1 does. While Mehrmann and Van Dooren did not an-
alyze the convergence properties of their method, our new framework of root-max
problems and HEC also shows that their method converges at least Q-superlinearly
under generic conditions. To see this, note that on each iteration, their method com-
putes a single point where \gamma \xi is negative (as opposed to finding a local minimizer),
but in the limit, these single points do converge to a minimizer of \gamma \xi as \xi \rightarrow \Xi . In
other words, their algorithm can also been seen as an HEC iteration with a very ag-
gressive early contraction scheme. Per Remark 3.11, such an iteration converges at
least superlinearly.

5. Discrete-time passive systems. We now present the discrete-time ana-
logues of the optimization problem and our new algorithm given in section 4. We
reuse the continuous-time notation from section 4. for the discrete-time setting since
the different meanings should be clear from the context, and it allows us to generically
refer to either setting when needed.

5.1. Passivity of discrete-time proper parametric systems. The material
in this subsection closely follows [21]. For z \in \BbbC , we now consider the rational matrix
function

\Phi (z) := \scrT \sansH (z - 1) + \scrT (z),
which coincides with twice the Hermitian part of \scrT on the unit circle:

\Phi (e\bfi \omega ) = [\scrT (e\bfi \omega )]\sansH + \scrT (e\bfi \omega ).
Definition 5.1. The discrete-time system\scrM with transfer function \scrT is
1. passive if \Phi (e\bfi \omega ) \succeq 0 for all \omega \in ( - \pi ,\pi ] and \rho (A) \leq 1, i.e., its eigenvalues

are in the closed unit disk, with any occurring on the unit circle being semi-
simple and with a transfer function residue that is Hermitian and positive
semidefinite;

2. strictly passive if \Phi (e\bfi \omega )\succ 0 for all \omega \in ( - \pi ,\pi ] and \rho (A)< 1.

The necessary and sufficient conditions for passivity in the discrete-time case (see
[21]) now make use of the linear matrix function

(5.1) Wd(X,\scrM ) :=

\left[  X XA XB
A\sansH X X C\sansH 

B\sansH X C D\sansH +D

\right]  .
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 771

Theorem 5.2. Let\scrM := \{ A,B,C,D\} be a discrete-time minimal system and let
its transfer function \scrT thus be proper. Then\scrM is (strictly) passive if and only there
exists an X \in \BbbH n such that X \succ 0 and Wd(X,\scrM )\succeq 0 (Wd(X,\scrM )\succ 0).

In [21], the following class of parametric systems was considered:

\scrM \xi := \{ A\xi ,B\xi ,C\xi ,D\xi \} =
\Bigl\{ 

A
1 - \xi ,

B
1 - \xi ,

C
1 - \xi ,

D - \xi Im
1 - \xi 

\Bigr\} 
,(5.2a)

\scrT \xi (z) :=C\xi (zIn - A\xi )
 - 1B\xi +D\xi =

1
1 - \xi 

\bigl( 
C((1 - \xi )zIn  - A) - 1B +D - \xi Im

\bigr) 
,(5.2b)

\Phi \xi (z) := \scrT \sansH 
\xi (z - 1) + \scrT \xi (z),(5.2c)

where \xi \in ( - \infty ,1) and it is again important to compute for which values of \xi these
systems are passive or strictly passive. Similarly to the continuous-time case, it was
shown in [21] that the smallest perturbation \Delta \scrM such that the perturbed model
\scrM +\Delta \scrM loses passivity depends on this scalar parameter \xi . It is therefore important
to compute the values of \xi for which these parametric systems are passive or strictly
passive. The following theorem was given in [21], in a slightly modified form; we omit
its proof as it is similar to that of Theorem 4.3. Note that strict passivity of\scrM again
implies regularity of the rational matrix function \Phi , since it is invertible for any point
on the unit circle. Moreover, \Phi \xi is then also regular for almost all \xi since it is an
analytic perturbation of \Phi .

Theorem 5.3. Let\scrM := \{ A,B,C,D\} be a discrete-time minimal system\scrM and
let its transfer function \scrT thus be proper. Then, for \xi \in ( - \infty ,1), the parametric
system\scrM \xi with transfer function \scrT \xi , as defined in (5.2), is also minimal and

(5.3) \Xi := sup
 - \infty <\xi <1

\{ \xi :\scrM \xi is strictly passive\} = max
 - \infty <\xi <1

\{ \xi :\scrM \xi is passive\} 

is bounded. Moreover,\scrM \xi is strictly passive for \xi \in ( - \infty ,\Xi ), passive but not strictly
passive for \xi =\Xi , and not passive for \xi \in (\Xi ,1).

By Definition 5.1, \scrM \xi is strictly passive if and only if \Phi \xi (z) \succ 0 holds over the
entire unit circle and \rho (A\xi ) < 1. Obtaining the value of \rho (A\xi ) to check asymptotic
stability can be done by computing an outermost eigenvalue of A\xi via, e.g., eig or
eigs in MATLAB. Checking the discrete-time positive definiteness condition is a little
more subtle than it is in the continuous-time case. For \xi ,\omega \in \BbbR , consider

(5.4) \gamma (\xi ,\omega ) := \lambda min(\Phi \xi (e
\bfi \omega )) and

\gamma \xi (\omega ) := \gamma (\xi ,\omega ) where \xi \in \BbbR is fixed,

\gamma \omega (\xi ) := \gamma (\xi ,\omega ) where \omega \in \BbbR is fixed,

where \Phi \xi is defined in (5.2). Clearly \Phi \xi (e
\bfi \omega )\succ 0 is equivalent to \gamma \xi (\omega )> 0, and \gamma \xi is

continuous if \rho (A\xi )< 1, as then \Phi \xi cannot have any poles on the unit circle. Hence,
if \rho (A\xi )< 1 and \Phi \xi (e

\bfi \~\omega )\succ 0 for some \~\omega \in ( - \pi ,\pi ], then \Phi \xi (e
\bfi \omega )\succ 0 for all \omega \in ( - \pi ,\pi ]

if and only if det\Phi \xi (e
\bfi \omega ) has no zeros. Thus,\scrM \xi is strictly passive if and only if the

following conditions all hold:
(D1) \rho (A\xi )< 1 (asymptotic stability of A\xi =

A
1 - \xi );

(D2) \Phi \xi (e
\bfi \~\omega )\succ 0 (positive definiteness at a unimodular point, say, e\bfi \~\omega = 1);

(D3) det\Phi \xi (e
\bfi \omega ) \not = 0 for all \omega \in ( - \pi ,\pi ] (implying positive definiteness on the entire

unit circle provided that (D1) and (D2) also hold).
In contrast to its continuous-time analogue (C2), note that (D2) does not require that
D\sansH 

\xi +D\xi be positive definite (or even invertible).
A bracket containing the discrete-time \Xi is as follows. Again using the relation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

7/
23

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



772 TIM MITCHELL AND PAUL VAN DOOREN

between the linear matrix inequalities of\scrM and\scrM \xi , with X = 2In, we can choose

(5.5) \Xi lb :=
1
2\lambda min(Wd(2In,\scrM ))

as a lower bound on \Xi , since it follows that

(1 - \Xi lb)Wd(2In,\scrM \Xi \mathrm{l}\mathrm{b}
) =Wd(2In,\scrM ) - 2\Xi lbI2n+m \succeq 0

holds and so by Theorems 5.2 and 5.3, we have that\scrM \Xi \mathrm{l}\mathrm{b}
is passive. Meanwhile,

(5.6) \Xi ub := 1 - \rho (A)

is an upper bound, since obviously \rho (A\xi )< 1 if \xi <\Xi ub.
Given \xi \in [\Xi lb,\Xi ub), (D1) must always hold, so to verify strict passivity of \scrM \xi 

we need to check that both (D2) and (D3) also hold. Checking (D2) is simple. If
\lambda min(\Phi \xi (e

\bfi \~\omega ))\leq 0 for any \~\omega \in \BbbR , then\scrM \xi is not strictly passive, and there is no need
to check (D3). Otherwise, since \rho (A\xi ) < 1, if \lambda min(\Phi \xi (e

\bfi \~\omega )) > 0, we have that \scrM \xi 

is strictly passive if and only if (D3) holds, which can be checked via the following
result4 (see, e.g., [8, 33]).

Theorem 5.4. Let \xi \in ( - \infty ,1),\scrM \xi and \Phi \xi be as defined in (5.2), and z \in \BbbC be
any nonzero point such that z \not \in \Lambda (A\xi ) and z - 1 \not \in \Lambda (A\sansH 

\xi ), which is equivalent to the
former when | z| = 1. Then det\Phi \xi (z) = 0 if and only if det(M\xi  - zN\xi ) = 0, where\widetilde D\xi :=D\sansH +D - 2\xi Im and the regular pencil M\xi  - \lambda N\xi is defined by

(5.7) M\xi :=

\left[  0 A B
(\xi  - 1)In 0 0

B\sansH C \widetilde D\xi 

\right]  and N\xi :=

\left[  0 (1 - \xi )In 0
 - A\sansH 0  - C\sansH 

0 0 0

\right]  .

Furthermore, if \widetilde D\xi is nonsingular, then det\Phi \xi (z) = 0 if and only if det(S\xi  - zT\xi ) = 0,
where the symplectic pencil S\xi  - \lambda T\xi is defined by

(5.8) S\xi :=

\biggl[ 
(\xi  - 1)In 0

 - B \widetilde D - 1
\xi B\sansH A - B \widetilde D - 1

\xi C

\biggr] 
and T\xi :=

\biggl[ 
(B \widetilde D - 1

\xi C  - A)\sansH C\sansH \widetilde D - 1
\xi C

0 (1 - \xi )In

\biggr] 
.

Proof. Writing

M\xi  - zN\xi :=

\left[  0 A+ (\xi  - 1)zIn B
zA\sansH + (\xi  - 1)In 0 zC\sansH 

B\sansH C \widetilde D\xi 

\right]  ,

and using the Schur identity of determinants with respect to the leading 2n\times 2n block,
which by assumption is nonsingular, we obtain that

det(M\xi  - zN\xi ) = det

\biggl[ 
0 A+ (\xi  - 1)zIn

zA\sansH + (\xi  - 1)In 0

\biggr] 
det((1 - \xi )\Phi \xi (z)).

As z \not \in \Lambda (A\xi ) and z - 1 \not \in \Lambda (A\sansH 
\xi ), the first equivalence involving M\xi  - \lambda N\xi holds, and

since \Phi \xi (z) is regular, this matrix pencil must be a regular one. To obtain the second
equivalence, we again apply the Schur identity of determinants, now with respect to

4
The generalized eigenvalue problem given by the matrices in (5.7) is denoted \Gamma (\xi ,\omega ) in [21, p.

1263], but note that its bottom right block, D\sansH +D - \xi Im, contains a typo; it should beD\sansH +D - 2\xi Im,

which we denote \widetilde D\xi in Theorem 5.4.
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 773

the trailing m\times m block, which is possible by our additional assumption that \widetilde D\xi is
nonsingular. It then follows that det(M\xi  - zN\xi ) is equal to

det \widetilde D\xi det

\biggl( \biggl[ 
0 A+ (\xi  - 1)zIn

zA\sansH + (\xi  - 1)In 0

\biggr] 
 - 
\biggl[ 

B
zC\sansH 

\biggr] \widetilde D - 1
\xi 

\bigl[ 
B\sansH C

\bigr] \biggr) 
,

and so clearly det(M\xi  - zN\xi ) = 0 if and only if the second determinant above is zero.
Multiplying the matrix inside this second determinant by

\bigl[ 
0 In
In 0

\bigr] 
from the left and

rearranging terms yields S\xi  - zT\xi . This matrix pencil is easily verified as symplectic,
i.e., for J :=

\bigl[ 
0 In

 - In 0

\bigr] 
, S\sansH 

\xi JS\xi = T\sansH 
\xi JT\xi holds.

Corollary 5.5. Let \Xi lb and \Xi ub be as defined in (5.5) and (5.6), respectively,
and let \xi \in [\Xi lb,\Xi ub). Then the function \gamma \xi : ( - \pi ,\pi ]\rightarrow \BbbR defined in (5.4) has at most
2n zeros.

Proof. If \gamma \xi (\omega ) = 0, then det\Phi \xi (e
\bfi \omega ) = 0. As \xi \in [\Xi lb,\Xi ub), \rho (A\xi )< 1 holds, and

so the assumptions of Theorem 5.4 are met. Hence, det\Phi \xi (e
\bfi \omega ) = 0 if and only if

det(M\xi  - e\bfi \omega N\xi )= 0. The proof is completed by noting that rankN\xi \leq 2n.

Using Theorem 5.4, Mehrmann and Van Dooren proposed a bisection method
to compute discrete-time \Xi , and via the following result, a discrete-time analogue of
their improved procedure we described in subsection 4.1; for more details, see [21,
section 7].

Theorem 5.6. Let \gamma :\BbbR \times ( - \pi ,\pi ]\rightarrow \BbbR and \gamma \xi : ( - \pi ,\pi ]\rightarrow \BbbR be as defined in (5.4),
and \Xi lb and \Xi ub be as defined in (5.5) and (5.6), respectively. Then \gamma is continuous
on the domain [\Xi lb,\Xi ub)\times ( - \pi ,\pi ] and \gamma \xi has the following properties:

(i) if \xi \in [\Xi lb,\Xi ), then min\omega \in ( - \pi ,\pi ] \gamma \xi (\omega )> 0;
(ii) if \xi =\Xi , then min\omega \in ( - \pi ,\pi ] \gamma \xi (\omega ) = 0;
(iii) if \xi \in (\Xi ,\Xi ub) with \Xi < \Xi ub, then \gamma \xi (\omega )< 0 \forall \omega \in \scrS \subseteq ( - \pi ,\pi ], where \scrS is the

union of a finite number of nonoverlapping open intervals.

Proof. Statements (i) and (ii) follow from [21], while (iii) follows from the facts
that \gamma \xi is continuous, and by Corollary 5.5, it can have at most 2n zeros.

Remark 5.7. For any \xi \in (\Xi ,\Xi ub), the continuous-time function \gamma \xi always has
at least two zero-crossings, but note that the discrete-time version of \gamma \xi may not
have any zeros; i.e., max\omega \in ( - \pi ,\pi ] \gamma \xi (\omega ) < 0 can hold. This is why it is necessary to
check that both (D2) and (D3) hold at each estimate \xi encountered when computing
discrete-time \Xi , but in the continuous-time case, only (C3) needs to be checked at
each estimate. Note that as written, the pseudocodes for the discrete-time algorithms
in [21, section 7] assume that (D2) holds automatically whenever (D3) holds, but for
general use, it is indeed necessary to check (D2).

5.2. An HEC-based algorithm for computing discrete-time \Xi . By The-
orem 5.6, \Xi defined in (5.3) can be computed via this root-min problem

(5.9) determine the \xi \in \scrD 1 : f(\xi ) = min
\omega \in \scrD 2

\gamma (\xi ,\omega ) = 0,

where now \xi \in \scrD 1 = [\Xi lb,\Xi ub], \scrD 2 = [ - \pi ,\pi ] is obviously compact, \gamma is defined in (5.4),
and \gamma \xi is bounded below. Our continuous-time HEC-based algorithm and results from
subsection 4.2 extend to the discrete-time setting and work similarly, so for brevity,
we only focus on the key points and differences.

Pseudocode for our new algorithm for discrete-time \Xi is given in Algorithm 5.1.
Per Remark 5.7, the need to check that both (D2) and (D3) hold on each iteration

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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774 TIM MITCHELL AND PAUL VAN DOOREN

Algorithm 5.1 HEC-based algorithm for discrete-time \Xi .

Input: M, ω0 ∈ (−π, π], τ ∈ (0, 1), Ξlb (5.5), and Ξub (5.6)
Output: ξ such that |Ξ− ξ| ≤ τ |Ξ| for discrete-time Ξ for M

1: ξ ← Ξub − τ |Ξub|
2: if ξ ≤ Ξlb then
3: return
4: end if
5: find negative ← γξ(ω0) ≥ 0 // a boolean variable
6: while true do
7: if find negative then
8: if γξ(0) < 0 then
9: ω0 ← 0 // (D2) does not hold

10: else
11: Ω← {ω ∈ (−π, π] : det(Mξ − eiωNξ) = 0}
12: Ω← {ω ∈ Ω : γξ(ω) = 0}
13: Ω← Ω ∪ {min Ω + 2π}
14: if ∃ω1, ω2 ∈ Ω s.t. ω1 < ω2 and γξ(ω) < 0 ∀ω ∈ (ω1, ω2) then
15: ω0 ← 0.5(ω1 + ω2) // (D2) and (D3) do not hold
16: else
17: return // γξ(ω) ≥ 0 ∀ω ∈ (−π, π] and ξ ≈ Ξ to tolerance
18: end if
19: end if
20: end if
21: // γξ(ω0) < 0 and Ξ ∈ [Ξlb, ξ) so run HEC with this initial data

22: (ξ̃, ω̃)← a pseudoroot of (5.9) obtained by HEC with Ξ ≤ ξ̃ < ξ
23: ξ ← ξ̃ − τ |ξ̃|
24: find negative ← true

25: end while
Note: See Remark 4.8 and Algorithm 4.1 for more details on tolerances and symmetry. In line 13,
\Omega \cup \{ min\Omega + 2\pi \} is used so that the ``wrap-around"" interval, i.e., [max\Omega ,min\Omega + 2\pi ] is not missed.

means that the pseudocode is a bit more complicated than for continuous-time \Xi . As
such, one might conclude that the problem of computing \Xi is trickier in the discrete-
time case; however, as we explain in the numerical results, it seems that the exact
opposite is true, due to a numerical issue that only arises in the continuous-time case.
To implement HEC for Algorithm 5.1, we make use of the first and second derivatives
of \gamma \xi and \gamma \omega defined in (5.4). To that end, we provide the discrete-time analogues
of the matrix derivatives given in (4.10), as the remaining computations are readily
apparent. Letting Zk :=C((1 - \xi )e\bfi \omega In  - A) - kB, we have that

\partial 
\partial \xi \scrT \xi (e\bfi \omega ) =

\scrT \xi (e
\bfi \omega )+e\bfi \omega Z2 - Im

1 - \xi , \partial 2

\partial \xi 2 \scrT \xi (e\bfi \omega ) = 2
1 - \xi 

\Bigl( 
e2\bfi \omega Z3 +

\partial \scrT \xi (e
\bfi \omega )

\partial \xi 

\Bigr) 
,(5.10a)

\partial 
\partial \omega \scrT \xi (e\bfi \omega ) = - ie\bfi \omega Z2,

\partial 2

\partial \omega 2 \scrT \xi (e\bfi \omega ) = e\bfi \omega Z2  - 2(1 - \xi )e2\bfi \omega Z3.(5.10b)

In Algorithm 5.1, the costs to run HEC and compute zeros of \gamma \xi are the same as
in the continuous-time setting discussed in subsection 4.2. Theorem 4.9 also ex-
tends, and so under mild assumptions that generally hold in practice, Algorithm 5.1
converges quadratically to pseudoroots of (5.9). Relatedly, Mehrmann and Van
Dooren's improved algorithm [21, section 7] for discrete-time \Xi also converges at
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HEC AND OPTIMIZATION OF PASSIVE SYSTEMS 775

least superlinearly.

6. Numerical experiments. We implemented the continuous- and discrete-
time versions of our new HEC-based method and the improved midpoint-based it-
eration of Mehrmann and Van Dooren. In this section, for brevity, we use HEC to
refer to former (Algorithms 4.1 and 5.1) and MP (for midpoint) to refer to the latter.
All codes were implemented with relative tolerances and set to compute \Xi to 14 dig-
its. Experiments were done using MATLAB R2021a on a 2020 MacBook Pro with a
quad-core Intel Core i5 1038NG7 CPU and 16GB of RAM running macOS 10.15.7.
Code and data to reproduce all experiments is included in the supplementary material
(hec pass opt code.zip [local/web 1.27MB]).

6.1. Implementation details. We first discuss implementing Algorithm 3.1.
The expansion phase was implemented using fmincon, while the contraction phase
was implemented using our own Halley-bisection root-finding code; first and sec-
ond derivative information is used in both. Due to rounding errors, it may be that
the contraction phase sometimes computes an approximate root \^\varepsilon k of gxk

such that
gxk

(\^\varepsilon k) < 0, instead of gxk
(\^\varepsilon k) \geq 0, which is required at every iteration (for a root-

max problem). However, if this occurs, it suffices to just perturb the computed
root by a small multiple of the Halley step to correct the sign; a more complicated
workaround involving shifting the root problems is suggested in [24, section 7] and
[12, Appendix A], but we do not recommend that. Algorithm 3.1 is terminated at
an approximate pseudoroot once both \varepsilon k and xk are no longer changing significantly
with respect to their respective previous values; this condition is checked twice per
iteration, after the contraction phase and after the expansion phase. Since in the con-
text of computing \Xi , the expansion phases can be solved quickly, we did not use early
contraction.

For simplicity, we used eig for all eigenvalue problems, though it is advisable to
use structure-preserving solvers for numerical robustness; e.g., see [1, 2, 17, 33]. To
compute zeros of \gamma \xi (\omega ), we used the pencils given by the matrices in (4.7) and (5.7)
and, respectively, identified their real and unimodular eigenvalues using a tolerance.
Note that if \gamma \xi has a minimizer or maximizer \^\omega such that \gamma \xi (\^\omega ) = 0 (or approximately
equal), then this corresponds to a (nearly) multiple eigenvalue (with multiplicity at
least two) of the pencil given by (4.7) or (5.7), as appropriate. This always happens
as any of the methods approach \Xi , and it is generally also true at computed pseu-
doroots and at \omega = 0 when the problems have symmetry. Due to rounding errors,
such eigenvalues, even when computed via a structure-preserving solver, may not be
detected as (close to) real or unimodular. If this happens, a zero of \gamma \xi will be missed,
which in turn can cause any of the algorithms to stagnate. Fortunately, a robust fix
is easy: if (\~\xi , \~\omega ) is the most recent computed pseudoroot, simply explicitly add \~\omega as
a zero of \gamma \xi ; a similar fix is also necessary for the MP. For more details, see [6, pp.
371--373], where this fix was proposed in the context of computing the pseudospectral
abscissa.

For continuous-time \Xi , there is an additional numerical difficulty when computing
the zeros of \gamma \xi when \xi \approx \Xi ub. Although these zeros must be finite, they still may be
arbitrarily far away from the origin, and so there may be large errors in the imaginary
parts of the corresponding computed real eigenvalues of M\xi  - \lambda N . Mehrmann and
Van Dooren recommended using a tolerance so that the first estimate \xi tested was
sufficiently far away from \Xi ub to help avoid such problems. However, we have observed
that even a relatively large perturbation may still be insufficient to avoid failure of
the MP. Our MP code implementing their method uses \xi 0 =\Xi ub - | \Xi ub| 10 - 4, but only
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Fig. 3. The pseudoroots (\~\xi , \~\omega ) and corresponding estimates \~\xi for \Xi computed by HEC until
convergence with \~\xi \approx \Xi .

small perturbations are done for subsequent estimates in order to obtain the desired
14-digit accuracy; of course, if \Xi \approx \Xi ub, high accuracy may not be possible with MP.
In contrast, our HEC-based method is much less susceptible to this issue, since even
if only one root of \gamma \xi is detected, it generally can still be used to start Algorithm 3.1.
Even if this root is a stationary point, a small perturbation to the left or right generally
yields a point for starting Algorithm 3.1. In general, structure-preserving eigensolvers
can be used or one can increase the allowed amount of rounding error in the imaginary
part of an eigenvalue in proportion with the magnitude of the eigenvalue.

Finally, in line 8 of Algorithm 5.1 when checking (D2), instead of always looking
at the sign of \gamma \xi (0), after the first pseudoroot has been computed we instead test if
\gamma \xi (\~\omega + 1

2\pi ) < 0, and if so set \omega 0 \leftarrow \~\omega + 1
2\pi in line 9. The reason is because if the

previous pseudoroot has \~\omega = 0, \gamma \xi (\~\omega )< 0 almost always holds due to rounding error
even though it should be exactly zero. Shifting by, e.g., 1

2\pi , ensures that (D2) is
checked at a new point; note that shifting by \pi or 2\pi would not ensure this.

6.2. Experiments. We begin with a randomly generated continuous-time ex-
ample with complex matrices (denoted Random) to illustrate (i) when our method
encounters at least two pseudoroots before converging (see Figure 3(a)) and (ii) the
aforementioned difficulty of computing zeros of \gamma \xi when \xi \approx \Xi ub (see Figure 4(a)). In
Table 1, we see that MP is about ten times slower than HEC. Although HEC required
more computations of \lambda min(\Phi \xi (e

\bfi \omega )), it only needed to solve two of the large eigenvalue
problems involving M\xi  - \lambda N . Meanwhile, MP required 27 solves with the pencils and
took 14 iterations to converge. HEC converged to \Xi at its second pseudoroot, and
Algorithm 3.1 on average took 5.0 iterations to converge to a pseudoroot.

Our second continuous-time example is the electric RLC circuit model used in [3].
We refer to Figure 3b and Table 1 for the complete performance details, but note that
HEC was over three times faster than MP for this RLC example, with both methods
converging faster and with less work than on the random example.

To compare the discrete-time methods, we used the ISS model from the SLICOT
benchmark examples.5 Since ISS is a continuous-time model, we converted it to a
minimal discrete-time one by calling c2d using a sampling time of 0.001 followed by
minreal. In Figure 3b and Table 1, we see that HEC was almost 23 times faster

5
Available at http://slicot.org/20-site/126-benchmark-examples-for-model-reduction.
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Fig. 4. On the left, MP was initialized with \xi 0 = \Xi \mathrm{u}\mathrm{b}  - | \Xi \mathrm{u}\mathrm{b}| 10 - 5. In this case, \gamma \xi 0 has two
zeros at approximately  - 41.6 and 460600.9, but the latter is not detected due to rounding errors
when computing the eigenvalues of M\xi 0  - \lambda N . Consequently, the MP erroneously terminates at \xi 0
with no digits of accuracy but does converge properly when initialized with \xi 0 = \Xi \mathrm{u}\mathrm{b}  - | \Xi \mathrm{u}\mathrm{b}| 10 - 4.
On the right, we see that eigenvalue computations used in the MP to compute the smallest roots of
\gamma \omega incur more rounding errors than our HEC-based approach. See [4, section 9.2] for an example
where half of the precision can be lost when solving root problems using these eigenvalue techniques.

Table 1
MP and HEC compared on two continuous-time (cont.) and one discrete-time (disc.) examples.

For Random, the MP was tested in two configurations: MP-fail with \xi 0 =\Xi \mathrm{u}\mathrm{b}  - | \Xi \mathrm{u}\mathrm{b}| 10 - 5 and MP
with \xi 0 = \Xi \mathrm{u}\mathrm{b}  - | \Xi \mathrm{u}\mathrm{b}| 10 - 4. The number of iterations is shown in the ``iters."" column; the average
number of iterations of Algorithm 3.1 is also given in parentheses for HEC. The number of eigenvalue
problems solved is shown under the ``\# eig (order, type)"" columns, separated into the number of
order 2n +m matrix pencils ``(2n +m, P)"" and the number of order m matrices ``(m, M)"". The
overall running time in seconds is given under ``time (sec.)"", while the computed estimates for \Xi 
are given in the rightmost column.

# eig (order, type)

Alg. iters. (2n+m, P) (m, M) time (sec.) Ξ estimate

Random (n = 200, m = 10, cont.) — [Ξlb,Ξub] = [−25.56407,−10.90965]

MP-fail 1 1 1 0.440 −10.9097612001839
MP 14 27 49 8.892 −14.4073741346323
HEC 2(5.0) 2 78 0.909 −14.4073741346323

RLC (n = 200, m = 1, cont.) — [Ξlb,Ξub] = [−32.1267, 2.022606]

MP 4 8 18 2.360 0.562483988863916
HEC 1(4.0) 2 41 0.767 0.562483988863891

ISS (n = 228, m = 3, disc.) — [Ξlb,Ξub] = [−3.007437, 3.117278× 10−6]

MP 15 29 550 8.490 −9.37320364701040× 10−5

HEC 2(4.0) 1 97 0.374 −9.37320364699013× 10−5

than MP, again due to the great disparity in the number of large generalized eigen-
value problems solved. In fact, for ISS, HEC also solved far fewer smaller standard
eigenvalue problems as well. From Table 1 and Figure 4b, we also see that MP did
not quite compute \Xi to the requested 14-digit accuracy, while HEC apparently did.
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This slight inaccuracy is the result of MP solving root problems via solving eigenvalue
problems, but such errors can be larger; see the caption of Figure 4b for more details.

While we have established that MP converges at least superlinearly, an examina-
tion of its iterates (not shown) seems to indicate that it too may converge quadratically
like HEC. However, as demonstrated by Random and ISS, where MP respectively re-
quired 14 and 15 iterations, MP can incur many iterations before it gets near its
faster convergence regime. The key problem on these examples is that MP chooses
the largest interval where \gamma \xi is negative to determine how to reduce the estimate \xi .
But this can be a particularly bad strategy if \gamma \xi has a zero very far away from the
origin, as is the case for both Random and ISS when \xi \approx \Xi ub. While one could con-
sider altering this strategy to improve performance, such an MP variant would still
be slower than HEC and also still have the aforementioned numerical issues.

7. Conclusion. By generalizing the HEC algorithm, we have presented faster
and more numerically robust algorithms to compute \Xi , the extremal real value for
which a given parametric linear time-invariant system is passive, a problem which is
linked to maximizing the passivity radius. Our new methods outperform the existing
algorithms of Mehrmann and Van Dooren, and for large-scale problems, when using
sparse eigenvalue solvers, HEC can be used by itself to efficiently estimate \Xi , which
the earlier methods cannot do. We hope that our generalization of HEC, its con-
vergence guarantees, and identification of root-max problems will also help facilitate
new fast and robust numerical methods for other quantities, for small- and large-scale
problems.

While we have established local rates of convergence for our new methods (at least
quadratic) and the earlier methods of Mehrmann and Van Dooren [22, 21] (at least
superlinear), one thing that remains unaddressed is the question of global convergence,
i.e., do these methods have unconditional convergence to \Xi ? We believe that they
do, but a potential wrinkle towards proving this is that the measure of the set of
intervals where \gamma \xi is negative (see Corollaries 4.5 and 5.5) is not always decreasing.
Consequently, computing \Xi is a fundamentally different problem than maximizing a
one-variable function using the level-set technique of Boyd and Balakrishnan [5].

Acknowledgment. The authors are grateful to the referees and the editor for
carefully reviewing the paper and providing many helpful comments.
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