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1 Computational methods

1.1 Real time time-dependent density tigth-binding

We have used the DFTB+ package (1), an implementation of the DFTB method, to

obtain the GS Hamiltonian (HGS) and overlap matrix (S). Using the HGS and the S

matrix, we computed the the initial GS reduced single-electron density matrix (ρ).

The mio-1-1 DFTB parameters set was employed to obtain the electronic structure

of all the structures presented in this work. In order to describe the electronic

dynamics of the systems under study we need to extend the DFTB method to the

time-domain (TD-DFTB). On the basis of a real-time propagation of ρ under the

influence of a time-varying external field, we can obtain excited-state properties

of the systems. This propagation is achieved through the numerical integration of

the Liouville-von Neumann equation of motion in the non-orthogonal basis:

ρ̇ = −i(S−1Hρ− ρHS−1).

For more details on the theoretical method and its computational implementation,

please refer to Bonafé et al. (2). By applying a perturbation in the shape of a

Dirac delta to the Hamiltonian, within the linear response regime, we can obtain

the absorption spectra of the sytems as follows. The dipole moment is given by:

µ(t) =

∫ ∞
0

α(t− τ)E(τ)dτ,

where α(t − τ) is the polarizability along the axis over which the external field

E(τ) is applied. After the deconvolution of the applied electric field, the frequency
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dependent polarizability α can be obtained:

α(ω) =
µ(ω)

E(ω)

The imaginary part of the polarizability is proportional to the Absorption spec-

trum.

For the study of the charge transfer processes, electron dynamics were trig-

gered by the application of a continuous laser-type (sinusoidal) perturbation in

tune with the excitation energy of interest.
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1.2 Derivation of the adapted Gersten-Nitzan model

Let A and B be two coupled point-dipoles, as depicted in Figure 3 (a) of the

main manuscript. They are separated in the x direction by a distance RAB. Both

systems are coupled to an external time-dependent electric field ~Eext(t), which can

have any polarization direction within the (x, y) plane. Moreover, both systems

are affected by the dipolar electric field generated by the other system. In other

words, being ~EA and ~EB the effective electric fields acting on both systems,

~EA(t) = ~Eext(t) + ~EBA(~RA, t)

~EB(t) = ~Eext(t) + ~EAB(~RB, t)

where ~EBA and ~EAB are the electric field generated by B acting on A, and the

one generated by A acting on B, respectively, defined as:

~EBA(RA, t) =

∫ t

−∞
χ̃B(~RA, t, t

′) ~Eext(t
′)dt′ (1)

~EAB(RB, t) =

∫ t

−∞
χ̃A(~RB, t, t

′) ~Eext(t
′)dt′ (2)

Here, χ̃ is a dipole-field response function that is such that when multiplied

by the external field and integrated yields the local dipole electric field generated

by the system. It has a connection with the dipole susceptibility, which will be

explored below. We start with the formula for the electric field of a perfect dipole,

and being ~µI be the dipole moment of system I:
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~EBA =
1

4πε0

3(~µB · R̂BA)R̂BA − ~µB
R3
BA

(3)

As usual, ~RBA = ~RA − ~RB. By construction of the model, ~RBA = −RABx̂,

which means R̂BA = −x̂; and ~RAB = RABx̂, ergo R̂AB = x̂. By inserting the

position vectors into eq. 3, we get:

~EBA =
1

4πε0

2µBxx̂− µBy ŷ

R3
AB

(4)

Now, by definition of the dipole response function χ, and neglecting image

field effects,

~µB(t) = ~µ0
B +

∫ t

−∞
χB(t, t′) ~Eext(t

′)dt′ (5)

Inserting 5 into 4:

~EBA =

∫ t

−∞

1

4πε0R3
AB

(
2 0
0 −1

)
· χB(t, t′) · ~Eext(t

′)dt′ (6)

which by comparison with 1, allows us to define χ̃ for system B:

χ̃B =
1

4πε0R3
AB

(
2 0
0 −1

)
χB(t, t′) (7)

As everything is symmetric under the exchange of labels A→ B and B → A,

we get now for ~EAB and χ̃A the following:
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~EAB =

∫ t

−∞

1

4πε0R3
AB

(
2 0
0 −1

)
χA(t, t′) · ~Eext(t

′))dt′ (8)

χ̃A =
1

4πε0R3
AB

(
2 0
0 −1

)
χA(t, t′) (9)

Our goal is to get the polarizability of the combined system under the effect of

the external field and of the dipolar field induced in the neighbour system, using

as inputs the polarizabilities of the isolated systems. Then, we need to calculate

both terms of the total dipole ~µ(t) = ~µA(t) + ~µB(t). Starting with ~µA(t), we have

the the external field and the induced dipolar field terms:

~µA(t) =

∫ t

−∞
dt′χA(t, t′) ~Eext(t

′) +

∫ t

−∞

∫ t′

−∞
dt′dt′′χA(t, t′)DχB(t′, t′′) ~Eext(t

′′)

(10)

where D := 1
4πε0R3

AB

(
2 0
0 −1

)
is the geometrical factor. Calculating the

Fourier transform of 10:

~µA(ω) = [αA(ω) + αA(ω)DαB(ω)] ~E(ω) (11)

And equivalently for B:

~µB(ω) = [αB(ω) + αB(ω)DαA(ω)] ~E(ω) (12)

These expressions suggest a natural definition of an effective polarizability,

which can be written as:
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αeff,A = αA(ω) + αA(ω)DαB(ω) (13)

αeff,B = αB(ω) + αB(ω)DαA(ω) (14)

Which is the formula used to calculate the polarizability components shown

in Figure 3 of the main manuscript.

7



2 Figs. S1 to S6

0 1 2 3
Energy (eV)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

OD
 (a

bs
 u

ni
ts

)

46-AGNR (platform)

Fig. S1. Absorption spectrum of 46-AGNR.

The figure shows the absorption spectrum of the 46 atom width Armchair graphene

nanoribbon (46-AGNR) used as the platform in the van der Waals molecular het-

erostructure presented in this work.
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Fig. S2 Coverage absorption dependency. Absorption spectrum of different

sublayers of TDI molecules on top of the ribbon platform. As a reference, in blue

is plotted the same monolayer spectrum as in the manuscript (6 TDI molecules in

the unit cell).
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Fig. S3. Individual polarizabilities for system 1a. (A) In-plane and out-of-

plane polarizabilities for the platform. (B) In-plane and out-of-plane polarizabili-

ties for the monolayer of TDI.
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Fig. S4. Charge transfer ∆q(t) of the platform for different field strengths

as obtained from the dynamical simulations.

11



0.0

0.1

0.2

0.3

0.4

0.5

En
er

gy
 (e

V)

1.78 eV

Z G Z

1.06

1.05

1.04

1.03

1.02

1.01

1.00

En
er

gy
 (e

V)

Fig. S5. Detail of Fig. 2c showing the band structure and populations for

excitation at 1.78 in the energy regions corresponding to the HOMO and LUMO

orbitals of the monolayer. Red (blue) circles denote the increase (decrease) of

electron occupation and the circle size is proportional to the change of population.
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Fig. S6. Photoresponse shown as interlayer current as a function of laser

intensity. Currents where obtained from the stationary state (linear) portion of the

time dependent charge shown in Figure S4.
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