Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantum metrology of two-photon absorption

MPG-Autoren
/persons/resource/persons252343

Schlawin,  F.
Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
The Hamburg Centre for Ultrafast Imaging;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevResearch.3.033250.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Muñoz, C. S., Frascella, G., & Schlawin, F. (2021). Quantum metrology of two-photon absorption. Physical Review Research, 3(3): 033250. doi:10.1103/PhysRevResearch.3.033250.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-209A-5
Zusammenfassung
Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy. Its nonlinear character allows for the prospect of using quantum resources, such as entanglement, to improve measurement precision or to gain new information on, e.g., ultrafast molecular dynamics. Here, we establish the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross sections. We find that the Cramér-Rao bound does not provide a fundamental limit for the precision achievable with squeezed states in the limit of very small cross sections. Considering the most relevant measurement strategies—namely, photon-counting and quadrature measurements—we determine the quantum advantage provided by squeezed states as compared to coherent states. We find that squeezed states outperform the precision achievable by coherent states when performing quadrature measurements, which provide improved scaling of the Fisher information with respect to the mean photon number ∼n4. Due to the interplay of the incoherent nature and the nonlinearity of the TPA process, unusual scaling can also be obtained with coherent states, which feature an ∼n3 scaling in both quadrature and photon-counting measurements.