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Abstract

Angle-resolved photoelectron spectroscopy is an extremely powerful probe of materials to access

the occupied electronic structure with energy and momentum resolution. However, it remains blind

to those dynamic states above the Fermi level that determine technologically relevant transport

properties. In this work, we extend band structure mapping into the unoccupied states and across

the entire Brillouin zone by using a state-of-the-art high repetition rate, extreme ultraviolet fem-

tosecond light source to probe optically excited samples. The wide-ranging applicability and power

of this approach are demonstrated by measurements on the 2D semiconductor WSe2, where the

energy-momentum dispersion of valence and conduction bands are observed in a single experiment.

This provides a direct momentum-resolved view not only on the complete out-of-equilibrium band

gap but also on its renormalization induced by electron-hole interaction and screening. Our work

establishes a new benchmark for measuring the band structure of materials, with direct access to

the energy-momentum dispersion of the excited-state spectral function.

Functionality in electronic and optoelectronic devices is based on the control of the flow

of charge carriers under out-of-equilibrium conditions. At the microscopic level, charge

transport and device operation rely upon generating non-equilibrium electron distributions

controlled by external fields to achieve the desired electronic response. The propagation of

electrons in a crystal and the evolution of their energy distributions are governed by the

details of the electronic structure as well as the efficiency of elastic and inelastic scattering

processes.

Time-resolved ARPES (trARPES) addresses this problem by observing the spectral func-

tion of a material after excitation via a femtosecond optical pulse [1]. The momentum-

resolved distribution of excited states combined with the dynamical information on state

lifetimes provides a powerful view into excited solids [2], extending the scope of ARPES and

allowing to observe out-of-equilibrium electronic properties which can be used to extract

the electronic coupling with phonons and other degrees of freedom [3, 4]. Ultimately, un-

derstanding matter out-of-equilibrium is mandatory for achieving optical control in complex

materials [5]. TrARPES can resolve states unoccupied at equilibrium, and has been used

to reveal the unoccupied band structure of topological materials [6], to measure optically-

∗ michele.puppin@epfl.ch
† ernstorfer@fhi-berlin.mpg.de

2

mailto:michele.puppin@epfl.ch
mailto:ernstorfer@fhi-berlin.mpg.de


dressed states [7], to observe spin-valley polarizations in the conduction band of transition

metal dichalcogenide semiconductors [8] and has enabled the direct observation of excitons

[2, 9, 10].

An important open question is how band properties extracted from the trARPES spectral

function in the excited state compare with conventional steady-state experiments, e.g. optical

spectroscopy or ARPES. A common expectation is that a comparison is possible in the weak

excitation limit [11] where trARPES experiment become very challenging, particularly when

accessing the full Brillouin zone (BZ) of the investigated material. This is beyond the reach

of most trARPES experiments, which are performed at ultraviolet (UV) photon energies.

Extending these experiments to the extreme-ultraviolet (XUV) photon energy range and

correspondingly to high photoelectron momenta covering the whole BZ, while retaining a

comparable signal-to-noise ratio and weak excitation densities have been challenging until

the recent development of suitable high-repetition-rate XUV sources [11–15].

In this work, we employ a state-of-the-art experimental setup [12] to simultaneously de-

termine the energy of conduction states (unoccupied at equilibrium) and valence states.

This allows us to address the band gap, one of the fundamental opto-electronic proper-

ties, by mapping in reciprocal space both valence and conduction bands of 2H-WSe2, a

two-dimensional transition metal dichalcogenide (TMD) semiconductor widely studied for

excitonic and spin-valleytronic applications [16–18].

The conduction band population is probed with a 21.7 eV XUV pulse following photoex-

citation by a 3.1 eV pulse, with a temporal resolution better than 100 fs. Excited-state

ARPES measurements are performed before energy relaxation to the conduction band min-

imum and reveal the energy versus momentum dispersion of valence and conduction states

in a single experiment. We then study the excited-state band gap and its renormalization

due to many-body effects and demonstrate that in the low-excitation limit the trARPES

gap agrees with the band gap measured by other spectroscopies and predicted by theory.

This validates excited-state band structure mapping as a generally applicable method to

measure, with momentum resolution, the conduction states of materials.

To better understand the difference and similarities between ARPES and trARPES, we

shortly review the two experimental approaches. In an ARPES experiment, a photon with

energy hν excites a single-crystalline sample, and the kinetic energy E of photoelectrons is

measured along a wavevector direction k. If photoionization is treated as a sudden process,
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the photoemission intensity can be approximated as [19]:

I(k, E) = I0(k, E)A−(k, E)fµ,T (E). (1)

Equation 1, which for simplicity neglects the experimentally finite angular and energy

resolution, as well as charge transport at the surface, links the ARPES spectrum I(k, E)

to the underlying electronic structure via three factors. The one-electron-removal spec-

tral function, A−(k, E), contains the information about the quasi-particle band structure

and many-body interactions. The spectral weight is modulated by a matrix element term

I0(k, E), which depends on initial and final state symmetry and wave vectors, as well as

photon energy (hν) and polarization, and the experimental geometry [20, 21]. Thirdly, the

Fermi-Dirac distribution fµ,T (E) imposes that only states populated at the temperature T

can contribute to the measured spectrum, setting a limit to the highest accessible energy

to few kBT above the chemical potential µ. The matrix element term is vanishing unless

momentum conservation parallel to the sample’s surface is fulfilled by the escaping photo-

electron, allowing to link the measured photoelectron angular distribution I(k, E) to the

quasi-particle bands in reciprocal space, as illustrated in Fig. 1 a). Parallel momentum

(k‖) conservation, together with energy conservation, imposes that typically only energetic

photons in the XUV range can access the whole BZ [22]. As an example, photons with an

energy of ≈ 20 eV are necessary to measure the first BZ boundary of WSe2, as indicated by

the violet dashed line in Fig. 1 a). In our experiment photoelectron spectra are collected

with a hemispherical energy analyser (HEA) which measures kinetic energy (EK) and angle

of emission along the entrance slit (Fig. 1 b), this corresponds to a line-cut throughout

the function I(k, E) (full green lines in Fig. 1 a). Band mapping is achieved by angular

scanning of the sample (green arrows in Fig. 1 a) and b) across the analyser slit. The multi-

dimensional function I(k, E) is constructed from different images and data can be displayed

as constant energy cuts or as energy versus momentum plots, as shown in Fig. 1 a) where

a horizontal constant energy cut close to the valence band maximum and a vertical energy

versus momentum dispersion across the BZ are plotted. It is worth noting the alternative

approach of momentum microscopy, in which the whole accessible photoemission space is

collected at the same time [23]. A detailed comparison between the two methods reveals

that an HEA ensures higher counting statistics when acquiring data along a specific direc-

tion [24], whereas the fixed geometry provided by momentum microscopy is suitable for the
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study of the symmetry-dependent matrix element I0(k, E) [21].

A time-resolved ARPES experiment accesses an excited state of the material by perform-

ing an ARPES experiment at a well-defined temporal delay t following a femtosecond optical

pump pulse (1 b). The trARPES spectrum Ĩ(k, E, t) thereby measures the (quasi)-electron-

removal spectrum as a function of this time delay:

Ĩ(k, E, t) = Ĩ0(k, E, t)Ã−(k, E, t)f̃(k, E, t). (2)

Here eq. 1 is modified to include the explicit time dependence of each term. The op-

tical excitation produces not only an out-of-equilibrium electronic distribution f̃ , but also

perturbs the many-body interactions in the spectral term Ã−. The matrix element term

Ĩ0 can become a time-dependent quantity if the symmetry of the initial or final states is

modified [25]. We follow the convention that for t > 0 the pump excitation occurs before

photoemission: recovery of equilibrium requires that Ĩ(k, E, t)
t→+∞−−−−→ I(k, E).

As illustrated in Fig. 1 b, trARPES provide access to states unoccupied at equilibrium.

This can be understood as a two-step process, where, in a first step the femtosecond pump

pulse creates an optical polarization in allowed momentum and energy regions, correspond-

ing to vertical optical transitions in the material (∆k = 0) [26]. In a second step, microscopic

scattering events within a few hundred femtoseconds redistribute electronic population to

multiple states across the conduction band (CB) (Fig. 1 a). Electrons relax their excess en-

ergy via multiple electron-phonon scattering events towards the band edges and accumulate

at the CB minima on time scales typically shorter than a few picoseconds. By measuring

the photoelectron energy and angular distribution before significant energy relaxation to the

lattice has occurred, the information encoded in Ã− can be revealed in a range E < µ+hνp,

where hνp is the pump photon energy.

Excited-state band mapping of unoccupied states is particularly demanding and strongly

benefits from high repetition rate (> 100 kHz) XUV sources. First, a sufficiently short XUV

pulse is fundamental for accessing the out-of-equilibrium state before its decay throughout

the BZ. In addition, space charge effects, which are inherent in ARPES with short XUV

pulses, are mitigated in high repetition rate experiments [27]. Furthermore, the higher the

pump excitation energy density, the stronger many-body interactions modify the function

Ĩ(k, E, t) relative to the equilibrium case. trARPES experiments at high-repetition rates

benefit from higher counting statistics and hence data can be acquired at weaker perturbation

5



Optical 
Pump

Co
nd

uc
tio

n 
ba

nd

k-space map boundary, 20 eV

O
cc

up
ie

d 
St

at
es

U
no

cc
up

ie
d 

st
at

es

EF

Energy

Momentum

BAND STRUCTURE
 MAPPING

EXCITED-STATE
BAND STRUCTURE MAPPING

Ultrafast scattering

Time

XUV probe e-

XUV probe

e-

b) d)

a)

XUV probe
21.7 eV

e-

Pump 
3.1 eV

Θ

e-

Conduction band

Angular scan

2H:WSe2

HEA

k||

EK

e)

E=-0.6 eV

-1.5

-0.5

0.5

1.5

ICB (arb.u)

IVB (arb.u.)

kx (Å
-1)

-1.0

1.0

ky (Å
-1)

0.0

5

4

3

2

1

4

3

2

1

0
E=1.6 eV

E=2 eV

Slit k||

-0.8 -0.4 0.0

-50 fs

0.10.0

-0.8 -0.4 0.0

100 fs

0.20.0

4.0

3.2

2.4

1.6

0.8

E 
(e

V)

-0.8 -0.4 0.0

1 ps

1.00.50.0

k|| k||

Γ

M
K ∑

Γ∑Γ∑ Γ∑

c)

t

Γ

∑
K

M

FIG. 1. a) Band structure mapping in reciprocal space by angle-resolved photoelectron spec-

troscopy (ARPES). The reciprocal space region measured by the hemispherical energy analyser

(HEA) for two sample tilt angles is indicated by a green line, the maximum parallel momentum

which can be accessed by 20 eV photons is indicated by a violet dashed line. b) trARPES experi-

ments on 2H-WSe2: an optical pump pulse at an energy of 3.1 eV excites the system. At a delay

t, an XUV probe pulse at an energy of 21.7 eV generates photoelectrons, which are measured as a

function of the emission angle θ with a HEA. The sample angle is scanned across the analyser slit

to collect ARPES maps. c) Excited-state band structure mapping d) trARPES data collected in

the conduction band of WSe2 for pump-probe delays of -50 fs, 100 fs and 1 ps. Inset: the surface

Brillouin zone of WSe2. e) Photoelectron intensity distribution as a function of parallel momentum

for three energies at a pump-probe delay of 100 fs; VB and CB energy distribution curves have been

independently intensity normalized for better visualization. The experimental data is collected in

a region delimited by the dashed line. Outside this region, the results of G0W0 calculations are

displayed, the theoretical bands dispersion along the kz direction was integrated; the conduction

bands was rigidly offset by a scissor operator to match the experimental energy.

strength.

To meet the simultaneous requirements of an ultrashort XUV source with a high repeti-

tion rate, in this work we generate probe pulses by high-harmonic generation with an optical

parametric chirped pulse amplifier operating at 500 kHz [28]. This results in XUV pulses

6



at an energy of 21.7 eV and with characteristic time-bandwidth product of approximately

20 fs×110 meV [12], which are temporally short enough to access the excited states before

significant carrier energy relaxation has occurred and, at the same time, have an energy

bandwidth sufficiently narrow to resolve the excited-state energy features. trARPES ex-

periments were performed on single-crystalline samples of bulk WSe2, cleaved in ultra-high

vacuum conditions. The material was excited by a pump pulse with a photon energy of

3.1 eV and at an excitation energy density of 40 µJ/cm2.

To illustrate the ability of trARPES to visualize states which are unoccupied at equilib-

rium, we show in Fig. 1 d) energy versus momentum data collected in an energy window

in the conduction band (CB) along the high symmetry direction Γ-K. Three selected time

delays (-50 fs, 100 fs and 1 ps) are plotted side by side. The surface BZ of WSe2, with the

high symmetry points marked, is shown as an inset of Fig. 1 d). During the rising edge of

the pump pulse (-50 fs), the CB signal is localized at -0.35 Å−1 from the BZ center (Γ point).

This suggests that in this region population is transferred via an optical transition at the

photon energy of 3.1 eV, rather than indirectly by scattering. The intensity of this feature as

a function of time was used as a measure of the pump-probe temporal cross-correlation and

the temporal maximum was used to define the time zero. The full-width at half maximum of

the cross-correlation is 95 fs, dominated by the pump pulse duration [29]. Throughout this

work, the zero energy was set for convenience to the valence band energy at the K point,

the corner of the hexagonal BZ.

At a time delay of 100 fs, population can be observed throughout the conduction states,

up to at an energy ≈ 2.5 eV (Fig. 1 d), central panel). This delay was selected to perform

the excited-state band structure mapping. Relaxation towards the Σ conduction band valley

minimum is indeed already apparent at a delay of 1 ps (Fig. 1 d), right panel).

An energy window from -1.5 to 3.5 eV was selected to observe simultaneously valence

and conduction bands around the band gap, which is a unique feature of trARPES. Three

exemplary constant energy cuts of the data at t = 100 fs are shown in Fig. 1 e), which display

in false colours the photoelectron intensity distribution as a function of parallel momentum

for energies of -0.6 eV in the valence band (VB), 1.6 eV and 2 eV in the conduction band

(CB). The measurement region is indicated by a dashed line and comprises the whole first

BZ of WSe2. Two different false color scales are used for conduction and valence states;

energy distribution curves were normalized independently in the CB and VB for a clearer

7



display of the constant energy maps [29].

To rationalize the experimental data we perform ab initio density functional theory (DFT)

calculations of the electronic band structure using the generalised gradient approximation

with the PBE functional, as implemented in the QUANTUM ESPRESSO package [30]. To

improve the agreement with experimental data, we use many-body perturbation theory at

the one-shot G0W0 level [31, 32] on top of DFT results [29]. This computes quasiparticle

energies, correcting to lowest order the unscreened electronic Green’s function G0 by the

Coulomb interaction W0. The quasi-particle energy dispersion is calculated as a function

of the three-dimensional wave-vector (kx,ky,kz). For a direct comparison with data in Fig.

1 d), the theoretical bands are integrated along the reciprocal space direction orthogonal

to the sample surface (kz). This choice is justified by the strong surface sensitivity of

XUV-based photoemission due to the short mean-free-path of photoelectrons. Electron

momentum conservation is relaxed for the kz component, adding an additional source of

energy broadening for bands with dispersion out of the surface plane. There is strong

evidence that in WSe2 the photoemission probing depth at 21.7 eV is mostly limited to

the uppermost layer (≈ 0.5 nm), in fact, inversion-symmetric WSe2 surprisingly exhibits

strong spin-polarized bands [33] and valley polarization in circularly-pumped tr-ARPES [8].

The importance of final state effects in the material is evidenced by one-step photoemission

calculations [21], and will be discussed further below.

The experimental data contains the excited-state CB and VB energy-momentum disper-

sion for arbitrary reciprocal space directions, which can be compared with our ab initio

calculations and with other experiments. For this purpose, energy versus momentum photo-

electron distributions are plotted along three high-symmetry directions Γ-Σ-K, K-M , M -Γ

in Fig. 2 and compared with the results of the calculations. The theoretical kz disper-

sion is indicated by a shading, highlighting two-dimensional (low kz dispersion) and three-

dimensional states. The experimental photoelectron intensity is plotted without additional

normalization, and intensity modulations are attributable to the momentum dependent ma-

trix element. The average intensity of the conduction band signal is a factor 10−3 that of the

valence states, and we use two distinct false color scales for conduction and valence states,

respectively.

The zero energy reference is set to the highest energy VB at the K point also for the

theoretical data, to minimize any alignment uncertainty due to kz dispersion. The theoretical
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FIG. 2. Measured ARPES intensity as a function of energy and parallel momentum showing the

VB and CB along the Γ-Σ-K, K-M , M -Γ directions, indicated in the upper panel. Conduction

band states are displayed by a different color scale. Blue and red curves indicate the quasiparticle

energies calculated with the G0W0 method for the CB and VB, respectively. The theoretical band

structure energy zero was set to the VB position at the K point, the CBs (blue) were rigidly shifted

by a -0.16 eV scissor operator to match the Σ valley center energy. The momentum dispersion

along the kz direction is indicated by the shaded area.

conduction states were rigidly shifted by -160 meV to match the measured CB energy at

the K point, both in Fig. 1 d) and in Fig. 2.

Theory predicts two valence and two conduction bands in the observed energy window,

as all calculated bands are spin-degenerate, consistent with the inversion-symmetric bulk

crystal structure of 2H-WSe2. The spin-orbit splitting of the VB band at the K point is

≈ 500 meV, in good agreement with past literature [34–36]. Despite being a layered quasi-

2D material, WSe2 displays some inherently three-dimensional features. In particular, the
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Σ valley, as well as the valence band at the Γ point, have considerable kz dispersion. In

contrast, the out-of-plane band dispersion is low in the vicinity of the K point, as confirmed

by energetically-narrower features in ARPES. Our G0W0 calculations predict an orthogonal

momentum dispersion on the order of 40 meV for the VB and 30 meV for the CB at the K

point. Calculations place the indirect band gap between the maximum of the VB at the Γ

point and the Σ valley. In our data the conduction band minimum (CBM) is unambiguously

located at the Σ point, however the apparent valence band maximum (VBM) is observed at

the K point, and a broad continuum of states is observed at the Γ point. It is widely accepted

that the absolute VB maximum is located at the Γ point and that matrix element effects

cancel the contribution of the upper VB at Γ [33, 34]. After the rigid offset of -160 meV

mentioned above, the G0W0 calculations are in qualitative agreement with the excited-state

band structure and reproduce the main features of the experimental conduction band.

For a quantitative comparison, the quasi-particle energy must be determined from the

ARPES intensity. Final state effects usually complicate the retrieval of quasi-particle ener-

gies and of many-body effects in the spectral function. However, the problem is absent in a

strictly two-dimensional state (dispersion only along k‖ = (kx, ky)) [37]. Both valence and

conduction states at the direct optical band gap at the K point are quasi-two-dimensional,

enabling for robust comparison of the experimental excited-state band gap with theory and

other experimental techniques.

The CB and VB energies are extracted from the experimental data by a fit of the energy

distribution curve (EDC) at the K point, for t = 100 fs. The procedure is illustrated in

Fig. 3 a), the photoelectron spectrum of the VB is well fitted by two Gaussian peaks, and

by a Shirley background. The two, nearly-degenerate conduction bands predicted by theory

are not resolved within the experimental line width, and a single Gaussian peak describes

well the CB signal. Due to its higher intensity, the higher energy tail of the VB spectrum

appears as a background on the CB, and is modeled by an exponential decay. We define

the experimental band gap as the distance between the uppermost VB peak position (E=0

by definition) to the center of the CB peak, as highlighted by the red line in Fig. 3 a) and

we measure a band gap of 1.76±0.01 eV. We note that this procedure, valid for quasi-2D

bands, differs from the method adopted for three-dimensional semiconductors, where the

band edge is found by linear extrapolation of the photoelectron spectral edge [38].

The excited-state quasi-particle energy, an out-of-equilibrium quantity, can change as a
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function of the excitation energy density [39]. To investigate the impact on the band gap,

we follow its evolution for increasing incident optical energy density up to 200 µJ/cm2 and

observe a decrease of the band gap (Fig. 3 b). The maximum effect is ≈ 50 meV, with a

linear slope of 1.8 × 10−1 meV/(µJ/cm2); the extrapolated limit at zero excitation density

is 1.76±0.03 eV.

It is interesting to compare this experimental band gap, which we call the excited-state

band gap Eg,exc, with ab-initio calculations and other experimental techniques. Several ex-

periments have been designed to resolve the electronic structure above the chemical potential

[40]. Inverse photoemission [41], scanning tunneling spectroscopy [42], and very low-energy

electron diffraction [43] access unoccupied conduction states by adding an electron to the

system and probing the complementary one-electron-addition spectral function A+(k, E)

[44]. Angle-resolved inverse photoemission (ARIPES), in particular, has momentum resolu-

tion [40]. Unfortunately, due to the small cross-section of the process and, unlike ARPES,

due to the lack of parallel detectors with multiple angular and energy channels, ARIPES has

not evolved to a similarly widespread technique [41]. Another approach can used in pho-

toemission to observe otherwise unoccupied states, namely sample doping by alkali metal

atoms [35, 45]. A limitation of alkali doping is the possibility of chemical modification to

the band structure [35]. Additionally, resonant inelastic X-ray scattering techniques have
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also been used to map the dispersion of unoccupied states [46, 47]. The direct gap at the K

point for WSe2 from various methods is displayed in table I.

Method Band gap (eV) Reference

ARPES+ARIPES 1.7, 1.4 [34],[48]

ARPES+Doping 1.62 [45]

trARPES 1.76 This work

Optics, A-exciton 1.697∗, 1.60, 1.626 [49], [50], [51]

Optics, Interband 1.752∗, 1.686 [49], [51]

EELS, A-exciton 1.75 [52]

DFT 1.25, 1.17-1.55 This work, [53–57]

G0W0 1.90, 1.75, 2.08‡ This work, [58], [59]

BSE, A-exciton 1.86‡ [59]

BSE, Interband 2.02‡ [59]

TABLE I. Comparison between experimental (upper part) and theoretical band gap of WSe2 (lower

part) at the K point (direct band gap) . ∗Measured at 77 K, at room temperature the gap is reduced

by ≈60 meV [51] . ‡ bilayer WSe2.

The fundamental or quasiparticle band gap Eg,f is usually defined as the difference be-

tween the electron affinity, i.e. the energy gained by adding a single electron to an N electron

system, and the ionization energy, needed to remove an electron leaving N-1 electrons be-

hind [60]. The quasiparticle gap should not be confused with the so-called optical band gap,

which will be discussed later on. The so-called transport band gap, determined by electrical

transport measurements, coincides with the fundamental band gap, however, in the case of

semiconductors such as bulk WSe2, possessing an indirect band gap and multiple conduction

band valleys, momentum-resolved techniques provide a more complete picture. In view of

comparison with optical spectroscopy, we restrict here to the case of the direct band gap and

we more loosely consider the band gap as a momentum-dependent quantity, which attains its

minimum at the direct fundamental band gap. Experimentally, the momentum-dependent

quasiparticle band gap can be measured by comparing the VB measured by photoemission

(N-1 electron final state) with the CB measured by inverse photoemission (N+1 electrons
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final state). This procedure is schematized in Fig. 3 c) and necessitates a common energy

reference between the two experimental setups. In particular, the direct fundamental gap of

WSe2 at the K point was experimentally measured to be Eexp
g,f = 1.7± 0.1 eV by combining

ARPES and ARIPES [34].

When comparing the experimental gap with theoretical results, an important question is

to what extent one is allowed to compare ab initio calculations such as DFT with energies

determined by (time-resolved) photoelectron spectroscopy. DFT computes the ground state

electronic density and returns a set of self-consistent Kohn-Sham (KS) bands [61]. Even in

an idealized case where the exact density functional is known, a direct comparison between

the KS bands and the ARPES measurements is not justified [62]. Nonetheless in many

cases, within a constant energy offset, the KS bands are in good agreement with ARPES

data of the valence band. For WSe2, in particular, DFT bands reproduce reasonably well

the ARPES VB energy dispersion [33, 34, 36, 63]. However, if Eg,f is directly calculated

from the KS bands, theory grossly underestimates the band gap. Before applying the G0W0

correction, our calculations predict a gap value of 1.25 eV, in line with other DFT results,

reported in table I. This well-known band-gap problem is intrinsic to DFT [64], and is a

reminder that KS energies are indeed not quasi-particle energies. Conversely, Hedin’s GW

method [32, 65] can be used to calculate quasiparticle excitations in a solid, such as measured

in ARPES (electron removal) or ARIPES (electron addition). GW calculations correct the

DFT energies by an approximate electronic self-energy, typically performed to the lowest

order (G0W0). We find a considerable improvement in the calculated fundamental gap and

obtain a value EGW
g,f = 1.90 eV, in line with previous calculations [58].

A second commonly defined band gap is the so-called optical band gap Eg,o, which cor-

responds to the lowest energy required for a vertical (∆k = 0) electronic transition in the

system (Fig. 3 c). This is a neutral excitation where both the initial and final states have

N electrons, in contrast with the case of the fundamental gap, which is calculated as the

energy difference between an N+1 and an N-1 electrons state. The optical band gap is ex-

perimentally measured by optical absorption spectroscopy. A remarkable feature in optical

absorption spectra is the appearance of excitonic resonances at energies below the onset of

electronic interband transitions. The observation of an excitonic peak is the hallmark of the

electron-hole interaction, and its center energy defines the optical band gap. To predict the

optical band gap one must solve the Bethe-Salpeter equation [66]. In the optical absorption
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spectra of bulk WSe2 the so-called A exciton is the lowest resonance at an energy of 1.68 eV,

the exciton binding energy Ex was determined to be 50 meV, and the inter-band transition

has an energy 1.73 eV [49]. This sets the scale for the electron-hole interaction in bulk TMD

semiconductors, and one expects Eg,o ≈ Eg,f − Ex.

In the excited-state band gap measurement (Fig. 3 d), a neutral optical excitation is

followed by an ionization step at time t, leading to a N-1 electron excited final state with an

additional hole in the VB, which is generated for t=0 and is followed by a relaxation dynamics

for t > 0. The band gap is measured by comparing the kinetic energy of photoelectrons

originating from the CB and the VB. Generally speaking, Eg,exc(t) is a time-dependent

quantity influenced by many-body effects, and can be renormalized by electron-electron

interactions, leading to screening and excitonic effects, and by the electron-phonon coupling

with the (non-thermal) phonon distribution.

Our data shows that in the low excitation limit, Eg,exc(100 fs) is in good numerical agree-

ment with the fundamental band gap determined by other experiments. Furthermore, we

observe no signatures of the A excitonic peak at the K point, which appears in optical mea-

surements at a lower energy of ≈ 1.62 eV [49–51]. A deviation from the single-quasiparticle

picture is expected when electron and hole are bound to form excitons [67–69] and photoelec-

tron spectra bear the signature of such interactions as a renormalized energy and momentum

dispersion [2, 70]. The agreement with the theoretical G0W0 bands in the present case can

be rationalized by the fact that the pump photon energy is well above the gap and suffi-

ciently off-resonance to approximate the initial (t ≈ 0) carrier distribution as an electron-hole

plasma, where exciton quasi-particles are not formed [26]. In bulk WSe2 the formation of

stable A excitons at the K point is hindered by the possibility of electron (hole) scattering

to the Σ point (Γ point), which are the global band energy edges. However, if instead the

excitation energy is resonant with the excitonic peak observed by optics, excitonic effects

can be observed [2].

We note that G0W0 calculations overestimate the band gap observed in our out-of-

equilibrium experiment by ≈ 160 meV. However, the agreement with the observed band

dispersion is still satisfactory upon a rigid shift of the conduction bands to lower photon

energies, suggesting that a single-quasiparticle picture holds well for the excited-state band

structure in first approximation. Band gap renormalization is expected to occur due to

carrier screening and via electron-phonon coupling [39, 71, 72]. Time-resolved diffraction
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studies reveal that a non-equilibrium phonon distribution rises on the time scale of a few

picoseconds [73]. At a pump-probe delay of 100 fs, where our data was collected, a signifi-

cant hot phonon population has not yet developed and we conclude that electronic screening

must dominate in band structure mapping experiments and we attribute to this effect the

observed band gap reduction at higher excitation densities (Fig. 3 b)).
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FIG. 4. a) Conduction band center energy at the K valley, b) G0W0 energy of the K valley

c) Dispersion along the directions K-Σ (negative x-axis) and K-M (positive x-axis). The full line

indicates the result of parabolic fits to the data.

Having established that the excited-state band gap well approximates the fundamental

band gap in our experimental conditions, we now extract the momentum-resolved energy

dispersion contained in the experimental maps for the whole 2D K valley. The K valley

energy is shown in Fig. 4 a) and for comparison we plot the theoretical dispersion of the

lowest CB in Fig. 4 b). The three-fold symmetry of the valley is evident from the data

and the anisotropy of the K valley can be quantified by extracting the dispersion along

the high-symmetry directions K-Σ and K-M, indicated in Fig. 4 b). For this purpose, we

employ the previously described fitting procedure to EDCs surrounding the K valley. The

band dispersion of both conduction and valence bands was estimated by fitting a parabola

in a range of 0.15 Å−1, as illustrated in Fig. 4 c) for the case of the CB. We obtain a

value of mKΣ
e = 0.38m0 (mKΣ

h = −0.52m0 ) and mKM
e = 0.55m0 (mKM

h = −0.56m0 )

for the CB (VB) in the directions K-Σ and K-M, respectively, where m0 is the electron

mass. The experimental dispersion is somewhat smaller than effective masses reported for

DFT, mh = −0.625m0 and me = 0.821m0 [74]. Calculated effective masses from DFT

depend strongly on computational details and also on the computational band gap [75],

15



larger theoretical masses might be therefore linked to the underestimation of the gap in the

aforementioned work.

By observing hole and electron quasi-particle independently, one can calculate effective

(M = me+mh) and reduced (µr = memh/(me+mh)) exciton masses . The exciton effective

masses are MKΣ = 0.9m0 and MKM = 1.1m0, which can be compared with experimental

results from electron energy loss spectroscopy, M = 0.91m0 [52] and with optical mea-

surements under magnetic field, which report M = 0.7m0 [76]. The exciton reduced mass

determined from our data is µKΣ
r = 0.22m0 and µKMr = 0.28m0. This can be compared with

optical absorption spectroscopy data, from which µr = 0.21m0 was determined [49]. We

stress however that, despite the reasonable numerical agreement, other techniques do not

identify the hole and electron masses independently. Furthermore, band anisotropy along

different symmetry directions can be readily identified and accounted for within the excited-

stated band structure. This is particularly relevant for example in valleytronic applications

in hetero-layers where energy-degenerate valleys appear at different momentum locations

[77]. The detailed effects of layer stacking on the momentum dispersion and on the optical

and transport properties is as yet poorly understood and can be directly characterized by

excited-state band structure mapping.

The possibility of visualizing the excited-state band structure by trARPES is demon-

strated for the TMD WSe2. The experiment provides simultaneous access to valence and

conduction states throughout the BZ thereby completely mapping the material’s band gap.

The excited-state direct gap at the K point agrees in the low-excitation limit with funda-

mental quasi-particle gap, as obtained by static experiments. Our experiment shows that the

excited-state band structure agrees in the low excitation limit with the single-quasiparticle

bands and we obtain experimentally conduction and valence band dispersion for the K point

for various high symmetry directions. Thanks to XUV light sources at high repetition rate ,

we anticipate that the measurement of the excited-state band structure in the whole BZ can

be performed for a broad class of samples. G0W0 calculations provide a good qualitative

description of the data but predict the experimental out-of-equilibrium band gap only within

160 meV. Excite-state band structure mapping can provide an experimental benchmark to

quantitatively fine tune computations, e.g. to accurately predict the band gap in high-

throughput computational material discovery for optoelectronic applications [57, 78]. Au-

tomated methods for comparison with theory, demonstrated for multi-dimensional ARPES
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data [79], are applicable also to excited-state band structure data. Importantly, the method

could also provide access to unoccupied states of quantum materials, to resolve topological

features above the Fermi level [6], and for correlated materials, e.g. to access the spectral

function of unoccupied states in strongly correlated oxides and charge density wave materials

[80–82].

ACKNOWLEDGMENTS

This work was funded by the Max-Planck-Gesellschaft, by the German Research Foun-

dation (DFG) within the Emmy Noether program (Grant No. RE 3977/1), and grants

FOR1700 (project E5), SPP2244 (project 443366970) and from the European Research

Council, Grant Numbers ERC-2015-CoG-682843. M.P. acknowledge financial support by the

Swiss National Science Foundation (SNSF) Grant No. CRSK-2 196756. C.W.N. and C.M.

acknowledge financial support by the Swiss National Science Foundation (SNSF) Grant No.

P00P2 170597. A.R. and H.H acknowledge financial support from the European Research

Council (Grant ERC-2015-AdG-694097) and the Cluster of Excellence CUI:Advanced Imag-

ing of Matter of the Deutsche Forschungsgemeinschaft (Grant EXC 2056 Project 390715994).

I. EXPERIMENTAL METHODS

Commercial WSe2 single crystals where prepared by exfoliation in-situ under UHV con-

ditions. The base pressure during the experiments was below 1×10−10 mbar. All the ex-

periments were performed at room temperature, where no surface photovoltage or charging

effects were observed.The light source is based on a high-harmonic generation of a high-

repetition Ytterbium-based Optical parametric chirped pulse amplifier (OPCPA) [28]. The

experiments were performed in an ARPES chamber equipped with a 6-axis manipulator and

a hemispherical electron energy analyzer (Specs Phoibos 150), further details on the experi-

mental setup are described in reference [12]. The temporal time zero and pump probe cross

correlation of 95 fs were measured by fitting the rising edge of the first observable signal in

the excited-state band structure, as illustrated in Fig. 5. The second maximum observed

after 100 fs is a result of electron population scattered from other states during the energy

relaxation process.
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FIG. 5. a) ARPES intensity as a function of energy and parallel momentum showing the con-

duction states along the Γ − Σ direction at a time delay of -50 fs. The pump-probe temporal

cross correlation is determined by integrating the signal in the rectangular box. b) Temporal trace

showing the integrated intensity in the box of panel a) as function of time. Red curve, Gaussian

fit to the rising edge, the FWHM is 95 fs.

II. DATA ANALYSIS

In Fig. 1 e) of the main text, the experimental EDCs have been normalized to the same

area as a function of parallel momentum in the VB. This was chosed for reducing the impact

of matrix element in the display of constant energy map and for a clearer comparison with

the G0W0 data. The same procedure was applied to EDCs in the CB (i.e. on the data

for E>1 eV), but prior to the area normalization, an exponential background tail from the

underlying occupied states was subtracted. No normalization procedure was performed on

the data in Fig. 2, Fig. 3 and Fig. 4.

III. THEORETICAL METHODS

The electronic band structure of bulk WSe2 was computed using many-body perturbation

theory at the one-shot G0W0 level on top of DFT results. This approach has been vastly

employed in the literature for the description of the electronic properties of semiconductor

materials due to its accuracy and good agreement with experimental measurements. The

system was modelled using a hexagonal supercell with the experimenal lattice constants a

= b = 3.28 Å and c = 12.98 Å[83]. DFT calculations were performed using the generalised

gradient approximation (GGA) with the PBE functional[84]. The Brillouin zone (BZ) was
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sampled with a 9x9x9 k-point grid. We used a total of 1000 conduction bands and a 18

Ry energy cutoff for the computation of the inverse dielectric matrix. For the evaluation

of the screened and bare Coulomb parts of the self-energy operator, we used energy cutoffs

of 18 Ry and 160 Ry, respectively. Spin-orbit coupling was included directly in the DFT

calculations and perturbatively at the G0W0 level, using the BerkeleyGW package [85]. All

employed cutoff values, BZ sampling and number of bands were systematically and indepen-

dently increased until results were converged within few tens of meV for the conduction and

valence band energy difference. Finally, we performed DFT calculations using a 24x24x9

BZ sampling and interpolated linearly the 9x9x9 GW band structure into this finer k-point

grid.
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