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Atomically thin layered van der Waals heterostructures feature exotic and emergent opto-

electronic properties. With growing interest in these novel quantum materials, the micro-

scopic understanding of fundamental interfacial coupling mechanisms is of capital impor-

tance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and

momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-

WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we

find the different dominating transfer mechanisms: while electron injection from graphene

to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer,

we establish an interfacial Meitner-Auger energy transfer process following the excitation of

excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state car-

riers with a rate-equation model, we distinguish these two types of interfacial dynamics and

identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene.

Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-

Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions,

in agreement with the experimental observations. The energy transfer mechanism revealed

here might enable new hot-carrier-based device concepts with van der Waals heterostruc-

tures.

The unique physical properties of atomically thin two-dimensional (2D) materials1, 2 and con-

stantly improving fabrication methods3, 4 have lead to a great interest in novel quantum materials

based on van der Waals (vdW) heterostructures5. By stacking 2D materials, vdW heterostructures

inherit the properties from individual constituents, and exotic physical phenomena may emerge
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due to the interfacial interaction5–7. An emblematic example is the emergence of superconductiv-

ity in twisted bilayer graphene when stacked at the so-called ‘magic angle’8. As another example,

interlayer excitons, which are spatially separated yet Coulomb-bound electron-hole pairs in semi-

conducting transition metal dichalcogenide (TMDC) heterostructures allow exceptional control of

optoelectronic properties9, 10. Out of the vdW heterostructure library, a basic optoelectronic build-

ing block is a monolayer (ML) semiconducting TMDC in contact with graphene11. This hybrid

structure represents a model system as it combines the strong light-matter coupling of TMDCs

and the high mobility of massless Dirac carriers of graphene12. The gapless electronic structure

of graphene allows for harvesting low-energy photons, extending the spectral range covered by

conventional photodetectors to the near-infrared wavelength, which is highly beneficial for photo-

voltaic applications13.

Optoelectronic functionality in vdW heterostructures arises from careful design and control

of optical transitions and interfacial transfer processes. Particularly, interfacial charge (ICT) and

energy transfer (IET) are key processes which have triggered extensive experimental and theo-

retical efforts14–17. Using time-resolved optical spectroscopies, a strong reduction of the exciton

lifetime and optically active charge-transfer excitations of TMDC/graphene heterostructures have

been observed18, 19, suggesting strong interlayer coupling. Moreover, the efficiency of IET pro-

cesses like Förster-type coupling (based on electronic dipole-dipole interaction) has recently been

investigated theoretically, pointing out the importance of energy-momentum conservation between

participating quasiparticles14. Therefore, a momentum resolved probe is required to directly moni-

tor the dynamics and reveal the mechanism of interfacial transfer process in vdW heterostructures,
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including those involving momentum-forbidden dark states.

Here, we use time- and angle-resolved photoemission spectroscopy (trARPES) to investigate

ultrafast interlayer carrier interactions in an epitaxially grown ML-WSe2/graphene heterostructure.

Our trARPES setup combines a high-repetition-rate (500 kHz) femtosecond extreme ultraviolet

(XUV) source 20 coupled to a time-of-flight momentum microscope21 (see Methods). It allows

the measurement of the four-dimensional (4D) photoemission intensity I(Ekin, kx, ky, ∆t), where

Ekin is the outgoing photoelectron kinetic energy, kx,ky are the in-plane momenta and ∆t is the

pump-probe delay, as shown in Fig.1a,b. The probe photon energy of 21.7 eV allows accessing

the entire Brillouin zone of the heterostructure and the variable pump wavelength allows us to

photoexcite the heterostructure in a state-resolved manner. In the following, we present a time-,

energy-, and momentum-resolved study on the excited-state dynamics in the heterostructure with

two different pump photon energies: below the optical bandgap of WSe2 (1.2 eV) and in resonance

with its first excitonic transition (1.55 eV).
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Fig. 1: Time- and angle-resolved photoemission measurement of interlayer

charge and energy transfer in a ML-WSe2/graphene heterostructure. a, Following

the near-infrared pump, electrons are photoionized by the delayed XUV probe pulses

and collected by a three-dimensional (3D) (Ekin, kx, ky) detector as a function of pump-

probe delay ∆t. b, The 3D snapshot of the 4D data, I(Ekin, kx, ky, ∆t = 0 fs) presents

the valence band structures from the Γ point to the Brillouin zone boundary of WSe2,

as well as the linearly dispersing graphene bands. The excited state population can be

clearly mapped at the KWSe2 and QWSe2 valleys, and the π∗ band of graphene (KGr). c, By

changing the pump wavelength, we can selectively prepare different initial excited states:

quasi-free carriers in graphene with the below-bandgap excitation (red arrow) or excitons

in WSe2 using excitation on the excitonic resonance (blue arrow).

Interlayer quasi-free carrier transfer

First, we photoexcite the heterostructure with the pump photon energy centred at h̄ωpump=1.2 eV

(pump pulse duration 200 fs FWHM), well below the optical bandgap of WSe222. The NIR-
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pump/XUV-probe experiments were performed with a pump fluence of F = 5.3 mJ/cm2 and

at room temperature. Fig.2a-d show energy-resolved photoemission signals along the K′ − K cut

of the Brillouin zone, at selected time delays. The momentum distributions above EF within the

first 400 fs reveal that the excited states are localized in three different types of valleys: the Dirac

cones of graphene at its K points (KGr) and the K and Q valleys of WSe2 (KWSe2 ,QWSe2), as shown

in Fig.2e. The QWSe2 valley localizes between the KWSe2 valley and the Γ point. By performing

energy-momentum integration in selected regions of interest (ROIs), we extracted excited-state

dynamics within these three valleys (Fig.2f). Upon arrival of the pump pulses, the excited-state

population rapidly builds up at KGr (black curve) and decays with a time scale of ∼ 200 fs. Strik-

ingly, the conduction band minima (CBMs) at KWSe2 (red curve) and QWSe2 valleys (green curve)

are also being populated, however, with a delay of ∆t = 51± 9 fs (see SI) compared to the rise of

hot-carrier population in graphene. Since the below-bandgap pump photon energy does not allow

the direct photoexcitation of WSe2, the delayed electron populations in the conduction bands arise

through charge transfer from graphene to WSe2.

These observations support the following picture of the underlying processes with a below-

bandgap excitation: light is absorbed by graphene and populates unoccupied states at Eel
Gr =

ED + h̄ωpump/2, leaving holes at Eh
Gr = ED− h̄ωpump/2 (Dirac energy ED > 0 for a p-doped sys-

tem or ED < 0 for an n-doped system). The energy position of the Dirac point in our heterostruc-

ture is estimated to be ∼ −0.1 eV below the Fermi level, obtained from the conical crossing23, 24

(see SI). The photoexcited carriers quickly reach a quasi-thermalized states in ∼ 10 fs25 and could

further increase their energy via intraband electron-electron scattering and interband Auger recom-
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bination in few tens of femtoseconds26, 27. Once electrons gained a sufficient amount of energy to

overcome the energy barrier, they scatter to WSe2 via a phonon-assisted tunneling process, fill-

ing the single-particle CBMs at KWSe2 and QWSe2 . This ICT mechanism is called interlayer hot

carrier injection, and is schematically illustrated in Fig.2g. The excited electrons in WSe2 may

subsequently scatter back to graphene and relax down towards the Fermi energy (EF ). Based on

the observed carrier dynamics, we performed microscopic calculations of the phonon-assisted in-

terlayer tunneling process, allowing us to estimate the electronic wavefunction overlap between

the involved conduction bands of WSe2 and graphene to be around 4% (see SI for details).
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Fig. 2: Layer- and valley-resolved ultrafast dynamics upon below-bandgap pump-

ing. a-d, Energy-momentum cuts of the photoemission signal along the K′Gr- K′WSe2
-Γ-

KWSe2-KGr high symmetry direction, at selected pump-probe time delays. a, The 2D spec-

trum at negative time delay reveals the equilibrium band structure of ML-WSe2 as well as

the linearly dispersing π band of graphene. The grey lines represent the DFT-calculated

band structures (details in methods). Snapshots of the energy-momentum cuts at time

delays of b ∆t = 0 fs, c ∆t = 200 fs and d ∆t = 400 fs, respectively. e, Momentum

map of the excited states (energy integrated for E > EF and time integrated for the first

400 fs), showing the KGr points of graphene (black box) as well as the KWSe2 and QWSe2

valleys (red and green boxes, respectively). The dashed grey lines represent the hexag-

onal Brillouin zones of both layers. f, Normalized population dynamics within the three
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ROIs defined in e: KWSe2 (red) and QWSe2 (green) are populated with a ∼50 fs delay with

respect to KGr (black). g, Schematic of the ICT upon the below-bandgap excitation: the

hot carriers within the graphene layer are transferred to the conduction bands of WSe2 via

hot electron injection.

Interlayer energy transfer: from excitons in WSe2 to intraband transitions in graphene

Next, we select a pump photon energy of h̄ωpump=1.55 eV (pump pulse duration: 35 fs FWHM,

pump fluence: F = 1.7 mJ/cm2), near-resonant to the A-excitonic transition of WSe2. In this

case, the pump photon energy allows both the WSe2 and the graphene layer to be simultaneously

photoexcited. One striking observation is that the energy distribution of excited carriers at the

KWSe2 valleys is centred at 0.63 eV (Fig.3a), ∼100 meV lower than with below-bandgap excita-

tion (Fig. 3b), as apparent from the energy distribution curves (EDCs) (first 100 fs). As discussed

above, with 1.2 eV excitation, the KWSe2 valleys are filled with quasi-free electrons that have

tunneled from the graphene layer. Therefore, this ∼ 100 meV energy difference is a direct pho-

toemission signature of exciton formation, when resonantly pumping using 1.55 eV photons28: the

bound electron-hole (el-h) pair reduces the quasi-free particle bandgap by the exciton binding en-

ergy. In addition to this excitonic feature, we also observe a transient shift of WSe2 valence bands.

In Fig. 3d, EDCs at KWSe2 are shown at ∆t = 0 fs (red) and ∆t = −200 fs (black), in which the top

two valence bands, VB1 and VB2, are fitted using Gaussian lineshape functions (see SI). The peak

position of VB1 shifts towards the conduction band within the first 100 fs, transiently shrinking

the electronic bandgap. This is due to the arrival of ICT-induced charge carriers from the graphene
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layer. With resonantly pumping the A-exciton, the occurrence of ICT and injection of quasi-free

carriers from graphene to WSe2 is expected, similar to the case of below-bandgap excitation. This

could lead to dynamical screening effect and the observed bandgap renormalization, as reported

in highly-excited or doped ML TMDC materials29–32. As the magnitude of such a transient band

gap renormalization has been shown to scale with the excited charge carrier density31, 33, we utilize

the VB shift in the following as a measure of the ICT transferred carriers dynamics from graphene

layer.

In addition to the excited-state dynamics in WSe2, important insight can be drawn from the

energy-momentum distribution of hot carriers in graphene. As shown in the early-time 2D differ-

ential spectrum ∆I(E, k,∆t = 0 fs) (Fig. 3c), obtained by subtracting the spectrum at negative

time, hot carriers distribute in a broad energy range. The momentum-integrated spectrum along

the linearly dispersing band in Fig. 3e clearly features the energy distribution of net electron gain

(positive; red area) and loss (negative; blue area) following resonant photoexcitation. Remarkably,

besides the modification of the distribution function near the Fermi level, we notice a strong neg-

ative peak at E − EF = −1.8 eV. As noted earlier, for direct photoexcitation in graphene the

photoexcited carriers are expected to be spread ±0.77 eV (h̄ωpump/2) around the Dirac point and

quickly relax back to the Fermi level. Thus, this simple excitation mechanism cannot explain this

peculiar feature in the valence band spectrum. The electron-electron scattering and Auger recombi-

nation could lead to a transient broadening of the momentum-space carrier distribution, but without

any preferential energy localization27, 34, 35. Interlayer hot hole transfer can also be ruled out, as the

top valence band of WSe2 lies atE−EF = −1.0 eV. It would require a multi-phonon absorption to
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populate the hole-states localized deeply in the valence band, taking the typical phonon energy of

∼0.17 eV in graphene36, a process of very low probability. However, the energy difference of deep-

lying valence holes (E−EF = −1.8 eV) and states nearEF (E−EF = −0.2 eV) in graphene well

matches the energy of the A-exciton in WSe2 (Eex ∼ 1.6 eV). Combined with the fast depletion of

exciton population shown in Fig.4a (black curve) extracted from the excited state of WSe2 (ROI1 in

Fig.3c), this brings about the following scenario for the excitation of these carriers: annihilation of

excitons in WSe2 drives the intraband excitation of deep-lying valence electrons in graphene into

empty hole states below the Dirac point. In more detail, this exciton energy transfer process, which

we term Meitner-Auger energy transfer, considers recombination of excitons in WSe2 with center-

of-mass (COM) momentum Q and exciton energy Eex. The photoexcitation prepares the required

hot hole vacancy below EF in graphene, thus enabling the intraband excitation. The momentum of

the valence electron-hole pair kGr is determined by the Fermi velocity of the graphene bands and

the transition energy EGr. This required momentum is provided by the optically pumped excitons

which gain finite COM momenta during the population formation process via phonon-mediated

dephasing and intravalley thermalization37–40 (see the discussion in SI). The highly efficient IET

of the excitons and intraband electron-hole pairs is thus possible under the conservation of energy

and momentum, i.e., Eex = EGr and Q = kGr. In a similar trARPES study of a ML WS2/graphene

heterostructure, dominating interfacial charge transfer has been observed16. While the additional

exciton energy transfer was not excluded, its relative efficiency might be reduced due to the larger

COM momentum required at the larger A-exciton energy of WS2 and the energy level alignment

of these specific samples.
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Fig. 3: Photoemission signatures of exciton formation and interfacial interac-

tions. a, With the resonant A-exciton pump (1.55 eV), carriers within both the WSe2

and the graphene layer are photoexcited (time integration of 100 fs). The energy of the

excited-states carriers at KWSe2 is 0.63 eV, shown in the EDC (left panel figure). b, With the

below-bandgap excitation (1.2 eV), the local CBM of KWSe2 is filled with ICT-induced elec-

trons and centered at 0.73 eV. c, Differential energy-momentum cut with 1.55 eV pump at

time zero, obtained by subtracting the negative time delay spectrum. d, The normalized

EDC of KWSe2 (momentum integration of 0.2 Å
−1

) at ∆t = −200 fs (black) and ∆t = 0 fs
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(red). The VBs are fitted with two Gaussian functions (dashed curves) and the positions of

VB1 are indicated by the dash lines. e, The momentum-integrated spectrum of graphene

Dirac bands (between the dashed yellow lines in c) shows the electron gain (positive, red

area) and loss (negative, blue area) following photoexcitation. The intensity is normalized

by the total electron count C obtained from negative time delay spectrum. Apart from

the carriers accumulation near the EF , the hole population forms another prominent peak

around E − EF = −1.8 eV, indicated between the dash lines.

In order to gain information on the time scales of the energy and charge transfer processes,

next we analyze the dynamics of excited-state populations extracted from the ROIs shown in

Fig. 3c, including the excited-state carriers in WSe2 (ROI1), VB1 shifting (ROI2), hot electrons

in graphene (ROI3) and IET-driven deep valence band holes (ROI4). The time trace of hot carriers

in the CBM of WSe2 (black curve in Fig.4a) contains two types of quasi-particles dynamics: the

photo-generated excitonsN ex
T and the ICT-induced quasi-free electronsN el

T . The decay of excitons

excite the valence band electrons in graphene via IET with a transfer time of τIET (Fig. 4f). On

the other hand, the arrival of ICT-induced electrons transiently shift VB1 of WSe2 (green curve

in Fig.4a) which therefore represents the dynamics of N el
T as discussed before. The VB1 shifting

shows a time delay of ∼ 65 fs compared to the CB signal, evidencing the occurrence of interlayer

hot electron injection after photoexcitation. The population of N el
T subsequently relaxes back to

KGr, refilling the excited-states of graphene (Fig. 4h). From the graphene side, the photoexcited

hot electrons N el
Gr (red curve in Fig.4b) could either scatter to conduction bands of WSe2 or relax

by interband decay channels in graphene. Therefore, the relaxation of N el
Gr could be characterized
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with the charge transfer time of τICT and a decay time of τ elGr. The deep valence band holes Nh
Gr

(blue curve in Fig.4b) are populated by exciton energy transfer on a time scale of τIET , which

would relax back to the Fermi level with a lifetime of τhGr.

By numerically solving a rate equation model based on a multi-state scheme (see SI), we

disentangle the dynamics of IET and ICT. Our global fit describes the data well and yields the

transfer times of τIET = 67 ± 7 fs and τICT = 118 ± 18 fs. The lifetimes of electrons and IET-

populated hot holes in graphene are simultaneously extracted as τ elGr = 84±7 fs and τhGr = 7±4 fs.

Combining all our observations and analysis of the energy-momentum dynamics in WSe2 and

graphene, we summarize the interfacial phenomena governing the non-equilibrium behaviour of

our heterostructure: first, the optical pump generates excitons in WSe2 and quasi-free carriers

in graphene (Fig. 4e). Following photoexcitation, the exciton annihilation excites deep valence

electrons in graphene via an IET process (Fig. 4f-g). Simultaneously, hot electrons in graphene

are injected to the conduction bands of WSe2 via ICT which transiently shift the valence bands of

WSe2 (Fig. 4h).
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Fig. 4: Interlayer charge and energy transfer upon resonant A-exciton excitation.

a, By integrating the ROI1 in Fig.3c, the time trace of the normalized photoemission inten-

sity of excited-state carriers at the CBM of WSe2 (black) contains the dynamics of excitons

(N ex
T ) and ICT-induced quasi-free carriers (N el

T ). The energy shift of VB1 (green) mainly

reflects the dynamic of N el
T , which are extracted from time-dependent EDCs in ROI2. b,

The time traces of hot electrons (red) and hot holes in the deep VB (blue) in graphene

are extracted from the ROI3 and ROI4 in Fig.3c, respectively. The time traces in a-b are

fitted based on a rate equation model (see text). c, Calculated Meitner-Auger mediated

16



IET transfer rate as a function of COM momentum Q with different photo-induced hole

vacancy at E = µh∗
Gr. d, Calculated Förster coupling rate as a function of Q with varied

interlayer distance of d. Sketch of the underlying carrier dynamics: e, Optical excitation

of excitons in WSe2 and quasi-free hot carriers in graphene. f, Meitner-Auger IET with

creation of intraband electron-hole pairs in graphene by absorbing the exciton energy. g,

Förster-type energy transfer with generation of interband electron-hole pairs in graphene.

h, ICT-induced hot electron injection into WSe2 and transient energy shift of its valence

band.

To elucidate the interfacial coupling mechanism at play in our experiment, in particular the

observed ultrafast energy transfer rate, we perform microscopic calculations of three types of IET

mechanisms: Meitner-Auger, Förster and Dexter energy transfer. The interlayer MA process is de-

scribed by the dipole-monopole energy transfer from excitons to valence band excitation, schemat-

ically shown in Fig. 4f. The photoexcited hot holes in graphene quickly relax and distribute below

EF near a transient chemical potential µh∗
Gr. This allows an MA-type transition from the deep

valence band to the hot hole vacancy by absorbing the exciton energy. The microscopically calcu-

lated transfer rate is plotted as a function of Q in Fig.4c with different transient chemical potentials

for the hole distributions µh∗
Gr. When the hole vacancy is located around µh∗

Gr = −0.3 eV, the max-

imum transfer rate reaches ΓIET = 2.4 meV, corresponding to a τIET = 270 fs transfer time. The

MA-type IET process could describe the observed energy-momentum distribution of intraband

transition of valence electrons in a reasonable quantitative agreement with the extracted transfer

rate.
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Another IET mechanism is Förster energy transfer (Fig.4g). The energy of the exciton excites

an interband transition from valence bands to above Dirac point via the dipole-dipole coupling.41

The coupling strength is explicitly evaluated (for derivation, see SI) and determined by the mo-

mentum Q and interlayer distance d. The strong exciton oscillator strength and intrinsic in-plane

exciton dipole moment in many 2D materials favor the Förster-type IET42. However, the calcu-

lated transfer rate is only 0.08 meV (a transfer time of ∼ 8.1 ps), even assuming a tightly stacked

heterostructure with interlayer distance of d = 0 nm (Fig.4d). Our calculations reveal that the

IET process preferably excites an intraband rather than an interband transition. The experimen-

tally observed energy-momentum distribution of excited-state hot holes supports this conclusion.

In addition, we also performed calculations of Dexter-type IET and found a very weak interlayer

coupling strength, more than three orders of magnitude smaller compared to the other two mech-

anisms, due to the small wave function overlap and the finite momentum distance between KWSe2

and KGr (see SI). We can thus identity the MA-type conversion of excitons in WSe2 to intraband

excitations in graphene as the dominant IET mechanism.

In this work, we provide a detailed microscopic picture of interfacial charge and energy trans-

fer processes in photoexcited ML-WSe2/graphene heterostructures. Optical excitation of electrons

in graphene leads to inter-layer charge transfer of quasi-free electrons from the graphene layer to

the K and Q valleys of the semiconductor’s conduction bands on a time scale of ∼50 fs. In con-

trast, excitons in WSe2 decay through an interfacial Meitner-Auger energy transfer process with

a time constant of ∼70 fs. This previously unidentified process is governed by inter-layer dipole-

monopole interactions leading to annihilation of an exciton in WSe2 and non-vertical intraband
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excitations in graphene. The momentum of the electron-hole pair in graphene originates from the

finite center of mass momentum of the hot excitons in WSe2. The interfacial Meitner-Auger mech-

anism is found to dominate the energy transfer process over established mechanisms like Förster-

and Dexter-type transfer. This mechanism results in transient hole distributions as low as 2 eV be-

low the Dirac points. These observations enrich the physical toolbox for designing van der Waals

heterostructures and might be utilized in hot-carrier photovoltaic device concepts to harness the

ultrafast and efficient carrier transfer processes at interfaces43.

Methods

Time- and angle-resolved photoemission spectroscopy We used a 500kHz tabletop femtosec-

ond optical parametric chirped pulse amplification (OPCPA) laser system operated at a center

wavelength of 800 nm and delivering average power up to 15 W. The high harmonic generation is

produced in a vacuum chamber by tight focusing (10 µm) the second harmonic (400 nm) of the

OPCPA fundamental on a thin and dense argon gas jet. We select the photons around 21.7 eV

(110 meV FWHM bandwidth) as the probe arm for trARPES experiment20. Concerning the pump

arm, we used two different beams for this study. One pump beam is directly obtained from the

OPCPA (800 nm, FWHM=35 fs) and another one is the residual power of the compressed fiber

amplifier (1030 nm, FWHM=200 fs). The pump and probe beams are coupled into an ultra-high-

vacuum (UHV) chamber and spatially overlapped at the sample position which is controlled by

a six-axis manipulator (Carving, SPECS GmbH). The main UHV chamber is equipped with an

unique combination of a hemispherical electron energy analyzer (PHOIBOS150, SPECS GmbH)
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and time-of-flight (ToF) momentum microscope (METIS1000, SPECS GmbH)21. On the one hand,

the hemispherical analyzer, which can work in a multi-electrons per laser shot regime, provides

high statistic energy/momentum cuts along a given momentum direction, as shown in Fig.3. On

the other hand, the momentum microscope allows for efficient, parallel, momentum-resolved de-

tection of the full photoemission horizon from the surface as shown in Fig.1b and Fig.2a-e. All

the experiments are performed at room temperature.

ML-WSe2/ML-Graphene vdW heterostructure fabrication Monolayer graphene on SiC was

grown using the well-established recipe of sublimation growth at elevated temperatures in an argon

atmosphere4. Note that, on SiC44, the graphene monolayer resides on top of a (6
√

3 × 6
√

3)R30°

reconstructed carbon buffer layer that is covalently bound to the SiC substrate. WSe2 films were

grown on the thus prepared MLG/SiC substrates via hybrid-pulsed-laser deposition (hPLD) in

ultra-high vacuum24. Pure tungsten (99.99%) was ablated using a pulsed KrF excimer laser (248

nm) with a repetition rate of 10 Hz, while pure selenium (99.999%) was evaporated from a Knud-

sen cell at a flux rate of around 1.5 Å/s as monitored by a quartz crystal microbalance. The

deposition was carried out at 450°C for 6 h, followed by two-step annealing at 640°C and 400°C

for 1 h each.

DFT calculation of band structure We performed density functional theory (DFT) calculation of

ML WSe2 and graphene with the projector augmented wave code GPAW45 using Perdew-Burke-

Ernzerhof functional46 including the spin-orbital coupling, separately. We sample the Brillouin

Zone with a (15 × 15 × 1) k-point mesh, and set the cutoff energy for the plane-wave expansion

at 600 eV. The calculated band structures of both materials are superimposed on each other and
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shown in Fig.2a.

Data availability

All data underlying this study are available from the Zenodo repository. Source data are provided

with this paper.
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Supplementary Notes

Characterization of the ML-WSe2/graphene heterostructure

Raman measurements were carried out at room temperature using a 532 nm laser with a power of 1

mW and a spot size of 5 to 10 µm. As shown in Supplementary Fig. 1a, ML-WSe2 is confirmed by

an intense peak at 250 cm−1 which comes from essentially degenerate A1g and E2g lattice vibration

modes1, 2. Photoluminescence (PL) measurements are performed using another system with a 532

nm excitation laser, power of 1 mW and spot size of 1 µm at room temperature. In Supplementary

Fig. 1b, ML-WSe2 on graphene presents two weak PL peaks (778 nm and 914 nm) only slightly

above the background. The peak at 778 nm is close in energy to the A-exciton transition energy3, 4.

The origin of the peak at higher wavelength is unknown, and may come from the existence of

in-gap defect states. The weakness of the PL signals is consistent with the quenching of PL known

to occur for ML-TMDCs adjacent to graphene5.

The sample is protected by the Se capping layer before sending to our lab. After introducing

the sample into our ultrahigh vacuum (UHV) photoemission end-station, we have annealed the

sample for 15 minutes at 400◦C through direct current heating to remove the Se capping. After

annealing, we recorded a low energy electron diffraction (LEED) pattern with the incident beam

energy of 95 eV, to verify the surface cleanliness and ordering (Supplementary Fig. 1c). The six

outer sharp LEED spots come from the bottom ML graphene layer (yellow box) and the inner six

arc-shaped diffraction spots originate from the top ML-WSe2 layer (red box). The occurrence of a

well-oriented hexagonal pattern of WSe2 spots aligned to the graphene pattern attests the epitaxial
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nature of our heterostructure and single-domain lattice orientation. A certain level of strain-induced

misalignment between nanoislands of WSe2 with respect to the graphene layer is evident from the

azimuthal widths of the diffraction spots.

Supplementary Fig. 1: Optical characteristics and surface analysis of the heterostructure

sample. a, Raman measurement of ML-WSe2/graphene (Gr) at room temperature. An

intense peak at 250 cm−1 belongs to ML-WSe2, whereas other peaks belong to the Gr/SiC

substrate. b, Photoluminescence measurement of the ML-WSe2/Gr heterostructure. The

peak originating from the A-exciton of ML-WSe2 is marked with the dashed red line. c,

LEED pattern of the ML-WSe2/Gr heterostructure at 95 eV after annealing.

Delayed population rises at KWSe2 and QWSe2 with the below-bandgap excitation

Upon 1.2 eV excitation, the time trace at the KGr points shown in Fig.2f is by fitting with a

single exponential decay function convolved with the instrument response function (IRF), I(t) =

H(t− t0)× (A · exp(−(t− t0)/τ) +C)⊗ IRF. Here, H(t) is the Heaviside step function, IRF is

Gaussian envelope function, A is the amplitude and C is the offset. In contrast, as the KWSe2 and
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QWSe2 valleys are populated by interlayer charge transfer (ICT) processes, the corresponding time

traces are fitted with an exponential growth function to describe the ICT process adding with a

single exponential decay for relaxation. The delayed population rise between graphene and WSe2,

∆t = 51± 9 fs, is obtained by taking the time difference between the centre of the IRF at KGr and

the time delay when the population at the KWSe2 valley reaches its maximum.

Identification of the Fermi level and distribution of excited-state carriers at KWSe2

In both experiments, the energy axis calibration has been performed using the position of the Fermi

level of graphene, which is obtained from the energy distribution curve (EDC) at the Dirac point

of graphene (Supplementary Fig. 2a and d). Before optical excitation, the EDCs at the KGr point

(Supplementary Fig. 2b,e) are fitted with a Fermi-Dirac distribution function at 300 K convolved

with the IRF (∼150 meV FWHM) determined by the energy resolution of the spectrometer and the

bandwidth of the probe pulses6. The chemical potentials are set to be zero for both experimental

conditions to remove the XUV-probe-induced space charging effect in each measurement. The

EDCs in Supplementary Fig. 2b,e are integrated over a momentum window, ∆k = 0.1 Å
−1

and

selected at negative time delay. Based on the energy reference obtained from the Fermi level fits,

the energy positions of the conduction band minima at the KWSe2 point can be obtained from EDCs

showing the excited state carrier distributions of WSe2 upon resonant and off-resonant excitation

as displayed in Supplementary Fig. 2c and f, respectively. The photoemission intensity has been

normalized by the total electron count of the spectrum. The energy difference of the carrier

distribution, more specifically, the smaller kinetic energy of excited carriers with 1.55 eV pump,

6



arises from the exciton formation upon the resonant excitation. By fitting with a single Gaussian

lineshape on top of a empirical second-order polynomial background, the energies of excited-state

carriers are extracted as 0.63 eV upon the resonant A-exciton excitation (Supplementary Fig. 2c)

and 0.73 eV upon the below-bandgap excitation (Supplementary Fig. 2f). The background has

been removed in the main text (side figures in Fig.3a-b).

Supplementary Fig. 2: Fermi level calibration. a,d, The 2D photoemission intensity

spectra as a function of energy and momentum at time zero with 1.55 eV and 1.2 eV

pump, respectively. b,e, EDCs of KGr at negative time delay fitted with a Fermi-Dirac

distribution convolved with the energy IRF for 1.55 eV and 1.2 eV pump, respectively. The

chemical potentials are aligned to zero by rigidly shifting the energy axis in both cases.

c, f EDCs at KWSe2 integrated within the first 100 fs obtained with 1.55 eV and 1.2 eV

pump, respectively. The dashed lines represent the center of the excited-state carrier

7



distributions extracted by a fitting procedure (see text).

Identification of the Dirac point energy

To identify the energy position of the Dirac point, we selected an energy-ky cut (∆t < 0 fs)

at Dirac point and along the green dashed line in Supplementary Fig. 3a. The small titling angle

allows us to see both valence bands clearly in Supplementary Fig. 3b. We track the graphene

valence band dispersion by fitting the momentum distribution curves of occupied bands with two

Voigt lineshape functions. Then, each graphene valence band is fitted to a linear dispersion and the

Dirac point is estimated at the intersection of two lines (red and black),E−EF = −0.10±0.05 eV,

in a reasonable agreement with the previous characterization of similar heterostructures7. This

energy/momentum cut is different than the one presented in the main text (Fig.3) along the Γ-K

direction, which is featured by the suppression of one side of the cone due to photoemission matrix

element effects (sublattice interference)8. In the main text, we choose this cut direction because it

allows us to clearly resolve the excited state dynamics from both layers.
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Supplementary Fig. 3: Experimental determination of the Dirac energy. a, 2D

momentum distribution map I(kx, ky) at E −EF = −0.2 eV and E −EF = −1.3 eV. At the

boundary of the Brillouin zone, it shows the quasi-triangular-shaped π band of graphene.

b, Energy/momentum cut I(E, k) along the green dash line in a showing the conical band

dispersion of graphene. Red and black markers indicate the band positions extracted

from momentum distribution curve fits. Lines are linear fits of the band positions, yielding

the energy position of the Dirac point of ED = −0.1± 0.05 eV.

Identification of the Fermi velocity

The Fermi velocity along Γ-K direction is extracted as vF = (1.8±0.1)·106 m/s as shown in

Supplementary Fig. 4 using the same band dispersion tracking method in the above paragraph. The

energy/momentum spectrum is selected at negative time delay (∆t < 0 fs). The Fermi velocities
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in the direction perpendicular to Γ-K with a slightly tilting angle (Supplementary Fig. 3b) are

vF = (1.1± 0.1) · 106 m/s (red) and vF = (1.5± 0.1) · 106 m/s (black), respectively. The Fermi

velocity of graphene has been found to to be in the range of 1 · 106 to 3 · 106 m/s, depending on

the dielectric constant of the environment9. For epitaxially grown heterostructures, the dielectric

constant of the embedding graphene layer between the bottom substrate and top TMDC layer

could be modified by the coverage sizes of TMDC layer and substrate material, as the dielectric

constant is determined by ε = (εtop+εsubstrate)/2. At the same time, the Fermi velocity is also

sensitive to the graphene’s doping level10. We would like to note that because of the steep band

dispersion of the graphene band, the momentum of transiently excited intraband electron-hole pairs

is small. Therefore, it requires a relative small excitonic COM momentum Q to fulfill energy and

momentum conservation, which favors the IET process.

Supplementary Fig. 4: Experimental determination of the Fermi velocity. The

energy/momentum cut I(E, k) along Γ-K direction with band positions (red markers) and

10



the linear fit of the band dispersion (red line).

The near-unity efficiency of IET

To estimate the efficiency of energy transfer, we performed the same measurement (1.55 eV

excitation) on bare ML-WSe2, which is prepared by scotch-tape exfoliation and transferred on top

of thin hexagonal boron nitrid (hBN) with conductive TiO2 substrate (Supplementary Fig. 5a).

The efficiency of the energy transfer process is commonly defined by the lifetime of the ’donor’

material (here WSe2) with and without the ’acceptor’ material (here graphene) as: ηET = (τML −

τhetero)/τML, where τML represents the exciton lifetime of the bare ML-WSe2 and τhetero is the

exciton lifetime in the WSe2/graphene heterostructure. The excited-state population dynamics at

the KWSe2 valley within each system are presented in Supplementary Fig. 5b. The lifetimes of

the ML sample τML = 1616 ± 345 fs is extracted by fitting with an exponential decay function

convolved with the IRF. The exciton lifetime of the heterostructure τhetero = 67±7 fs is obtained by

solving the system of rate equations as described in the main text. Thus, we obtain for the interlayer

energy transfer efficiency, ηET = 96± 1%. This near-unity transfer efficiency is supported by the

underlying conservation of energy and momentum. We note that the different sample fabrication

methods of the bare ML and heterostructure may have influence on the exciton lifetime. However,

picosecond to sub-nanosecond exciton lifetimes in ML samples, consistent with our observations,

have been reported for samples fabricated with various methods11, 12. Therefore, we believe that the

comparison with the exciton lifetimes in the bare ML WSe2 sample provides a reasonable estimate

of the transfer efficiency.
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Supplementary Fig. 5: Estimation of the IET efficiency. a, Schematic of the bare

ML-WSe2 sample (blue slab) with the bottom hBN layer (yellow) mounted on a Nb:TiO2

substrate (grey). b, Time traces of the excited-state carriers at the KWSe2 valleys of the

bare ML sample (black) and heterostructure (red) sample, respectively.

Valence bands shifting and broadening effects

After photoexcitation, we observe shifting and broadening effects of the WSe2 valence band as

shown in the 2D difference spectrum (Fig. 3c) and EDCs at KWSe2 (Fig. 3d). To extract the transient

lineshape, we fit the EDC of the top two VBs (VB1 and VB2) with two Gaussian functions on

top of an empirical second-order polynomial background (BG), I(E) = A1 · exp(− (E−E1)2

2ω2
1

) +

A2 · exp(− (E−E2)2

2ω2
2

) + BG, where E1, E2 are peak positions and ω1, ω2 are the peak width.

Supplementary Fig. 6a-d present representative fitting results at four time delays, ∆t < 0 fs,

∆t = 0 fs, ∆t = 200 fs and ∆t = 1000 fs. Because of the large spectral overlap between VB1 and

VB2, the fitting is performed with the same shifting, ∆E1(t) = ∆E2(t), and broadening parameter
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, ∆ω1(t) = ∆ω2(t), for the two peak functions, assuming the VBs respond to the interfacial

coupling and the excitation-induced modification in the same way. The extracted time dependent

peak shift and linewidth parameter are shown in Supplementary Fig. 6e and f, respectively. The

band shifting reflects the electronic band gap renormalization due to the ICT-induced hot electrons13, 14.

Thus, a relative time delay can be observed compared with the excited-state population dynamics

in the conduction bands. In contrast, the linewidth is a measure of the photohole self-energy, which

depends on the many-body interactions with photoexcited carriers and phonons15. It follows more

closely the transient of overall excited carriers in the system (grey dashed curve in Supplementary

Fig. 6f).
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Supplementary Fig. 6: Transient lineshape of the valence bands of WSe2. a-d,

The EDCs at the KWSe2 valley present the spectral features of the first two valence bands

at selected time delays, ∆t < 0 fs, ∆t = 0 fs, ∆t = 200 fs and ∆t = 1000 fs. The EDCs

are fitted with two Gaussian functions describing VB1 (green dashed curve) VB2 (blue

dashed curve). The second-order polynomial background is shown as yellow dashed
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lines. e, Transient peak position of VB1 (green). f Peak linewidth both of VBs as function

of time (yellow). The population dynamic of excited-states in the WSe2 conduction band

(grey) is shown in e-f as a reference.
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Supplementary Methods

Characteristics of applied pump beams

In this work, we use two different pump beams which wavelengths are centred at 800 nm

and 1030 nm, respectively (Supplementary Fig. 7). The pulse duration of 1030nm pump line is ∼

200 fs FWHM, while the transform-limited pulse duration of 800 nm pump is ∼ 35 fs FWHM.

In the measurement, the pump fluence of 800 nm is F800 = 1.7 mJ/cm2 and that of 1030 nm is

F1030 = 5.3 mJ/cm2, with the consideration of effective pump-probe overlap profile based on the

formula, a = 1
π(ω2

pump+ω2
probe)

, in the work of Harb et al16. Here, ωpump and ωprobe are the respective

beam widths of the pump and probe beams.

Supplementary Fig. 7: Pump spectra. Excitation spectra of the two light sources used

for pumping as a function of wavelength.

Separating the interlayer charge and energy transfer by a rate equation model

16



As discussed in the main context, we observed the photoemission signatures of both ICT and

IET upon resonant A-exciton excitation. To extract the corresponding transfer rates, ΓICT and

ΓIET , we develop a multi-state coupled rate equation model describing the interlayer charge and

energy flow, as well as the hot carrier relaxations. In Fig.4a, the time trace of hot carriers in the

CBM of WSe2 (black curve) includes the dynamics of photo-generated excitons N ex
T and ICT-

induced quasi-free electrons N el
T . The VB1 shifting (green curve in Fig.4a) mainly reflects the

dynamic of N el
T . Therefore, it provides the possibility to disentangle the dynamics of these two

kinds of quasiparticles. Here, subscript T represents TMDC. Simultaneously, the deep valence

band holes in graphene Nh
Gr are populated by the IET process and recombine with the rate Γh, as

shown in Fig.4b. Finally, the dynamics of hot electrons in graphene N el
Gr contains the ICT-induced

charge flow (input and output towards WSe2) and a decay process with the rate of Γel. With these

considerations, the complete dynamics across the interface can be described with the following set

of coupled rate equations:

Ṅ ex
T = −ΓIETN

ex
T + S(t) (1)

Ṅ el
T = −ΓICTN

el
T + ΓICTN

el
Gr (2)

Ṅ el
Gr = +ΓICTN

el
T − ΓICTN

el
Gr − ΓelN

el
Gr + S(t) (3)

Ṅh
Gr = −ΓhN

h
Gr + ΓIETN

ex
T (4)

Here, S(t) represents the optical excitation as a Gaussian-shaped pump envelope function.

By numerically solving the system of coupled differential equations, and a global fit of the solution
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to the data, we obtain the IET transfer time τIET = 67 ± 7 fs, and the ICT transfer time τICT =

118 ± 18 fs (τ = ~/Γ). At the same time, we get the relaxation times of electrons in graphene,

τ elGr = 84 ± 7 fs, and that of the deep valence holes, τhGr = 7 ± 4 fs. The fitting results are shown

in Fig.4a and b.

Microscopic calculation of IET mechanisms

We perform microscopic calculations of the IET process mediated by the Meitner-Auger, Förster

and Dexter type mechanisms.

Meitner-Auger-like energy transfer A schematic illustration of the Meitner-Auger type (MA)

interlayer transfer is depicted in the main context in Fig.4f. Here, an exciton in the TMDC

recombines non-radiatively; its energy excites an electron deep in the valence band of graphene to

states close to the Dirac point but in the valence band.

Starting point for the calculation of the MA-type interlayer coupling is the Hamiltonian

HF =
∑

k,q,k′,q′,λ,λ′,ν,ν′

V λνν′λ′
k,q,q′,k′λ

†
kν
†
qν
′
q′λ′k′ . (5)

As a convention, we use λ(′) as band indices and k(′) as momenta in WSe2 layer and ν(′) as

band indices and q(′) as momenta in graphene. The appearing matrix element is formally given as

V λνν′λ′
k,q,q′,k′ =

ˆ

R3

d3r

ˆ

R3

d3r′Ψλ∗
k (r)Ψν∗

q (r′)V (r, r′)Ψν′
q′(r′)Ψλ′

k′(r). (6)

The band indices in the TMD are restricted to interband transitions λ 6= λ′ but the band indices

in graphene are taken as the valence band ν = ν ′ = v. The remaining integrals can be evaluated
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within a k·p expansion. Last we introduce exciton operators in WSe2 P
µ
Q =

∑
q ϕ

µ
qc
†
q+ me

mh+me
Qvq− mh

mh+me
Q

with quantum state µ and COM momentum Q. The final Hamiltonian reads

H =
∑

k,Q,µ

W µ
QP

†µ
Q v†k−Qvk + h.c. , (7)

with the coupling element

WQ =
1

e
VQd

cv ·Qϕ∗µ(r = 0). (8)

In the following we restrict ourselves to the lowest bound excitons µ = 1s. From this Hamiltonian

we calculate the equation of motion for the exciton occupation in the TMD NQ = 〈P †QPQ〉 and

the electron occupation in the valence band of graphene fk = 〈v†kvk〉 by exploiting Heisenberg

equation of motion.

The resulting equations of motion read

∂tNQ =
2π

~
∑

k

|WQ|2 (fk(1− fk−Q)−NQ(fk−Q − fk)) δ(εk − εk−Q − EQ) (9)

∂tfk =
2π

~
∑

Q

|WQ|2 (fk−Q(1− fk)−NQ(fk − fk−Q)) δ(εk−Q − εk − EQ) (10)

+
2π

~
∑

Q

|WQ|2 (NQ(fk−Q − fk)− fk(1− fk−Q)) δ(εk − εk−Q − EQ) (11)

Estimation of the decay rate of WSe2 excitons From the Boltzmann equation we can identify

the decay rate of WSe2 excitons as

ΓQ = 8π
∑

k

(fk−Q − fk)δ(εk − εk−Q − EQ), (12)

where we have added a factor of 4 to account for the valley and spin degree of freedom in graphene.

Analyzing the Dirac distribution, we find that k accounts for electrons close the Dirac point, and
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k − Q for electrons deep in the valence band. In order to get a simple expression for the decay

rate, we assume that the electrons close to the Dirac point have much smaller momenta than the

electrons deep in the valence band, i .e. k� Q and k + Q ≈ Q.

This way, the Dirac distribution and the k can be evaluated analytically yielding

ΓQ = |WQ|2
4

~vF

(
Q− EQ

~vF

)(
fQ − fQ− EQ

~vF

)
θ

(
Q− EQ

~vF

)
(13)

The rate depends on the matrix element of the MA transfer, the density of states in graphene and on

the occupation difference of the involved states in graphene which accounts for the Pauli blocking.

The heavyside function θ
(
Q− EQ

~vF

)
accounts for the fact, that a minimal momentum is required

to fulfil the energy and momentum conservation during the intervalley transfer.

Fig. 4c in the main context illustrates the MA rate of WSe2 excitons to graphene for the

photo-induced hole vacancies at different energy of µh∗Gr. We adjusted the graphene dispersion

to the results from the ARPES measurement. From τ = ~/Γ we find scattering times of 270 fs

(µh∗Gr = −0.3 eV), 210 fs (µh∗Gr = −0.4 eV), and 175 fs (µh∗Gr = −0.5 eV).

Origin of the finite center-of-mass (COM) momentum The MA mediated IET requires nonzero

COM momentum of the exciton. For example, the required COM momentum is ∼ 1.3 nm−1 as

shown in Fig.4c (main context) with µ∗Gr = −0.3 eV, which corresponds to a kinetic energy of

approximately 100 meV based on the effective mass of the exciton mex = 0.65me.17 Then, where

does the energy (momentum) come from? In the following, we discuss the possible origins of

COM momentum of the exciton which is quantified by the kinetic energy assuming the parabolic
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excitonic band dispersion.

At room temperature, the mean kinetic energy of the excitons is 25.6 meV which is not

enough to explain the required energy. Therefore, we calculate the temporal evolution of the

exciton energy-momentum occupation during the optical pump for detuned excitation18. The

equation of motion for the excitonic coherence in the rotating frame reads

Ṗ0(t) =
1

i~
(E0 − ~ωL − iγ)P0(t) + d · E(t), (14)

where the first term accounts for the detuning of the excitonic transition energy E0 from the light

pulse energy ~ωL. γ accounts for the dephasing of the excitonic coherence with contributions from

radiative and exciton phonon coupling19. The last term accounts for the optical excitation with the

dipole element d and the exciting electric field E(t). The equation of motion for the incoherent

exciton occupation reads

ṄQ = ΓFormQ |P0|2 +
∑

K

ΓinQ,KNK −
∑

K

ΓoutQ,KNQ. (15)

The first term accounts for the formation of incoherent exciton occupation from phonon induced

dephasing from the excitonic coherence. The last two terms account for the thermalization of

incoherent excitons20. The coupling element of the exciton formation reads

ΓFormQ =
2

~
∑

±,α
|gQ|2

(
1

2
± 1

2
+ nαQ

)
γ

(EQ − ~ωL ∓ ~Ωα)2 + γ2
. (16)

with the energy ~Ωα
Q and the occupation nαQ of phonons in the branch α with momentum Q. The

± summation accounts for phonon emission/absorption processes.

Supplementary Fig. 8a illustrates the snapshots of the exciton occupation directly at the
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maximum of the pump pulse as a function of kinetic energy with selected detuning pump photon

energy above the excitonic transition energy. The temperatures are set as room temperature for all

the calculation. With increasing pump photon energy, the amount of injected excitons decreases

due to the non-resonant excitation, eq. 14. However, at larger detunings, excitons occupy larger

energy states due to the excess energy of the pump pulse, which is provided by acoustic and

optical phonon transitions. The Supplementary Fig. 8b illustrates the exciton occupations but

normalized to the maximum. Here it is even more obvious that the excitons obtain higher energies

as the detuning increases. Interesting, for larger detunings two maxima can be observed, where

the higher one originates from the formation of excitons via acoustic phonon scattering. The lower

peak originates from the formation of excitons via optical phonon emission but also from relaxation

of excitons from the higher peak via optical phonon emission.

Supplementary Fig. 8c illustrates snapshots of the exciton occupation directly at the maximum

of the pump pulse as a function of kinetic energy for selected detunings below the excitonic

transition energy. Similar to the previous scenario, the density of injected excitons decreases

with increasing detuning due to the non-resonant excitation, eq. 14. In Supplementary Fig. 8d,

the energy-dependent exciton occupations are normalized to their maximum. Interestingly, for

pumping with larger negative detunings, the exciton distribution broadens such that the relative

exciton occupation at large kinetic energies increases. The reason is, that for larger detunings

the Lorentzian in equation 16 flattens which results in higher occupation of hot exciton at large

energy range. As a consequence, for the near-resonant excitation below the excitonic transition,

a substantial amount of excitons is formed at energies above 100 meV which contribute to the

22



Meitner-Auger scattering. To conclude, non-resonant excitation of the exciton, both above and

below the resonance, introduce hot excitons with high kinetic energy, which are subjected to the

Meitner-Auger IET.

In our experiment, the pump photon energy is ~νpump = 1.55 eV and the A-exciton transition

energy isEex = 1.63 eV determined by the energy difference of excited-state particles at CBM and

VBM. After the photoexcition which prepares the coherent excitons with zero COM momentum

(Supplementary Fig. 8e), the phonon-assisted dephasing process transfers the coherent excitons

to incoherent exciton population which gain the finite COM momenta (Supplementary Fig. 8f).

This dephasing process has been observed by our previous study21. The subsequent thermalization

of excitons at the excitonic states (Supplementary Fig. 8g) also contribute to the nonzero COM

momenta which is already included in our calculation.
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Supplementary Fig. 8: Finite COM momentum of excitons at the KWSe2 valley.

a, The calculated energy-dependent hot exciton occupation with detuned pump photon

energy above the resonant excitonic transition energy. b, Normalized hot exciton distributions

in a. c The hot exciton occupation with detuned pump photon energy below the resonant

excitonic transition energy and d is the corresponding normalized hot exciton distributions.
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Schematic illustrations of involved ultrafast dynamics: e, photoexcitation creates the coherent

exciton. The dash curve represents the coherent excitonic state. f, The phonon-assisted

dephasing process transfers coherent excitons to incoherent excitons, at the same time,

increases the COM momentum of excitons. g, The following thermalization also contributes

to the finite COM momentum.

Förster coupling To calculate the Förster rate from WSe2 to graphene, we start with the Hamiltonian

HF =
∑

k,q,k′,q′,λ,λ′,ν,ν′

V λνν′λ′
k,q,q′,k′λ

†
kν
†
qν
′
q′λ′k′ . (17)

As a convention, we use λ(′) as band indices and k(′) as momenta in WSe2 layer and ν(′) as

band indices and q(′) as momenta in graphene. The appearing matrix element reads

V λνν′λ′
k,q,q′,k′ =

ˆ

R3

d3r

ˆ

R3

d3r′Ψλ∗
k (r)Ψν∗

q (r′)V (r, r′)Ψν′
q′(r′)Ψλ′

k′(r). (18)

Here, Ψ
λ/ν
k/q account for the electronic Bloch waves in WSe2 and graphene. The appearing Coulomb

potential shall take into account the dielectric environment of the heterostructure, including the

WSe2 and graphene layer which are distanced by a gap with dielectric constant εR and width z

(closely stacked structures have z = 0)22. Additionally we take substrates below and above the

structure into account.

We can evaluate the matrix element by Fourier transforming the Coulomb potential and

calculating the real space integrals within a k · p expansion23. We introduce exciton operators

in WSe2 P
µ
Q =

∑
q ϕ

µ
qc
†
q+ me

mh+me
Qvq− mh

mh+me
Q with quantum state µ and COM momentum Q as
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well as pair operators in graphene Rq
Q = c†

q+ 1
2
Q
vq− 1

2
Q. The Hamiltonian then reads

HF =
∑

Q,q,µ

F µ
Q(z)P †µQ Rq

Q + h.c. (19)

The appearing coupling element reads

F µ
Q(z) =

1

e2
√
A
VQ(z)ϕµ(r = 0)Q · dT

cvQ · dvcG (20)

with dvcT the dipole element in WSe2, dvcG the dipole element in graphene, ϕµ(r) the excitonic

wave function in real space with quantum number µ in WSe2. We restrict our analysis to the lowest

lying excitons µ = 1s.

The Förster induced transition rate is given as 24

ΓQ(z) = 4π
∑

q

|FQ(z)|2δ
(
Eq

Q − E1s
Q

)
, (21)

where we have already added a factor of 2 to account for the electron spin in graphene. We

analytically treat the summation over the delta function, where the area which appears in equation

(20) cancels. We arrive at

ΓQ(z) =
|FQ(z)|2AE1s

Q

2~2v2
F

. (22)

vF is the Fermi velocity in graphene. The area A cancels with the area in |FQ(z)|. In a last step

we average over the angle dependence of |FQ(z)|2, und sum the result over the K and K ′ point in

graphene, which is already included in the q summation in eq. 21. This way we arive at the final

expression

ΓQ(z) =
|VQ(z)|2|ϕ1s(r = 0)|d2

Td
2
GE

1s
QQ

4

8~2v2
F e

2
. (23)
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The Coulomb potential VQ(z) is given as

VQ(z) =
e2

ε0|Q|εQ(z)
, (24)

where the momentum dependent dielectric function εQ(z) accounts for the dielectric screening

from the surrounding22. As input parameters, we require the thickness of graphene and WSe2

layers and their respective dielectric constants. Note, that in the limit of infinitely thin films and a

uniform background, our results coincides with our previous one20. The required parameters are

listed in table 1.

Fig. 4d in the main context illustrates the Förster transfer rate as a function of COM momentum

and for different WSe2 - graphene distances. For Q = 0 we find a vanishing Förster rate followed

by a monotonous increase. The large Q behavior is dictated by the interplay of the momentum

dependence of the Coulomb potential and the factor Q4. For the closest stacking, i.e. 0.0 nm we

find a peak transition rate of about 0.08 meV.

Dexter Coupling The IET process could also mediated by Dexter-type two-particle exchange,

whose transfer rate is determined by the wave function overlap25. Starting point for the calculation

is the Hamiltonian

HD =
∑

k,q,k′,q′

V cvvc
k,q,k′,q′c

†
kv
†
qvk′cq′ + h.c., (25)

with the same conventions for the notation as for the calculation of the Förster transfer. The

appearing coupling element is defined as

V cvvc
k,q,k′,q′ =

ˆ

R3

d3r

ˆ

R3

d3r′Ψc∗
k (r)Ψv∗

q (r′)V (r, r′)Ψv
k′(r′)Ψc

q′(r). (26)
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The Coulomb potential is translational invariant in the in-plane direction, i.e. V (r, r′) =

V (r‖ − r′‖, z, z′). Fourier transforming the Coulomb potential w.r.t. the in-plane components,

writing the electronic wave functions as Bloch waves and decomposing the spatial coordinates

into one component inside the unit cell and one which addresses the unit cells r → r + R, yields

for the coupling element

V cvvc
k,q,k′,q′ =

1

A

∑

K

ˆ

uc

dz

ˆ

uc

dz′χc(z)χv(z′)VK(z, z′)δk,q′+Kδq,k′−K, (27)

with

χλ(z) =
1

Vuc

ˆ

uc

d2r‖u
∗λ
TMD(r‖, z)u

λ
Graphene(r‖, z) (28)

To evaluate the coupling element further, we restrict ourselves to the case with vanishing

interlayer spacing. We decompose the z and z′ integration into two integrals over WSe2 and

graphene

V cvvc
k,q,k′,q′ =

1

A

∑

K

δk,q′+Kδq,k′−K×
(
ˆ

WSe2

dz

ˆ

WSe2

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ

WSe2

dz

ˆ

Graphene

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ

Graphene

dz

ˆ

WSe2

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ

Graphene

dz

ˆ

Graphene

dz′χc(z)χv(z′)VK(z, z′)

)
(29)
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Given that the Coulomb potential varies only weakly with each layer, we can replace the z/z′

dependence by the position of the layer z = zWSe2 , zGraphene in the Coulomb potential. This way

we arrive at

V cvvc
k,q,k′,q′ =

1

A

∑

K

δk,q′+Kδq,k′−K×

(
χcWSe2

χvWSe2
VK(z = zWSe2 , z

′ = zWSe2)

+χcWSe2
χvGrapheneVK(z = zWSe2 , z

′ = zGraphene)

+χcGrapheneχ
v
WSe2

VK(z = zGraphene, z
′ = zWSe2)

+χcGrapheneχ
v
GrapheneVK(z = zGraphene, z

′ = zGraphene)
)
, (30)

with

χλWSe2/Graphene
=

ˆ

WSe2/Graphene

dzχλ(z), (31)

i.e. the contribution of the wave function overlap of the band λ in the individual layers. Assuming,

that the integration in both layers contributes equally to the wave function overlap between WSe2

and graphene in conduction and valence band, i.e. χλWSe2
= χλGraphene = 1

2
χλ, we obtain the final

expression for the matrix element

V cvvc
k,q,k′,q′ =

1

4A
χcχv

∑

K

δk,q′+Kδq,k′−KV
Dex
K (32)

with

V Dex
K = (VK(z = zWSe2 , z

′ = zWSe2) + VK(z = zWSe2 , z
′ = zGraphene)

+VK(z = zGraphene, z
′ = zWSe2) +VK(z = zGraphene, z

′ = zGraphene)) . (33)
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Reinserting the result back into the Hamiltonian (and indexing the operators according to the

layer, since due to the momentum conservation our convention breaks down) yields

HD =
∑

K,k,q

1

4A
χcχvV Dex

K+k−qc
†WSe2
k+K v†Grq−Kv

WSe2
k cGrq + h.c.. (34)

So far, the momenta are defined w.r.t. the Γ point in graphene and WSe2. Redefining the

coordinates k→ KW + k and q→ KG + q expresses them w.r.t. the K point in WSe2/graphene.

A projection on excitonic wave functions in WSe2 yields

HD = −
∑

K,q,ν

(
1

4
√
A
χcχv

∑

k

ϕ∗νKW+kV
Dex
KW−KG+K+k−q

)
P †λK RKG+q

K + h.c.. (35)

In the Dexter coupling element, the momentum distance between the K points in graphene

and the TMD directly enters. We have |KG −KW | ≈ 3.6 nm−1. As a first approximation we can

ignore the COM and relative momenta inside the Coulomb potential V Dex
KW−KG+K+k−q ≈ V Dex

KW−KG

and get a first estimate for the Dexter coupling

HD = −
∑

K,q,ν

DKP
†ν
K RKG+q

K + h.c., (36)

with

DK =
1

4
√
A
χcχvϕ∗ν(r = 0)V Dex

KW−KG . (37)
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Similar to the Förster transfer, we can evaluate the Dexter induced scattering rate for WSe2

excitons to graphene

ΓQ = 2π
∑

q

|DQ|2δ(Eq
Q − E1s

Q ) (38)

with yields

ΓQ =
|DQ|2AEQ

4~2v2
F

. (39)

Supplementary Fig. 9a illustrates the Dexter transfer rate from WSe2 to graphene as a function

of the wave function overlap for the same structure as considered for the Förster transfer. Assuming

an overlap between the TMD and graphene wave functions of χ =0.039 (see estimation below,

Supplementary Fig. 10a), we arrive at a Dexter rate of 1.0 ·10−6meV. This number is small due

to the mismatch of the K points of WSe2 and graphene and due to the small overlap of the

wave functions which enters with the fourth power. As long as the COM momentum Q is much

smaller compared to the distance between theK points, the Dexter rate is independent of the COM

momentum.
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Supplementary Fig. 9: Estimation for the Dexter transfer rate. a, Dexter transfer
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rate from WSe2 to graphene as a function of the overlap of the electronic wave functions

of graphene and WSe2. b, Dexter transfer rate from WSe2 to graphene as a function of

the excitonic COM momentum Q, with the KWSe2 valley and graphene being shifted on top

of each others.

Maximum estimation for the Dexter process The reason for the very weak Dexter process is

the large momentum mismatch between the K points in WSe2 and graphene. This generates a

momentum-bottleneck. To get an estimation of the maximally possible Dexter rate (and Dexter-

like processes, such as Dexter-two-phonon processes), we remove this bottleneck artificially and

move the K points of both layers on top of each other. The Hamiltonian reads

HD = −
∑

K,q,ν

Dq,KP
†λ
K Rq

K + h.c.. (40)

with the coupling element

Dq,K =
1

4
√
A
χcχv

∑

k

ϕ∗νk V
Dex
K+k−q. (41)

The relaxation rate of excitons to graphene is then given by

ΓK =
A

2π~

ˆ 2π

0

dφ
EK

~2v2
F

|D EK
~vF

(cosφ,sinφ)T ,K
|2. (42)

Supplementary Fig. 9b illustrates the maximum estimation of the Dexter rate as the function

of the COM momentum. We find a relatively weak rate in the order of 10−3 meV due to the poor

wave function overlap. If we would set χ = 1, we would obtain 70 meV at the maximum. Last,

we calculate the thermal average of the Dexter rate, i.e. integrate the momentum dependent Dexter

rate together with a normalized Boltzmann distribution at 300 K. We obtain 1.5 ·10−4 meV.
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Microscopic calculation of interlayer phonon-assisted tunneling process

In this section we will derive an expression for the phonon-assisted tunneling of carriers between

the layers. The Hamiltonian of phonon scattering and tunneling can be generally written as

H = H0 +H1, (43)

with H0 accounting for the dispersion of electrons and phonons.

H0 =
∑

a

εaa†aaa +
∑

b

~ωbb†bbb. (44)

The first term accounts for the dispersion of carriers with operators a(†)
a and the second term

accounts for the dispersion of phonons with operators b(†)
b . The quantum numbers a, b account for

layer and momentum of the carriers. The interaction Hamiltonian H1 reads

H1 =
∑

ab

taba†aab +
∑

abc

gabca†aab(bc + b†−c), (45)

where the first term represents the tunneling and the second term the scattering of carriers with

phonons. Here the notation −c implies, that the momentum has to be inverted, but all other

quantum numbers stay the same.

While we are interested in the second order processes of phonon-assisted tunneling, we apply

a canocical transformation to the Hamiltonian

H ′ = e−SHeS = H0 + (H1 + [H0, S])︸ ︷︷ ︸
first order

+
1

2
[H1, S]
︸ ︷︷ ︸
second order

, (46)
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and claim that the first order in the interaction vanishes. This holds true for the choice

S =
∑

ab

αabt
aba†ab +

∑

abc

gabca†aab(βabcbc + γabcb
†
−c), (47)

with coefficients

αab =
1

εb − εa , (48)

βabc =
1

εb − εa + ~ωc
, (49)

γabc =
1

εb − εa − ~ωc
. (50)

The second order Hamiltonian is now given as

H2 =
1

2
[H1, S]. (51)

Restricting ourselves only to the tunneling-phonon contribution (besides this, also higher order

tunneling terms, two-phonon processes as well as attractive electron-electron interaction through

phonon interaction are contained in this Hamiltonian) we obtain

H =
1

2

∑

abcd

tdbgadca†aab((
1

εb − εd −
1

εd − εa + ~ωc
)bc + (

1

εb − εd −
1

εd − εa − ~ω−c
)b†−c)

− 1

2

∑

abcd

tadgdbca†aab((
1

εd − εa −
1

εb − εd + ~ωc
)bc + (

1

εd − εa −
1

εb − εd − ~ω−c
)b†−c) (52)

Now we insert the compounds: a = (ka, λa, la) for electrons, where ka accounts for the

momentum, λa accounts for the band and la accounts for the layer quantum number. For phonons
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we insert the compounds c = (kc, lc, ξc), with momentum kc, layer lc and branch ξc and apply the

selection rules from the matrix elements:

tλbλdlbldkbkd
= tλbλdlbldδlb l̄dkbkd

δλbλd , (53)

i.e. the tunneling conserves momentum, and band but changes the layer index, and

gλaλdlaldlckakdkc
= gλaλdlaldlckc

δlaldδldlckc,ka−kdδ
λaλd . (54)

i.e. phonon scattering conserves the layer index, but changes the momentum of the carriers.

As a result we obtain

H =
1

2

∑

kKλlξ

λ†l̄k+Kλ
l
k


t

λll̄gλl̄ξK (αλll̄k + γλl̄ξk,K)
︸ ︷︷ ︸

sλll̄ξk,K

bl̄ξK + tλll̄gλl̄ξK (αλll̄k + βλl̄ξk,K)
︸ ︷︷ ︸

s̃λll̄ξk,K

b†l̄ξ−K




− 1

2

∑

kKλlξ

λ†l̄k+Kλ
l
k


t

λl̄lgλlξK (αλll̄k+K + γλlξk,K)
︸ ︷︷ ︸

uλll̄ξk,K

blξK + tλl̄lgλlξK (αλll̄k+K + βλlξk,K)
︸ ︷︷ ︸

ũλll̄ξk,K

b†lξ−K


 , (55)
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with

αλijk =
1

ελik − ελjk
(56)

βλiξk,K =
1

ελik+K − ελik + ~ωiξ−K
(57)

γλiξk,K =
1

ελik+K − ελik − ~ωiξK
(58)

Both lines describe phonon assisted tunneling from k, b to k + K, b̄. However, in the first line

first the tunneling and next the phonon scattering takes place, whereas in the second line, first the

phonon scattering and next the tunneling takes place. Considering the intermediate statesk, b̄ and

k + K, b being much larger in energy, in both lines, all contributions have the same sign and add

up. The relative sign between both lines (−) is compensated by the opposite signs of the appearing

u and s functions. To further evaluate the phonon assisted tunnel Hamiltonian, we carry out the

summation over the layer

H =
1

2

∑

kKλGξ

λ†Wk+Kλ
G
k


t

λGWgλWξ
K (αλGWk + γλWξ

k,K )
︸ ︷︷ ︸

sλGWξ
k,K

bWξ
K + tλGWgλWξ

K (αλGWk + βλWξ
k,K )

︸ ︷︷ ︸
s̃λGWξ
k,K

b†Wξ
−K




− 1

2

∑

kKλWξ

λ†Gk+Kλ
W
k


t

λGWgλWξ
K (αλWG

k+K + γλWξ
k,K )

︸ ︷︷ ︸
uλWGξ
k,K

bWξ
K + tλGWgλWξ

K (αλWG
k+K + βλWk,Kξ)︸ ︷︷ ︸

ũλWGξ
k,K

b†Wξ
−K




+
1

2

∑

kKλξ

λ†Gk+Kλ
W
k


t

λWGgλGξK (αλWG
k + γλGξk,K )

︸ ︷︷ ︸
sλWGξ
k,K

bGξK + tλWGgλGξK (αλWG
k + βλGξk,K )

︸ ︷︷ ︸
s̃λWGξ
k,K

b†Gξ−K




− 1

2

∑

kKλξ

λ†Wk+Kλ
G
k


t

λWGgλGξK (αλGWk+K + γλGξk,K )
︸ ︷︷ ︸

uλGWξ
k,K

bGξK + tλWGgλGξK (αλGWk+K + βλGξk,K )
︸ ︷︷ ︸

ũλGWξ
k,K

b†Gξ−K


 (59)

Here, the first two lines involve phonons in WSe2 whereas the last two lines involve phonons
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in graphene. The − signs in front of line two and line four are compensated by the opposite

signs of the s and u functions. To investigate the different contributions to the tunnel-phonon

coupling in more detail, we evaluate the functions s and u in the different terms: (a) we fix the

momenta in WSe2 to the vicinity of the K point. (b) While all scattering processes conserve the

energy, the approximation (a) settles the energy and momentum range of involved carriers. (c) In

the next step, we approximate the prefactors αλijk by their values in the region of interest, where

we find αcGWk≈KW = 1
1eV and αcWG

k≈KG = 1
250meV , which are read out from the DFT calculation in

the main manuscript. To evaluate the prefactors βλiξk,K and γλiξk,K we first realize, that that ∆EKG

appears whenever WSe2 phonons are involved, and ∆EKW appears whenever graphene phonons

are involved. ∆EKG ≈250 meV is large in comparison to typical phonon energies of 30 meV

in WSe2 and ∆EKW ≈1 eV is large in comparison to typical phonon energies of 200 meV in

graphene. Consequently we ignore the appearing phonon energies in βλiξk,K and γλiξk,K. As a result,

the Hamiltonian simplifies to

H =
∑

kKλ,ξ

tλGWgλWξ
K

εWKgr − εGKgr︸ ︷︷ ︸
hWξ
K ≈const.

λ†Wk+Kλ
G
k

(
bWξ
K + b†Wξ

−K

)
+ h.c.

+
∑

kKλξ

tλWGgλGξK

εGKW − εWKW︸ ︷︷ ︸
hGK≈const.

λ†Wk+Kλ
G
k

(
bGξK + b†Gξ−K

)
+ h.c. . (60)

For a carrier in graphene, the relaxation rate to WSe2 via phonon-assisted tunneling is given
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as

ΓGk = 2π
∑

±,K,ξ,i∈{W,G}
|hiξK|2

(
1

2
± 1

2
+ niξK

)
δ(εGk − εWk+K ∓ ~ωiξK)

(61)

Assuming hiξK ≈ hiξ and ~ωiξK ≈ ~ωiξ, we obtain

ΓGk = A
∑

i∈{W,G},ξ,±

mW

~2
|hi|2

(
1

2
± 1

2
+ niξ

)
1εGk∓~ωiξ−εW0 >0, (62)

which is constant for graphene electrons which have at least the energy of the conduction band

plus the phonon energy in graphene. This reflects the constant density of states in WSe2. The area

A cancels with the area in the phonon coupling element which is contained in hi.

In contrast for carriers initially located in WSe2, we get

ΓWk = 2π
∑

±,K,ξ,i∈{W,G}
|hiξK|2

(
1

2
± 1

2
+ niξK

)
δ(εWk − εGk+K ∓ ~ωiξK). (63)

With similar approximation as above, we end up at

ΓWk = A
∑

i∈{W,G},ξ,±

εk ∓ ~ωiξ

~2v2
F

|hi|2
(

1

2
± 1

2
+ niξ

)
, (64)

To calculate the relaxation rates, we assume a potential barrier of EB =5 eV corresponding

to the energy of the WSe2 conduction band w.r.t. to the vacuum level. Then we approximate

the tunneling element as t = χEB, with χ being the wavefunction overlap22. For graphene, we

include two optical phonon branches with energies of ~ω =200 meV and the coupling strength of

g =200 meV26. For WSe2, we include two optical phonon branches with energies of ~ω =30 meV
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and the coupling strength of g =10 meV27. Supplementary Fig. 10a illustrates the approximate

relaxation rates of electrons from graphene to WSe2 (ΓG) and WSe2 to graphene (ΓW ) as a function

of the overlap of the wavefunctions between WSe2 and graphene. We find for both a quadratic

increase as a function of the overlap, since the latter enters quadratic in both relaxation rates. The

difference between both relaxation rates arise from different final densities of states of the carrier

relaxation. In the experiment, a delayed rise of the WSe2 signal w.r.t. to the graphene signal of

about 50 fs (13 meV) was found, which indicates an overlap of 4.0%. The order of magnitude of

this value appears reasonable, since the overlap between two neighboring graphene atoms is 7% as

an example28.

Supplementary Fig. 10: Tunnel transfer for electrons and holes. a, The ICT-induced

relaxation rate of electrons in graphene towards WSe2 (blue) as a function of the electronic

wavefunction overlap between the involved conduction bands. The relaxation rate of

electrons in WSe2 towards graphene (pink). The dashed lines indicate the overlapping

values which can be expected from the experiment results. b, The relaxation rate of
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holes in graphene, which have larger energies compared to the valence band maximum

in WSe2 (blue) and the relaxation rate of holes in WSe2 (pink).

To evaluate the phonon-assisted tunneling rates for holes, we assume similar phonon coupling

elements in conduction and valence band in WSe2
27 and graphene but account for the different

dispersion of the valence band29. Supplementary Fig. 10b illustrates the tunneling rates of holes.

We find qualitatively similar tunneling rates as for electrons. However, the tunneling of holes from

WSe2 to graphene is stronger compared to the electrons. This arises from the larger density of

states of graphene for the involved final states. The reason for this, is that the Fermi energy of the

system is closer to the conduction band minimum compared to the valence band maximum, cp.

Fig. 2a in the manuscript.
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Table 1: Parameters used in the computation. ∗ exemplary value at z = 0 determined

numerically by evaluating the Wannier equation for WSe2 on a SiC substrate. 19,30. ∗∗

taken as double distance between the chalcogen atoms. The Fermi velocity taken the

experimental result.

Param. Param. Ref.

~ 0.658 eV fs dG 0.25 e nm 31

e 1 e vF 1.8 nm fs−1 exp

ε0 5.5·10−2 e2eV−1nm−1 dWSe2 0.32 e nm 19

kB 8.6·10−5 eV K−1 |ϕWSe2(r = 0)| 0.36 nm−1 ∗

εSiC 9.6 E1s
WSe2

1.7 eV 32

MWSe2 3.7 eVfs2nm−2 33

εG 634 εWSe2 13.36

aG 0.33 nm 35 aWSe2 0.67 nm ∗∗ 36
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