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1 Estimation of the experimental charge-density-wave gap

To determine the experimental transient charge-density-wave (CDW) energy gap ΔCDW near the Fermi
levelEF, we first extract the energy distribution curves (EDCs) of the gappedmomentum region, indicated
in Main Fig. 2(b), for different pump-probe delays. Next, we fit the individual EDCs using two Gaussians
to describe the peaks below and above EF, respectively. To account for the time-dependent occupation of
electronic states due to a transiently varying electronic temperature upon optical excitation, the Gaussians
are multiplied by a Fermi-Dirac distribution. The resulting fit function is given by
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−
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⋅
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exp
(
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)
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(1)

with Gaussian amplitude A1∕2, peak position E1∕2, variance �21∕2, transient electronic temperature Te and
Boltzmann constant kB. The transient electronic temperature Te, see Fig. S1, and Fermi level EF, which
enter the fit function as fixed parameters, are extracted from the metallic part of the Fermi surface, as
discussed in detail in Ref. [1]. The Gaussian amplitudes, peak positions and variances are kept as free
fit parameters. This model yields an excellent description of the experimental EDCs for time delays, at
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Figure S1: Transient electronic temperature Te with one standard deviation as uncertainty extracted from
the metallic part of the Fermi surface using a Fermi-Dirac fit.
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Figure S2: (a-d) Top: EDCs extracted from the momentum region featuring the CDW energy gap (in-
dicated in Main Fig. 2b) for selected pump-probe delays with best fits using Eq. 1. Bottom: Individual
components of the best fits (lower/upper Gaussian peak and Fermi-Dirac distribution). The intensities of
the individual curves have been rescaled for clarity. Note that the apparent shift of the central positions
of the individual Gaussians with respect to the total fit function is caused by the multiplication with the
Fermi-Dirac distribution. The purple/blue solid lines mark the midpoint energies of the leading/trailing
edges used to approximate ΔCDW.
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which the relevant states above EF are populated (0 fs < Δt < 1000 fs). Exemplary fits are shown in
Fig. S2.

Finally, we approximate the size of ΔCDW using the difference of the midpoint energies of the lead-
ing/trailing edges of the lower/upper peaks, as depicted in Fig. S2. Themidpoint energies of the respective
edges can be expressed as a shift by the half width at half maximum from the central Gaussian peak po-
sitions, with Gaussian 1 describing the peak below and Gaussian 2 the peak above EF:

ΔCDW =

(

E2 −
2
√

2 ln 2�2
2

)

−

(

E1 +
2
√

2 ln 2�1
2

)

(2)

This edge midpoint approach is a common and reliable method in ARPES to estimate the size of energy
gaps, as, e.g., demonstrated for various superconductors [2–4]. The reliability of this approach is further
supported by the fact that the initial CDW energy gap near Δt ∼ 0 fs is in excellent agreement with
previous studies (400 meV [5]).

To determine the uncertainty ofΔCDW, we sum the individual uncertainties of the parameters entering
the edge midpoint approach (Eq. 2). To account for the uncertainty of Te and EF entering the initial fit
function as constant coefficients (Eq. 1), we calculated the standard deviation ofΔCDW obtained from one
thousand successive EDC fits with coefficients Te andEF varied randomly around their center values with
a normally distributed probability of width �Te and �EF , respectively. The resulting mean values ofΔCDW
with one standard deviation as uncertainty for different pump-probe delays Δt are shown in Fig. S3(a).
Note that the large error of ΔCDW near Δt ∼ 0 fs results from the fact that the electrons have not fully
reached a thermal distribution yet, leading to a large uncertainty of the electronic temperature.

2 Determination of the experimental transient lifetimes

To model the transient population intensities, we first extract the transient size of the CDW energy gap
upon photoexcitation. We describe the CDW gap dynamics using an exponentially damped, absolute
sinusoidal fit function with a frequency change over time (chirp) and a linear background with slope
a, which is convolved with a Gaussian (FWHM=35 fs) to account for the temporal resolution of the
experiment:

ΔCDW(Δt) =
(

Δ0 ⋅ exp
(

−Δt∕�damp
)

⋅ ||
|

sin
(

2�Δt
(

f + fchirp ⋅ Δt
)

+ �
)

|

|

|

+ aΔt
)

∗ Gaussian (3)
This allows for an excellent description of the experimental data, see Fig. S3(a). The resulting best fit
coefficients, i.e., the decay constant of the oscillation amplitude �damp = 450 fs, the oscillation frequency
f = 2.23 THz, the frequency chirp fchirp = −0.36 THz/ps, and phase � = 0.39 �, are subsequently used
for modeling the transient photoemission intensities.

To describe the transient intensities in the regions of interest (ROIs) 1 and 2 of Main Fig. 2a, we em-
ploy a single-exponential decaywith amplitudeA and lifetime �exp, convolvedwith aGaussian (FWHM=35 fs):

I(Δt) = A ⋅ exp
(

−Δt∕�exp(Δt)
)

∗ Gaussian (4)
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However, a bare exponential decay with constant lifetime can not reproduce the experimental data, as
the photoemission intensities feature a transient modulation of the relaxation rates. These deviations
from a single-exponential decay are further emphasized by the derivatives of the transient photoemission
intensities with respect toΔt, as shown in Fig. S3(b)–(c), which feature distinct modulations that coincide
with the collective CDW dynamics. Whenever the CDW gap at EF opens, see Fig. S3(a), the relaxation
of the high-energy population slows down, indicated by the local minimum of the derivative |dI∕dΔt|.
Conversely, when the system reaches the metallic state corresponding to ΔCDW ∼ 0 eV, the high-energy
population relaxes faster, indicated by a local maximum of |dI∕dΔt|.
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Figure S3: (a) Extracted transient CDW energy gap with one standard deviation as uncertainty. The black
solid line marks the best fit using a chirped sinusoidal function (Eq. 3). (b-c) Photoemission intensities
versus Δt from the ROIs indicated in Main Fig. 2(a). The derivatives of the photoemission intensities
with respect to Δt (purple/brown, right axis, absolute values, numerical differentiation by central differ-
ences) emphasize the deviation from an exponential decay with constant lifetime, as they feature distinct
modulations that coincide with the oscillations of ΔCDW. The dashed lines serve as guides to the eye.

To account for this oscillatory component of the carrier relaxation rate, we employ a time-dependent
lifetime based on the previously extracted parameters of the CDW gap dynamics:

�exp(Δt) = �metal + �CDW ⋅ exp
(

−Δt∕�damp
)

⋅ ||
|

sin
(

2�Δt
(

f + fchirp ⋅ Δt
)

+ �
)

|

|

|

(5)
This phenomenological description of the total lifetime comprises the lifetime of the metallic state, �metal,
which serves as a baseline, on top of which an exponentially damped, oscillatory contribution with am-
plitude �CDW, corresponding to the observed transient lifetime increase in the CDW state, is added. The
functional form of the sine with frequency f , chirp fchirp, the phase offset�, and a damping prefactor with
lifetime �damp, allows us to incorporate the observed dynamics of the CDW gap size ΔCDW into the total
lifetime �exp. We fit the transient photoemission intensities (ROIs 1 and 2) using Eqs. 4 and 5, keeping
only �metal, �CDW and the amplitude A as variable fit parameters, while keeping the remaining parameters
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(extracted from the transient CDW gap fit) fixed. This approach yields an excellent description of the ex-
perimental data, see Main Fig. 2(e)–(f). The resulting fit coefficients are summarized in Supplementary
Table 1.

Finally, this allows us to investigate the dependency of the experimental transient lifetime �exp(Δt) as
a function of the extracted CDW gap size ΔCDW(Δt) and a comparison to the theoretical simulations with
a static CDW gap, as displayed in Main Fig. 3(c) for ROI 1. The transient lifetime �exp(Δt) determined
from ROI 2 versus ΔCDW(Δt) is shown in Fig. S4, which follows a similar trend.
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Figure S4: Transient lifetimes �exp(Δt) from Main Fig. 2(f), ROI 2, versus the experimentally extracted
ΔCDW(Δt). The error bars correspond to one standard deviation of the respective fits of �exp and ΔCDW.

Table 1: Best fit coefficients of the decay fits displayed in Main Fig. 2(e)–(f).
Variable Physical meaning fixed or free ROI 1 ROI 2 unit

A amplitude free 0.48 0.67
�metal lifetime of metallic phase free 160 287 fs
�CDW lifetime contribution of CDW phase free 96 91 fs
�damp damping prefactor of �CDW fixed 450 450 fs
f oscillation frequency fixed 2.23 2.23 THz

fchirp frequency chirp fixed -0.36 -0.36 THz∕ps
� phase offset fixed 0.39 0.39 �
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3 Details on the simulations

3.1 Tight-binding model

For the simulations we employ the tight-binding (TB) model from Ref. [6] for the quasi-2D Te planes,
including the px sand pz orbitals. In absence of any CDW order, the Hamiltonian is defined by

h(k) =
[

"x(k) Vxz
Vxz "z(k)

]

, (6)

where
"x(k) = −2t∥ cos[

1
2
(kx + kz)a] − 2t⟂ cos[

1
2
(kx − kz)a]

"z(k) = −2t∥ cos[
1
2
(kx − kz)a] − 2t⟂ cos[

1
2
(kx + kz)a] .

The hybridization between the px and pz bands is determined by Vxz. For the lattice constants we approx-
imate a ≈ c. All calculations are performed in the extended 2D Brillouin zone (instead of the reduced
3D Brillouin zone). We will use the labels m,m′ ∈ {px, pz} for the orbitals.

Following Ref. [6], the incommensurate CDWwith wave-vector qCDW can be described by expanding
the Hamiltonian (6) in terms of harmonics of qCDW. Due to the weak intensity of the observed shadow
bands, truncating after the first harmonic yields an accurate description. Accordingly the extended Hamil-
tonian reads

h̃(k) =
⎡

⎢

⎢

⎣

h(k − qCDW) V 0
V h(k) V
0 V h(k + qCDW)

⎤

⎥

⎥

⎦

. (7)

For simplicity we chose the coupling V = VCDWI. The parameter VCDW determines the size of the gap
and the intensity of the shadow bands. We chose t∥ = 1.7 eV, t⟂ = 0.32 eV, and Vxz = 0.2 eV, which
best matches the experimental band structure. The coupling strength VCDW is treated as a parameter. We
do not include spin-orbit coupling in the model, which is justified by the small spin splittings below the
experimental resolution. Optical excitations are not affected in this case.

3.2 Many-body treatment

To obtain a realistic model that includes generic electron-electron (e–e) scattering, we consider the Hub-
bard model with identical on-site repulsion U for each orbital. For convenience we combine the orbital
and the CDW index into a single index i = (m,N) whereN = −1, 0, 1 denotes the sectors in Eq. (7). We
consider the many-body Hamiltonian

Ĥ = Ĥ0 + Ĥe−e ≡
∑

k

∑

ij,�
ℎ̃ij(k)ĉ

†
ki� ĉkj� + U

∑

k,p,q

∑

ij,�
ĉ†k+qi� ĉ

†
p−qj�̄ ĉpj�̄ ĉki� . (8)

Note that the interaction term in Eq. (8) entails an additional simplification, as some combinations of
sectors (with respect to Eq. (7)) are excluded. This assumption is justified by the following: (i) scattering
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processes with small momentum transfer dominate in the experimentally relevant bands (this is particu-
larly pronounced in the more realistic case of a long-range Coulomb interaction); (ii) coupling of different
sectors is very weak except for close to the gap region.

To capture the dynamics in presence of e–e interactions, we employ the time-dependent nonequilib-
rium Green’s functions (td-NEGF) framework. To this end we consider the Green’s function (GF) on the
Kadanoff-Baym contour  [7],

Gij�(k; t, t′) = −i⟨T ĉki�(t)ĉ
†
kj�(t

′) ⟩ . (9)
Here, T denotes the contour ordering symbol. The contour GF (9) contains information on the photoe-
mission spectrum when choosing the location of the contour arguments t, t′ accordingly. In particular,
the time-resolved photoemission intensity is obtained by the lesser GF G<ij�(k; t, t′) = i⟨ĉ†kj�(t

′)ĉki�(t)⟩
by [8, 9]

I(k, !,Δt) ∝ Im
∑

m,� ∫
dt∫ dt′s(t)s(t′)ei!(t−t′)G<(m0)(m0)�(k; t, t

′) . (10)

Here we have projected onto the first Brillouin zone containing the main bands (middle sector in Eq. (7)).
The energy ! corresponds to the binding energy, while s(t) denotes the shape of the probe pulse, which
is delayed with respect to the pump pulse by Δt.

The GF (9) is obtained by solving its equation of motion
(

i)t − h̃(k, t)
)

G(k; t, t′) + ∫
dt̄�(k; t, t̄)G(k; t̄, t′) , (11)

where we have employed the compact matrix notation. The self-energy �(k; t, t′) captures the many-
body effects arising due to e–e scattering. The pump pulse is incorporated by the Peierl’s substitution
h̃(k, t) = h̃(k − qA(t)), where A(t) stands for the vector potential of the pulse.

Solving the full Kadanoff-Baym equations (11) is a tremendous computational challenge for the res-
olution with respect to momentum space and reaching relevant time scales. Therefore we employ the
generalized Kadanoff-Baym ansatz (GKBA), which transform Eq. (11) into an equation of motion for the
single-particle density matrix �(k, t):

d
dt

�(k, t) + i[̃h(k, t),�(k, t)] = − (I(k, t) + h. c.) . (12)
The quasi-particle scattering effects captured by the self-energy enter the dynamics of the density ma-
trix (12) via the collision integral

I(k, t) = ∫

t

−∞
dt̄

(

�<(k; t, t̄)GA(k; t̄, t) + �R(k; t, t̄)G<(k; t̄, t)
)

. (13)
Following the same route as in Ref. [10], the correlated equilibrium density matrix �(k, t) is obtained
from adiabatically switching on the interactions. Extensive benchmarks [10–13] underpin the accuracy
of the GKBA in the relevant regime of weak to moderate interactions.

Eq. (12) is solved with a highly accurate computer code (more details in Ref. [10]). ANk = 72 × 72
sampling of the Brillouin zone was used, while the time propagation was done in equidistant steps of
ℎ = 0.8 a.u. and up toNt = 7500 time steps. After obtaining �(k, t) the lesser GF is reconstructed by

G<(k; t, t′) = GR(k; t, t′)�(k, t′) + �(k, t)GA(k; t, t′) . (14)
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The retarded (advanced) GF GR(k; t, t′) (GA(k; t, t′)) is defined with respect to the mean-field Hamilto-
nian. Substituting the lesser GF (14) into Eq. (10) then yields the time-resolved photomemission spectra.

3.3 Calculation of the self-energy

The sharply defined bands in the experimental ARPES data and the unusually long lifetime of excited
electrons indicate a weak-coupling scenario, in which the e–e interaction can be treated pertubatively.
Thus, we employ the second-Born approximation, which defines the self-energy as

Σe−e,≷ij (k; t, t′) = iU
2

Nk

∑

q
G≷ij(k − q; t, t

′)P≷ij (q; t, t
′) , (15)

where
P≷ij (q; t, t

′) = − 2i
Nk

∑

p
G≷ij(q + p; t, t

′)G≶ji(p; t
′, t) (16)

denotes the electron-hole polarization. For brevity we have dropped the spin index, as all quantities are
spin-independent. Eq. (15)–(16) are evaluated numerically and inserted into the collision integral (13).
For a qualitative analysis we have also computed the polarization (16) for the equilibrium state, inserting
the non-interacting GF. Specifically we calculate the retarded component

P (0),Rij (q;!) = ∫

∞

0
dt ei!t

[

P (0),>ij (q; t, 0) − P (0),<ij (q; t, 0)
]

, (17)

where the superscript (0) indicates the free GFs entering the definition. For the practical evaluation of
the one-shot polarization (17) we insert the time-dependent GFs and perform the integration analytically.
Note that a considerably more dense sampling of the Brillouin zone is required to achieve convergence in
the real-frequency representation. We include up toNk = 300 × 300 points to ensure converged results.
The average polarization P̄ R(!) presented in Fig. 4(d) in the main text is computed from Eq. (17) by

P̄ R(!) = 1
�q2c

∑

m ∫
|q|<qc

dqP (0),R(m0)(m0)(q;!) , (18)

where qc = 0.05 a.u. is a typical value for the scattering processes with small momentum transfer.

4 Simulation of the relaxation dynamics

We have performed simulations within the GKBA formalism to discern the scattering channels and ex-
plain the slow-down of the relaxation dynamics observed in the experiments. The calculations are agnos-
tic with respect to the origin of the CDW; we focus on the dynamics of highly excited carriers. As the
variation of the photoemission intensity in the gap region – the hallmark of the collective CDW excitation
– is slow on the electronic time scale, we keep the CDW frozen in the simulations.

The dynamics is triggered by a short laser pulse, described by the vector potential

A(t) = eA0 sin[!0(t − t0)] sin2
(

�(t − t0)
Tp

)

, t0 < t < t0 + Tp , (19)
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Figure S5: Fermi surface calculated from the introduced tight-binding Hamiltonian (7) for VCDW = 0
(a), and VCDW = 0.2 eV (b). The red square represents the 2D Brillouin zone for the Te plane, while the
dashed line illustrates the chosen path in momentum space for which trARPES spectra are presented in
(c). (c): Time-resolved photoemission spectra along the path shown in (a), (b) for U = 1t∥ and VCDW = 0
as function of the pump-probe delayΔt. The upper panels show the pump (red) and probe pulse envelope
(blue).

where e is the polarization vector, !0 the central frequency, and Tp = 2�nc∕!0 the duration of a nc-cycle
pulse. We fix !0 = 1.5 eV and e = (1∕√2, 1∕√2, 0)T . Choosing nc = 2 results in a broad-band pulse
which gives rise to a similar excited-state distribution as in the experiments, which we have explicitly
confirmed by comparing the experimental spectra to the simulations, optimizing the field strength of the
pulseA0 to match the relative intensity shortly after the pulse in the high-energy ROI in Fig. 2(a) and close
to EF. Note that the TB model does not include deeper bands from which direct transitions to ROI 2 in
Fig. 2(a) occur. Therefore, we focus on the higher-energy region. The conclusions are however generic.

While the simulations are performed in the entire Brillouin zone, we focus on the experimentally
relevant region cutting through the CDW gap. Fig. S5(a)–(b) illustrates the path in the Brillouin zone
(chosen as in the experiments) along which the time-resolved photoemission spectra (10) are calculated.
For the evaluation of Eq. (10) we insert the shape function

s(t) = sin2
(

�(t − Δt)
Tpr

)

, Δt ≤ t ≤ Δt + Tpr , (20)

where Tpr = 20 fs is chosen as good compromise between energy resolution and attainable time scales.

4.1 Electron-electron scattering dynamics

To investigate the thermalization dynamics in the presence e–e scattering, we simulated the dynamics
including the self-energy (15) (and with the Hartree-Fock contribution). Since the time scale of e–e
scattering depends on the amount of injected energy [14, 15], we calculated the absorbed energy as a
function of A0 for various values of the CDW state, characterized by VCDW. Comparison to experimental
spectra shortly after the pulse corresponds to VCDW ≈ 0.2 eV, which is chosen as a reference. We fix
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Fig. S5(c), respectively) as function of the pump-probe delay Δt. Left panels: U = 0.75t∥, right panels:
U = 1.0t∥.

A0 to fit the excited-state carrier distribution in the experiment for the CDW phase. For other values of
VCDW, A0 is determined by requiring that the same amount of energy has been absorbed.

Fig. S5(c) shows the time-resolved spectra for the metallic phase (VCDW = 0). The pump pulse
promotes electrons to the upper bands, in particular in the region indicated by the green and purple boxes,
which are connected to the occupied bands by the vertical transitions (see Δt = 10 fs). Apart from
these resonant transitions, the occupation is broadly distributed. This is due to the short pulse and due
to ultrafast e–e interactions. The latter effect gives rise to significantly increased absorption compared
to the noninteracting case [10]. Furthermore, ultrafast scattering also facilitates additional intra-band
transitions [9]. The time-resolved spectra for larger Δt show the thermalization dynamics, characterized
by a relaxation towards a high-temperature thermal state. In particular, the initially sharply defined Fermi
surface gets smeared as the population accumulates above the Fermi energy EF, while the intensity in the
bands at higher energy declines. While the total energy is conserved in the presence of e–e scattering
only, the carriers’ mean excess energy above EF decays.

Note that the excited-state distribution observed in the experiments is similar, albeit the presence of
additional bands at E−EF ≈ −0.5 eV modifies the population, specifically in the region indicated by the
red boxes in Fig. S5(c). A direct comparison between theory and experiment is difficult in this region of
the energy and momentum space, especially on the attainable time scales in the simulations. We will thus
restrict the analysis on the region indicated by the purple and the green box in Fig. S5(c). The scattering
dynamics discussed below is however generic.

For a quantitative analysis we have calculated time traces by integrating over regions in energy and
momentum space, in analogy to the analysis of the experimental spectra. Fig. S6 shows the relaxation
dynamics of the highly excited states for various values of the CDW parameter VCDW. We also compare
the dynamics for U = 0.75t∥ to U = 1.0t∥ to confirm that the observed behavior is generic. Since U 2

is the scaling factor for the self-energy (15), the relaxation time scale is approximately twice as long for
U = 0.75t∥ compared to U = 1.0t∥. The qualitative behavior is very similar in both simulations. Note
that, for the simulations presented in the main text, U = 1.0t∥ was used.
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Figure S7: Imaginary part of the retarded electron-phonon self-energy Σe−ph,R(!) of the conduction band
(projected onto the first BZ) for VCDW = 0 and VCDW = 0.2 eV. We shifted the frequency dependence for
VCDW = 0.2 eV to compensate for the small shift of the conduction band upon switching on VCDW. A
Nk = 4000 × 4000 was required to achieve convergence.

4.2 Effects of electron-phonon coupling

To contrast the scattering channels, we also consider electron-phonon (e–ph) coupling. As confirmed
experimentally, the dominant phonon mode is an inter-plane mode perpendicular to the Te plane, with a
frequency of !ph ≈ 15 meV. This scenario is captured by including Holstein-type coupling:

Ĥe−ph =
�

√

2N

∑

k,q

∑

i,�
ĉ†ki� ĉk−qi�(b̂q + b̂

†
−q) , (21)

where b̂q denotes the phonon annihilation operator, while N is the number of points sampling the Bril-
louin zone.

Here we treat the electron-phonon (e–ph) coupling within the Migdal approximation [16]:
Σ≷ij(k; t, t

′) = i�2Gloc,≷ij (t, t′)D≷
0 (t, t

′) , (22)

where Glocij (t, t′) = 1
Nk

∑

kGij(k; t, t′) denotes the local GF, while D0(t, t′) represents the free phonon
propagator. The e–ph coupling strength is denoted by �. Since we consider a single Einstein mode,
the phonon propagator D≷

0 (t, t
′) does not exhibit a momentum dependence. For this reason, the self-

energy (22) is momentum independent.
To assess the effects of e–ph scattering, we calculated the retarded component of the self-energy (22)

ΣRij(!) = ∫

∞

0
dt ei!t

[

Σ>ij(t, t
′) − Σ<ij(t, t

′)
]

. (23)

In Fig. S7 we compare the imaginary part for the metallic and the CDW phase over a range of ! corre-
sponding to the relevant conduction band. Note that the bare conduction band is shifted by 18 meV to
higher energy in the CDW phase. For a one-to-one comparison we shifted the self-energy in the CDW
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phase in Fig. S7 accordingly. As Fig. S7 demonstrates, the self-energy of the conduction band shows prac-
tically no dependence on VCDW. Hence, the relaxation dynamics for the same pulse-induced population –
if only e–ph coupling is present – is identical in the metallic and the CDW phase. This is consistent with
the discussion of the scattering phase space in the main text. In contrast to e–e scattering, the relaxation
of highly-excited electrons within the top band is always possible upon emitting a phonon. The presence
of an electron gap at the Fermi level does not influence the probability of this process.

e-e only

e-e + e-ph

e-e only

e-e + e-ph

Figure S8: Relaxation time extracted in the regions of interest (analogous to Fig. 3(c) in the main text).
Circles represent the case of e–e scattering only, while squares show the relaxation times for the Hubbard-
Holstein model with � = 10−3.

To confirm this picture we have performed additional GKBA simulations where we included both the
e–e self-energy (15) and the e–ph self-energy (22). The simulations were carried out analogously to the
case of e–e scattering only. After computing the trARPES spectrum via Eq. (10), we analyzed the ROIs
as the main text and extracted the corresponding relaxation time �, which is shown in Fig. S8. The e–ph
coupling strength can be estimated by matching the quasi-particle lifetime determined by the imaginary
part of the e–ph self-energy (Fig. S7) to the long-time relaxation behavior in the experiments (t > 500 fs).

In contrast to the case of e–e scattering only, in Fig. S8 we compare the extracted relaxation times
with and without e–ph scattering. As Fig. S8 demonstrates, the scattering time is slightly reduced by
introducing the e–ph coupling. The monotonic dependence of VCDW is retained. This analysis underpins
that e–ph scattering can not give rise to a significant dependence of the scattering dynamics on the CDW
state.
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