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Abstract

Statistical concepts (e.g., mean, variance, correlation) offer powerful ways to characterize the structure of the environment. To what extent do
statistical concepts also play a role for people assessing the environment? Previous work on the mind as “intuitive statistician” has mainly focused
on the judgment of means and correlations (Peterson & Beach, 1967). Much less is known about how people conceptualize and judge variance. In
a survey and three experimental studies, we explored people’s intuitive understanding of variance as a concept and investigated the factors
affecting people’s judgments of variance. The survey findings showed that most people hold concepts of variance that they can articulate; these
concepts, however, reflect not only statistical variance (i.e., deviations from the average) but also the pairwise distance between stimuli, their
range, and their variety. The experimental studies revealed that although people’s judgments of variance are sensitive to the statistical variance of
stimuli, variety and range also play an important role. The results can inform psychological models of judgments of variance.
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1. Introduction

Making correct inferences about properties of the environment—such as the central tendency and variability of a variable, or the co-occurrence of events—is
key for making good decisions. Consider a foraging animal. To decide which patch of land to visit, the animal needs to make a prediction about where it will
find sufficient food. Let us assume that patch A gives just enough food most of the time (the central tendency is low and the variability is low). In contrast,
patch B usually gives a lot of food but sometimes none at all (the central tendency is high and the variability is high). In this case, the prediction would be
more certain for A than for B, but the predicted value would be higher for B than for A. To ensure it finds enough food to survive, the animal needs to balance
the central tendency and the variability of different food patches. Similar concerns apply to a broker picking stocks.

Statistical concepts such as mean, variance, and correlation offer a powerful characterization of the environment. An influential approach in the judgment and
decision making literature has proposed that people are “intuitive statisticians”—they can judge the statistical properties of the world reasonably accurately
and their responses to the environment can be well described based on statistical concepts (e.g., Peterson & Beach, 1967). In research on the mind as an
intuitive statistician, perceptions of sample means (for a review, see Peterson & Beach, 1967; Pollard, 1984) and correlations between variables (Kareev,
2004) have received much attention; however, little is known about how people conceptualize and perceive variance of stimuli in the environment, and
whether their perception of variance is in line with the statistical notion. This is an important gap, as several influential models of decision making implicitly
assume that people are sensitive to statistical variance (Markowitz, 1952; Weber, Shafir, & Blais, 2004).!

From the scant amount of work on variance perception, Peterson and Beach (1967) concluded in their seminal overview that people’s judgments largely align
with statistical variance and that statistical variance could, therefore, serve as a good first approximation for describing people’s judgments of variability in the
environment. However, the judgments tend to be systematically lower than statistical variance (see also Kareev, 2004), suggesting that people may not rely
on statistical variance directly but also on other, qualitatively different aspects of an observed sample when judging variance. But what are the aspects
feeding into people’s concept of variance?

Our first goal in this article was to explore people’s intuitive understanding of “variance”. Do they hold an explicit concept of “variance”

*Corresponding author at: Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom. E-mail address: elizaveta.konovalova@wbs.ac.uk (E. Konovalova).
1

Note that Weber et al. (2004) found that people’s risky decisions were more consistent with the coefficient of variation than with statistical variance. The coefficient of variation is,
however, based directly on statistical variance.
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at all, and if so, to what extent does this concept converge with or deviate from statistical variance (which is defined as the expected squared difference of a
variable from its mean)? Even if people (who have not been trained in statistics) may be unlikely to spontaneously come up with the statistical definition of
variance, they might still produce a concept that reflects the principle underlying statistical variance, namely that of deviation of individual values in a sample
from the average value. But people may also have qualitatively different concepts, that reflect other possible principles guiding conceptualizations of variance
(whose quantitative measures, however, might still correlate with statistical variance). Based on semantic analyses of people’s descriptions of their concept of
“variance” as well as their associations with the term as collected in a survey, we established that most people hold a concept of variance that they can
articulate, even if they are not trained in statistics. In fact, about a fifth of the participants articulated a concept closely related to statistical variance (namely,
deviation from the mean); this was more likely for people with more education. Other participants articulated a concept that drew on aspects such as range,
variety (the number of unique elements in a sample), and pairwise distance (the difference between pairs of values in a sample)— concepts that are based on
principles that deviate from that of statistical variance.

Our second goal was to test whether the concepts we identified in the survey are indeed implicated in people’s judgments of variance and to compare the
influence of these factors with that of other factors previously shown to impact judged variance. One such factor is the stimulus magnitude. Research on
number cognition and in risky choice has found that people perceive differences between larger numbers as smaller than if the same differences are between
smaller numbers (Lathrop, 1967; Weber et al., 2004). As a consequence, the larger the absolute (mean) magnitude of the values, the smaller a given level of
variability appears to be—leading to a negative correlation between the mean value of the stimuli and perceived variability. Another factor is the sample
size—the number of observations to which a variance judgment refers. In research on the perception of group variability, a higher sample size of interactions
with in-group members led to judgments of the in-group as being more variable (Linville, Fischer, & Salovey, 1989). Similar findings were reported for the
perception of numbers and objects (Kareev, 2004; Konovalova & Le Mens, 2018).

Although previous research has thus identified several factors that may play a role in judgments of variance, these factors have never been tested together
within the same analysis. This limits previous conclusions because, for many types of distributions, range, sample size, and statistical variance are highly
correlated. For instance, sets of stimuli covering a larger range of values usually also have larger variance than sets with a smaller range. The associations of
these factors with judgments of variance may thus be confounded.

In the following, we first report a survey (Study 1) in which we used semantic network analysis to investigate people’s intuitive concepts of variance.
Specifically, we analyzed word co-occurrences in people’s free descriptions of and associations with the term “variance.” We then report three experimental
studies in which participants were asked to judge the variance of sets of numbers and we tested which of several factors impact these judgments. Using both
an approach with tightly controlled stimulus properties (Studies 2a and 2b) and an approach with naturally varying stimulus properties (Study 3), we examined
the role of concepts identified in Study 1 as well as factors known from the literature. Finally, we relate our findings to those of previous investigations on
variance perception, discuss them from the perspective of adaptive cognition as well as their implications for models of judged variance.

2. Study 1: intuitive conceptualizations of variance

In some previous studies on judgments of variance, participants were provided with a definition of variance, such as “the degree to which numbers cluster
about their mean” (Beach & Scopp, 1968, p. 114). Given that not everybody is familiar with statistics, can people relate to the term “variance” when not
explicitly provided with a definition? And if so, what concepts of variance they hold?

Study 1 had two main objectives. The first was to establish to what extent “variance” is a meaningful concept for people. The second was to explore the
content of their intuitive concept(s) of variance. To that end, we asked respondents to define “variance” and to generate words that they associate with the
term. Additionally, we collected information about respondents’ level of education and other demographic indicators. We wanted to test whether people with
more education and statistics training are more likely to have a concept of variance that is consistent with statistical variance.

To map how people conceptualize variance, we derived a co-occurrence network from their responses to represent the underlying semantic network. In a co-
occurrence network, the words serve as the nodes and the size of the node is determined by the number of people who used that word in their response. The
edges of the network represent the co-occurrence of pairs of words, which are weighted by the proportion of respondents who used both words. Co-
occurrence networks are commonly used in cognitive science (Baronchelli, Ferrer-i Cancho, Pastor-Satorras, Chater, & Christiansen, 2013) to explore word
meanings (Bullinaria & Levy, 2007) and in computer science to identify the topics in a given text (Jia, Carson, Wang, & Yu, 2018). They have, for example,
been employed to study emerging topics in scientific publications (Mane & Borner, 2004).

Here we apply co-occurrence network analysis to words obtained in a definition task and words from a free association task (see Section 2.1 for details). For
the definition task, the structure of the network relies on the associations between different words emerging from proximity in natural language (Lund &
Burgess, 1996). In essence, the network shows which words are used together when people provide a definition of variance. For the free association task, the
network relies on the proximity of the words in semantic memory. Research has shown that when asked to produce lists of items from memory (e.g., animals),
people search their memory locally within a representation before transitioning to a global search (Hills & Pachur, 2012; Hills, Todd, & Jones, 2015). These
findings suggest that words that are mentioned together in a free association task are also close to each other in the semantic space.

2.1. Materials and methods

2.1.1. Participants

We recruited 202 (53% female) respondents on Prolific Academic; all respondents received a flat fee of £1 as compensation. The median age group was 25—
34 years, the median level of education was an undergraduate degree, and the median level of statistical knowledge was the basics of statistics learned at
school (i.e., secondary education).

2.1.2. Procedure

After providing consent, respondents were informed that the study was concerned with the intuitive understanding of variance. In a definition task, they were
presented with a set of numbers (“45, 55, 48, 53, 50, 51, 52, 55, 46, 51”), then asked to write in a text box what the “variance” of these numbers meant to
them.2In a subsequent free association task, respondents were asked to provide a maximum of five words that they thought were “strongly associated with
the term

2 The exact wording was: “The overall degree by which the numbers in this set differ from each other can be described in terms of variance. In the text box below, please describe in
your own words what the variance of a set of numbers means to you.”
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variance.” Additionally, respondents were asked to indicate their age group by assigning themselves to one of the eight age ranges: from “17 or younger” to
“75 or older,” with the groups in between spanning 10 years each.® We also asked respondents to indicate their gender, their highest level of education, and
their highest level of education in statistics, and we used the Berlin Numeracy test (Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012) to assess
their numeracy levels.

2.2. Results

2.2.1. Is variance a meaningful concept?
Most people were able to provide a definition of variance. Only eight of the 202 (4%) respondents stated that they did not know or understand what variance
is.

2.2.2. What is the content of people’s concepts of variance?

In the free association task, respondents provided 956 words, of which 316 were unique.4 In the definition task, responses had to have a minimum length of
20 characters. For the analysis, we removed the most common words in the English language (“stop words”) as well as words that were used often by
respondents because of the format of the question.5We also removed word repetitions because they cause both inflation in the number of word co-
occurrences and loops in the network. This procedure resulted in a total of 1002 words for the definition task, of which 369 were unique.

Fig. 1 shows the resulting semantic networks in the two tasks based on the co-occurrence of words mentioned by at least five respondents. Table 1 lists the
10 most frequent words and Table 2 lists the 10 most frequent word pairs. Many of the most frequent words relate to deviation: “difference”, “differ”,
“deviation,” and “how far,” as well as “change”. These words seem to reflect two different concepts of variance. First, some respondents used them to express
that variance relates to differences and distance between the numbers in a set. This understanding is indicated by word pairs “difference—number” and
“differ—number” used in the definition task. Moreover, 7.4% of participants mentioned the related notion of “similarity,” which also points to a distance (or a
lack thereof), in the association task. We refer to this concept as pairwise distance.

Second, some respondents referred to the deviation of the numbers in a set from its central tendency. Here, they often used the words “average” and “mean,”
which frequently co-occurred with “difference” and “deviation” (Table 2). These observations suggest that some respondents’ notion of variance relates to
how the numbers in the sample spread around the mean or average value in the sample and thus is close to its statistical definition. We refer to this concept
as deviation from the mean.

Respondents also mentioned words that point to two further, distinct concepts of variance. First, “variety” was one of the words most frequently associated
with variance. This indicates that participants conceive of variance in terms of a collection of distinct numbers. The concept of variety is widely used in
research concerned with how individuals discriminate displays of different items (Young & Wasserman, 2001). Participants are shown two sets of icons (e.g.,
real-life objects or geometric figures) and asked to judge whether the displays are the same or different. Low variability in such “same—different” tasks is
usually operationalized as a display with a large percentage of identical items. Studies using this paradigm have shown that variability affects participants’
accuracy (Young & Wasserman, 2001). We refer to this concept as variety.

Second, the word “range” was frequently mentioned in the association task and the related word “spread” in the definition task. In addition, many word pairs
contained the related adjectives “highest,” “lowest,” and “max.” We refer to this concept as range.

It is worth noting that these concepts, while conceptually distinct from statistical variance, will not necessarily be statistically independent from it. Being
closest to the principle underlying statistical variance, deviation from the mean is likely to be often correlated with statistical variance. To some extent, that
might also be the case for pairwise distance and range (but not for variety, because more unique elements in the sample do not necessarily add more
variation to it).

2.2.3. Prevalence of the different concepts of variance

To gauge the prevalence of the different concepts of variance among the respondents, we asked two raters to classify the entries independently. In addition
to the four concepts described above, the raters could use the following categories: “randomness” (a substantial proportion of respondents associated
variance with some random process), “l| don’t know,” and “other” (if the entry did not fit the categories above but referred to an eligible concept). Finally, if an
entry did not contain an eligible concept, the raters labeled it “not usable.” The interclass correlation between the raters’ categorizations was 0.7 (confidence
interval [CI] = [0.615,0.759]). We included in our analyses the entries the raters agreed on (136 entries, 67%) as well as the entries that only one rater
assigned to a category other than “other” or “not usable” (27 entries, 13%). The 38 (20%) entries where the raters disagreed on the substantive categories
(i.e., those other than “other” and “not usable”) were removed.®

Based on the raters’ classifications, 89% of respondents provided some definition of variance, while 7% provided a response that was “not usable.” (As we
noted at the beginning of Section 2.2, the remaining 4% of respondents explicitly stated that they did not know or understand what variance is.) Of the 89%,
80% provided a definition of variance that is covered by one of the four concepts identified by the co- occurrence network analysis; 5% referred to
randomness and 4% to some other concept. Overall, pairwise distance was the most prevalent concept (24.5%), followed by deviation from the mean
(20.2%), variety (20.2%), and range (15.3%).

2.2.4. Were the different concepts of variance related to demographic variables?
Finally, we examined how the different concepts of variance were related to demographic variables. For each of the four most popular concepts (pairwise
distance, deviation from the mean, variety, and

3 By collecting information about respondents’ age using age groups, we followed a common method in demographic surveys that is used by organizations such as the Office of
National Statistics in the United Kingdom and Pew Research Center in the United States.

4 For the analysis, we equated “vary” and “varied” to “variability,” “similar” and “similarities” to “similarity,” and “dissimilar” to “dissimilarity.”

s We used the package “tidytext” in R (Silge & Robinson, 2016) to remove stop words. Stop words are words that are frequently used in a language but do not carry the main

meaning of the sentence. Examples include pronouns such as “I” and “they,” the conjugated forms of verb “to be,” and the conjunctions “and” and “or.” Additionally, we removed the
following words: “variance,” “set [of numbers],” “one [from another],” “[number] can,” “group [of numbers],” “[in this] case,” “[in this] way,” “data,” “[variance] means,” “two [numbers].”
We replaced “10,” “45,” and “55” by “range, “min,” and “max,” respectively, because those numbers corresponded to the range, minimum, and maximum of the set of numbers
provided in the task description. Finally, we replaced “values” by “value,” “numbers” by “number,” and “differs” by “differ.”

6 Because one fifth of the responses were thus excluded, we conducted robustness checks. Specifically, instead of using the restricted set of entries (i.e., only those that raters
agreed on), we ran two sets of the same regressions (one for each rater) that included all entries (for one rater, one observation had to be excluded because the rater made a

mistake and did not fill the cell correctly). In other words, in one set of regressions, we included both the entries that raters agreed on and the entries that they disagreed on, where
we used the label given by rater A. In the other set, we used the label given by rater B for the entries raters disagreed on. The main results remained the same.
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Fig. 1. Semantic network based on word co-occurrence in the two tasks in Study 1. Nodes represent words mentioned by at least five respondents. The size
of the nodes is proportional to the number of participants who mentioned the word. Edges represent the co-occurrence of pairs of words. The shade of the
links is proportional to the frequency with which a given word pair occurred.

range), we created a binary variable that equaled 1 if the concept Table 1
was invoked by the respective respondent and 0 otherwise. This Most frequently mentioned words and percentage of respondents who

binary variable was used as a dependent variable in a Bayesian ~ mentioned them in the free association and definition tasks in Study 1.
logistic regression, and the demographic variables were used as

predictors.7 For all estimations in this section and subsequent Rank  Free association task Rank  Definition task
sections, we used the RStan (Stan Development Team, 2020) Word Mentioned by % Word Mentioned by %
and brms (Birkner, 2017) packages in R. For all parameters, of respondents of respondents
normal distributions with a mean of 0 and a standard deviation of Ffor ber )
8 were used as priors. As Fig. 2 shows, a higher level of 1 Difference  48% 1 N_”m_el 81‘60/['
education in statistics and higher numeracy were positively 2 Deviation  19.3% 2 Difference  23.3%
associated with the probability of defining variance as deviation 3 Average 16.3% 3 Average 13.4%
from the mean (the 95% highest density interval [HDI gy, ] for 4 Nurflbers 15.8% 4 M_e““ 12.9%
both parameters excludes 0). For all other concepts, the 5 Variety 12.9% 5 fofe‘:e“t 11‘92/“'
relationship was not credible. 6 Change 12.3% 6 Differ 10.9%
7 Mean 11.9% 7 Value 10.4%
3. Studies 2a and 2b: what factors influence 7 Spread 11.9% 8 Spread 9-9%
y s . 8 Statistics 10.9% 9 How 7.9%
people’s judgments of variance? much
. . . . 8 Variability — 10.9% 10 How far 6.9%
Study 1 established that variance is a meaningful concept for -
most people and that it s, therefore, appropriate to use the term ? Different  10.4%
ost people a at it is, therefore, appropriate to use the te 10 Range 0.0%

to elicit judgments of variability. Further, Study 1 provided
insights into the content of people’s concepts of variance,
indicating that, along with a concept related to statistical variance—namely, deviation from the mean—pairwise distance (the difference between number
pairs), variety (the number of unique elements in the sample), and range contribute to their perception of variance. In Studies 2a and 2b, we tested the extent
to which these factors—along with mean and sample size, which (as summarized in Section 1) previous research has suggested impacts judgments of
variance—predict judgments of variance when people are presented with sets of number sequences. As a benchmark, we also include statistical variance as
a predictor in the analysis.

As we noted in Section 1, in many types of distributions the sample characteristics that we focus on here tend to be considerably intercorrelated (e.g., range
and statistical variance). Therefore, in Studies 2a and 2b we designed specific distributions that enhanced the possible differences across candidate sample
characteristics. We then employed Bayesian regression analysis to statistically control for the remaining interdependencies between the factors.

3.1. Materials and methods

3.1.1. Participants

We recruited 151 (41% female) and 150 (55% female) participants on Prolific Academic for Study 2a and Study 2b, respectively. All participants received a
flat fee of £ 2 as compensation. In both studies, the median age group was 25-34 years, the median level of education was an undergraduate degree, and
the median level of statistical knowledge was the basics of statistics learned at school.

7 We did not include concepts mentioned by fewer than 10% of respondents because the small sample size for these concepts implies that estimating a logistic regression can be

unreliable (for a discussion see King & Zeng, 2001). Furthermore, for this analysis, we removed the observations that were classified as “not usable”; these do not carry meaningful
information and may therefore bias the estimations. Overall, the analysis included 146 observations. Apart from the binomial regressions, we also estimated multinomial regressions
with each of the concepts as the reference level. The results of that analysis were very similar to those reported here.
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Table 2
Most frequently mentioned word pairs and percentage of respondents who mentioned them in the free association and definition tasks in Study 1.

Rank Free association task Rank Definition task
Word Mentioned by % of respondents Word Mentioned by % of respondents
1 Deviation-difference 10.4% 1 Difference-number 20.3%
2 Averagedifference 7.4% 2 Average-number 11.9%
2 Change-difference 7.4% 3 Different-number 11.4%
3 Difference-numbers 6.9% 4 Differ-number 9.9%
4 Difference-mean 5.9% 5 Mean-number 8.4%
4 Difference variation 5.9% 5 Number-spread 8.4%
5 Difference—variability 5.4% 6 Number—value 7.9%
5 Difference-variety 5.4% 7 How much-number 6.4%
6 Contrast-difference 4.9% 8 How far-number 5.4%
6 Difference -spread 4.9% 9 Measure-number 4.4%
7 Average-mean 4.4% 9 Number-range 4.4%
7 Difference-range 4.4% 9 Number—vary 4.4%
7 Difference-statistics 4.4% 10 Difference-lowest 4%
8 Deviation-mean 4% 10 Highest-lowest 4%
8 Difference-set 4% 10 Degree-number 4%
8 Difference-similarity 4% 10 Max-number 4%
8 Deviation-variation 4% 10 Number-random 4%
9 Average-deviation 3.4% 10 How far-spread 4%
9 Difference—distance 3.4% 10 Average-value 4%
9 Deviation-spread 3.4%
9 Mean-statistics 3.4%
9 Numbers-statistics 3.4%
9 Deviation—variability 3.4%
10 Difference-divergence 2.3%
10 Different-inconsistent 2.3%
10 Range-spread 2.3%
10 Different-variety 2.3%
3.1.2. Procedure
Deviation from the Mean Pairwise Distance Studies 2a and 2b had the same general structure. After providing consent,
participants were informed that the study was concerned with intuitive
Py 6 I i perceptions of variance. The experiment consisted of a familiarization phase
0—¢ k4 and a test phase. In the familiarization phase, participants were presented with

the following text: “One way to think about variance is that it reflects the
-2- accuracy when guessing numbers that are randomly drawn from a set of
numbers. Imagine that after seeing a set of numbers, five numbers are
randomly drawn from this set one after another and you are asked to guess

41 each number. The HIGHER the variance of a set is, the HIGHER will be the
average error of your 5 guesses.” A graphical illustration accompanied this text
Range Variety (see the Supplementary Mater.ial fc.>r detaills). Participants Yvere then §hown two
sequences of numbers, one with high variance and one with low variance. The
$ level of variance corresponded to the high/low variance levels that participants
0 d—F—4—= observed in the subsequent test phase (but with a different mean).

The test phase consisted of 12 trials. The sets of numbers presented in each
trial were randomly drawn from a particular distribution; for some trials in Study
2a and all trials in Study 2b, the maximum and minimum number were added
to that set of numbers (having the minimum and maximum in a sequence

-4 ensured that the range could be set to a particular value). The numbers of
these quasi-random sets of values were presented sequentially to participants
with a rate of 600 ms per number (cf. Goldstein & Rothschild, 2014).

[N}
oA
-
——

Estimated regression coefficient

> c - > c -
o E & é %g ) o E & .é % g & The distributions used in the studies were designed to vary in their mean,
3’ g 8 Shc g g) CIEJ 8 St c g statistical variance, range, sample size, and variety. While independent
5 3 = 8 I= 5 3 = (0_6 I= variation in mean and sample size was easily achieved, this was more
Z W uw - Z W w - challenging for statistical variance, range, and variety. The design was guided
Fi - - . . . by the creation of pairs of trials that contrasted different factors. There were
ig. 2. Results of the binomial logistic Bayesian regression analysis in . . . . .
Study 1. Each panel presents the results of a different model, using the one and three pairs of trials contrasting the mean in Studies 2a and 2b,
respective concept of variance as the dependent variable; in each model, respectively. In both studies, one pair of trials contrasted the sample size; three
the value of the independent variable equaled 1 if the corresponding and two different sample sizes were used in different trials in Studies 2a and
concept was mentioned in a given respondent’s definition of variance and 2b, respectively. Because it was harder to isolate statistical variance, range,
0 otherwise. The error bars denote the 95% highest density interval and variety, we next created distributions in which the predictions of the two
(HDIsy,) for each estimated regression coefficient. Estimates whose factors in a pair of trials would either go in opposite directions or in the same
HDlosy, do not include O are printed in solid red. (For interpretation of the direction. For instance, in one pair of trials, the distribution of one trial had a

references to color in this figure legend, the reader is referred to the web

) R higher variety than the distribution of the other trial but a lower variance (see
version of this article.)

Trial 3 and 4 in Study 2a and Trials 10 and 11 in Study 2b; Tables S1 and S2 in
Supplemental Materials for details). An example of two factors

Originally published in: Cognition, 217, Article 104906, 2021, p. 5



making the same prediction is Trials 7 and 8 in Study 2a (see Supplemental Materials), in which variety and range are both higher in Trial 8 (see also Trials 4
and 9 in Study 2b). In Study 2b, we took a more systematic approach to the design of the distributions. Specifically, we manipulated the number of distinct
outcomes (2, 3, or multiple) and the shape of the distribution (uniform, unimodal, bimodal). Manipulating the shape of the distribution creates changes in one
factor while keeping others on a similar level. For instance, a unimodal distribution has lower variance than a uniform distribution but their range and variety
are similar (e.g., Trials 2 and 11 in Study 2b). Detailed information about the distributions used in both experiments can be found in the Supplementary
Material (Tables S1 and S2). Note that although the design aims at disentangling the different factors, the factors are not perfectly orthogonal to each other
across the different trials—that is, the design is not factorial.

Directly after all numbers in a sequence had been presented, participants were asked to judge the variance of the sequence on a scale from 0 (“very low
variance”) to 100 (“very high variance“).8 Additionally, participants were asked to provide the same demographic information as in Study 1 (i.e., age group,
gender, level of education, and level of statistical knowledge).

3.2. Results

Because the factors were not perfectly orthogonal across trials, participants’ variance judgments were analyzed with a set of Bayesian mixed-effects linear
regressions, using the sample characteristics—the mean, variance, deviation from the mean, range, sample size, variety, and pairwise distance, as derived
from the samples that each participant actually observed—as fixed effects. All models included random intercepts for each participant. This approach allows
us to take into account the remaining correlation between the factors.

To assess the impact of each individual factor and determine the predictive power of each, we first estimated a set of simple regression models where each
of the factors was the only predictor. All factors except the mean were positively associated with judged variance (see the left panels in Figs. 3 and 4). In
Study 2a, the mean was unrelated to judged variance (b = 0.03, HDIy5¢, = [— 0.05, 0.11]) but was negatively related in Study 2b (b = — 0.11,HDIg5¢, =
[—0.16,—0.06]). In order to evaluate the individual factors, we determined the predictive accuracy of the simple regression models using the leave-one-out
technique, quantifying predictive accuracy as the expected log predictive density (ELPD; Vehtari, Gelman, & Gabry, 2017).2 Moreover, we estimated the
Bayesian equivalent of R?to access the performance of the models on an absolute scale.1? From the individual models, those with variety, range, and
pairwise distance were better predictors of judged variance than those with statistical variance in both studies (see the right panels in Figs. 3 and 4). The
model with variety performed best in both studies (with coefficients of b = 2.73, HDlgso, = [2.56, 2.91], ELPD = —7758.2, R?=0.473 and b=

3.13, HDlgsy, = [2.94,3.30], ELPD = —7945.9, R?=0.492 in Studies 2a and 2b, respectively), followed by the model with range (with coefficients of b =
1.92, HDlgsy, = [1.76, 2.07], ELPD = — 7866.4, R>=0.406 and b = 3, HDlgso, = [2.79, 3.22], ELPD = — 8075.3, R? = 0.423 in Studies 2a and 2b,
respectively); in Study 2b the model with range had similar predictive accuracy to the model with sample size. The model with pairwise distance was the third-
best performing model in Study 2a and the fourth-best in Study 2b (with coefficients of b = 5.58, HDlyse, = [5.07, 6.10], ELPD = — 7927.8, R> = 0.363 and
b =6.15, HDlyso, = [5.52, 6.80], ELPD = —8235.4, R? = 0.295 in Studies 2a and 2b, respectively). The model with deviation from the mean was the
second worst in terms of predictive accuracy in both studies (with coefficients of b = 4.42, HDIysy, = [3.75, 5.11], ELPD = —8063.6, R2=0.258 and b =
4.12, HDlygo, = [3.38, 4.88], ELPD = — 8350.3, R? = 0.197 in Studies 2a and 2b, respectively). The models had similar levels of R? across studies, ranging
from 0.47-0.49 for the best-performing models to 0.2-0.25 for the worst-performing models.

In a second step and in order to mutually control for the factors’ contributions in the prediction of judged variance, we estimated a set of more complex
models that contained multiple factors as predictors. With this approach it is important to be sensitive to the potential issue of multicollinearity (i.e., high
correlation between different predictors), which might lead to a trade-off between different coefficients in the parameter estimation and can increase the
uncertainty in the estimate (reflected in a very wide posterior distribution of the regression coefficients). As it turned out (see Figures S9 and S10 in the
Supplementary Material for correlograms), range was highly correlated with statistical variance (r = 0.77), pairwise distance (r = 0.78), and variety (r =
0.79) in Study 2a, and variety was highly correlated with range (r = 0.86) and sample size (r = 0.83) in Study 2b. Furthermore, statistical variance was
highly correlated with both deviation from the mean (r =0.93 and 0.95 in Studies 2a and 2b, respectively) and pairwise distance (r =0.98 and 0.95 in
Studies 2a and 2b, respectively). Based on computer simulations, McElreath (2018) concluded that multicollinearity in estimating regression coefficients is a
serious problem with intercorrelations » > .7. In light of this result, we ran separate models for predictors with intercorrelations » > .7. In total, we estimated
four models for Study 2a and six models for Study 2b."! Tables 3 and 4 show the results. In both studies, the best-performing model was the model
containing variety and pairwise distance (Model 1 in both studies); that model, however, had similar predictive accuracy to the one containing variety and
statistical variance (Model 2). Models containing range and sample size (Model 4 in Study 2a and Models 4—6 in Study 2b) performed worse that models
containing variety in both studies. For all models, the R?did not fall below 0.43 and, for the best-performing models, R? was 0.491 and 0.498 for Studies 2a
and 2b, respectively.

A comparison with the results of the simple models reported above also points to an interaction between mean and other factors: Although the mean was
unrelated (Study 2a) or negatively related (Study 2b) to judged variance in the simple models, the relationship was positive when other factors were controlled
for (in the models with multiple predictors). For sample size, there seemed to be an interaction with other factors: Although its positive relationship with judged
variance in the simple model also held when controlling for the other factors in Study 2b, in Study 2a the relationship disappeared or was negative when

8 The exact wording of the task was: “You just observed a set of numbers. Please indicate on the scale how much variance, in your view, this set has. To indicate your judgment,
please click on the respective location on the scale and adjust the bar to match your assessment.”

s Leave-one-out cross-validation is a technique in which one value of the dependent variable is removed in the estimation and then predicted by the estimated model. This procedure
is usually iterated across all values of the dependent variable and overall predictive accuracy is calculated.

10 Specifically, we use a statistic developed by Gelman, Goodrich, Gabry, and Vehtari (2019) that divides the variance of the predicted values by the variance of the predicted values

plus the expected variance of errors.

n The full model would have included all seven predictors. However, some predictors could not be included in the same model due to high intercorrelations. In both studies, we did

not run models in which statistical variance, pairwise distance, and deviation from the mean were simultaneously included. Furthermore, in Study 2a, we did not run any models that
simultaneously contained range and variety, range and statistical variance, or range and pairwise distance. This resulted in only one model that contained range (Model 4). Models
1-3 contained variety and either statistical variance, pairwise distance, or deviation from the mean. In Study 2b, we did not run models that contained variety simultaneously with
range or sample size. This resulted in models that included either variety (Models 1-3) or range and sample size (Models 3-6), and either statistical variance, pairwise distance or
deviation from the mean.
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Fig. 3. Results of the linear Bayesian regression analysis predicting people’s variance judgments based on single predictors in Study 2a.
Points on the left panel are the estimated regression coefficients of the different predictors (shown on the x axis). Error bars denote the 95%
highest density interval (HDIys,) for the estimated coefficient. Estimates whose (HDIy5,) did not include 0 are printed in solid red. The right
panel shows the predictive accuracy of every model relative to the best model at 0. The measure of predictive accuracy is expected log
predicted density (ELPD). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
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Fig. 4. Results of the linear Bayesian regression analysis predicting people’s variance judgments based on single predictors in Study 2b.
Points on the left panel are the estimated regression coefficients of the different predictors (shown on the x axis). Error bars denote the 95%
highest density interval (HDIys,) for the estimated coefficient. Estimates whose HDIy5, did not include 0 are printed in solid red. The right
panel shows the predictive accuracy of every model relative to the best model at 0. The measure of predictive accuracy is expected log
predicted density (ELPD). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

other factors were controlled for (see Model 4 in Table 3).

Taken together, the results of Studies 2a and 2b show that several of the concepts articulated by respondents in Study 1 as aspects of variance may serve as
cues when people actually judge variance. Variety, pairwise distance, and range were found, along with statistical variance, to have strong positive
associations with judgments of variance. In both studies, simple models containing variety or range as single predictors performed better than the model
containing statistical variance, which was also outperformed by the model containing pairwise distance in Study 2a. In Study 2b, the model containing
statistical variance had similar predictive accuracy to the one containing pairwise distance. The analysis of model performance indicates that variety and
pairwise distance were better predictors than the other factors. In the analysis with the more complex regression models, the model containing these two
factors was the best-performing one in both studies, but it had a similar predictive accuracy to the model containing variety and statistical variance. The
associations among mean and sample size with people’s judgments were more complex. The bivariate relationships are consistent with previous research:
Mean and sample size are negatively and positively associated with judged variance, respectively. Our analysis, however, indicates that these factors interact
with other factors.

4. Study 3: variance judgments with naturally varying stimuli
The goal of the targeted design of the stimuli used in Studies 2a and 2b was to disentangle possible determinants of judged variance. For instance, we used

distributions that had a similar range but differed in statistical variance. This approach may have resulted in somewhat
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Table 3

Model 1 Model 2 Model 3 Model 4 Results of the linear Bayesian regression analysis predicting people’s
Variety 291 2.34 2.57 variance judgments in Study 2a based on multiple predictors. The interval
[1.99,2.44] [2.12,2.54] [2.36,2.75] in the parenthesis denotes the 95% highest density interval (HDIys,,) for
Range 217 the estimated coefficient. Coefficients whose HDI450, do not contain 0 are
[1.96,2.37] in boldface. Bayesian R?, the predictive accuracy of each model (in terms
Pairwise 254 of expected log predicted density; ELPD) as well as the difference in ELPD
distance to Model 1 are reported in the last three rows.
[1.85,3.24] T o
Statistical 0.24 unrealistic stimuli: In samples drawn from some common distributions,
variance such as the normal distribution, range and variance are usually
[0.17,0.31] correlated. In Study 3 we examined whether our conclusions from Studies
Deviation 219 1.49 2a and 2b generalize to less construed value distributions. To that end, all
from samples were randomly drawn from the same normal distribution, and we
the mean [1.46,2.87] [0.71,2.25] took advarjtage of the na.tural varia’ltionl QUe to sampling error in mean,
Sample size 0.16 0.18 0.12 0.53 range, varla_nce: and variety of the |nd|V|d_uaI sa_mples to examine each
[-0.36,0.03] [-0.38,0.02] [-0.31,0.08] [-0.77, —0.31] characteristic’s influence on people’s variance judgments.
Mean 0.09 0.09 0.08 0.21
[0.03,016]  [0.03,0.16]  [0.13,027] [ 0.14,0.28] 4.1. Materials and methods
Bayesian R” 0.491 0.49 0.486 0.431 4.1.1. Participants
ELPD 77312 7732.9 7740 7830.7 We recruited 150 (39% female) participants via Prolific Academic; they
ELP_D - 1.70 8.8 99.5 received a flat fee of £ 2 as compensation. The median age group was
difference 25-34 years, the median level of education was an undergraduate
[-3.4,0] [-11.8,-6] [-115.2,-83.8]

degree, and the median level of statistical knowledge was the basics of
statistics learned at school.

4.1.2. Procedure
Study 3 had the same overall structure as Studies 2a and 2b but the test phase consisted of four rather than 12 trials. In all trials, the numbers in the sample

were drawn from a discretized normal distribution with a mean of 50 and a standard deviation of 10. Sample size was manipulated across four levels, such
that 5, 10, 15, or 20 numbers were drawn from the distribution on a given trial. The characteristics of the generating distribution were chosen such that the
samples were comparable to those used in Studies 2a and 2b (e.g., all numbers were between 20 and 80). Participants were asked to provide the same

demographic information as in the previous studies.

4.2. Results

We used the same linear Bayesian regression analysis as in Studies 2a and 2b to analyze participants’ variance judgments. First, we examined bivariate
relationships between the factors and judged variance (see Fig. 5) using simple models with a single predictor. As in the previous studies, these simple
models showed that all factors except for the mean were positively associated with judged variance; the mean did not have an effect on the judgments (b =
0.01, HDIgsy,= [—0.50, 0.49]). Based on the models’ predictive accuracy, range was the best single predictor (b = 0.93, HDlosy, = [0.78, 1.08], ELPD =
—2566.9, R? = 0.492), with deviation from the mean (b = 3.7, HDlosy, = [2.97, 4.41], ELPD = — 2590.7, R? = 0.446), pairwise distance (b = 2.49, HDI 9555
= [2.00, 2.98], ELPD = — 2592, R? = 0.444), and statistical variance (b = 0.14, HDlssy = [0.11, 0.17], ELPD = — 2596.7, R? = 0.436) in second place.

The models with variety (b = 1.11, HDIosy

[0.77, 1.46], ELPD = — 2623.1, R? = 0.378) and sample size (b = 0.69, HDlosy, = [0.44, 0.94], ELPD =

— 2629.0, R? = 0.364) performed on the similar level, but the models with these factors were clearly outperformed by the other models. The levels of R?
ranged from 0.49 for the best-performing model to 0.364 for the worst-performing one. In a second step, we ran more complex regression models that
contained multiple predictors. As shown in Figure S11 in the Supplementary Material, in Study 3 variety and sample size were highly intercorrelated (r =

0.96), and range was highly correlated with statistical variance, pairwise distance, and deviation from the mean (r =0.72, 0.71, and

Table 4

Results of the linear Bayesian regression analysis predicting people’s variance judgments in Study 2b based on multiple predictors. The interval in the parenthesis
denotes the 95% highest density interval (HD1I 9s4) for the estimated coefficients. Coefficients whose HDI 955 do not contain 0 are in boldface. Bayesian R?, the
predictive accuracy of each model (in terms of expected log predicted density; ELPD) as well as the difference in ELPD to Model 1 are reported in the last three rows.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Variety 2.94 3.04 3.08
[2.71,3.16] [2.85,3.24] [2.88,3.27]
Range 1.92 2.08 2.20
[1.52,2.31] [1.72,2.44] [1.8,2.59]
Pairwise distance 1.22 0.95
[0.54,1.88] [0.19,1.69]
Statistical variance 0.11 0.01
[0.05,0.17] [—0.09,0.06]
Deviation from 0.95 0.44
the mean [0.32,1.58] [-0.23,1.12]
Sample size 1.40 1.41 1.39
[1.13,1.69] [1.14,1.7] [1.1,1.67]
Mean 0.06 0.06 0.05 0.09 0.09 0.09
[0.01,0.1] [0.02,0.11] [0.01,0.097] [0.04,0.14] [0.04,0.14] [0.04,0.14]
Bayesian R® 0.498 0.497 0.496 0.469 0.468 0.467
ELPD 7938.9 7939.1 7941.4 7989.5 7991.7 7992.8
ELPD difference - 0.20 2.5 50.50 52.80 53.80
[-1,0.6] [-3.4,-1.6] [-62.5,38.5] [-64.9,—40.7] [-65.9,—-41.7]
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Fig. 5. Results of the linear Bayesian regression analysis predicting people’s variance judgments in Study 3 based on the single predictors.
Points on the left panel represent the estimated regression coefficients of the different predictors (shown on the x axis). The error bars
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printed in solid red. The right panel shows the predictive accuracy of every model relative to the best model at 0. The measure of predictive
accuracy is expected log predicted density (ELPD). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

0.71, respectively). Moreover, as in the previous studies, statistical variance was highly correlated with both pairwise distance (0.98) and deviation
from the mean (0.94). Overall, we estimated four models (see Table 5).12

Model 1 Model 2 Model 3 Model 4
Variety 1.09 0.06 1.11 0.89
[0.78,1.41] [-0.45,0.33]  [0.8,1.42] [0.57,1.21]
Range 0.95
[0.76,1.13]
Pairwise 2.48
distance
[2.02,2.95]
Statistical 0.14
variance
[0.11,0.16]
Deviation from 3.41
the mean
[2.69,4.12]
Mean 0.10 0.10 0.14 0.10
[-0.55,0.33] [-0.54,0.34] [-0.58,0.29] [-0.54,0.34]
Bayesian R? 0.497 0.493 0.491 0.48
ELPD 2566.6 2569.3 2570.8 2576.1
ELPD - 2.60 4,10 9.4
difference
[-9.5,4.3] [-7.7,-0.5] [-12.4,-6.4]
Table 5

Results of the linear Bayesian regression analysis predicting people’s
variance judgments in Study 3 based on multiple predictors. The interval
in the parenthesis denotes the 95% highest density interval (HDIg5%) for
the estimated coefficients. Bayesian RZ, the predictive accuracy of each
model (in terms of expected log predicted density; ELPD) and the
difference in ELPD to Model 1 are reported in the last three rows.

As in Studies 2a and 2b, the model with variety and pairwise distance as
predictors (Model 1) performed best. However, the simple model with only
range (as well as Model 2, which included both range and variety) showed
similar predictive accuracy (its ELPD was 0.3[- 6.5, 7.1] higher than that of
the model with variety and pairwise distance). Although statistical variance
and pairwise distance predicted people’s variance judgments well as single
predictors in the simple regression models, in the multiple regression
analysis the models that contained pairwise distance performed better than
those that contained statistical variance. For all models, the R? did not fall
below 0.48 and, for the best- performing model, R?was 0.497. Note that
because of the high intercorrelation between variety and sample size, the
latter was not included into any of the models we ran. Unlike in the
previous studies, the effect of variety and sample size could not be
disentangled in the regression analysis: the very high correlation meant
that the effect of variety on judged variance is confounded with the effect of
sample size in these regression models. We turn to this issue shortly.

The mean was unrelated to judged variance when other factors were
controlled for. However, because the mean was not experimentally
manipulated but instead varied across trials due to sampling error, the
differences in mean across trials were smaller than in Studies 2a and 2b: In
Study 3, 89% of the sample means were between 45 and 55.
Consequently, the differences between the majority of sample means in
Study 3 were no more than 10. In Studies 2a and 2b, by contrast, this
difference was at least 38.1 and 36, respectively.

To address the confound between variety and sample size, we conducted
additional analyses in which we plotted the association between within-
participant normalized judgments of variance and variety separately for
each level of sample size (thus holding sample size constant).'® As can be

seen in Fig. 6, in all four trials the association between the two factors was positive. This observation was supported by a mixed-effects regression
model in which we predicted judged variance based on variety and included, for each level of sample size, a separate random intercept and random
slope. In this model—consistent with the pattern in Fig. 6—variety was positively associated with judged variance: b = 1.71, HDIosy, = [0.69, 3.14].

12

1, 3, and 4 contained variety and either statistical

Because of these high intercorrelations, we did not run models that included range simultaneously with statistical variance, pairwise distance, or deviation from the mean. Models

3 We normalized the judgments within the participant in order to control for individual differences in the overall level of judgments, in parallel to the random intercepts for participants
in the mixed-effects regression models.
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In sum, like Studies 2a and 2b, the results of Study 3 show that range, pairwise distance, and variety had a strong positive association with judged variance.
Unlike in Studies 2a and 2b, however, the strongest predictor was range (rather than variety). This result may indicate that when judging variance people pay
attention to different aspects depending on context. Moreover, statistical variance was outperformed by range as a single predictor and the best-performing
model contained pairwise distance instead of statistical variance. Overall, the results of Studies 2a, 2b, and 3 demonstrate that pairwise distance, variety, and
range—identified in Study 1 as central to people’s conceptualization of variance—also predict people’s actual judgments of variance.

5. Discussion

Statistical variance is a frequently invoked concept in models of cognition to denote people’s possible sensitivity to variability of stimuli in the environment
(e.g., Markowitz, 1952; Stewart & Chater, 2002; Weber et al., 2004). To what extent does people’s intuitive concept of variance overlap with statistical
variance? If the statistical concept of variance only approximates people’s perception of variance, which features of the distribution of stimuli feed into their
intuitive concept? And, importantly, are people’s actual judgments of variance sensitive to these features?

We first elicited people’s conceptualizations of variance and conducted a co-occurrence analysis of the resulting descriptions and associations. This analysis
showed that although most people were able to spontaneously articulate a concept of variance, that concept deviated from the statistical definition. Instead, in
addition to deviation from the mean (the concept most similar to the statistical definition), three other concepts emerged as important aspects of people’s
conceptualization of variance: pairwise distance, range, and variety.

The results of three experimental studies then showed that these factors also predicted people’s judgments of variance. In all experiments, pairwise distance,
range, and variety were strong predictors of judged variance. In Studies 2a and 2b, models containing these factors as single predictors had higher predictive
accuracy than those containing statistical variance as a single predictor, and the more complex model containing both variety and pairwise distance
performed similarly to the model containing statistical variance. In Study 3, the model with variety and pairwise distance and the model containing range
performed best, and range outperformed statistical variance as a single predictor of people’s judgments of variance.

Although the general results were similar between studies, the relative importance of the factors in terms of predictive accuracy in regression models differed
between Studies 2a, 2b, and 3. A possible reason for this was the difference in the stimuli used. In Studies 2a and 2b, the numbers were generated from
distributions that differed in mean, variance, range, and variety. In Study 3, the numbers for all trials were drawn from the same normal distribution. Due to
this difference in design, variation across trials in range was much higher in Study 3 (84.02) than in Studies 2a (29.95) and 2b (20.57), whereas variation in
variety was smaller (16.57 in Study 3 relative to 19.31 and 24.5 in Studies 2a and 2b, respectively). Furthermore, range and variety were less strongly
correlated in Study 3 (r = 0.55) than in Studies 2a and 2b (r = 0.79 and 0.86, respectively). As people have been shown to pay more attention to attributes
with higher variation than to attributes with lower variation (Einhorn, Kleinmuntz, & Kleinmuntz, 1979), it is possible that the higher variation of range in Study
3 increased its salience when people constructed their variance judgments, and that the lower variation of variety decreased its salience.

Our conclusions regarding the effect of the mean on variance judgments expand on those drawn in previous studies, which had observed that variance is
judged to be lower for stimuli of larger magnitude (Lathrop, 1967; Weber et al., 2004). Consistent with these findings, our analysis of the bivariate relationship
showed a negative association between the mean and people’s judgments in Study 2b; in Study 2a and Study 3, however, the mean was unrelated to judged
variance. In addition, the multiple regression analyses suggested that the mean interacted with the other factors: Its association with judged variance was
positive when other factors were taken into account. There was no evidence for such an interaction in Study 3, but note that here the variation of the means
across the trials was smaller than in Studies 2a and 2b. One potential explanation for our results only partly replicating previous results on the impact of mean
on judged variance relates to methodological differences. In the studies by Weber et al. (2004), participants chose between a two-outcome gamble and a sure
value after experiencing each gamble’s payoff distribution through sequential sampling. The authors used gambles with highly skewed payoff distributions
(e.g., 10 with probability 0.1, 0 otherwise), meaning that the means of samples from the gambles were extremely low relative to the mean magnitude of the
outcomes people encountered (the expected value of 10 with probability 0.1, 0 otherwise, is 1). The distributions we used in our experiments, by contrast,
were symmetric, meaning that the mean value was a good representative of the outcomes people encountered. This difference in skewness might explain the
distinct effects of the mean in our experiments and in Weber et al. (2004).

Finally, we found that, when a bivariate relationship is concerned, a larger sample size was associated with high judged variance in all three studies. At the
same time, we observed an interaction effect in Study 2a, where the association between sample size and judged variance disappeared or even became
negative when other factors were accounted for. In Studies 2b and 3, the relationship remained positive. Our results are thus, to some extent, consistent with
previous studies that manipulated sample size and found that it affected judgments of variability (Konovalova & Le Mens, 2020). At the same time, they
indicate that the effect of sample size might be mediated by other factors, such as variety or range.

Our studies established that not only statistical variance but other sample characteristics such as variety, range, pairwise distance, and sample size are
important predictors of judged variance. It should be noted, however, that even here the impacts of the different factors on the perception of variance could
not be completely disentangled from each other. Furthermore, the importance of each factor seemed to vary somewhat across the studies, indicating that
variance perception might depend to some extent on the composition of the stimuli and therefore on context. Future work should investigate this potential
context dependency in variance judgments more systematically and comprehensively.

Why might pairwise distance, range, and variety be attractive cues for people judging variance in the environment? One possible answer is that they are easy
to compute. Whereas complex calculations are needed to compute statistical variance, computing range and variety is much more straightforward. To assess
range, it is merely necessary to identify and keep track of the highest and lowest numbers in a set of numbers. Similarly, to assess variety, one only needs to
keep track of the frequency of distinct elements in the sample, a task that seems to pose little cognitive cost to the mind (Alba, Chromiak, Hasher, & Attig,
1980; Hasher & Zacks, 1984; Manis, Shedler, Jonides, & Nelson, 1993). What about pairwise distance? Although it is more complex to compute than variety
or range, it may still be easier than statistical variance. One simple strategy for gauging pairwise distance that is applicable in the context of sequential
sampling is to track by how much two adjacently sampled numbers differ from each other. For example, if the number sequence is 50, 48, 52, 50, then the
differences would be — 2, 4, and — 2, which would suggest that numbers are close to each other and that the set is therefore not very variable (several
respondents in Study 1 mentioned such a strategy).

Another possible factor contributing to the psychological attractiveness of range, variety, and pairwise distance is that they may be useful cues when making
predictions in natural environments. Consider a foraging animal. Range, variety, and pairwise distance carry information that is important for its decision
which patch of land to visit.
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Range indicates the lower and upper limits of the amount of food that a patch can produce and thus implies that values outside of the range are very unlikely.
Variety refers to the number of different amounts of food that a patch can produce within those limits. This implies that new, previously unseen amounts are
unlikely. Pairwise distance refers to how closely the food amounts are to each other. If, for an observed food amount in a particular patch, the distance to
other amounts is rather large, this indicates that the food amount is rather unlikely. A fascinating issue for future research is to test the roles of range, variety,
and pairwise distance in real-world prediction tasks.

Several prominent models of decision making, ranging from risky choice (e.g., risk—return model; Markowitz, 1952; Weber et al., 2004) to categorization
(Tenenbaum & Giriffiths, 2001), rely on statistical variance to describe human behavior. To the extent that people’s judgments of variance deviate in
systematic ways from statistical variance—as we have shown in this article—and are sensitive to cognitively more achievable variables such as range and
variety, our findings suggest ways of developing psychologically more realistic models of decision making. Range and variety could be easily integrated into
these models. For pairwise distance, by contrast, some modifications may be necessary. Specifically, findings by Beach and Scopp (1968) indicate that
people weight smaller deviations more heavily than larger ones.

Finally, to the extent that decision making that involves assessments of stimulus variability is sensitive to range, variety, and pairwise distance—
characteristics that, though related, are imperfect cues to statistical variance—this also implies a novel perspective on the rationality of decision making.
Statistical variance is a prominent element in statistics. Therefore, it may seem a natural starting point to use this index of environmental variability in models
of cognition (cf. Gigerenzer, 1991). As our studies show, however, statistical variance only partly captures how people actually respond to variability in the
environment. People appear to pay attention to other sample characteristics, and might even rely on different characteristics in different contexts. This invites
a further question: How should people estimate variability in the environment? Rather than relying on one specific notion of a “rational” response to
variability—which implies a specific goal (or loss function)—future work might focus on how people construe and understand a given decision context and
adjust their reliance on ecological cues for variance judgment accordingly (Szollosi & Newell, 2020).

6. Conclusion
According to the influential notion of the mind as an intuitive statistician, people’s responses to variability of stimuli in the environment can be well described
by the notion of statistical variance. Although it has long been known that statistical variance only approximates people’s judgments of variance, there have

been few attempts to understand which indices of variability underlie people’s judgments of variance. By unpacking subjective characterizations and
assessments of variance, our findings lay the groundwork for a more cognitively rooted approach to
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variance perception.
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