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Efficient sampling from a classical Gibbs distribution is an important computational problem
with applications ranging from statistical physics over Monte Carlo and optimization algorithms
to machine learning. We introduce a family of quantum algorithms that provide unbiased samples
by preparing a state encoding the entire Gibbs distribution. We show that this approach leads to
a speedup over a classical Markov chain algorithm for several examples including the Ising model
and sampling from weighted independent sets of two different graphs. Our approach connects
computational complexity with phase transitions, providing a physical interpretation of quantum
speedup. Moreover, it opens the door to exploring potentially useful sampling algorithms on near-
term quantum devices as the algorithm for sampling from independent sets on certain graphs can
be naturally implemented using Rydberg atom arrays.

Efficient algorithms that sample from Gibbs distribu-
tions are of broad practical importance in areas includ-
ing statistical physics [1], optimization [2], and machine
learning [3]. Quantum systems are naturally suited for
encoding sampling problems: according to the Born rule,
a projective measurement of a quantum state |ψ〉 in an
orthonormal basis {|s〉} yields a random sample drawn
from the probability distribution p(s) = |〈s|ψ〉|2. This
observation underpins recent work aiming to demonstrate
quantum advantage by sampling from a probability dis-
tribution defined in terms of a quantum gate sequence [4]
or an optical network [5]. While these efforts have led
to impressive experimental demonstrations [6, 7], thus
far they have limited implications for practically relevant
problems. In this Letter, we introduce a family of quan-
tum algorithms for sampling from classical Gibbs distri-
butions. We illustrate our approach with several specific
examples including sampling from the Gibbs distribution
of the Ising model and sampling from weighted indepen-
dent sets. Since approximating the size of the maximum
independent set on a random graph is NP hard [8], the
latter encompasses computationally hard problems rel-
evant for practical applications [9–11]. In contrast to
many of the pioneering quantum algorithms for sampling
problems [12–25], our approach does not require a large-
scale, universal quantum computer and may, in certain
instances, be realized on near-term quantum devices us-
ing highly excited Rydberg states [26].

The key ideas of our work are summarized in Fig. 1.
We focus on classical spin models, labeling a spin con-
figuration by s = s1s2 . . . sn with each spin being either
up (si = +1) or down (si = −1). The desired Gibbs
distribution p(s) = e−βHc(s)/Z is defined in terms of
the energies Hc(s) and the inverse temperature β with

Z =
∑
s e
−βHc(s) denoting the partition function. Sam-

pling from a classical Gibbs distribution can be reduced
to preparing the quantum state

|ψ(β)〉 =
1√
Z

∑
s

e−βHc(s)/2|s〉, (1)

which we refer to as the Gibbs state, followed by a pro-
jective measurement in the {|s〉} basis. To prepare this
state, we start from a classical Markov chain Monte Carlo
algorithm for sampling from the Gibbs distribution. Any
such Markov chain can be mapped onto a so-called par-
ent Hamiltonian Hq(β) with |ψ(β)〉 a ground state [27].
Next, we identify a sufficiently simple Hamiltonian H0

whose ground state can be readily prepared and which
can be adiabatically deformed into Hq(β), thereby pro-
ducing the Gibbs state. We emphasize that the adiabatic
evolution is not restricted to the one-parameter family of
Hamiltonians defined by Hq(β) for arbitrary β [14]. In
fact, asymptotic speedup over the classical Markov chain
is only available along more general paths.

In two of the examples presented below, the speedup
originates from ballistic propagation of domain walls en-

Markov chain sampling problem Hamiltonian
with ground state
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FIG. 1. Key steps in the construction of the proposed quan-
tum algorithms. The green boxes constitute the sampling
procedure, which is carried out on a quantum computer.
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abled by quantum coherent motion as opposed to diffu-
sive motion arising from classical thermal fluctuations.
Since the width of the region explored by diffusion is
proportional to the square root of time, we generically
expect a quadratic speedup. Additional speedup is pos-
sible if diffusion in the Markov chain is suppressed, e.g.,
by a thermal barrier. An alternative speedup mechanism
associated with quantum tunneling is uncovered in the
problem of sampling from weighted independent sets on
star graphs. We note that we only compare the quan-
tum algorithm to the classical Markov chain from which
it is constructed even though faster classical algorithms
exist for the examples below [28]. Ultimately, we are in-
terested in the potential of our approach to general sam-
pling problems, where Markov chain Monte Carlo is one
of few algorithms with guaranteed convergence.

Our construction of the parent Hamiltonian follows the
prescription in [27] (see [29–31] for related earlier work).
We first define a Markov chain that samples from the
desired Gibbs distribution p(s). The Markov chain is
specified by a generator matrix M , where the proba-
bility distribution qt(s) at time t evolves according to
qt+1(s) =

∑
s′ qt(s

′)M(s′, s). We assume in addition that
the Markov chain satisfies detailed balance, which can be
expressed as e−βHc(s

′)M(s′, s) = e−βHc(s)M(s, s′). This
property implies that p(s) is a stationary distribution of
the Markov chain and therefore constitutes a left eigen-
vector of M with eigenvalue unity. Moreover,

Hq(β) = n
(
I− e−βHc/2MeβHc/2

)
(2)

is a real, symmetric matrix and thus a valid quantum
Hamiltonian. The spectrum of Hq(β) is bounded from
below by 0 since the spectrum of the stochastic ma-
trix M is bounded from above by 1. Furthermore,
Hq(β)|ψ(β)〉 = 0 such that the Gibbs state is a ground
state. The factor of n in Eq. (2) ensures that the spec-
trum of the parent Hamiltonian is extensive. To account
for the natural parallelization in adiabatic evolution, we
divide the mixing time of the Markov chain by n for a fair
comparison, denoting the result by tm. The correspon-
dence between the spectra of M and Hq(β) establishes
the bound tm ≥ 1/∆(β)− 1/n, where ∆(β) is the energy
gap of the parent Hamiltonian [32, 33].

We now illustrate this procedure by considering a
ferromagnetic Ising model composed of n spins in one
dimension. The classical Hamiltonian is given by
Hc = −

∑n
i=1 σ

z
i σ

z
i+1 with periodic boundary conditions.

Choosing Glauber dynamics as the Markov chain [34],
the corresponding parent Hamiltonian takes the form

Hq(β) =
n

2
I−

n∑
i=1

[h(β)σxi + J1(β)σzi σ
z
i+1

− J2(β)σzi−1σ
x
i σ

z
i+1

]
, (3)

where 4h(β) = 1 + 1/ cosh(2β), 2J1(β) = tanh(2β), and
4J2(β) = 1− 1/ cosh(2β) (see [26] for details and [35, 36]
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FIG. 2. (a) Phase diagram of the parent Hamiltonian cor-
responding to the Ising chain. The black lines indicate the
boundaries between paramagnetic (PM), ferromagnetic (FM),
and cluster-state-like (CS) phases. The curves labeled (i)–(iv)
show four different choices of adiabatic paths with (ii) rep-
resenting the one-parameter family Hq(β). (b) The time ta
required to reach a fidelity exceeding 1−10−3 as a function of
the number of spins n. The dashed lines are guides to the eye
showing the expected linear, quadratic, and cubic relations.

for early derivations of this result). At infinite temper-
ature (β = 0), we have J1 = J2 = 0 and h = 1/2.
The ground state is a paramagnet aligned along the x-
direction, which corresponds to an equal superposition of
all classical spin configurations, consistent with the Gibbs
distribution at infinite temperature. When the temper-
ature is lowered, the parameters move along a segment
of a parabola in the two-dimensional parameter space
(J1/h, J2/h) shown by the red curve (ii) in Fig. 2(a).

The quantum phase diagram of the parent Hamilto-
nian for arbitrary values of h, J1, and J2 is obtained by
performing a Jordan–Wigner transformation that maps
Eq. (3) onto a free-fermion model [26, 37, 38]. The dis-
tinct quantum phases are displayed in Fig. 2(a). The
model reduces to the transverse field Ising model on the
J2/h = 0 axis, in which a phase transition from a param-
agnet to a ferromagnet occurs at J1/h = 1 [39]. Along the
J1/h = 0 axis, the ground state undergoes a symmetry-
protected topological phase transition at J2/h = ±1 from
the paramagnet to a cluster-state-like phase [40, 41]. We
note that the tricritical point at (J1/h, J2/h) = (2, 1) de-
scribes the parent Hamiltonian corresponding to the zero
temperature Gibbs distribution.

To prepare the Gibbs state |ψ(β)〉, one may start from
the ground state of Hq(0) before smoothly varying the
parameters (h, J1, J2) to bring the Hamiltonian into its
final form at the desired inverse temperature β. States
with finite β can be connected to the infinite temperature
state by a path that lies fully in the paramagnetic phase.
Both adiabatic state preparation and the Markov chain
are efficient in this case. Indeed, it has been shown previ-
ously that there exists a general quantum algorithm with
run time ∼ log n for gapped parent Hamiltonians [23],
which is identical to the Markov mixing time tm for the
Ising chain [33].
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Sampling at zero temperature is more challenging with
the mixing time of the Markov chain bounded by tm &
n2 [26]. For the quantum algorithm, we consider the
four different paths in Fig. 2(a). To evaluate the dynam-
ics quantitatively, we choose the rate of change of the
Hamiltonian parameters with the aim of satisfying the
adiabatic condition at every point along the path and
numerically integrate the Schrödinger equation with the
initial state |ψ(0)〉 to obtain |φ(ttot)〉 after total evolution
time ttot (see [26] for details on the adiabatic schedule).
We emphasize that the adiabatic schedule proceeds with
a non-constant rate, leading to scaling of the adiabatic
state preparation time distinct form the Landau–Zener
result [42]. To determine the dependence on the num-
ber of spins, we extract the time ta at which the fidelity
F = |〈φ(ttot)|ψ(∞)〉|2 exceeds 1 − 10−3 [Fig. 2(b)]. We
find three different scalings of the time ta: along path (i),
it roughly scales as ta ∼ n3, along (ii) as ta ∼ n2, while
(iii) and (iv) exhibit a scaling close to ta ∼ n.

These scalings follow from the nature of the phase tran-
sitions. The dynamical critical exponent at the tricritical
point is z = 2, meaning that the gap closes with system
size as ∆ ∼ 1/n2, which is consistent with the time re-
quired along path (ii). The dynamical critical exponent
at all phase transitions away from the tricritical point
is z = 1 and the gap closes as ∆ ∼ 1/n [26]. There-
fore, the paramagnetic to ferromagnetic phase transition
can be crossed adiabatically in a time proportional to n,
only limited by ballistic propagation of domain walls as
opposed to diffusive propagation in the Markov chain.
There is no quadratic slowdown as paths (iii) and (iv)
approach the tricritical point, which we attribute to the
large overlap of the final state with ground states in
the ferromagnetic phase. Path (i) performs worse than
path (ii) because the gap between the paramagnetic and
cluster-state-like phases vanishes exactly for certain pa-
rameters even in a finite-sized system [26]. To support
the claim that the speedup is quantum mechanical, we
note that the half-chain entanglement entropy of the
ground state diverges logarithmically with n when paths
(iii) and (iv) cross from the paramagnetic into the ferro-
magnetic phase. It is impossible to represent this ground
state as a Gibbs state of a local, classical Hamiltonian Hc

because any such representation would be a matrix prod-
uct state with constant bond dimension and bounded en-
tanglement entropy [27].

While the previous example illustrates a mechanism for
quantum speedup, sampling from large systems is hard
only at zero temperature [43], where more suitable opti-
mization algorithms may exist. In addition, the parent
Hamiltonian, Eq. (3), does not have a simple physical
realization. We address these limitations by consider-
ing the weighted independent set problem. An indepen-
dent set of a graph is any subset of vertices in which no
two vertices share an edge. We say vertex i is occupied
(ni = 1) if it is in the independent set and unoccupied
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FIG. 3. (a) Parameter space and order parameter of the par-
ent Hamiltonian for a chain of length n = 30. The order pa-
rameter |M2|+ |M3| distinguishes the disordered phase from
the Z2 and Z3 ordered phases. The red curve (i) indicates
the one-parameter family Hq(β), while the blue curve (ii)
is an alternative adiabatic path crossing into the Z2 phase.
(d) Adiabatic state preparation time ta to reach a fidelity
F > 1− 10−3 along the two paths in (b). Path (i) terminates
at βc = 2 logn while the end of (ii) corresponds to the parent
Hamiltonian with β → ∞. The black lines are guides to the
eye showing the scalings ta ∝ n and ta ∝ n4.

(ni = 0) otherwise. In the maximum weighted indepen-
dent set problem, each vertex is further assigned a weight
wi and we seek to minimize the energy Hc = −

∑
i wini

subject to the independent set constraint. The cor-
responding Gibbs distribution has been studied exten-
sively [44–46]. To construct a quantum algorithm that
samples from this Gibbs distribution, each vertex is as-
sociated with a spin variable σzi = 2ni − 1. Single spin
flips with the Metropolis–Hastings update rule [47] yield
the parent Hamiltonian

Hq(β) =
∑
i

Pi [Ve,i(β)ni+

Vg,i(β)(1− ni)− Ωi(β)σxi ] , (4)

where we only consider the subspace spanned by the in-
dependent sets. In Eq. (4), Pi =

∏
j∈Ni

(1− nj) projects
onto states in which all nearest neighbors Ni of ver-
tex i are unoccupied. The parameters are given by
Ve,i(β) = e−βwi , Vg,i(β) = 1, and Ωi(β) = e−βwi/2 [26].

The projectors Pi involve up to d-body terms, where
d is the degree of the graph. Nevertheless, they can
be implemented with minimal experimental overhead
for certain classes of graphs. In the case of so-called
unit disk graphs, these operators are naturally realiz-
able using highly excited Rydberg states of neutral atoms
by extending existing schemes that implement Hamilto-
nians for the independent set problem using Rydberg
blockade [26, 48]. As a simple example of a unit disk
graph, we consider a chain of length n and choose equal
weights wi = 1. The resulting parent Hamiltonian
has been studied both theoretically [49, 50] and exper-
imentally using Rydberg atoms [51, 52]. Its quantum
phases can be characterized by the staggered magnetiza-
tion Mk = (1/n)

∑n
j=1 e

2πij/kσzj . Figure 3(a) shows the
ground state expectation value of |M2|+ |M3| for n = 30,
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clearly indicating the presence of three distinct phases.
For large Ω/Vg or large, positive Ve/Vg, assuming Vg > 0
throughout, the ground state respects the full transla-
tional symmetry of the Hamiltonian and |Mk| vanishes
for all integers k > 1. When Ve/Vg is sufficiently small,
the ground state is Z2 ordered with every other site oc-
cupied and |M2| 6= 0. Owing to next-to-nearest neighbor
repulsive terms in the Hamiltonian, there further exists
a Z3 ordered phase, in which |M3| 6= 0.

The one-parameter family Hq(β) is indicated by the
red curve (i) in Fig. 3(a). Although |ψ(0)〉 is not a prod-
uct state, it can be efficiently prepared. For example,
Hq(0) can be adiabatically connected to Ω/Vg = 0 and
Ve/Vg > 3, where the ground state is the state of all sites
unoccupied, by a path that lies fully in the disordered
phase. Similarly, the Markov chain at infinite temper-
ature is efficient as the parent Hamiltonian is gapped.
Numerical results indicate that the gap is proportional
to e−2β at high temperature and e−β/n2 at low temper-
ature [26]. The Markov chain is not ergodic at zero tem-
perature because defects in the Z2 ordering, i.e., adjacent
unoccupied sites, must overcome an energy barrier to
propagate. It is nevertheless possible to sample approx-
imately from the ground state by running the Markov
chain at a low temperature β & βc, where βc = 2 log n
is the temperature at which the correlation length is
comparable to the system size. The gap of the parent
Hamiltonian bounds the mixing time by tm & e2βc = n4.
As shown in Fig. 3(b), the adiabatic state preparation
time ta along the one-parameter family Hq(β) follows the
same scaling (see [26] for details concerning the adiabatic
schedule).

A quantum speedup is obtained by choosing a differ-
ent path. For example, Fig. 3(b) shows an approximately
linear scaling of ta along path (ii) in Fig. 3(a). We em-
phasize that unlike path (i), path (ii) ends at the parent
Hamiltonian Hq(β) with β → ∞. The quantum algo-
rithm is thus capable of preparing the zero-temperature
Gibbs state despite the lack of ergodicity of the Markov
chain. We again attribute the linear scaling to the dy-
namical critical exponent z = 1 at the phase transi-
tion between the disordered and the Z2 ordered phases.
Note that for the independent set problem, the quan-
tum speedup is quartic owing to the more slowly mix-
ing Markov chain. However, it is possible to improve the
performance of the Markov chain by adding simultaneous
spin flips on neighboring sites, reducing the advantage of
the quantum algorithm to a quadratic speedup similar to
the Ising model.

We next consider a graph for which it is hard to sam-
ple from independent sets even at nonzero temperature.
The graph takes the shape of a star with b branches
and two vertices per branch [Fig. 4(a)]. The weight of
the vertex at the center is b, while all other weights are
set to 1. The classical model exhibits a phase transi-
tion at β∗ = logϕ ≈ 0.48, where ϕ is the golden ra-

(b)(a)

0 1
0.5

1

FIG. 4. (a) Sampling from a star graph with two vertices per
branch. The mixing of the Markov chain is limited at low
temperature by the probability p0→1 of changing the central
vertex from unoccupied to occupied. The quantum algorithm
achieves a quadratic speedup over the Markov chain by tun-
neling between such configurations with rate J . (b) Entropy
per branch S/b of the Gibbs distribution of weighted inde-
pendent set problem for this graph. The system exhibits a
discontinuous phase transition at β∗ ≈ 0.48. The central
vertex is occupied with high probability when β > β∗ and
unoccupied otherwise.

tio [Fig. 4(b)] [26]. The Markov chain on this graph
is subject to severe kinetic constraints since changing
the central vertex from unoccupied to occupied requires
all neighboring vertices to be unoccupied. Assuming
that each individual branch is in thermal equilibrium,
the probability of accepting such a move is given by
p0→1 = [(1 + eβ)/(1 + 2eβ)]b. Similarly, the reverse pro-
cess is energetically suppressed with an acceptance prob-
ability p1→0 = e−bβ . The central vertex can thus become
trapped in the thermodynamically unfavorable configura-
tion, resulting in a mixing time that grows exponentially
with b at any finite temperature. When starting from
a random independent set, the Markov chain will nev-
ertheless sample efficiently at high temperature because
the probability of the central vertex being initially occu-
pied is exponentially small. By the same argument, the
Markov chain almost certainly starts in the wrong con-
figuration in the low temperature phase and convergence
to the Gibbs distribution requires a time tm & 1/p0→1.

The corresponding quantum dynamics are captured by
a two-state model formed by |ψ0(β)〉 and |ψ1(β)〉, which
are Gibbs states with the central vertex fixed to be re-
spectively unoccupied or occupied [Fig. 4(a)]. The tun-
neling rate between these states, i.e. the matrix element
〈ψ0|Hq|ψ1〉, is given by J = Ωcen

√
p0→1, where Ωcen de-

notes the coefficient Ωi in Eq. (4) associated with the
central vertex. The time required to adiabatically cross
the phase transition is bounded by ta & 1/J with J eval-
uated at the phase transition. Along the one-parameter
family Hq(β), we have Ωcen =

√
p1→0 such that adia-

batic state preparation yields the same time complexity
ta & 1/p0→1 as the Markov chain that samples at the
phase transition (p0→1 = p1→0 at the phase transition).
However, the square-root dependence of the tunneling
rate on p0→1 suggests that a quadratic speedup may be
attainable with a path along which Ωcen = 1 when cross-
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ing the phase transition. An example of such a path is
provided in [26] together with a numerical demonstration
of the quadratic speedup.

Our approach to quantum sampling algorithms un-
veils a connection between computational complexity and
phase transitions and provides physical insight into the
origin of quantum speedup. The quantum Hamiltoni-
ans appearing in the construction are guaranteed to be
local given that the Gibbs distribution belongs to a lo-
cal, classical Hamiltonian and that the Markov chain up-
dates are local. Consequently, time evolution under these
quantum Hamiltonians can be implemented using Hamil-
tonian simulation [53]. Moreover, a hardware efficient
implementation suitable for recently demonstrated two-
dimensional Rydberg atom arrays [54, 55] is possible for
certain problems [26].

Further research is required to apply our approach to
practically relevant problems such as disordered systems
in two or more dimensions. Our work may be extended
to cover quantum algorithms derived from Markov chains
with cluster updates, which are often effective in prac-
tice. Moreover, it will be necessary to develop methods
for efficient state preparation when computation of the
full phase diagram is classically intractable, as one ex-
pects for generic instances. Hybrid algorithms, which
combine quantum evolution with classical optimization,
such as the recently proposed variational quantum adi-
abatic algorithm [56], are particularly promising in this
context. Apart from testing such algorithms, their real-
ization on near-term quantum devices can open the door
to exploration of novel applications in areas ranging from
physical science to machine learning.
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