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—— Abstract

We study the problem #EDGESUB(®) of counting k-edge subgraphs satisfying a given graph
property ® in a large host graph GG. Building upon the breakthrough result of Curticapean, Dell
and Marx (STOC 17), we express the number of such subgraphs as a finite linear combination of
graph homomorphism counts and derive the complexity of computing this number by studying its
coefficients.

Our approach relies on novel constructions of low-degree Cayley graph expanders of p-groups,
which might be of independent interest. The properties of those expanders allow us to analyse the
coefficients in the aforementioned linear combinations over the field F, which gives us significantly
more control over the cancellation behaviour of the coefficients. Our main result is an exhaustive
and fine-grained complexity classification of #EDGESUB(®) for minor-closed properties ®, closing
the missing gap in previous work by Roth, Schmitt and Wellnitz (ICALP 21).

Additionally, we observe that our methods also apply to modular counting. Among others, we
obtain novel intractability results for the problems of counting k-forests and matroid bases modulo a
prime p. Furthermore, from an algorithmic point of view, we construct algorithms for the problems
of counting k-paths and k-cycles modulo 2 that outperform the best known algorithms for their
non-modular counterparts.

In the course of our investigations we also provide an exhaustive parameterized complexity
classification for the problem of counting graph homomorphisms modulo a prime p.
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Extended Abstract

In this work we study the problem of counting small patterns in large host graphs. With
applications in a diverse set of disciplines such as constraint satisfaction problems [13, 7],
database theory [15, 8] and network science [34, 1, 41], it is unsurprising that this problem
has received significant attention from the viewpoint of parameterized and fine-grained
complexity theory in recent years [2, 17, 33, 9, 12, 11, 5, 37, 38, 28, 39].

We continue this line of work and study the problem of counting k-edge subgraphs that
satisfy a graph property ®: For any fixed ®, the problem #EDGESUB(®) asks, on input
a graph G and a positive integer k, to compute the number of (not necessarily induced)
subgraphs with k edges in G that satisfy ®. In particular, we focus on instances in which &
is significantly smaller than G. Formally, we choose k to be the parameter of the problem
and ask for which ® there is a function f such that #EDGESUB(®) can be solved in time
(k) -|[V(@)|°M); in this case we call the problem fized-parameter tractable with respect to
the parameter k.

If #EDGESUB(®) is not fixed-parameter tractable, it is desirable to improve the exponent
of [V(G)| in the running time as far as possible. For example, the best known algorithm
for counting k-edge subgraphs [11] can be used to solve #EDGESUB(®) in time f(k) -
|V (G)|0-174k+o(k) [39]. Additionally, it was shown in recent work that #EDGESUB(®) is
fixed-parameter tractable whenever ® has bounded matching number, that is, whenever there
is a constant upper bound on the size of the largest matching of any graph satisfying ® [39].
If, for each k, the property ® is true for only one graph on k edges, then the previous
fixed-parameter tractability result is best possible: In this case, #EDGESUB(®) becomes an
instance of the counting version of the parameterized subgraph isomorphism problem which
has been fully classified by Curticapean and Marx [12].

However, for arbitrary ®, much less is known about the complexity of #EDGESUB(®).
In [39], two of the authors, together with Wellnitz, presented first results for more general
properties such as connectivity, Eulerianity and, in particular, an almost exhaustive classific-
ation for minor-closed properties @, leaving (partially) open the case of forbidden minors of
degree at most 2. In this work, we close this gap and provide a full dichotomy result:

» Theorem 1. Let ® be a minor-closed graph property. If ® is trivially true or of
bounded matching number, then #EDGESUB(®) is fized-parameter tractable. Otherwise,
#EDGESUB(®) is #W([1]-hard and, assuming the Exponential Time Hypothesis, it cannot be
solved in time

F() - |G/ o5k
for any function f.

Here, #W[1] is the parameterized counting analogue of NP; a formal definition is provided
in the full version. Particular cases for which we obtain novel intractability results are given
by the following (minor-closed) properties; the formal intractability results are stated and
proved in the full version as well.

®(H) =1if H is a forest.

®(H) =1if H is a linear forest.

®(H) =1 if the tree-depth of H is bounded by a constant.

®(H) =1 if the Colin de Verdiére Invariant of H is bounded by a constant.
Additionally, we investigate the property of being bipartite. For this case, we present not
only a novel fine-grained lower bound, but also a #W/[1]-hardness result, which was not
known before.
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» Theorem 2. Let ® be the property of being bipartite. Then #EDGESUB(®) is #W[1]-hard
and, assuming the Exponential Time Hypothesis, it cannot be solved in time

(k) - |G/ s
for any function f.

Our hardness results crucially rely on a novel construction of families of low-degree Cayley
graph expanders of p-groups, which might be of independent interest. We will present the
new Cayley graph expanders in the following theorem; their construction, as well as their role
in the hardness proofs for #EDGESUB(®) will be elaborated on in the technical discussion.

» Theorem 3. Let p > 3 be a prime number, and d > 2 be an integer. We assume that
d=(p+3)/2ifp=>T7.

Then there is an explicit construction of a sequence of finite p-groups I'; of orders that
tend to infinity, with symmetric generating sets S; of cardinality 2d such that the Cayley
graphs C(I';,S;) form a family of expanders (of fized valency 2d on a set of vertices of p-power
orders and with vertex transitive automorphism groups).

Our methods do not only apply to exact counting, but also to modular pattern counting
problems: Here the goal is to compute the number of occurrences of the pattern modulo
a fixed prime p. In classical complexity theory, the study of modular counting problems
has a rich history, such as the algorithm for computing the permanent modulo 2¢ [44],
the so-called accidental algorithms [45], Toda’s Theorem [43], classifications for modular
#CSPs and Holants [24, 25] and the line of research on the modular homomorphism counting
problem [16, 20, 21, 22, 26, 18, 27|, only to name a few.

While results are scarcer, the parameterized complexity of modular (pattern) counting
problems has also been studied in recent years [4, 14, 10], and we contribute to this line
of research as follows: First, we provide a novel intractability result for modular counting
of forests and matroid bases. We write #,FORESTS for the problem of, given a graph G
and a positive integer k, computing the number of forests with k edges in G, modulo p.
Similarly, we write #,BASES for the problem of, given a linear matroid M of rank £ in
matrix representation, computing the number of bases of M, modulo p; the parameter of
both problems is given by k.

» Theorem 4. For each prime p > 3, the problems #,FORESTS and #,BASES are Mod,W[1]-
hard and, assuming the randomised FExponential Time Hypothesis, cannot be solved in time

f(k) - |Glo/ o8 k) (resp. f(k) - |M|°F/198F) ) for any function f.

Here, Mod,W[1] is the parameterized modular counting version of NP. Roughly speaking,
a problem is Mod,W(1] if it is at least as hard as counting k-cliques modulo p; we give
a formal definition in the full version. Additionally, we provide an algorithmic result for
counting k-paths and k-cycles modulo 2:

» Theorem 5. The problems of counting k-paths and k-cycles in a graph G modulo 2 can be
solved in time KO) .|V (G)|F/6+00),
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We emphasize that the algorithm in the previous theorem is faster than the best known
algorithms for (non-modular) counting of k-cycles/k-paths, which run in time k9®) .
|V(G)|*3k/T5+0(k) [11]. Furthermore, it follows from a result by Curticapean, Dell and
Husfeldt [10] that counting k-paths modulo 2 is ModsW([1]-hard, implying that we cannot
hope for an algorithm for k-paths running in time f(k) - [V(G)|°M).
parameterized complexity of counting homomorphisms modulo p. In the classical setting,
the related problem of modular counting homomorphisms with right-hand side restrictions
received much attention: For any fixed graph H, the problem #,HomsTo(H)! asks, on
input a graph G, to compute the number of homomorphisms from G to H modulo p. Despite
significant effort [16, 20, 21, 22, 26, 18, 27], the problem has not been fully classified for each
graph H.?

In this work, we consider the related left-hand side version of the problem. Adapting
the definitions of Grohe, Dalmau and Jonsson [23, 13] for detecting and exact counting of
homomorphisms, we define a problem #,HoM(#) for each class of graphs H and for each
prime p: This problem expects as input a graph H € H and an arbitrary graph G, and the

Finally, we study the

goal is to compute the number of homomorphisms from H to G, modulo p. The problem is
parameterized by the size of H, that is, we assume H to be significantly smaller than G.

It is known that the decision version HOM(H) is fixed-parameter tractable (even solvable
in polynomial time) if the treewidth of the cores of H is bounded by a constant, and
WI[1]-hard otherwise [23]. Similarly, the (exact) counting version #HoM(#) is known to be
fixed-parameter tractable (even solvable in polynomial time) if the treewidth of the graphs
of H is bounded by a constant, and #W/[1]-hard otherwise [13].

In case of counting modulo p, we establish an exhaustive classification for #,HoM(H)
along what we call the p-reduced quotients of the graphs in H. Let H be a graph and let
« be an automorphism of H of order p. Then we define the quotient graph H/a to have a
vertex for each orbit of the action of a on V(H), and two vertices corresponding to orbits Oy
and O, are made adjacent if and only if there are vertices v1 € O; and vy € Oy such that
{v1,v2} € E(H). This induces a finite (possibly trivial) sequence H = Hj, ..., H; where for
i=1,...,0—1 weset Hiy1 = H;/«a; for some automorphism «; of order p of H; and where
the last graph H, does not have an automorphism of order p. Then H := H, is called the
p-reduced quotient of H.? We will see that H} is well-defined by proving that each of the
aforementioned sequences yields the same graph, up to isomorphism.

Let us now state our classification for #,HoM(#). In what follows, given a class H, we
write H, for the p-reduced quotients without self-loops of graphs in H. We first present the
algorithmic part:

» Theorem 6. Let p > 2 be a prime and let H be a class of graphs. The problem #,HoM(H)
can be solved in time

exp(poly(|V (H)|)) - [V (G)[H)+00)
In particular, #,HoM(H) is fized-parameter tractable if the treewidth of 1 is bounded.

Here tw denotes treewidth.

L For p = 2, the problem is usually denoted by @HoMSTO(H).

2 However, very recently a full classification was announced by Bulatov and Kazeminia [6].

3 We remark that H, is related to the notion of involution-free reductions used in the analysis of the
right-hand side version of the problem [16, 22]. However, the difference is that the p-reduced quotient
identifies non-fixed points of an order-p automorphism by including a vertex for each orbit, while the
involution-free reduction just deletes all non-fixed points.
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» Remark 7. Using the quasi-polynomial time algorithm for GI due to Babai [3], we will also
show how the algorithm in the previous theorem can be improved to run in quasi-polynomial
time in the input length |V(H)| + |V (G)|. Additionally, proving that the construction of the
p-reduced quotient is at least as hard as the graph automorphism problem, we observe that
a polynomial-time algorithm is unlikely, unless the construction of the p-reduced quotients
can be avoided.

For the intractability part of our classification, we show that unbounded treewidth of H,
yields hardness:

» Theorem 8. Let p > 2 be a prime and let H be a computable class of graphs. If
the treewidth of H,, is unbounded, then #,HoM(H) is Mod,W[1]-hard and, assuming the
randomised Exponential Time Hypothesis, cannot be solved in time

f(|H|) . |G|0(tW(H;)/10gtW(H;))
for any function f.

Can You Beat Treewidth?

We conclude the presentation of our results by commenting on the factor of 1/(log...) in the
exponents of all of our fine-grained lower bounds. This factor is related to the conjecture of
whether it is possible to “beat treewidth” [31]. In particular, we point out that the factor can
be dropped in all of our lower bounds if this conjecture, formally stated as Conjecture 1.3
in [32], is true.

Technical Overview

Our central approach follows the so-called Complexity Monotonicity framework due to
Curticapean, Dell and Marx [11]. We express the counting problems considered in this
work as formal linear combination of homomorphism counts, which allows us to derive the
complexity of the problem at hand by analyzing the coefficients.

More precisely, let us fix a graph property ¢ and a positive integer k. Given a graph G,
we furthermore write #EdgeSub(®, k — G) for the number of k-edge subgraphs of G that
satisfy ®. It was shown in [39] that there exists a function of finite support ae ;, from graphs
to rationals such that for every graph G we have

#EdgeSub(®, k — G) = Y _agx(H) - #Hom(H — G), (1)
H

where #Hom(H — G) is the number of graph homomorphisms from H to G. Curticapean,
Dell and Marx [11] have shown that computing a linear combination as in (1) is precisely as
hard as computing its hardest term. Fortunately, the complexity of counting and detecting
homomorphisms from H to G is thoroughly classified [13, 31]: Roughly speaking, the
higher the treewidth of H, the harder it is to compute the number of homomorphisms
from H to G. Therefore, proving hardness of computing #EdgeSub(®,k — G) reduces to
the purely combinatorial problem of determining which of the coefficients ag ,(H) in (1) for
high-treewidth graphs H are non-zero.

Unfortunately, it has turned out that the coefficients of such linear combinations for
related pattern counting problems are often determined by (or even equal to) a variety of
algebraic and topological invariants, whose analysis is known to be a difficult problem in
its own right. For example, in case of the vertex-induced subgraph counting problem, the
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v 2 (2)

Figure 1 Illustration of the construction of a fractured graph. The left picture shows a vertex v
of a graph H with incident edges Ex(v) = {eo,0,0,,@,0}. The right picture shows the splitting of
v in the construction of the fractured graph H{o for a fracture o satisfying that the partition o,
contains two blocks B1 = {e,e,e}, and By = {+,e,0}.

coeflicient of the clique is the reduced Euler characteristic of a simplicial graph complex [37],
the coefficient of the biclique is the so-called alternating enumerator [14], and, more generally,
the coefficients of dense graphs are related to the h-and f-vectors associated with the property
of the patterns that are to be counted [38]. In all of the previous works mentioned here,
the complexity analysis of the respective pattern counting problems therefore amounted to
understanding the cancellation behaviour of those invariants. To do so, the papers used
tools from combinatorial commutative algebra and, to some extent, topological fixed-point
theorems.

In case of #EDGESUB(®), two of the authors, together with Wellnitz, observed that the
coefficients of high-treewidth low-degree vertex-transitive graphs can be analysed much easier
than generic graphs of high treewidth such as the clique or the biclique [39]. First, it was
shown that the coefficient of a graph H with k edges in (1) is equal to the indicator of ®
and H, defined as follows:*

a@H)= > J[ D)ol -1 (2)

o€ L(®,H) veV (H)

Here, L(®, H) is the set of fractures o of H such that the associated fractured graph Hfo
satisfies ®. Here, a fracture of a graph H is a tuple o = (0,),ev(m), Where o, is a partition
of the set of edges Fy(v) of H incident to v. Given a fracture p of H, the fractured graph
H /o is obtained from H be splitting each vertex v € V(H) according to o,; an illustration
is provided in Figure 1.

As a consequence, the #W/[1]-hardness results of Theorems 1 and 2 can be obtained if we
find a family of graphs H of unbounded treewidth, such that a(®, H) # 0 for infinitely many
graphs H in this family. The almost tight conditional lower bound under the Exponential
Time Hypothesis will, additionally, require sparsity of the graphs. In combination with the
main observation in [39], stating that the indicator a(®, H) can be analysed much easier
for vertex-transitive graphs, we propose that regular Cayley graph expanders are the right
choice for the family of graphs to be considered. Indeed, those graphs are sparse, have high
treewidth and are always vertex transitive. A particular family of Cayley graph expanders
was already used in [39], but it turned out to be impossible to prove Theorems 1 and 2
relying only on this family of Cayley graph expanders; we discuss this in detail in the full
version.

4 To be precise, the identity in (2) was obtained for a coloured version of #EDGESUB(®). However, we
will mostly rely on this result in a blackbox manner; all details of the coloured version necessary for the
treatment in this paper will be carefully introduced when needed.
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In this work, we therefore present novel constructions of families of low-degree Cayley graph
expanders. Those will not only allow us to prove most of our main theorems by analysing
their indicators, but might be of independent interest. For the sake of presentation, we
decided to encapsulate the treatment of our constructions in separate sections, both in the
extended abstract and the main part of the paper. We hope that this makes the paper
accessible both for readers primarily interested in the novel construction of Cayley graph
expanders, as well as for readers mainly interested in the analysis of the pattern counting
problems. In particular, this last group may safely skip the next subsection and rely only on
Theorem 3.

Construction of Low-Degree Cayley Graph Expanders

We prove Theorem 3 via an explicit construction of the groups I'; and the symmetric
generating sets .S; in the full version, motivated by number theoretic objects. In what follows
we present an overview of our construction.

Let us fix a prime p > 3. The starting point is an explicit arithmetic lattice (a discrete
subgroup) in a group of generalized quaternions over a function field in characteristic p. The
quaternion algebra is at the heart of the mathematical properties of extracting the finite
p-groups and the expansion property of the resulting Cayley graphs, but it is not crucial for
understanding the construction. Concretely, for any choice of elements o # 8 € Z/(p — 1)Z
we construct an infinite group T'p., 5 defined in terms of 2(p + 1) generators ay, b; (where the
indices k, j run through sets K, J C Z/(p? — 1)Z defined depending on «, 3) and relations of

length 4. The set of relations is described by explicit algebraic equations in the field F..

In [40] these groups were realized by mapping the generators ay, b; to explicit generalized
quaternions, leading ultimately to an explicit injective group homomorphism

U Dpap — GLa(Fp[[t]]) - (3)

In other words, every element of I, 5 is sent to an invertible 3 x 3-matrix whose entries are
power series in some formal variable ¢, whose coefficients live in the finite field F, with p
elements. This is made explicit for p = 3 in the full version, but could also be made explicit
for any p > 5. Since the applications do not depend on concrete matrices, we merely state
its existence.

To construct the finite p-groups I';, consider the group homomorphism

m;  GL3(Fp[[t]]) — GL3(Fp[t]/(ti+1))

taking a matrix with power series entries and truncating the power series after the term of
order t. Then the group GL3(F,[t]/(t'T!)) is finite, and we define I'; to be the image of the
group I'y.o g under the composition m; o W. These groups I'; are easily shown to be p-groups
and they are what is called congruence quotients (by construction). The generators ay, b; from
the construction of I';.o, 3 map to symmetric generating sets T; of I';, i.e., to the set of cosets
apN;i, bjN; when I'; = T'p,. 3/N; is considered as a factor group. Using results from [40], we
know that the Cayley graphs G; = C(T';, T;) associated to the congruence quotient groups T';
with respect to the generating sets T; are expanders. This argument is worked out in [40] by
Rungtanapirom and two of the authors, and it is based on a similar approach in the classical
papers by Lubotzky, Phillips and Sarnak [30] and by Morgenstern [35]. We note here that
the results of [40] ultimately rely on deep number theoretic results, namely a translation of
the spectrum of the adjacency operator into Satake parameters of an associated automorphic
representation and most crucially on work of Drinfeld on the geometric Langlands programme
for GL2
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At this point we have proven Theorem 3 for the particular valency 2d = 2(p+1). In order to
obtain the more general valencies stated in the theorem (which will be crucial for some of our
reductions), we recall in Section 3.1 of the full version that a uniformly controlled change of
the generating sets T; of the groups I'; (the generators must be mutually expressible in words
of uniformly bounded length) preserves the expander property. This change of generating
set is best performed by finding a smaller generating set for the underlying infinite group
I'p.a,5- This is done in Proposition 3.7 in the full version, reducing to d = (p + 3)/2 for all
p > 3. The reduction is based on the explicit form of the relations and a combinatorial group
theoretic result from [42] on the local permutation structure of the underlying geometric
square complex. To improve even further for p = 3 we consider in Section 3.3 of the full
version a concrete presentation of I's.p 1 which is shown to reduce to 2 generators. For p = 5,
an explicit example given in the full version achieves a reduction to 2 generators for I's.g 2.
In the last step, we will then show that by adding generators (as necessary) we obtain
Theorem 3 for all d’s in the range that the theorem promises.

While this is not needed for the purposes of our hardness results, all of the constructions
above are explicit, certainly in the weak sense that for a fixed p, the sequence of graphs G;
from Theorem 3 is computable. We also would like to emphasize again, that the expanders
constructed for the proof of Theorem 3 consist of vertex transitive graphs, of prime power
number of vertices, with a fairly low bound on the degree. All of this is made possible by
working with very specific generalized quaternion groups in positive characteristic.

Analysis of the Indicators

Having established the existence of the low-degree Cayley graph expanders, we turn back to
the analysis of the indicator

a@H)= 3 [ D" (o -1 (4)

o€ L(®,H) veV (H)

Recall that we claimed the analysis of a(®, H) to be easier for vertex-transitive graphs. Let
us now elaborate on this claim. First of all, we restate the formal definition of Cayley graphs
for readers who skipped the explicit construction of our expanders: the Cayley graph of a
group I' together with a symmetric generating set® S C I is the graph G = C(T', S) with
vertex set V(G) =T and edge set

E(G)={(z,zs) e V(G) x V(G);z €T, s € S}

Since S is symmetric, with any edge (z,xs) the Cayley graph also contains the edge with
opposite orientation (zs,2) = (ws,(zs)s™!). Hence we consider Cayley graphs as the
underlying unoriented graph.

Given a Cayley graph G as above, the group I' acts on the graph by letting g € I' send
the vertex v € V(G) =T to gv. This action extends to the set of fractures £(®, H) and
since the terms HUGV(H)(—I)‘U“‘ L(loy| = 1)! in the formula (4) are shown to be invariant
under this action, the group I' naturally permutes these summands. Since our Cayley graph
expanders G; arise from p-groups I';, it follows that when evaluating the indicator a(®, G;)
modulo p, only those contributions from fractures fixed under I'; survive. Now recall that o,
is a partition of the edges incident to v. The fixed-point fractures o will satisfy that all o, are
equal if we identify the edges incident to v with the elements of the generating set. Since, for

5 This means a subset S C I' of the group that generates this group and satisfies S~ = S.
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fixed p, our Cayley graph expanders have constant degree, we can thus prove the indicator
to be non-zero modulo p by considering just a constant number of fractures. This approach
was first used in [39], and we will show that it becomes significantly more powerful if applied
to our novel Cayley graph expanders.

Now let us illustrate and sketch this approach for the property ® of being bipartite, that
is, for proving Theorem 2. By Theorem 3, there is a family G of 5-group Cayley graph
expanders of degree 6. For graphs G € G, we can show that the indicator a(®, G) does not
vanish, given that ® is the property of being bipartite. Theorem 2 will then follow by the
argument outlined above; the detailed and formal proof is presented in the full version.

In the first step, given a graph G = C(T';,.5;) € G we need to establish which fixed-point

fractures o are contained in £(®, G), that is, for which o the fractured graph Gfo is bipartite.

Since fixed-point fractures o = (0 )yev () of G satisfy that all o, correspond to one particular
partition of S;, we will ease notation and identify o with this partition. Using that S5; is
a symmetric set of generators of cardinality 6, that is, S; = {g1,92,93,91 "> 95 ", 95 '}, we
define a graph (o) as follows: It has a vertex w® for each block B of o, and its set of
(multi)edges is given by

E(H(o)) = {{wB,wB/} : one multiedge for each g € {g1,92,93} s.t. g€ B,g~ ' € BI} . ()

Note that we see H (o) as a graph with possible loops and possible multiedges. In particular,
the graph #H (o) has precisely 3 edges.

The important property of H (o), which we prove in the full version, is that H(o) is
bipartite if and only if Gfo is bipartite. Consequently, for ® being the property of being
bipartite, the indicator a(®, G) is given by the following drastically simplified® expression, if
considered modulo 5:

a(®,G) = > (=D)l7I=t . (jo] = 1)! mod 5, (6)

o:H(o) is bipartite

where the sum is over partitions o of S;. We provide the evaluation of the above expression
in Table 1 and observe that the result is —16 % 0 mod 5. Since this argument applies to all
members of the family of 5-group Cayley graph expanders, we conclude that the indicator is
non-zero infinitely often, which ultimately proves Theorem 2.

The proof of Theorem 1 will follow a comparable technique, but it will require multiple,
more involved cases.

Extension to Modular Counting

Our understanding of the cancellation behaviour of the indicators a(®, H) modulo p does not
only allow us to analyse the complexity of exact counting of k-edge subgraphs satisfying ®,
but also extends to counting k-edge subgraphs modulo p.

To this end, we provide the necessary set-up for parameterized modular counting. In
particular, the basis for our intractability results on the modular counting versions is given
by the decision problem of detecting so-called colour-prescribed homomorphisms, which is
known to be hard for graphs of high treewidth due to Marx [31]. Using a version of the
Schwartz-Zippel-Lemma due to Williams et al. [46], we are able to reduce an instance I of

5 A priori, the formula (4) leads to the version of formula (6) with all summands taken to the power
|V (G)|. However, since the number of vertices is a power of p = 5, by Fermat’s little theorem it can be
omitted.
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Table 1 List of bipartite graphs #H (o) for 3 generators; here we give the isomorphism class of
H(o), the number of partitions o with the corresponding isomorphism class, the number of blocks
of sigma and the total contribution to a(®,G) mod 5 for the property ® of being bipartite.

H(o) No. of o |o| (=D)I“I71 - (Jo| = 1)!
o—o0
o—o0
oO——oO0 1 6 —120-1
o—o0
oO—Oo0—=o0 12 5 24-12
O O 24 4 —6-24

o—0 4 2 1.4

Total contribution —16 =4 mod 5

this problem to an instance I’, such that, with high probability, I’ has precisely one solution
if I has at least one solution, and I’ has no solutions if I has no solutions. In a second step,
the obtained instance I’ can then easily be reduced to the modular counting version for
each prime p. Since the first step of this reduction is randomised, we need to assume the
randomised Exponential Time Hypothesis for our fine-grained lower bounds.

Afterwards, we prove a variant of the Complexity Monotonicity principle for modular
counting in the case of colour-prescribed homomorphisms. As a consequence, our hardness
results for modular subgraph counting problems, including Theorem 4, can be proved following
the same strategy as outlined in the previous subsection.

Moreover, instead of only presenting intractability results, we investigate whether the
expression as a linear combination of homomorphism counts can also be used to achieve
improved algorithms for modular subgraph counting problems. And indeed, considering the
linear combination (1) modulo 2 for the property ® of being a path or a cycle, allows us
to prove that each graph H with degree at least 5 vanishes in the linear combination, that
is, ae 1 (H) = 0. More precisely, we will prove this for a version of the problem in which
two vertices of the k-paths or the k-cycles are already fixed. This must be done to avoid
automorphisms of even order, which turns out to be necessary for (1) to be well-defined
modulo 2, since some of the coefficients aq (H) = 0 are of the form #Aut(H)™'.
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The algorithms for counting k-paths and k-cycles modulo 2 turn then out to be very simple:
Essentially, we will see that it suffices to guess the two fixed vertices, and thereafter the
algorithm evaluates Equation (1) modulo 2, by computing each non-vanishing term using a
standard treewidth-based dynamic programming algorithm for counting homomorphisms.
Since each graph H whose coefficient survives modulo 2 has degree at most 4, we can rely on
known results on the treewidth of bounded degree graphs [19]. Ultimately, this allows us to
prove Theorem 5.

Finally, our classification for counting homomorphisms modulo p builds upon the well-
established algorithms and reduction sequences used both in the classification for the decision
problem [23], as well as in the classification for the exact counting problem [13]. However,
the difficulty in proving our classification for counting modulo p is due to graphs H which
have high treewidth but admit automorphisms of order p. For those graphs, we can neither
rely on an algorithm for exact counting, nor does the known hardness proof transfer.

We solve this problem by considering the p-reduced quotients. Let us denote the function
that maps a graph G to the number of homomorphisms from H to G, modulo p, by
#pHom(H — x). We show that for each graph H we have

#p,Hom(H — *) = #pHom(H; — ).

As a consequence, it suffices to consider the p-reduced quotients for our classification. Since,
by definition, those graphs to not admit an automorphism of order p, we are able to show
that the known methods for proving classifications for homomorphism problems apply.

Let us conclude by pointing out that, while proving that the p-reduced quotient is uniquely
defined up to isomorphism, we also establish a modular variant of Lovasz’ criterion for graph
isomorphism via homomorphism counts (see Chapter 5 in [29]):

» Lemma 9. Let H and H' be graphs, neither of which has an automorphism of order p.
Suppose that for all graphs G we have that

# Hom(H — G) = #,Hom(H' = G).

Then H and H' are isomorphic.

We point out that the previous result can be considered a dual version of [16, Lemma 3.10].

Conclusion and Open Questions

All of our hardness results for modular subgraph counting problems only apply to primes
p > 3 and have, using the randomised Exponential Time Hypothesis as a slightly stronger
assumption, the same complexity as their counterparts from exact counting. However, for
p = 2 the complexity landscape seems different: We obtained an improvement for counting
k-cycles and k-paths modulo 2. Moreover, there are known instances of the counting version of
the parameterized subgraph isomorphism problem, such as counting k-matchings, where exact
counting, as well as counting modulo p for each prime p > 3 is fixed-parameter intractable,
while the computation becomes fixed-parameter tractable if done modulo 2 [9, 10].

Since, additionally, many of our hardness proofs do not apply to the case of counting
modulo 2, we propose a thorough investigation of the complexity of the parameterized
subgraph counting problem modulo 2 as the next step in this line of research. As a starting
point, we suggest the problem of counting bipartite k-edge subgraphs modulo 2: While our
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proofs extend to counting such subgraphs modulo p for some primes p > 3, a computer-
aided search revealed that, for p = 2, our approach cannot work for any family of Cayley
graph expanders of degree at most 12; details are provided in the full version. Indeed, we
conjecture that our methods for proving intractability can be used to show that the problem
is intractable for each prime p > 2, but not for p = 2, which leads to the question of whether
this problem might be fixed-parameter tractable.

There are also interesting open questions concerning p-group Cayley graph expanders
with low degree. To describe them, fix some prime p and consider the set D(p) C Z>¢ of
integers d such that there exists a sequence of finite p-groups I'; of orders that tend to infinity,
with symmetric generating sets S; of cardinality 2d such that the Cayley graphs C(T';, S;)
form a family of expanders. With any d € D(p) actually any d’ > d also lies in D(p), because
we can find a uniform bound on the length of a word in S; to produce a new additional
generator for I';, showing d 4+ 1 € D(p). So the ultimate question is the following:

» Question 10. What is the behaviour of the function p — d(p) = min D(p)?

Since 2-regular graphs are never expanders, we know that d(p) > 2 for all primes p. Moreover,
combining the construction of [36] (for p = 2) with our constructions and some further
examples that we computed, we obtain the following values and bounds for the function d:

p || pe{23,5711,13) | 17<p<83 | 89 < p
d(p) || 2 | d(p) €{2,3} | 2<d(p) < (p+3)/2

Based on this experimental evidence we make the following conjecture:

» Conjecture 11. For every prime p > 3 there is a group among the ' o g that is 3-generated.
In particular, there are p-group Cayley graph expanders of fized valency 2d for all p > 3 and
all d > 3.

If the conjecture is satisfied, the function d above would be uniformly bounded from above
by 3.
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