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A recent new measurement and re-analysis of past measurements suggested an improved quenching
factor value and uncertainty for CsI[Na]. This implies a measurement of the COHERENT experiment
of coherent elastic neutrino-nucleus scattering that is closer to the Standard Model prediction and has
less uncertainty. We illustrate the impact of this improvement by revisiting fits to the Weinberg angle,
neutrino magnetic moments, neutron rms and neutrino charge radii, weak nuclear charge of the Cs
nucleus, neutrino non-standard interactions (in particular those relevant for LMA-Dark) and new
scalar as well as vector bosons. Significant improvement is observed, particularly for those scenarios
coherently affecting the electroweak SM process.

I. INTRODUCTION

Coherent elastic neutrino-nucleus scattering (CEνNS) has been predicted in 1974 [1], but not been observed before
2017 [2]. The importance of the process ranges from its ability to probe Standard Model parameters at low momen-
tum transfer [3–5], test new neutrino physics and new neutral currents in general [4, 6–25], sterile neutrino searches
[12, 20, 21, 26, 27], implications for supernova physics [28–31], dark matter searches [32–36], neutrino magnetic mo-
ments [3, 5, 12, 18, 37, 38], nuclear physics [39–42] and its connection to gravitational waves [43, 44]. The process
under discussion is taking place at energies below about 50 MeV, and given by

ν + N → ν + N . (1)

Nuclear recoil is the relevant observable. In case of COHERENT, a CsI[Na] scintillation detector was used as target.
Experimentally, the so-called Quenching Factor (QF) is of crucial importance. It denotes the energy-dependent ratio
of the scintillation signal from nuclear recoils with respect to the one from electron recoils, i.e. the ratio of recorded
energy to nuclear recoil. In the publication of the COHERENT experiment the QF-uncertainty of 18.9% dominated
the total uncertainty [2]. Recently, past measurements of the QF were revisited, and a new one was performed [45].
As a result, new (energy-dependent) values for the QF and its uncertainty were proposed. Applied to COHERENT,
the systematic uncertainty would reduce from 28% to 13.5%, and the SM-predicted rate would reduce from 173± 48
to 138 ± 19, compared to the measurement of 134 ± 22 events. As suggested in [45], physics extracted from the
measurement would significantly improve when taking into account the new QF-values and uncertainty.

We perform in this paper, as illustration of the impact of improved quenching understanding, a fit to COHERENT
data taking into account the new QF value and uncertainty. We consider several parameters that can be extracted
from CEνNS, namely the Weinberg angle, neutrino magnetic moment and charge radii, the neutron rms charge ra-
dius, neutrino non-standard interactions, as well as couplings and masses of new vector and scalar bosons mediating
CEνNS. Improvement is found, particularly for those scenarios that coherently affect the SM process.

The paper is built up as follows. In Section II we describe the data we fit and the procedure we follow. Section III
gives the fit results for parameters related to SM and new electroweak physics, namely the Weinberg angle, neutrino
magnetic moments and neutron/neutrino charge radii. Section IV deals with neutrino non-standard interactions,
Section V with parameters related to new vector or scalar bosons, before we conclude in Section VI.

II. COHERENT DATA AND FIT PROCEDURE

The neutrino source for COHERENT’s detection of coherent elastic neutrino-nucleus scattering are pions produced
from the spallation neutron source. The total number of protons on target (POT) delivered to a liquid mercury target
was Ntot

POT = 1.76× 1023 [2]. Monoenergetic muon neutrinos (νµ) at Eν = 29.9 MeV are produced from pion decay
at rest (π+ → µ+νµ), followed by a delayed beam of electron neutrinos (νe) and muon-antineutrinos (ν̄µ) produced
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subsequently by muon decay µ+ → νe e+ν̄µ. The average production rate from the pion decay chain is r = 0.08
neutrinos of each flavor per proton.

The CsI[Na] scintillator detector is located at a distance of L = 19.3 m. The fluxes are [46]

dφνµ(Eν)

dEν
=

rNpot

4πL2 δ

(
Eν −

m2
π −m2

µ

2mπ

)
,

dφνµ(Eν)

dEν
=

rNpot

4πL2
64E2

ν

m3
µ

(
Eν −

m2
π −m2

µ

2mπ

)
,

dφνe(Eν)

dEν
=

rNpot

4πL2
192E2

ν

m3
µ

(
1
2
− Eν

mµ

)
, (2)

where Npot = 5.71× 1020 are the number of protons per day. The differential cross section of CEνNS with respect to
the nuclear recoil energy T, for neutrinos with energy Eν scattered off a target nucleus (A, Z), can be written as

dσ

dT
(Eν, T) '

G2
F M
π

Q2
W

(
1− MT

2E2
ν

)
F2(q2) , (3)

where GF is the Fermi constant, M the nuclear mass, T is nuclear recoil energy, and Q2
W is the weak nuclear charge

Q2
W =

[
ZgV

p + NgV
n

]2
. (4)

Here Z is the proton number, N the neutron number (tiny contributions from the sodium dopant of the detector can
be ignored [46]), and the standard vector coupling constants are gV

p = 1/2− 2 sin2 θW , gV
n = −1/2. Finally, F(q2) is

the nuclear form factor, we use the Klein-Nystrand parametrisation [47, 48]:

F(q2) =
4πρ0

Aq3 [sin(qRA)− qRA cos(qRA)]

[
1

1 + a2q2

]
. (5)

Here q2 = 2MT is the momentum transfer in the scattering of neutrinos off the CsI nuclei, ρ0 is the normalized
nuclear density, RA = 1.2A1/3 fm is the nuclear radius and a = 0.7 fm is the range of the Yukawa potential. Following
Ref. [2] we will treat form factors entering the Cs and I cross-sections as the same.

The differential event rate, after taking into account the detection efficiency ε(T), taken from Fig. S9 in Ref. [2], of
COHERENT reads

dNνα

dT
= tN

Emax
ν∫

Emin
ν

dEν
dσ

dT
(Eν, T)

dφνα(Eν)

dEν
ε(T) , (6)

where t = 308.1 days is the run time of the experiment, N = 2mdet
MCsI

NA is the total number of target nucleons,
mdet = 14.57 kg, NA is Avogadro’s number and MCsI is the molar mass of CsI.

In the first result of COHERENT [2] the expected number of photo-electrons (p.e.) was 0.00117 p.e. (T/MeV). The
recent new measurement from Ref. [45] improves this value and moreover gives its energy dependence. We can use
the following relation between the recoil energy and number of photo-electrons:

N(p.e.) = f (T)× 0.0134 (T/MeV) ,

where f (T) is the new quenching factor whose energy dependence is given in the left panel of Fig. 1 in Ref. [45]. 1

For the acceptance function, we use Eq. (1) of Ref. [46] as recommended there:

ε(T) =
a1

1 + exp(−a2(T − T0))
Θ(T) . (7)

1 We thank the authors of Ref. [45] for providing us with the data.
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FIG. 1: The SM expected nuclear recoil energy spectrum of CEνNS for the COHERENT setup as function of the recoil energy.
The points with the vertical error bars correspond to the COHERENT data. The expected spectrum was obtained with the new
quenching factor. The old spectrum (red) has been re-scaled horizontally for comparison with the new result (green).

Here a1 = 0.6655, a2 = 494.2 MeV−1, T0 = 0.0092741 MeV and the Heaviside function reads

Θ(x) =

 0 x < 5,
0.5 5 ≤ x < 5,
1 x ≥ 6.

All results in this paper will be derived by considering the following χ2-function:

χ2 =
20

∑
i=4

[Ni
obs − Ni

exp(1 + α)− Bi(1 + β)]2

(σi)2 +

(
α

σα

)2
+

(
β

σβ

)2

. (8)

Here Ni
obs is the observed event rate in the i-th energy bin, Ni

exp is the expected event rate given in Eq. (6) integrated
over the recoiled energy corresponding to each flavor, and Bi is the estimated background event number in the i-
th energy bin extracted from Fig. S13 of Ref. [2]. The statistical uncertainty in the i-th energy bin is σi, and α, β
are the pull parameters related to the signal systematic uncertainty and the background rates. The corresponding
uncertainties of the pull parameters are σα = 0.28 (previous value [2]) 0.135 (new value [45]) and σβ = 0.25. We
calculate σα by adding the flux uncertainty (10%), neutron capture (5%), acceptance (5%), QF (25%-old and 5.1%-
new) in quadrature. The effect of the new quenching factor with the improved uncertainty on the recoiled energy
spectrum is shown in Fig. 1 in red (old) and green (new).

Note that for simplicity we do not fit the prompt νµ and the delayed νe, ν̄µ separately. In the plots that will be
presented in what follows, our best-fit value is always indicated by a black dot. The total event rate we obtained
with the above set by summing over all the energy bins are 167 (previous) and 139 (new) which are well within 1
sigma of the expected values of 173± 48 (old) and 138± 19 (new), respectively.

III. CONSTRAINTS ON ELECTROWEAK PHYSICS OF NEUTRINOS

In this section discuss the improved constraints on the Weinberg angle sin2 θW , on parameters related to possible
new electromagnetic properties of neutrinos, and on the neutron rms charge radius.
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FIG. 2: 1-dimensional ∆χ2-distributions of sin2 θW (top-left), neutrino magnetic moments (top-right) and charge radii (lower
left+right). For sin2 θW results with previous and current QF values are shown by separate curves, while for all other cases the
previous results are shown through horizontal lines at 90% C.L.

A. Evaluation of sin2 θW

Since the systematic effects are directly correlated with the electroweak physics parameters of CEνNS, any im-
provement in the quenching factor significantly affects for sin2 θW its best-fit value and uncertainty. The dependence
on the Weinberg angle enters via gV

n in Eq. (4) in the differential cross section Eq. (3). The ∆χ2-distributions of sin2 θW
with old and new systematic uncertainties are displayed in the upper left plot of Fig. 2. It is evident from the figure
that the central value of sin2 θW has significantly shifted towards a larger value. The new value from the COHERENT
data with improved systematics is now

sin2 θW = 0.248± 0.045 (1σ)± 0.074 (90% C.L.), (9)

whereas the older value with 28% systematic uncertainty is sin2 θW = 0.217+0.068
−0.051 (1σ)+0.13

−0.08 (90% C.L.). The pre-
diction of the modified MS renormalization scheme for sub-MeV momentum regime at low energy is sin2 θW =
0.23867± 0.00016 [49] at 90% C.L. The fact that COHERENT data with the original QF yields a value smaller than
the SM prediction is consistent with Refs. [12, 40, 50]. The new fit-result has an about 20% smaller error and is closer
to the SM-prediction. The error is also much more Gaussian.

B. Neutrino magnetic moments

Magnetic moments appear in the general coupling of neutrinos to the electromagnetic field strength for Majorana
(M) or Dirac (D) neutrinos

LM = −1
4

ν̄c
αL λM

αβ σµν νβL Fµν or LD = −1
2

ν̄αR λD
αβ σµν νβL Fµν . (10)
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FIG. 3: 2-dimensional ∆χ2-contour plots for various combinations of sin2 θW and magnetic moments with 68%, 90% and 99% C.L.
boundaries.

Here λX = µX − iεX , which is antisymmetric (hermitian) for Majorana (Dirac) neutrinos. Complex phases and εX

are ignored here, see Ref. [5] for a general discussion. For Majorana neutrinos, in particular, there are only transition
magnetic moments, µM

αα = 0. With unknown final state neutrino flavor no distinction between Dirac and Majorana
neutrinos is possible. We assume here for definiteness Majorana neutrinos (and will drop the superscript M from
now on) and thus are sensitive to µeα and µµβ with α = µ, τ and β = e, τ.

The contribution of a helicity-changing neutrino magnetic moment contribution adds to the helicity-conserving
SM cross-section incoherently. Therefore we can make for the case of νe the replacement Q2

W → Q2
W + Q2

mm,e, where
Q2

W is given in Eq. (4) and

Q2
mm,e =

(
παem µeα Z
2
√

2GFme

)2 ( 1
T
− 1

Eν
+

T
4E2

ν

)
8

M
(

1− MT
2E2

ν

) (11)

and analogously for νµ/ν̄µ. Here αem is the fine-structure constant, me the electron mass and µeα is the effective
neutrino magnetic moment in units of Bohr magnetons µB. The result of the fits is shown in Fig. 2 (top-right) for one
parameter at-a-time and in Fig. 3 for two-parameter fitting. In the 1-dimensional plot, the previous constraints are
shown for comparison at 90% C.L. for each case. Improvement can be clearly seen for both parameters. The new
constraints obtained from one parameter at-a-time fitting at 90% C.L. in units of µB are

−76× 10−10 < µeα/µB < 76× 10−10 , (12)

−48× 10−10 < µµβ/µB < 48× 10−10 , (13)

while the previous constraints from our analysis are −86 × 10−10 < µeα/µB < 86 × 10−10 and −57 × 10−10 <
µµβ/µB < 57× 10−10, respectively. Improvement by 13% and 20% is found for µeα and µµβ when an improved QF is
taken into account.

C. Neutrino charge radii

Massive neutrinos have an effective electromagnetic vertex ν̄ΛµνAµ with [51, 52]

Λµ(q) = γµF(q2) ' γµq2 〈r2〉
6

,

where q is the momentum transfer and F(q2) is a form factor connected to the neutrino charge radius 〈r2〉 via

〈r2〉 = 6
dFν(q2)

dq2

∣∣∣∣
q2=0

.
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FIG. 4: 2-dimensional ∆χ2-contour plots for various combinations of sin2 θW and neutrino charge radii with 68%, 90% and 99%
C.L. boundaries.

The expression in the SM [53–55] is

〈r2
αα〉SM = − GF

2
√

2π

[
3− 2 ln

(
m2

α

m2
W

)]
,

where mα is the mass of the charged lepton associated to να. Only diagonal charge radii 〈r2
αα〉 exist in the SM, while

in general also transition charge radii 〈r2
αβ〉 are possible. The former add coherently to the SM process, and we can

take their effect into account by making for incoming neutrinos of flavor α the replacement gV
p → gV

p + gV
em,α, where

gV
p is given above Eq. (4) and

gV
em,α = −

√
2παem

3GF
〈r2

αα〉 . (14)
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For the COHERENT setup, 〈r2
ee〉 and 〈r2

µµ〉 are relevant. The contribution of the flavor transition charge radii adds
incoherently to the flavor-conserving SM process. Hence we can make for νe the replacement Q2

W → Q2
W + Q2

em,e,
where Q2

em,e is given by

Q2
em,e =

(√
26παemZ

3GF
〈r2

eα〉
)2

(15)

where α = µ, τ. While the neutrino flux at COHERENT includes νµ and νµ, since the transition charge radii of
anti-neutrinos change only sign with respect to the ones for neutrinos [51], only three flavor transition charge radii
parameters are present: 〈r2

eµ〉, 〈r2
eτ〉 and 〈r2

µτ〉. However, we have realized that this in principle is correct, but since the
the weak neutral current couplings also change their signs from neutrinos to anti neutrinos under CP-transformation
which leaves the overall sign of the term gV

p + gV
em,α, unchanged. As a result, the sign changing for the neutrino charge

radii for muon anti-neutrino has no effects and we get similar χ2-distribution of 〈r2
µµ〉 and 〈r2

ee〉 as shown in the lower
left panel in fig. 2.

The results for one parameter at-a-time and two parameter fitting are shown in Figs. 2 (lower 2 panels) and 4,
respectively. In Fig. 2, the results for 28% systematic errors are shown using horizontal lines at 90% C.L. for compar-
ison. Improvement by (13-40)% is found when an improved QF is taken into account. Our 90% C.L. constraints on
the neutrino charge radii, in units of cm2, are

−48× 10−32 < 〈r2
ee〉/cm2 < 12× 10−32 ,

−44× 10−32 < 〈r2
µµ〉/cm2 < 6× 10−32 ,

−8× 10−32 < 〈r2
eµ〉/cm2 < 8× 10−32 , (16)

−18× 10−32 < 〈r2
eτ〉/cm2 < 18× 10−32 ,

−12× 10−32 < 〈r2
µτ〉/cm2 < 12× 10−32 .

D. Neutron Charge Radius and Cs weak nuclear charge

Nuclear physics parameters can be tested by coherent scattering as well. We estimate here the neutron charge
radius of CsI nuclei using the improved QF following the prescription of Ref. [39]. We use the form factor defined in
Eq. (5) both for protons and neutrons except that for neutrons we replace RA by

RA =

√
5
3
(R2

n − 6a2) ,

Here Rn is the root-mean-square (rms) neutron charge radius. Notice that all results are obtained in the approxima-
tion that the radii are the same for Cs and I.

We obtain the following best-fit values of the neutron charge radius of 133Cs and 127I

Rn = 4.6+0.9
−0.8 fm (1σ) (current), (17)

Rn = 4.9+1.1
−1.3 fm (1σ) (previous). (18)

The ∆χ2-distribution of a one-parameter fit is shown in Fig. 5. Notice that with the improved QF, there is 10%
improvement in uncertainty, the distribution becomes more Gaussian, and the best-fit value is shifted towards a
relatively lower value. Notice that the value obtained in Ref. [39] was Rn = 5.5+0.9

−1.1 fm, which is consistent within 1σ.
We note at this point that Ref. [56] appeared a few days after this work, and that in particular the best-fit point of

Rn differs considerably. We find that this can be traced mainly to our use of 17 energy bins and the Klein-Nystrand
form factor, compared to 12 bins and the Helm form factor in Ref. [56]. Indeed, repeating our fit with 12 energy bins
and the Helm form factor yields a best-fit value of Rn = 4.9 fm, compared to the value Rn = 5.0 fm in Ref. [56].

The so-called neutron skin [57] is the difference between neutron and proton charge radii. The neutron skin
influences among other things the equation of state of neutron stars [43]. For the proton radius one takes the rather
precisely known value Rp = 4.78 fm [58] to obtain

∆Rnp = Rn − Rp ' −0.18+0.9
−0.8 fm. (19)
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FIG. 5: 1-dim ∆χ2 for the neutron rms charge radius.
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FIG. 6: 1-dimensional ∆χ2-distributions of neutrino-quark NSI. Note that for εµµ the two degenerate solutions are now excluded
at more than 3.5σ with the improved QF.

While the new best-fit value is now in better agreement with the predicted values of different models, which are in
the regime 0.1 to 0.2 fm [57], the uncertainty is still large.

Using the method described in Ref. [50], we can also calculate the electroweak nuclear charge of Caesium, whose
value from our analysis is now

QCs
W = −72.2+1.4

−1.2 (1σ) (current), (20)

QCs
W = −72.6+1.9

−2.0 (1σ) (previous). (21)
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IV. NEUTRINO NON-STANDARD INTERACTIONS

Non-Standard Interactions (NSI) of neutrinos are among the most often considered candidates for new neutrino
physics [59, 60]. Motivated by their effects in neutrino oscillations one typically considers vector-like NSI in the form
of dimension-6 operators:

−LNSI =
√

8 GF ε
f
αβ

(
ν̄Lαγµνβ

) (
f̄ γµ f

)
. (22)

The dimensionless parameters fulfill ε
f
αβ = ε

f ∗
βα. For our purposes we need to consider f = u, d and can distinguish

flavor-diagonal (FD) and flavor-changing (FC) NSI. The FD case is treated in Eq. (4) by making the replacement
Q2

W → Q2
W,αα, while for the FC case we use Q2

W → Q2
W + Q2

W,αβ:

Q2
W,αα =

[
Z(gV

p + 2εu
αα + εd

αα) + N(gV
n + 2εd

αα + εu
αα)
]2

, (23)

Q2
W,αβ = ∑

β 6=α

∣∣∣Z(2εu
αβ + εd

αβ) + N(2εd
αβ + εu

αβ)
∣∣∣2 . (24)

Ignoring phases we explicitly write out the coupling factors for α = e and µ:

Q2
W,ee =

[
Z(gV

p + 2εu
ee + εd

ee) + N(gV
n + 2εd

ee + εu
ee)
]2

,

Q2
W,µµ =

[
Z(gV

p + 2εu
µµ + εd

µµ) + N(gV
n + 2εd

µµ + εu
µµ)
]2

,

Q2
W,eβ =

[
Z(2εu

eβ + εd
eβ) + N(2εd

eβ + εu
eβ)
]2

(β = µ, τ) ,

Q2
W,µβ =

[
Z(2εu

µβ + εd
µβ) + N(2εd

µβ + εu
µβ)
]2

(β = µ, τ) ,

where summation over β in the last two lines is understood.
The results of one parameter at-a-time fits for the NSI parameters are shown in Fig. 6. The bounds at 90% C.L. are

FD : −0.12 < εu
ee < 0.52, −0.11 < εd

ee < 0.47, −0.07 < εu
µµ < 0.47, −0.06 < εd

µµ < 0.42 ,

FC : −0.25 < εu
eβ < 0.25, −0.23 < εd

eβ < 0.23, −0.18 < εu
µβ < 0.18, −0.16 < εd

µβ < 0.16 .

Of particular interest is a set of parameter values that would allow the LMA-Dark solution [61] with a solar neutrino
mixing angle sin2 θ12 > π/4. It would correspond to large and negative εee − εµµ = −O(1). One such case is
displayed in Fig. 7, compared to our fit results. A full analysis to quantify the degree with which LMA-Dark is ruled
out would require fitting COHERENT data together with neutrino oscillation experiments as done in Ref. [9], and
as shown there the LMA-Dark solution caused by effective operators is ruled out by COHERENT (with the previous
QF) at 3σ. Here we simply take the LMA-Dark allowed parameter values and compare with our fit. One can see
from Fig. 7 that the boundaries from our two-parameter fitting exclude the LMA-Dark solution at about 90% C.L. (at
2.1 σ) for the previous data (left figure), while for the new QF the exclusion occurs at more than 99% C.L. (3.1 σ).

V. NEW NEUTRAL CURRENTS FROM VECTOR AND SCALAR MEDIATORS

New neutral vector and scalar mediators may couple to neutrinos and quarks, thereby generating new neutral cur-
rents. We can write [62]

Lvec = gZ′ (ν̄LγµνL + q̄γµq) Z′µ , (25)

Lsca = gφ (ν̄RνL + q̄q) φ + h.c. (26)

For the vector case we restrict ourselves to the simplest scenario of coupling only to the left-handed SM neutrinos.
We also assume all couplings to be universal. Apart from the couplings gZ′ ,φ we also have the masses MZ′ ,φ as new
parameters.
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FIG. 7: 2-dimensional ∆χ2-contour regions of NSI parameters relevant for LMA-Dark, whose parameters have been overlaid on
the COHERENT results.

We can take new vector bosons into account by replacing the SM couplings constants in Eq. (4) as (gV
p , gV

n ) →
(gV

p + g̃V , gV
n + g̃V), where

g̃V =
3g2

V

2
√

2GF(q2 + M2
Z′
)

. (27)

The scalar contribution, in turn, is added to the cross-section incoherently via the replacement Q2
W → Q2

W + Q2
sca,

where

Q2
sca =

(
g2

φ(14N + 15.1Z)

2
√

2G f Eν(q2 + M2
φ)

)2
2MT(

1− MT
2E2

ν

) . (28)

We take here vector and scalar weak charges in Eq. (27) and (28) from calculations given in Ref. [62]. For COHERENT
with 28% (previous) and 13.5% (current) systematic uncertainties, we show the results both for the vector and scalar
masses versus the coupling constants in Fig. 8.

Improvement can be seen from the plots, and in the vector case the degeneracy region [10] (when 3g2
V/M2

Z′ =

−GF4
√

2(ZgV
p + NgV

n )/(Z + N)) shrinks down further, but does of course not wash out completely.

VI. CONCLUSIONS

Coherent elastic neutrino-nucleus scattering is an exciting new window to neutrino and neutral current physics.
We investigated the effect of an improved quenching factor knowledge applied to COHERENT’s measurement of
the process. Several Standard Model and beyond the Standard Model parameters were considered. Improvement
is found for all parameters, demonstrating again that the process is a powerful new handle to test many scenarios.
Future measurements with higher statistics will further cement this.

Note added: When this paper was finalized, Ref. [63] appeared, which also uses the new QF measurement to probe
several parameters in and beyond the Standard Model, although with a single-bin analysis while we do the full
spectral analysis. Their results results agree with the relevant parts of this work except a few cases where different
approaches were adopted.
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FIG. 8: 2-dimensional ∆χ2-contour plots at 90% C.L. for vector and scalar mediator masses and couplings with 28% (left-panels)
and 13.5% systematic errors (right-panel) at 90% C.L.

Acknowledgments

We thank Grayson Rich and Juan Collar for useful discussions and sharing the COHERENT data. WR was supported
by the DFG with grant RO 2516/7-1 in the Heisenberg program. AK is supported by the Alexander von Humboldt
foundation. AK is thankful to Evgeny Akhmedov, Carlo Giunti and Douglas McKay for useful discussions.

[1] D. Z. Freedman, Phys. Rev. D9, 1389 (1974).
[2] D. Akimov et al. (COHERENT), Science 357, 1123 (2017), arXiv:1708.01294 [nucl-ex] .
[3] K. Scholberg, Phys. Rev. D73, 033005 (2006), arXiv:hep-ex/0511042 [hep-ex] .
[4] M. Lindner, W. Rodejohann, and X.-J. Xu, JHEP 03, 097 (2017), arXiv:1612.04150 [hep-ph] .
[5] O. G. Miranda, D. K. Papoulias, M. Tortola, and J. W. F. Valle, JHEP 07, 103 (2019), arXiv:1905.03750 [hep-ph] .
[6] J. Barranco, O. G. Miranda, and T. I. Rashba, JHEP 12, 021 (2005), arXiv:hep-ph/0508299 [hep-ph] .
[7] B. Dutta, R. Mahapatra, L. E. Strigari, and J. W. Walker, Phys. Rev. D93, 013015 (2016), arXiv:1508.07981 [hep-ph] .
[8] J. B. Dent, B. Dutta, S. Liao, J. L. Newstead, L. E. Strigari, and J. W. Walker, Phys. Rev. D96, 095007 (2017), arXiv:1612.06350

[hep-ph] .
[9] P. Coloma, M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, Phys. Rev. D96, 115007 (2017), arXiv:1708.02899 [hep-ph] .

[10] J. Liao and D. Marfatia, Phys. Lett. B775, 54 (2017), arXiv:1708.04255 [hep-ph] .

http://dx.doi.org/10.1103/PhysRevD.9.1389
http://dx.doi.org/10.1126/science.aao0990
http://arxiv.org/abs/1708.01294
http://dx.doi.org/10.1103/PhysRevD.73.033005
http://arxiv.org/abs/hep-ex/0511042
http://dx.doi.org/10.1007/JHEP03(2017)097
http://arxiv.org/abs/1612.04150
http://dx.doi.org/10.1007/JHEP07(2019)103
http://arxiv.org/abs/1905.03750
http://dx.doi.org/10.1088/1126-6708/2005/12/021
http://arxiv.org/abs/hep-ph/0508299
http://dx.doi.org/10.1103/PhysRevD.93.013015
http://arxiv.org/abs/1508.07981
http://dx.doi.org/ 10.1103/PhysRevD.96.095007
http://arxiv.org/abs/1612.06350
http://arxiv.org/abs/1612.06350
http://dx.doi.org/10.1103/PhysRevD.96.115007
http://arxiv.org/abs/1708.02899
http://dx.doi.org/10.1016/j.physletb.2017.10.046
http://arxiv.org/abs/1708.04255


12

[11] J. B. Dent, B. Dutta, S. Liao, J. L. Newstead, L. E. Strigari, and J. W. Walker, Phys. Rev. D97, 035009 (2018), arXiv:1711.03521
[hep-ph] .

[12] D. K. Papoulias and T. S. Kosmas, Phys. Rev. D97, 033003 (2018), arXiv:1711.09773 [hep-ph] .
[13] Y. Farzan, M. Lindner, W. Rodejohann, and X.-J. Xu, JHEP 05, 066 (2018), arXiv:1802.05171 [hep-ph] .
[14] M. Abdullah, J. B. Dent, B. Dutta, G. L. Kane, S. Liao, and L. E. Strigari, Phys. Rev. D98, 015005 (2018), arXiv:1803.01224

[hep-ph] .
[15] M. Bauer, P. Foldenauer, and J. Jaeckel, JHEP 07, 094 (2018), arXiv:1803.05466 [hep-ph] .
[16] J. Heeck, M. Lindner, W. Rodejohann, and S. Vogl, SciPost Phys. 6, 038 (2019), arXiv:1812.04067 [hep-ph] .
[17] P. B. Denton, Y. Farzan, and I. M. Shoemaker, JHEP 07, 037 (2018), arXiv:1804.03660 [hep-ph] .
[18] J. Billard, J. Johnston, and B. J. Kavanagh, JCAP 1811, 016 (2018), arXiv:1805.01798 [hep-ph] .
[19] W. Altmannshofer, M. Tammaro, and J. Zupan, (2018), arXiv:1812.02778 [hep-ph] .
[20] D. Aristizabal Sierra, J. Liao, and D. Marfatia, JHEP 06, 141 (2019), arXiv:1902.07398 [hep-ph] .
[21] O. G. Miranda, G. Sanchez Garcia, and O. Sanders, (2019), arXiv:1902.09036 [hep-ph] .
[22] B. Dutta, S. Liao, S. Sinha, and L. E. Strigari, (2019), arXiv:1903.10666 [hep-ph] .
[23] D. Aristizabal Sierra, V. De Romeri, and N. Rojas, (2019), arXiv:1906.01156 [hep-ph] .
[24] I. Bischer and W. Rodejohann, (2019), arXiv:1905.08699 [hep-ph] .
[25] G. Arcadi, M. Lindner, J. Martins, and F. S. Queiroz, (2019), arXiv:1906.04755 [hep-ph] .
[26] A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, C. Ignarra, G. Karagiorgi, K. Scholberg, M. H. Shaevitz, and J. Spitz,

Phys. Rev. D86, 013004 (2012), arXiv:1201.3805 [hep-ph] .
[27] B. Dutta, Y. Gao, R. Mahapatra, N. Mirabolfathi, L. E. Strigari, and J. W. Walker, Phys. Rev. D94, 093002 (2016),

arXiv:1511.02834 [hep-ph] .
[28] D. Z. Freedman, D. N. Schramm, and D. L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27, 167 (1977).
[29] T. Melson and H. T. Janka, (2019), arXiv:1904.01699 [astro-ph.HE] .
[30] N. Raj, V. Takhistov, and S. J. Witte, (2019), arXiv:1905.09283 [hep-ph] .
[31] N. Raj, (2019), arXiv:1907.05533 [hep-ph] .
[32] P. deNiverville, M. Pospelov, and A. Ritz, Phys. Rev. D92, 095005 (2015), arXiv:1505.07805 [hep-ph] .
[33] S.-F. Ge and I. M. Shoemaker, JHEP 11, 066 (2018), arXiv:1710.10889 [hep-ph] .
[34] V. Brdar, W. Rodejohann, and X.-J. Xu, JHEP 12, 024 (2018), arXiv:1810.03626 [hep-ph] .
[35] B. Dutta, D. Kim, S. Liao, J.-C. Park, S. Shin, and L. E. Strigari, (2019), arXiv:1906.10745 [hep-ph] .
[36] W. Chao, J.-G. Jiang, X. Wang, and X.-Y. Zhang, (2019), arXiv:1904.11214 [hep-ph] .
[37] A. C. Dodd, E. Papageorgiu, and S. Ranfone, Phys. Lett. B266, 434 (1991).
[38] T. S. Kosmas, O. G. Miranda, D. K. Papoulias, M. Tortola, and J. W. F. Valle, Phys. Rev. D92, 013011 (2015), arXiv:1505.03202

[hep-ph] .
[39] M. Cadeddu, C. Giunti, Y. F. Li, and Y. Y. Zhang, Phys. Rev. Lett. 120, 072501 (2018), arXiv:1710.02730 [hep-ph] .
[40] X.-R. Huang and L.-W. Chen, (2019), arXiv:1902.07625 [hep-ph] .
[41] D. K. Papoulias, T. S. Kosmas, R. Sahu, V. K. B. Kota, and M. Hota, (2019), arXiv:1903.03722 [hep-ph] .
[42] E. Ciuffoli, J. Evslin, Q. Fu, and J. Tang, Phys. Rev. D97, 113003 (2018), arXiv:1801.02166 [physics.ins-det] .
[43] G. Hagen et al., Nature Phys. 12, 186 (2015), arXiv:1509.07169 [nucl-th] .
[44] J.-B. Wei, J.-J. Lu, G. F. Burgio, Z. H. Li, and H. J. Schulze, (2019), arXiv:1907.08761 [nucl-th] .
[45] J. I. Collar, A. R. L. Kavner, and C. M. Lewis, (2019), arXiv:1907.04828 [nucl-ex] .
[46] D. Akimov et al. (COHERENT), (2018), 10.5281/zenodo.1228631, arXiv:1804.09459 [nucl-ex] .
[47] S. Klein and J. Nystrand, Phys. Rev. C60, 014903 (1999), arXiv:hep-ph/9902259 [hep-ph] .
[48] J. Engel, Phys. Lett. B264, 114 (1991).
[49] J. Erler and M. J. Ramsey-Musolf, Phys. Rev. D72, 073003 (2005), arXiv:hep-ph/0409169 [hep-ph] .
[50] M. Cadeddu and F. Dordei, Phys. Rev. D99, 033010 (2019), arXiv:1808.10202 [hep-ph] .
[51] C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015), arXiv:1403.6344 [hep-ph] .
[52] M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D98, 113010 (2018),

arXiv:1810.05606 [hep-ph] .
[53] J. Bernabeu, L. G. Cabral-Rosetti, J. Papavassiliou, and J. Vidal, Phys. Rev. D62, 113012 (2000), arXiv:hep-ph/0008114 [hep-

ph] .
[54] J. Bernabeu, J. Papavassiliou, and J. Vidal, Phys. Rev. Lett. 89, 101802 (2002), [Erratum: Phys. Rev. Lett.89,229902(2002)],

arXiv:hep-ph/0206015 [hep-ph] .
[55] J. Bernabeu, J. Papavassiliou, and J. Vidal, Nucl. Phys. B680, 450 (2004), arXiv:hep-ph/0210055 [hep-ph] .
[56] M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, and Y. Y. Zhang, (2019), arXiv:1908.06045 [hep-ph] .
[57] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels, Phys. Rev. C63, 025501 (2001), arXiv:nucl-th/9912038 [nucl-th] .
[58] G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. de Jager, Atom. Data Nucl. Data

Tabl. 60, 177 (1995).
[59] Y. Farzan and M. Tortola, Front.in Phys. 6, 10 (2018), arXiv:1710.09360 [hep-ph] .
[60] P. S. Bhupal Dev et al., in NTN Workshop on Neutrino Non-Standard Interactions St Louis, MO, USA, May 29-31, 2019 (2019)

arXiv:1907.00991 [hep-ph] .
[61] O. G. Miranda, M. A. Tortola, and J. W. F. Valle, JHEP 10, 008 (2006), arXiv:hep-ph/0406280 [hep-ph] .
[62] D. G. Cerdeo, M. Fairbairn, T. Jubb, P. A. N. Machado, A. C. Vincent, and C. Bhm, JHEP 05, 118 (2016), [Erratum:

JHEP09,048(2016)], arXiv:1604.01025 [hep-ph] .
[63] D. K. Papoulias, (2019), arXiv:1907.11644 [hep-ph] .

http://dx.doi.org/ 10.1103/PhysRevD.97.035009
http://arxiv.org/abs/1711.03521
http://arxiv.org/abs/1711.03521
http://dx.doi.org/10.1103/PhysRevD.97.033003
http://arxiv.org/abs/1711.09773
http://dx.doi.org/10.1007/JHEP05(2018)066
http://arxiv.org/abs/1802.05171
http://dx.doi.org/ 10.1103/PhysRevD.98.015005
http://arxiv.org/abs/1803.01224
http://arxiv.org/abs/1803.01224
http://dx.doi.org/10.1007/JHEP07(2018)094
http://arxiv.org/abs/1803.05466
http://dx.doi.org/ 10.21468/SciPostPhys.6.3.038
http://arxiv.org/abs/1812.04067
http://dx.doi.org/10.1007/JHEP07(2018)037
http://arxiv.org/abs/1804.03660
http://dx.doi.org/10.1088/1475-7516/2018/11/016
http://arxiv.org/abs/1805.01798
http://arxiv.org/abs/1812.02778
http://dx.doi.org/10.1007/JHEP06(2019)141
http://arxiv.org/abs/1902.07398
http://arxiv.org/abs/1902.09036
http://arxiv.org/abs/1903.10666
http://arxiv.org/abs/1906.01156
http://arxiv.org/abs/1905.08699
http://arxiv.org/abs/1906.04755
http://dx.doi.org/ 10.1103/PhysRevD.86.013004
http://arxiv.org/abs/1201.3805
http://dx.doi.org/ 10.1103/PhysRevD.94.093002
http://arxiv.org/abs/1511.02834
http://dx.doi.org/10.1146/annurev.ns.27.120177.001123
http://arxiv.org/abs/1904.01699
http://arxiv.org/abs/1905.09283
http://arxiv.org/abs/1907.05533
http://dx.doi.org/10.1103/PhysRevD.92.095005
http://arxiv.org/abs/1505.07805
http://dx.doi.org/10.1007/JHEP11(2018)066
http://arxiv.org/abs/1710.10889
http://dx.doi.org/10.1007/JHEP12(2018)024
http://arxiv.org/abs/1810.03626
http://arxiv.org/abs/1906.10745
http://arxiv.org/abs/1904.11214
http://dx.doi.org/10.1016/0370-2693(91)91064-3
http://dx.doi.org/ 10.1103/PhysRevD.92.013011
http://arxiv.org/abs/1505.03202
http://arxiv.org/abs/1505.03202
http://dx.doi.org/ 10.1103/PhysRevLett.120.072501
http://arxiv.org/abs/1710.02730
http://arxiv.org/abs/1902.07625
http://arxiv.org/abs/1903.03722
http://dx.doi.org/ 10.1103/PhysRevD.97.113003
http://arxiv.org/abs/1801.02166
http://dx.doi.org/10.1038/nphys3529
http://arxiv.org/abs/1509.07169
http://arxiv.org/abs/1907.08761
http://arxiv.org/abs/1907.04828
http://dx.doi.org/10.5281/zenodo.1228631
http://arxiv.org/abs/1804.09459
http://dx.doi.org/10.1103/PhysRevC.60.014903
http://arxiv.org/abs/hep-ph/9902259
http://dx.doi.org/10.1016/0370-2693(91)90712-Y
http://dx.doi.org/10.1103/PhysRevD.72.073003
http://arxiv.org/abs/hep-ph/0409169
http://dx.doi.org/10.1103/PhysRevD.99.033010
http://arxiv.org/abs/1808.10202
http://dx.doi.org/10.1103/RevModPhys.87.531
http://arxiv.org/abs/1403.6344
http://dx.doi.org/ 10.1103/PhysRevD.98.113010
http://arxiv.org/abs/1810.05606
http://dx.doi.org/10.1103/PhysRevD.62.113012
http://arxiv.org/abs/hep-ph/0008114
http://arxiv.org/abs/hep-ph/0008114
http://dx.doi.org/10.1103/PhysRevLett.89.101802, 10.1103/PhysRevLett.89.229902
http://arxiv.org/abs/hep-ph/0206015
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.025
http://arxiv.org/abs/hep-ph/0210055
http://arxiv.org/abs/1908.06045
http://dx.doi.org/10.1103/PhysRevC.63.025501
http://arxiv.org/abs/nucl-th/9912038
http://dx.doi.org/ 10.1006/adnd.1995.1007
http://dx.doi.org/ 10.1006/adnd.1995.1007
http://dx.doi.org/10.3389/fphy.2018.00010
http://arxiv.org/abs/1710.09360
http://lss.fnal.gov/archive/2019/conf/fermilab-conf-19-299-t.pdf
http://arxiv.org/abs/1907.00991
http://dx.doi.org/10.1088/1126-6708/2006/10/008
http://arxiv.org/abs/hep-ph/0406280
http://dx.doi.org/ 10.1007/JHEP09(2016)048, 10.1007/JHEP05(2016)118
http://arxiv.org/abs/1604.01025
http://arxiv.org/abs/1907.11644

	I Introduction
	II COHERENT Data and Fit Procedure
	III Constraints on electroweak physics of neutrinos
	A Evaluation of sin2W
	B  Neutrino magnetic moments
	C Neutrino charge radii
	D Neutron Charge Radius and Cs weak nuclear charge

	IV Neutrino Non-Standard Interactions
	V New Neutral Currents from Vector and Scalar Mediators
	VI Conclusions
	 Acknowledgments
	 References

