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Abstract: Discrete-time systems are a common tool in the
modeling of processes in many application areas such
as digital signal processing and population dynamics.
Model reduction is an essential remedy to handle high-
fidelity systems in practice. To benefit from the perfor-
mance gained by using reduced-order models, the compu-
tation of these models itself must be done with a reason-
able use of resources. In this paper, we consider the case of
medium-scale dense discrete-time systems and compare
the performance of different numerical methods for the
implementation of two basic model reduction techniques.
Therefore, we give an overview of the considered model re-
duction methods and of the techniques used in underly-
ing implementations. The outlined methods are then com-
pared with established implementations in several numer-
ical examples in terms of accuracy and performance.

Keywords: model order reduction, discrete-time systems,
balanced truncation, LQG balanced truncation, matrix
equations

Zusammenfassung: Zeitdiskrete Systeme sind ein typi-
sches Werkzeug zur Modellierung von Prozessen in vielen
Anwendungsbereichen wie z.B. in der digitalen Signalver-
arbeitung oder in Populationsdynamiken. Modellredukti-
on ist ein wesentliches Mittel zur Handhabung von hoch-
genauen Systemen in der praktischen Anwendung. Um
aber von der zusétzlichen Performance durch die Nutzung
von reduzierten Modellen zu profitieren, ist es nétig diese

*Corresponding author: Steffen W. R. Werner, Computational
Methods in Systems and Control Theory, Max Planck Institute for
Dynamics of Complex Technical Systems, Sandtorstraie 1,

39106 Magdeburg, Germany, e-mail:
werner@mpi-magdeburg.mpg.de

Robert Jendersie, Faculty of Computer Science, Otto von Guericke
University, Universitdtsplatz 2, 39106 Magdeburg, Germany, e-mail:
robert.jendersie@ovgu.de

unter sinnvollem Einsatz von Ressourcen zu berechnen. In
diesem Beitrag betrachten wir den Fall von mittelgrof3en,
dichtbesetzten, zeitdiskreten Systemen und vergleichen
die Performance von verschiedenen, numerischen Metho-
den fiir die Implementierung zweier grundlegender Mo-
dellreduktionsverfahren. Dafiir geben wir einen Uberblick
zu den betrachteten Modellreduktionsmethoden und den
Techniken fiir die darunterliegenden Implementierungen.
Die dargestellten Methoden werden dann mit etablierten
Implementierungen in mehreren numerischen Beispielen
in Bezug auf Genauigkeit und Performance verglichen.

Schlagwdérter: Modellreduktion, zeitdiskrete Systeme, ba-
lanciertes Abschneiden, LQG balanciertes Abschneiden,
Matrixgleichungen

1 Introduction

The modeling of real-world applications and processes
commonly results in dynamical systems used for simu-
lations and controller design. Discrete-time systems use
difference equations to describe the dynamics at discrete
points in time and are used in various application areas
such as electromechanics, traffic control and general digi-
tal signal processing [23, 28], or population dynamics and
medical processes [21]. Also, in the context of system iden-
tification and data-driven modeling, discrete-time systems
are the natural tool of choice due to the use of discretized
simulation and sensor data [29, 30, 37].

In this paper, we will consider standard discrete-time
systems of the form

X1 = Ax + By, O

Vi = Cxi + Dy,

with the initial state x, = 0, and constant matrices A ¢
R™™ B e R™™, C e RP™and D € RP*™. In (1), the discrete
control signal u;, € R™ is used to influence the internal
states x, € R" to get the desired outputs y, € RP, with
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the time steps k € IN U {0}. Using the Z-transformation, the
system (1) can be rewritten in the frequency domain for a
direct input-to-output relation using its transfer function

H(z) = C(zl, - A) "B+ D,

with the complex variable z € C.

With the demand for increasing accuracy of models,
the number n of difference equations describing (1) quickly
increases, which consequently yields a high demand for
computational resources in terms of time, memory and
energy to apply (1) in simulations and controller design.
A remedy can be seen in model order reduction, which
aims for the approximation of the input-to-output behav-
ior of (1) by an easy-to-evaluate surrogate system

2k+l = A)}k + Euk, (2)

)7]( = E)A(k +Euk,

with reduced-order matrices A € R™, B ¢ R™™, C ¢ RP*"
and D € RP™ andr < n.

In practice, not only the evaluation of (2) needs to be
fast, but also the construction of the reduced-order model
(ROM) has to be done in a reasonable amount of time.
Therefore, it is necessary to choose well performing nu-
merical methods in the underlying implementation of the
model reduction approaches. In this paper, we will com-
pare different numerical methods for the implementation
of balancing-related model reduction in terms of perfor-
mance and accuracy, and outline in several numerical ex-
amples the possible performance gains in the computa-
tions of matrix equations and reduced-order models. For
a concise presentation of the results, we will introduce the
classical and LQG balanced truncation methods, and give
a short survey on the considered matrix equation solvers.
This paper is restricted to the case of medium-scale dense
systems, arising, for example, in system identification and
data-driven modeling [29, 30, 37]. In case of large-scale
sparse systems, it is possible to first use a pre-reduction
step [31], which yields a high-fidelity medium-scale dense
approximation that can be then further reduced by the ap-
proaches presented in this paper.

In Section 2, we quickly recap two balancing-related
model reduction methods for discrete-time systems, fol-
lowed by a discussion of numerical methods in Section 3
that can be used to compute the reduced-order models.
Section 4 then contains comparisons of the discussed ma-
trix equation solvers and model reduction methods with
reference implementations in MATLAB. The paper is con-
cluded in Section 5.
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2 Model reduction methods

In this section, we briefly describe two known balancing-
related model reduction methods for discrete-time sys-
tems. There are further model reduction approaches
known for discrete-time systems such as moment match-
ing [1] and modal truncation [40]. These will not be treated
in this paper, but implementations for dense systems can
make use of the same numerical methods mentioned in
Section 3.

2.1 Balanced truncation

A first model reduction approach is given by the balanced
truncation method. Originated in [32] for the continuous-
time case, the approach can be extended to discrete-time
systems; see, e. g., [1, 13, 23]. The idea is to consider the
discrete-time variants of the system’s controllability and
observability Gramians, to balance the system with respect
to these and to truncate the states, which are hard to con-
trol and observe. For asymptotically stable discrete-time
systems (spectral radius p(4) < 1), the discrete-time con-
trollability and observability Gramians P,Q € R™" are
given as the unique symmetric positive semi-definite so-
lutions of the discrete-time Lyapunov equations

APA"-P+BB =0, 3
A'QA-Q+C'c=o. (4)

The positive square roots of the eigenvalues of PQ are the
Hankel singular values, which quantify the influence of the
corresponding states to the input-to-output behavior of the
system, i. e., for a good approximation we truncate states
that correspond to small Hankel singular values. In fact,
the balanced truncation method provides an a priori error
bound in the h, -norm, which only relies on the truncated
Hankel singular values

n
IH-Hly, <2 ) 0.
k=r+1

Performing a state-space transformation of the system
to balance the Gramians allows to assign states to Han-
kel singular values and, consequently, to truncate the
states corresponding to the smallest Hankel singular val-
ues. This whole procedure is summarized in Algorithm 1
using the square root method for balancing and trunca-
tion in a single step. See [1] for a more detailed derivation
of the balanced truncation method for discrete-time sys-
tems.
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Algorithm 1: Balanced truncation square root
method.

Algorithm 2: LQG balanced truncation square root
method.

Input: System matrices A, B, C, D from (1).
Output: ROM matrices A4, B, C, D for (2).

1 Solve (3) and (4) for the Cholesky factorizations
P=RR"and Q=LL".

2 Compute the singular value decomposition

VI]

LTR:[U1 Uz][Zl 0] T
£}

with X, containing the r largest Hankel singular
values and U, V; partitioned accordingly.
3 Compute the truncation matrices

_1
2
1 »

[N

T=RV,S?, W=LUSZ,".

4 Compute the reduced-order matrices as
B=W'B,

A=W'AT, C=CT, D=D.

Note that not all system are asymptotically stable
in practice. Unstable systems can occur throughout the
different application areas [23, 21, 30], or can even be
modeled on purpose to improve the performance of con-
structed controllers. Due to their unstable behavior, these
systems are more difficult to handle in simulations and
controller design, as well as in model reduction. However,
the balanced truncation method can also be applied to un-
stable discrete-time systems by first performing an addi-
tive decomposition of the system, to decouple the stable
and unstable parts (see Section 3.1). Then, Algorithm 1 is
only used on the stable system part and the results are cou-
pled together with the unstable system part for the final
reduced-order model.

The inverse balanced truncation, Hankel-norm approx-
imation or the singular perturbation approximation are fur-
ther model reduction methods for discrete-time systems
known in the literature; see, e. g., [13, 23]. Those will be
omitted here since they are essentially refinements of the
balanced truncation method from this section.

2.2 LQG balanced truncation

The linear-quadratic Gaussian (LQG) balanced truncation
method belongs to the class of balancing-related model re-
duction methods, i.e., it follows the theory of balanced
truncation but replaces the system Gramians by other sym-

Input: System matrices A, B, C, D from (1).
Output: ROM matrices A4, B, C, D for (2).

1 Solve (5) and (6) for the Cholesky factorizations
Piog = RR"and Q¢ = LL".

2 Follow Steps 2-4 of Algorithm 1.

metric positive semi-definite matrices. The method was
proposed in [27] for the continuous-time case as natural ex-
tension of balanced truncation to unstable systems. Note
that LQG balanced truncation does not need an additive
decomposition of the system to treat the unstable part.
The discrete-time case was then considered in [26, 33]. In
this approach, the Gramians in (3) and (4) are replaced
by the unique stabilizing solutions P and Qp g of the
discrete-time algebraic filter and regulator Riccati equa-
tions

AP A" - PG + BB

— (APy6C" + BD")(I, + DD + CP o CH) ™

x (AP ocC" +BD') = 0, (5)
ATQuogA - Quog + C'C

~(B'QuqgA + D'0)'(I,, + D'D + B'Q o6B) ™"

x (B'Q oA +D'C) = 0. (6)

The rest of the method then reads like the classical bal-
anced truncation approach. The method is wrapped up in
Algorithm 2.

3 Numerical methods

The main computational work for both introduced (and
further) model reduction methods relies on the solution of
matrix equations and the decomposition of transfer func-
tions. In the following, we describe numerical methods
to solve these problems in the dense system case. The re-
striction to the dense case enables the use of transfor-
mations of the describing matrices. This is not possible
in the sparse system case as it would destroy the spar-
sity structure. While it is possible to compute a dense pre-
reduction [31] and afterwards apply the methods described
here, there are also computational approaches to directly
handle sparse systems using different matrix operations;
see, e. g., [15] for methods for sparse continuous-time sys-
tems.
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3.1 Additive decomposition of transfer
functions

We will first discuss the additive decomposition of transfer
functions in the fashion of

H(z) = H,(2) + H,(2). @)

This can be used, for example, for a stable-unstable de-
composition of (1) such that model reduction methods that
can only be used on stable systems can still be applied
(e. g., Section 2.1). Such a decomposition (7) can simply be
achieved by block diagonalizing the system matrix 4, i. e.,
we need to find a transformation T € R™" such that

(8)

TIAT = [Al 0]

0 A

where A; € R™*™ contains a (desired) part of the eigenval-
ues of A and A, € R®"™*"m) the rest. Also applying T~}
and T to the input and output matrices

T_le[? and CT=[C, G,

2

yields the additive decomposition (7).

The most intuitive way to directly achieve (8) would be
to do an eigenvalue decomposition of A and choose T as
eigenvector basis. In that case, A; and A, are nearly diago-
nal (up to Jordan blocks). A disadvantage of this approach
is that computing a full eigendecomposition can be fairly
expensive and also the eigenvector basis T can easily be-
come ill conditioned; see, e. g., [22]. This can be avoided by
allowing A; and A, to be non-diagonal matrices.

A different way to compute (8) follows a two-step pro-
cedure. First, an orthogonal basis V € R™" is computed to
transform A into block triangular shape, e. g., by the Schur
decomposition or invariant subspaces [3, 7, 22, 36], such
that

A Ay

VAV = [
0 4,

. ©)

In the second step, the matrix Ay € R peeds to be
eliminated by another transformation W ¢ R™". This is
generally done by solving the continuous-time Sylvester
equation

A1X - XA2 + AX = 0, (10)

for X € R™*("™™) {0 set the desired transformation to be

R R
0 In—n1 In—”1
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Since in the discrete-time case the eigenvalues are consid-
ered with respect to the unit circle instead of the imagi-
nary axis, the matrices A; and A, are in general not Hur-
witz, which can lead to problems with iterative Sylvester
equation solvers, which rely on that property, e. g., in the
sign function iteration [8]. Instead, the scaled discrete-
time Sylvester equation (Stein equation) can be solved.
Choose an a > O that separates the two spectra such that
A, contains all the eigenvalues with absolute value larger
than a and A, the eigenvalues with absolute value smaller
than a. Then, instead of solving (10), X is given as the so-
lution of

(ad;") X (iAz) ~X-A'Ax = 0. (11)
With the scaling by a, the two coefficient matrices are
stable in the discrete-time sense since p (a4;') < 1and
p (iAz) < 1. By the separation of the spectra, A; has only
eigenvalues that are larger in absolute value than a and
therefore, Al’1 is guaranteed to exist. A typical choice for
the eigenvalue bound for a stable-anti-stable decomposi-
tion of the system is @ = 1 or, in case of eigenvalues on
the unit circle, to make a a bit smaller than 1. The whole
procedure is summarized in Algorithm 3.

In principle, the method in Algorithm 3 can be used to
implement a modal truncation method in the discrete-time
setting based on an eigenvalue decomposition similar to
the method from the continuous-time case [19]. We tested
this approach on the examples in Section 4 by selecting
either the eigenvalues with smallest or largest absolute
value, which did not result in any reasonable reduced-
order models. An implementation of modal truncation for
testing can be found in [16]. It is mentioned in [40] that a
suitable selection of eigenvalues may yield better reduc-
tion results. However, this will not be part of this paper.

3.2 Lyapunov equation solvers

In both the additive decomposition and balanced trunca-
tion method, linear matrix equations need to be solved,
namely discrete-time Lyapunov and Sylvester equations.
For brevity, we will only mention basic ideas for the solu-
tion of Lyapunov equations of the form

AXA"-X+G =0, (12)
with p(A) < 1 and general symmetric right-hand side G =
G' € R™", but note that similar ideas and algorithms exist
for discrete-time Sylvester equations [38].
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Algorithm 3: Additive decomposition of discrete-time transfer functions.

Input: System matrices A, B, C, D from (1), eigenvalue bound a > 0.
Output: Decomposed system matrices A;, B, C; and A,, B,, C,, D, for (7).

1 Compute an orthogonal matrix V = [V,

V5] such that (9) holds, with accordingly partitioned V; and V,, and

with A; containing the eigenvalues with absolute value larger than a and A, the eigenvalues smaller than a.

2 Solve (11) for X e R™™),

3 Compute the subsystem matrices with eigenvalues larger than a

A, =V]AV,, B,=(V]-XV;)B, C, =CV,

and the subsystem matrices with eigenvalues smaller than a

A, =V3AV,, By=V;B, C,=C(V;X+V,), D,=D.

3.2.1 Smith iteration methods

First, we consider the Smith iteration methods. Those ap-
proaches are all based on the observation that the solution
of (12) is given as matrix series

(o)
X=Yy AGan~.

k=0
This directly yields the original Smith iteration [39], as the
iterates are set to be

Xis1 = G+ AX AT, with X, = G, (13)

such that X; — X for k — oco. The iteration can then be
stopped if the residual of (12) becomes small enough or
the iterates do not change anymore. A strong disadvantage
of (13) is its usually very slow convergence, which was at-
tempted to be solved in different extensions.

The Smith(¢) method (or cyclic Smith method) was in-
troduced in [35]. This method takes inspiration from the
cyclic approach of the alternating directions implicit (ADI)
method [41] to speed up the convergence of the Smith iter-
ation. Choose an ¢ € IN and set

-1 )
Ay=A" and G,=Y AGA". (14)
j=0
Then, the Smith(¢) iteration is given by
Xis1 = Gp + A X A, withX, = G,.  (15)

It can easily be seen that (15) resembles (13) for £ = 1.
The iteration in (15) is independent of the chosen ¢ and is
known to improve in convergence behavior for increasing
¢; see [42]. This leads to an improved runtime of the algo-
rithm as long as the costs for the pre-computation of (14)

do not outweigh the actual improvement of the conver-
gence speed.

The squared Smith method, also known as Smith accel-
erative iteration, yields a significantly reduced number of
iteration steps by using updates on the system matrix A in
every iteration step. The iteration reads as

.
Kier1 = Xie + A Xi A
Aps1 = AAyps

With XO = G,

(16)
with 4, = A.

The iteration (16) can be stopped for AkaAI( becoming
small enough as this update would not change the solu-
tion anymore. Further extensions in the fashion of (16)
are known as the r-Smith iterations from [42], which
use r-order powers for the update of A;. Those methods
yield an even faster convergence than the squared Smith
method but usually do not pay off due to the significantly
increasing computational costs.

In the context of balanced truncation, further im-
provements of the squared Smith iteration are possible.
Taking a closer look at (3) and (4), it turns out that the com-
putations for updating the A; matrix in (16) are in fact the
same for both Lyapunov equations. This can be exploited
in a dual-type squared Smith iteration that solves (3)
and (4) at the same time but only computes the updates for
A, ones per iteration step. This approach saves one matrix-
matrix product per iteration step.

In Algorithm 1, only the Cholesky factors of the so-
lutions to the Lyapunov equations are needed. Also ob-
serving that those factors are usually of small rank due
to the low-rank right-hand sides of the Lyapunov equa-
tions, it makes sense to directly compute those low-rank
Cholesky factors instead of the full solution followed by a
Cholesky-like decomposition. The basic idea is to enforce
the same factorization in the solution as given by the right-
hand side, e. g., X; = RkR}( for (3). While this idea can be
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used in all the Smith-type methods from above, we only
consider the squared Smith iteration (16) for brevity. Set-
ting X, = RORB = BB' gives the iteration

T T T T
Ryi1Risq = RiRy + ARy R A
which yields the iteration on the solution factor to be

Ry = [Re AxRy]. a7

The number of columns of the solution factor in (17) dou-
bles in every step. Performing a column compression of
Ry.1, €. 8., via a rank-revealing QR decomposition or sin-
gular value decomposition, reduces the potential memory
costs as well as the operations that need to be performed
in the next iteration step [14]. Combining the factorized ap-
proach with the dual squared Smith iteration solver is the
recommended strategy for an efficient implementation of
the balanced truncation method in [13].

3.2.2 Sign function iteration

The sign function iteration method has been shown
to be an efficient numerical method for solving stable
continuous-time Lyapunov equations

AX+XA"+G =0; (18)

see, e. g., [10]. To compute the solution of (12) with this
method, the discrete-time Lyapunov equation needs to be
transformed into (18), e. g., by setting

A=A+I) A-1),
G=2A+L)'6A+1)T;

see, e.g., [38]. Then, the solutions of (12) and (18) are
the same. For discrete-time stable A, the inverse (A4 +
I,)"! always exists and the eigenvalues of A lie in the
left open half-plane. Similarly to the Smith iteration, one
can construct dual and factorized sign function solvers
to directly compute low-rank factors of the solutions to
the dual continuous-time Lyapunov equations [10]. Using
these methods for the discrete-time Gramian factors in (3)
and (4) also requires the transformation of the right-hand
side factors, e. g., in case of (3) to use

B=V2A+I)"'B.

3.2.3 Direct solvers

A well-known approach to solve Lyapunov equations di-
rectly is the Bartels-Steward algorithm [6], which utilizes
the Schur decomposition of the system matrix A. The
method has been adapted for the discrete-time case in [5]
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and has been modified to compute only the Cholesky fac-
tor of the solution in Hammarling’s method [24]. Both
variants for discrete-time Lyapunov equations are imple-
mented in the SLICOT library [12] and are available in
MATLAB by the Control System Toolbox™ as dlyap and
dlyapchol.

3.3 Riccati equation solvers

The LQGBT method from Section 2.2 requires the solution
of discrete-time algebraic Riccati equations of the form

A'XA-X+C'C-AXB(, -B'XB)'B'’XA=0. (19

Itis assumed that (19) has a stabilizing solution X. Here, we
will briefly state the main ideas of different solution tech-
niques for (19).

3.3.1 Structure-preserving doubling algorithm

An iterative method to solve (dual) discrete-time Riccati
equations (19) is the structure-preserving doubling algo-
rithm (SDA), described in [18]. Setting G, = BB, Q = c'c
and A, = A, the method follows the iteration scheme

Grsr = Gy + A, + Gy Q) ' G Ay,

Qat = Qi + A QI + G Q) ™ A

Apar = ATy + G Q) Ay
For k — oo, the matrix Q; converges to the stabilizing solu-
tion of (19), while G; converges to the stabilizing solution
of the dual Riccati equation. A suitable stopping criteria
for the SDA method, besides the relative change of the so-

lutions, is to check if | A; || is small enough such that further
updates will not change the solutions anymore.

3.3.2 Newton method

A different technique for solving (19) is given by Newton’s
method. First proposed in [25], the idea is to apply a New-
ton scheme for finding the zeros of (19) by refining a stabi-
lizing starting guess. This mainly involves the solution of
discrete-time Lyapunov equations
A X A - X, + Ky C =

KAk — k+I<kI<k+CC—O,

for X; in each iteration step, where
Ak = A - BI(k,
K,y = (I, + B X, B)'B'X, A.
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Then for k — oo, X; converges to the stabilizing solution
X provided that the initial K, is chosen such that 4, =
A-BK, is a discrete-time stable matrix [25]. Such a stabiliz-
ing initial K, can, e. g., be computed using a partial stabi-
lization technique [9]. In cases when A itself is already sta-
ble, a simple choice is K, = 0. However, the choice of the
initial guess has in general a huge impact on the conver-
gence behavior as the algorithm will likely need more steps
for an initial guess that is far away from the final solution.

3.3.3 Sign function iteration

As in case of Lyapunov equations, there are efficient iter-
ative solution methods for continuous-time Riccati equa-
tions. In particular with the structure given in model or-
der reduction problems, namely that Band C" have a much
smaller number of columns than rows, the algorithm in [11]
is promising. Therefore, the discrete-time Riccati equa-
tion (19) needs to be transformed into continuous-time
form. Such a transformation is suggested in [4]. Assume
that A has no eigenvalues equal to -1 and set G = BBT,
Q=C'C,and F = I, + A" + QU, + A)"'G, then with the
following matrices

1
I

I,-2F"
G=21,+A)"'GF,
Q=2F"QU, +4)7,
the stabilizing solution of (19) is also the stabilizing solu-

tion of the continuous-time algebraic Riccati equation

AX+XA-XGX+Q=0. (20)

Note that G and Q are still symmetric positive semi-definite
and can be rewritten into low-rank factors G = BB" and
Q=C"C, e.g., by using an eigenvalue decomposition.

3.3.4 Direct solvers

A direct solver for discrete-time algebraic Riccati equations
based on generalized eigenvalue problems was developed
in [34] and described in [2]. It is available in MATLAB’s Con-
trol System Toolbox as dare.

4 Numerical experiments

The experiments reported here have been executed on a
machine with 2 Intel(R) Xeon(R) Silver 4110 CPU proces-
sors running at 2.10 GHz and equipped with 192 GB total
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main memory. The computer is run on CentOS Linux re-
lease 7.5.1804 (Core) with MATLAB 9.4.0.813654 (R2018a).
For the comparisons, implementations from the Control
System Toolbox and Robust Control Toolbox™ are used.
The sign function-based matrix equation solvers were
taken from the MORLAB toolbox [16]. There, also the
squared Smith iteration, SDA and Newton methods from
this comparison were implemented afterwards. Note that
all non-built-in MATLAB functions used in the compar-
isons are directly written in plain MATLAB. The timings
reported in this paper were obtained by using the tic,
toc commands. The functions are first run up to 4 times
to make use of the just-in-time compiler of MATLAB and
then the average execution time of up to 16 further runs is
taken. In the following sections, relative execution times
are given to illustrate the differences in the performance
of the methods. However, the actual computation times of
the experiments are available at:

doi:10.5281/zenodo0.4745518

In the following, the solvers for matrix equations and

model reduction methods are compared in several bench-

mark examples, listed below:

adre The A matrix was obtained from [21] modeling a
black bear population in the USA. A single unsta-
ble eigenvalue was extracted beforehand using Algo-
rithm 3 and the input and output matrices were gener-
ated randomly with a uniform distribution in [0, 1].

heateq From the SLICOT benchmark collection [17], this
example models the heat transfer in a 1D rod.

pde The A matrix was taken from the PDE90O example
in the Harwell-Boing Collection [20] and additionally
scaled by m. Input and output matrices were gener-
ated randomly with a uniform distribution in [0, 1].

rand= These are several random models with state-space
dimension * generated with the drss function from
the Control System Toolbox. The system matrix A was
afterwards scaled by 0.99 to ensure discrete-time sta-
bility.

In summary, all examples are asymptotically stable, and
the dimensions are given in Table 1.

4.1 Lyapunov equation solvers

As a first insight on the different iterative methods
for discrete-time Lyapunov equations discussed in Sec-
tion 3.2, we consider solving (only) the discrete-time
Lyapunov equation (3) by the standard Smith method
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Figure 1: Normalized execution times of different solvers for the dual Lyapunov equations.

Table 1: System dimensions of the benchmark examples.

Model State-space (n) Input(m) Output (p)
adre 68 1 1
heateq 200 1 1
pde 900 1 1
rand512 512 5 4
rand1024 1024 2 4
rand2048 2048 3 3
rand4096 4096 1 2

(smith)), the Smith(¢) method with ¢ = 4,8 (smith(4),
smith(8)), the squared Smith iteration (2-smith) and,
for comparison, by the sign function iteration method
(sign) applied to the transformed continuous-time Lya-
punov equation (18). The results in terms of iteration steps
that were needed to reach a reasonable residual can be
found in Table 2. We can see the nice breakdown of the
iteration numbers comparing smith with smith(4) and
smith(8). But it turns out that except in the pde example,
where the Smith iteration itself converges rapidly, they are
not comparable with the squared Smith and sign function
iterations. Also, note the slightly worse residuals for sign
due to the additional transformation that is performed in
the beginning.

In the context of model reduction, the solutions to
both Lyapunov equations (3) and (4) are needed in fac-
torized form. Considering the results in Table 2, we de-
cided to take only 2-smith and sign into the next com-
parison. Both methods can be re-formulated as factorized
and dual solvers, which we will denote by 2-smith(fac),
2-smith(fac,dl) for the factorized and dual factorized
Smith iteration, and sign(fac), sign(fac,dl) for the fac-
torized and dual factorized sign function iteration. Those
methods are compared with the Bartels-Steward algorithm
in dlyap and the Hammarling method in dlyapchol. In
Figure 1, the normalized execution times of the different

methods are shown. We see that for small systems, the
equation solvers perform all very similarly. For increasing
system sizes, the factorized versions of sign function and
Smith iteration outperform their unfactorized versions as
well as the direct solvers. The values plotted in Figure 1
can also be seen as the inverses of the resulting speed-
up factors, e. g., looking at rand4096, the smith(fac,dl)
performs fastest with the normalized execution time of
0.0052, which is around 190 times faster than dlyap.

4.2 Riccati equation solvers

We will do a similar comparison as in the previous section
for the solution of the dual Riccati equations (5) and (6).
We compare the SDA approach (sda), the Newton method
(newton) with the squared Smith iteration as inner Lya-
punov equation solver, the sign function iteration (sign)
with the transformed Riccati equations (20) and the direct
approach using the dare function from MATLAB. As the re-
sulting residuals behave similarly for all methods, they are
not reported here for brevity. Figure 2 shows the normal-
ized execution times of the tested Riccati equation solvers.
In general, the direct approach is the slowest for all ex-
amples. Except for the two smallest examples, newton is
slower than the SDA and sign function iteration, but still
gives an immense speed-up for increasing system dimen-
sions compared to the direct approach. Also, the sign func-
tion method keeps improving for increasing dimensions
and is even slightly faster than sda in the largest example,
where both methods yield a speed-up factor of around 420
compared to the direct approach.

4.3 Model reduction methods

Lastly, we will compare different implementations of the
two model reduction approaches from Section 2. For the
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Table 2: Iteration steps and residuals (in brackets) of Smith iteration methods and sign function iteration.
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smith smith(4) smith(8) 2-smith sign
adre 106 (1.49e-13) 25(1.49e-13) 12 (6.16e-14) 6(3.95e-14) 8(1.08e-12)
heateq 2737 (3.13e-13) 683(3.12e-13) 341(3.06e-13) 11(2.02e-16) 9(4.31e-16)
pde 45(3.62e-13) 10(1.87e-13) 4(1.88e-13) 5(3.25e-14) 6(2.57e-13)
rand512 1475(1.63e-12) 385(9.57e-13) 196(8.87e-13) 10(8.90e-13) 11(1.13e-10)
rand1024 1443 (2.41e-12) 377(1.49e-12) 192(1.35e-12) 10(1.40e-12) 12(2.73e-10)
rand2048 1450 (6.14e-12) 378(3.58e-12) 193(3.21e-12) 10(3.36e-12) 12(7.04e-10)
rand4096 1443 (8.01e-12) 377 (4.76e-12) 192 (4.36e-12) 10(4.52e-12) 12(1.75e-09)
1g 5
0.1F E
0.01 E
0.001
adre heateq rand512 rand1024 rand2048 rand4096
I sda |I newton I sign In dare
Figure 2: Normalized execution times of different solvers for the dual Riccati equations.
1 E
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Figure 3: Normalized execution times of different model reduction methods / implementations.

balanced truncation method (bt), we will use the squared
Smith iteration in dual factorized form and for the LQG
balanced truncation (1gqgbt), we will use the SDA ap-
proach. For comparison, we use the balancmr and balred
functions from the Robust Control and Control System
Toolboxes. Both functions provide the balanced trunca-
tion approach for the discrete-time case and use imple-
mentations of the direct matrix equation solvers from
Section 3.2.3. In all three implementations of the bal-
anced truncation method, a stable-unstable additive de-
composition is performed (see Section 3.1) but has no
further effect since all example systems are asymptoti-
cally stable. In Figure 3, the normalized execution times

of all different test implementations can be seen. Over-
all, the plain MATLAB implementations of bt and 1ggbt
outperform the MATLAB built-in functions. Of particu-
lar interest is the performance of 1ggbt, as Riccati equa-
tions need to be solved here. Riccati equations are in
general computationally more expensive to solve than
Lyapunov equations, since the nonlinearity of the equa-
tion needs to be handled, which either results in iter-
ative solutions of Lyapunov equations or the computa-
tion of linear spectral problems of double size; cf. Sec-
tion 3.

For additional insight, we show in Figures 4 and 5
the relative frequency response errors of the computed
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Figure 4: Relative frequency response error for the adre example
with reduced order r = 24.

5 107 SN e |
E .' O \";]’ " \“
= 4 Y \
= / )}
~ 1072 = -
1 ! ! ! ! ! !
0 0.5 1 1.5 2 2.5 3
Frequency w (rad/s)
’ —e— bt =-4=- 1lggbt :-m- balred balancmr

Figure 5: Relative frequency response error for the rand1024 exam-
ple with reduced order r = 100.

reduced-order models for two selected examples from the
benchmark collection. The relative error therein was com-
puted by

IH(e') - H(e')l,
IH ()],

>

with w € [0, 7] rad/s. The two plots illustrate that we can
produce good and comparable reduced-order approxima-
tions while achieving an immense speed-up in computa-
tions by using appropriate numerical methods in the un-
derlying implementations. While in Figure 5 the balanced
truncation methods with Lyapunov equation look identi-
cal, the results look quite different in Figure 4. We assume
that this deviation arises from the bad conditioning of the
system matrix A in this example. The different underly-
ing implementations result in different numerical errors
during the computations, which become visible in this ex-
ample due to the bad conditioning such that balancmr is
more accurate in the beginning of the frequency interval,
bt with our implementation in the middle and balred at
the end of the interval.

DE GRUYTER OLDENBOURG

5 Conclusions

In this paper, we presented a numerical comparison of dif-
ferent implementations of two balancing-related model re-
duction approaches and different matrix equation solvers
for medium-scale dense discrete-time systems. We gave
an overview of the theory of Lyapunov and LQG balanced
truncation and summarized ideas from the literature for
the solution of dense Lyapunov and Riccati equations
needed in the model reduction methods. We have shown
in numerical examples that the iterative matrix equation
solvers are comparably fast to the direct methods for small-
scale systems (< 500), but yield a significant performance
improvement for increasing system order. In case of the
model reduction methods, the iteration-based implemen-
tations turned out to be faster than the MATLAB built-in
functions even for smaller system sizes, and also showed
tremendous speed-ups for the systems of larger order.

We considered only the standard model reduction
case of systems with significantly less inputs and outputs
than internal states. While the iterative methods can still
be efficiently used for systems with many inputs and out-
puts, it is recommended to use non-factorized versions of
the approaches to avoid the performance loss by repeated
truncations of the right-hand side iteration matrices.

Funding: The work of Steffen W. R. Werner was supported
by the German Research Foundation (DFG) Research
Training Group 2297 “MathCoRe”, Magdeburg (Grant No.
314838170).
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