Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Coherent strong-coupling of terahertz magnons and phonons in a Van der Waals antiferromagnetic insulator

MPG-Autoren
/persons/resource/persons249487

Viñas Boström,  E.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics, The Flatiron Institute;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2108.11619.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, Q., Ozerov, M., Viñas Boström, E., Cui, J., Suri, N., Jiang, Q., et al. (2021). Coherent strong-coupling of terahertz magnons and phonons in a Van der Waals antiferromagnetic insulator.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-21E9-B
Zusammenfassung
Emergent cooperative motions of individual degrees of freedom, i.e.
collective excitations, govern the low-energy response of system ground states
under external stimulations and play essential roles for understanding
many-body phenomena in low-dimensional materials. The hybridization of distinct
collective modes provides a route towards coherent manipulation of coupled
degrees of freedom and quantum phases. In magnets, strong coupling between
collective spin and lattice excitations, i.e., magnons and phonons, can lead to
coherent quasi-particle magnon polarons. Here, we report the direct observation
of a series of terahertz magnon polarons in a layered zigzag antiferromagnet
FePS3 via far-infrared (FIR) transmission measurements. The characteristic
avoided-crossing behavior is clearly seen as the magnon-phonon detuning is
continuously changed via Zeeman shift of the magnon mode. The coupling strength
g is giant, achieving 120 GHz (0.5 meV), the largest value reported so far.
Such a strong coupling leads to a large ratio of g to the resonance frequency
(g/{\omega}) of 4.5%, and a value of 29 in cooperativity
(g^2/{\gamma}_{ph}{\gamma}_{mag}). Experimental results are well reproduced by
first-principle calculations, where the strong coupling is identified to arise
from phonon-modulated anisotropic magnetic interactions due to spin-orbit
coupling. These findings establish FePS3 as an ideal testbed for exploring
hybridization-induced topological magnonics in two dimensions and the coherent
control of spin and lattice degrees of freedom in the terahertz regime.