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Spin-orbit induced equilibrium spin currents in materials
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The existence of pure spin currents in absence of any driving external field is commonly considered an exotic
phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that
equilibrium spin currents are a rather general property of materials with non-negligible spin-orbit coupling
(SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence
of global equilibrium spin currents, which are net bulk spin currents along specific crystallographic directions
of solid-state materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems
having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an
analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen
as analogous to the color degree of freedom in SU(2) gauge theories and equilibrium spin currents can then be
identified with diamagnetic color currents appearing as the response to a effective non-Abelian magnetic field
generated by the SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but
they should nonetheless be carefully taken into account when computing transport spin currents. We provide
quantitative estimates of equilibrium spin currents for a number of different systems, specifically the Au(111)
and Ag(111) metallic surfaces presenting Rashba-type surface states, nitride semiconducting nanostructures,
and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out
the limitations of model approaches showing that first-principles calculations are needed to obtain reliable
predictions. We therefore use density functional theory computing the so-called bond currents, which represent
a powerful tool to deeply understand the relation between equilibrium currents, electronic structure, and crystal

point group.

DOI: 10.1103/PhysRevB.105.024409

I. INTRODUCTION

The spin-orbit coupling (SOC) is one of the most important
interactions in spintronics since it allows to control the spin
degree of freedom by electrical means [1-3]. Despite the
rapidly growing number of studies dedicated to SOC-driven
phenomena, some fundamental questions remain debated.
Among these there is the possibility for SOC to induce spin
currents in thermodynamic equilibrium [4-8].

Similar to the charge current, which is the flow of elec-
tronic charges, the spin current is generally viewed as the
flow of angular momentum mediated by electrons and driven
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by an external stimulus, such as a precessing magnetic field.
According to this picture, no spin current would be ex-
pected in absence of any external stimuli and in equilibrium.
However, equilibrium spin currents (ESCs) are easily com-
puted for the two-dimensional (2D) Rashba electron gas and
other spin-orbit coupled model systems [4], including model
graphene [9,10]. This rises questions about the existence of
ESCs and their physical interpretation. Part of the contro-
versy comes from the fact that spin, unlike charge, is not
a conserved quantity in presence of SOC. Mathematically,
the time derivative of the spin density does not reduce to a
divergence of a current, but always contains an extra term,
the spin torque [11]. There is therefore an apparent ambiguity
in the definition of spin current. Aside from this ambiguity,
we note that ESCs have so far been computed only in some
model systems and one may ask whether they are specific
features of those models. In fact, to our knowledge, the exis-
tence and eventual magnitude of ESCs in material compounds

©2022 American Physical Society


https://orcid.org/0000-0002-9222-9317
https://orcid.org/0000-0001-6288-0689
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.024409&domain=pdf&date_stamp=2022-01-10
https://doi.org/10.1103/PhysRevB.105.024409

DROGHETTI, RUNGGER, RUBIO, AND TOKATLY

PHYSICAL REVIEW B 105, 024409 (2022)

have never been investigated. In this paper, we address these
issues.

The physics behind ESCs is uncovered [8] by making
an analogy between electronic systems with SOC and non-
Abelian gauge theories [8,12—14] using ideas and techniques,
typically introduced in the context of quantum chromody-
namics. Many different aspects of SOC-related physics in
materials, both in the equilibrium and in transport regimes,
acquire a simple and natural explanation when SOC is in-
terpreted in terms of an effective non-Abelian SU(2) gauge
field [15-26]. In this paradigm ESCs are identified with dia-
magnetic color currents appearing as the response to such field
and aiming at compensating it. This picture is analogous to
Landau diamagnetism and it can be seen as its non-Abelian
generalization. ESCs are therefore expected to be present in
almost any physical system.

By using first-principles density functional theory (DFT)
calculations we demonstrate that ESCs emerge in materials
whenever allowed by crystal symmetry, and that they are
found in metals and insulators alike. In particular, we predict
that a global spin current, which is a net ESC along a specific
crystallographic direction, is present in certain noncentrosym-
metric crystals, called gyrotropic media. Since more than half
of the crystal point groups are gyrotropic, ESCs are common
and not at all unique to quantum materials, such as topological
insulators [27]. Furthermore, ESCs are ubiquitous at surfaces
and interfaces, where they can be used as a “measure” for the
effective surface SOC strength. We will discuss these main
outcomes of our work with several examples pointing out also
the limitation of model approaches and the need for accurate
first-principles calculations to obtain reliable predictions.

The paper is organized as follows. In Sec. I we consider a
general electronic Hamiltonian with SOC and make a link to
non-Abelian gauge theories. We then define a gauge-invariant
spin current and discuss the physical significance of ESCs. In
Sec. II we explain how spin currents can be easily obtained
via DFT calculations. In Sec. III we present examples of
ESCs in several materials. In particular, we first consider the
Au(111) surface, which is a very instructive system because
of its Rashba-type surface bands. We systematically compare
ESCs obtained within model descriptions to those computed
by means of DFT, revealing the relative importance of surface
and bulk bands. Afterwards, we discuss how ESCs emerge
in semiconducting nanostructures as well as bulk materials
and we estimate ESCs in the prototypical gyrotropic material
tellurium. Finally, we conclude in Sec. III.

II. PHYSICAL INTERPRETATION OF EQUILIBRIUM
SPIN CURRENTS

The Hamiltonian of an electron including spin-dependent
relativistic corrections up to the order 1/c* (with ¢ the speed
of light) is

SO ) A eh
A=—+0m+
2m

4m2c?

p- 16 x Bl + 2B(r) -6,
. . (1)
and has spinor wave functions W' = WT’ wII; e and m are
the electron charge and mass; ¥, p, and 76 /2 are the position,
momentum, and spin operators; U (r) is the scalar external

potential. The last term is the Zeeman interaction between the
spin and an external magnetic field B(r) with up the Bohr
magneton and g the electron g factor. E(r) is the electric field
produced by nuclei in molecules or solids. The third term of
H is the SOC interaction term which, up to a prefactor, can be
rewritten as
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where L. = £ x p is orbital angular momentum.

The problem related to the existence of ESCs is con-
veniently treated by making a connection to non-Abelian
gauge theories [8,12-14,22] and interpreting the SOC and
the Zeeman interaction in Eq. (1) in terms of a non-Abelian
SU(2) vector potential Aﬂ = AZFZ&“ /2, where © =0, x, y, z.
Specifically, the components of such vector potential read as

5 8B . P eh .
Ay(r) = —=—=B*(r)6*, Air) = ——€;L;x)6° (3)
2 2mc
where a = x, y, z and i = x, y, z, respectively, label the spin
and spatial components (note that we use Einsten’s summation
convention on repeated indices throughout this paper). The
electron Hamiltonian can then be rewritten as
.- A@P A
a=PAO gmvom. @
2m
where we absorbed the quadratic term -AA, /2m into the
scalar potential. The beauty of this representation is that H im-
mediately appears invariant with respect to local non-Abelian
gauge transformations

A, - UA0" —in@00", ®

where U(r) = "' ®™%‘/2 is an arbitrary SU(2) matrix that
transforms the wave function as ¥ — UW (note that from
now on we will not indicate the explicit dependence on r,
unless strictly needed, to keep the notation lighter). The gauge
invariance then implies covariant conservation of a current

ju [8]:

Dojy + Diji =0, (6)

where D,- = 8, - —i[A,, -]/ is the covariant derivative and
R
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Equation (6) is mathematically identical to the covariant con-
servation of the color degree of freedom associated to the
SU(2) quark matter. However, physically, it represents the spin
continuity equation, where jg is the a component of the spin
and j“ is the corresponding spin-current density. This reason-
ing is completely analogous to that employed in the familiar
case of U(1) gauge fields, where the gauge invariance leads to
the charge continuity equation. We note that the definition of
spin-current density in Eq. (8) coincides with the “common”
definition used by Rashba to predict ESCs in spin-orbit cou-
pled model systems [4]. It can be rewritten as the expectation
value ji = h/4({6%, v;}), where ¥; = (ih)~'[#;, H] is the ith
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component of the velocity operator. The last term in Eq. (8)

owns to the SOC, which introduces a spin-dependent compo-

nent in the particle velocity, the so-called anomalous term.
Explicitly, Eq. (6) reads as

ds? + € AbsE 4+ 9,0 + e AL = 0. ©)

The first term is the rate of change of the spin density at
a point in space, while the third term is the divergence of
the spin-current density. These are analogous to the rate of
change of the charge density and to the divergence of the
charge-current density in the standard U(1) case. However, we
note that, in SU(2), there are two extra terms in the continuity
equation, namely, the second and the fourth terms in Eq. (9).
They express the fact that the spin, unlike the charge, is not
conserved. They are the torque caused by the Zeeman mag-
netic field and by the SOC, respectively. As mentioned in the
Introduction, the separation between spin-current density and
spin torque in Eq. (9) has been seen as a source of ambiguity
in the definition of spin currents (see, for example, Ref. [5]).
However, the derivation based on the gauge invariance leaves
no room for such ambiguity. It rigorously defines the spin-
current density according to Eq. (8). We are then forced to
accept the consequences that follow. Among these there is
the existence of ESCs. In the case of the electromagnetic
U(1) gauge field a dissipative charge current is induced by
the electric component of the field, while nondissipative dia-
magnetic currents emerge as the response to the magnetic
field. They are calculated as the derivative of the energy with
respect to the magnetic vector potential. In a very same way,
in the SU(2) case, dissipative currents are driven by the effec-
tive SU(2) electric field Fy = 8,40 — 9,.4; — i[A;, Ayl/h,
while there are also nondissipative currents due to the ef-
fective magnetic field ;; = 3,.A; — 3,A; — i[A;, A;1/h. In
other words, SOC enters the electronic Hamiltonian as an
effective background non-Abelian field, and, if a magnetic
part of this color field is nonzero, one naturally expects an
orbital response in the form of color diamagnetic currents. The
components of the current density are given by the derivative
of the energy with respect to A7,

¢ =(8H/8AY), (10)

as shown in Ref. [8] or they can equivalently be calculated
from the definition (8), taking the thermodynamic average [4].
Importantly, since ESCs are nondissipative currents, they do
not transport spin and they do not result in spin accumulation.

ESCs can be readily analyzed for the models with linear
SOC of Rashba-Dresselhaus form [4]. The only nonzero com-
ponents of the SU(2) vector potential are

A, = m(pé* — az6”), A, = m(Og6* —rp6?), (11)

where AR and AP are the Rashba and Dresselhaus SOC con-
stants. Hence (assuming that the system Fermi energy is
positive), the corresponding nonzero components of the ESC

density are [4,8]

2 m*Ap(Ag — Ap)
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where Vg is the Brillouin zone volume. Notably, j; and ji
vanish for the special values Agp = £Ap. The reason is that
the color magnetic field /3, = m?(A% — A3) vanishes for this
special case. In the absence of any magnetic field, there are
no diamagnetic currents. We therefore see that the physical
reason for the equilibrium spin currents is a response to the
SOC induced non-Abelian magnetic field.

In spite of the analogy between Landau diamagnetic cur-
rents and ESCs, these last ones are somehow more universal.
Diamagnetic charge currents in a sample are confined at its
surface and global equilibrium charge currents, that are net
currents through a whole sample cross section, are forbidden.
For instance, in a finite slab, there will be charge currents at
the top and bottom surfaces flowing in opposite directions and
therefore compensating, while the charge current will vanish
in the bulk. This is due to the Bloch-Bohm theorem [28],
which states the impossibility of persistent charge currents in
the ground state of an electronic system with a normalizable
ground-state wave function. In contrast, no similar theorem
exists for the spin case. Global ESCs therefore appear when-
ever allowed by symmetry.

The spin-current density is a second-rank pseudotensor,
even under time reversal, because it transforms as the direct
product of the momentum vector and of the spin pseu-
dovector according to Eq. (8). Second-rank pseudotensors are
allowed by symmetry only in a subset of noncentrosymmet-
ric systems, called gyrotropic [29,30]. Gyrotropic materials
were first studied because of their optical activity, which
is in fact expressed in terms of the second-rank gyration
pseudotensor [31]. Of the 32 crystal point groups, 21 are
noncentrosymmetric. Among these, 18 are gyrotropic. The
three noncentrosymmetric classes, which are nongyrotropic,
are T,, Cs;,, D3j,. Materials with these three point groups are
not expected to show ESCs in spite of being noncentrosym-
metric. The gyrotropic point groups are O, T, C;, C,, Cs,
Cy, Cs, Dy, D3, Dy, D, Cy, Cyy, Csy, Sy, Doy, Cyy, and Ce,,.
Global ESCs are expected in all compounds with these point
symmetries, provided that they have non-negligible SOC. As
such, ESCs are quite common intrinsic features of materials.
This is an important “take-home” message of our paper.

In centrosymmetric materials, the symmetry can be re-
duced to gyroptropic, thus leading to the emergence of ESCs,
for example, through the application of a strain gradient [32].
Moreover, the inversion symmetry is naturally broken at sur-
faces and interfaces, which, in most cases, turn out to have
gyrotropic point groups. ESCs are therefore present at sur-
faces even in materials, where bulk ESCs are forbidden. As
real material samples always have surfaces, ESCs are truly
ubiquitous in nature. We will present several illustrative ex-
amples in the following sections.

The emergence of surface ESCs belongs to the plethora
of interfacial phenomena described in terms of the so-called
effective interfacial SOC, that is the combination of the atomic
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SOC with the loss of inversion symmetry. Other well-known
examples include spin-charge conversion [33-36] and interfa-
cial spin-orbit torque [37-39]. While it is generally assumed
that the effective interfacial SOC and the magnitude of in-
terfacial phenomena are exclusively dictated by spin-textured
surface bands [33,34,40—43], an analysis based on the ESCs
reveals that this is not the case. In Sec. IVA we will show
that surface bands have a minor contribution, while we argue
that ESCs are mostly associated to bulk states scattering off
the surface. Notably, a similar conclusion was reached also
by studying current-induced spin polarization at metallic sur-
faces [44,45]. We therefore propose that the calculation of
the surface ESCs allows for a practical estimate of effective
interfacial SOC in any system, metallic or insulating, with and
without surface bands. This is another important message of
our work.

Finally, we would like to address whether the existence of
ESCs can be detected, although they do not lead to any spin
accumulation. Different experiments have been proposed. For
instance, Sonin suggested to exploit a magnetomechanical
effect [7]. If a Rashba 2D medium is integrated into a mechan-
ical cantilever magnetometer, one might be able to measure a
mechanical torque. The argument is based on the observation
that the ESCs are constant in the bulk of the Rashba medium
according to Egs. (12) and (13) (with Ap = 0), whereas they
must vanish at the very edge. This would lead to an edge
orbital torque and to a flux of the orbital moment with a sign
opposite to that of the spin, thus complying the total angu-
lar momentum conservation law. However, since the Rashba
medium has no orbital moment in its 2D plane, the whole
orbital torque must be applied to the free edge of the can-
tilever, which is then deformed. The idea is intriguing and we
note that the required mechanical cantilever was recently real-
ized [46]. However, in real material systems, where the orbital
moment at the edge atoms does not vanish, the mechanical
effect may be absent or much smaller compared to the esti-
mates provided by Sonin [7]. The calculation of ESCs from
first principles as presented in the following, accompanied
by some further developments to obtain mechanical toques
from ionic forces, might allow to explore this problem at the
quantitative level in future works.

More recently, a few works proposed the use of optical
methods [47,48] and, specifically, that spin currents can be
probed by polarized light beams [47] or via second-order
nonlinear optical effect [48]. The results refer to out-of-
equilibrium spin currents generated, for example, through
laser pulses, but the idea should apply to ESCs as well. The
possibility to exploit optical methods to address ESCs seems
also rather natural considering that ESCs emerge in gyrotropic
systems, which, as such, are optically active [31]. In fact,
it might be possible to reinterpret magneto-optical responses
in terms of ESCs. This is an interesting direction for further
research.

The most promising approach to measure ESCs would be
by electrical means [49,50]. Nondissipative charge currents
in currents loops are detected by magnetic-field measure-
ments and, similarly, ESCs might be detected by electric-field
measurements. This is because an ESC leads to electric po-
larization [51]. By definition, the spontaneous polarization
P of a system is calculated by applying an external electric

field E and computing the derivative of the energy at E = 0,
P = (dH /dE)| |E|=0- On the other hand, the components of the
ESC density j¢ are given by the derivative of the energy with
respect to the SU(2) vector potential as shown in Eq. (10). In
the presence of SOC the change of a vector potential compo-
nent A? is related to the applied electric field via the second
of Egs. (3). Thus, we find the relation between the electric
polarization and the current density

P — dH e dH e a (14)
I dE; _mczeua dA¢ _mczeua]i'

In insulators with bulk ESCs, such as InN, which is studied in
Sec. IV B, one could compute from first principles the bulk
electric polarization [52] with and without SOC, relate the
difference to the ESC density, and then compare the results
for P to experiments. In metals, this argument is probably not
applicable because of metallic screening. However, we can
expect some extra polarization near the surfaces. The extra
polarization due to SOC can probably be understood in terms
of the inverse spin Hall effect. If we adiabatically switch on
SOC in a gyrotropic material, we will produce a spin current,
and because of the inverse spin Hall effect [53], a perpendicu-
lar charge current. At the end of the process the transferred
charge will give the extra polarization in presence of the
ESC. For a bulk ESC density of the order of 10'7 eV/m?,
which is a rather realistic value based on the results obtained
in the rest of the paper, the polarization is of the order of
108 C/m?, that is unfortunately very small. Nonetheless, we
think that understanding the key features of ESCs and having
the possibility to predict their magnitude from first principles
could help to design experimental setups and select the most
promising materials to eventually address their existence.

II1. SPIN CURRENTS FROM DFT

Having established the physical interpretation for ESCs,
we now put forward a scheme to evaluate quantitatively their
magnitude in material systems. Specifically, we use Kohn-
Sham (KS) DFT. The Hamiltonian in Eq. (1) then becomes the
single-particle KS Hamiltonian within the local spin-density
approximation (LSDA). The external potential includes the
Hartree and the exchange-correlation potential, while the Zee-
man field includes the exchange-correlation magnetic field.
We employ the SIESTA package [54] and the SMEAGOL [55-57]
quantum transport code. They use a linear combination of
atomic orbitals basis set {|¢,)},—1 5, Where each integer n
stands for the atom index, the principal quantum number,
the angular momentum quantum number, and the magnetic
quantum number; N is the total number of basis orbitals.
In general, the basis states are nonorthogonal and the spin-
independent overlap integrals €2,,, = (¢.|¢n) are the elements
of the overlap matrix Q2. The Hamiltonian is expanded in
the basis obtaining the matrix H composed of the 2 x 2
spin blocks H,,, = H;, 1> + H,,,0 for each pair of orbitals
n and m. H;, is the charge part, while H,, is the spin
part and it is a vector of matrices (H,, Hyn, HZ,). Simi-
larly, the density matrix p and the so-called energy density
matrix [54] F = J[Q7'Hp 4+ pHQ™'] are composed of the
blocks Pnm = P;m I + Pum@ and F,, = Fncm I, +F,,0. To
derive an expression for the spin current suitable for a numer-
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ical implementation, we rewrite the spin continuity equation
in terms of the spin S, = (S, Sy, %) associated to the basis
orbital n [58]. In particular, following Refs. [57,59] we define
the components of S, in terms of the symmetrized Mulliken
population

S0 — B (0" S)un + (20 )n
"2 2 ’
where a = x, y, z. Then, by taking their derivative with respect
to time we obtain [57,59]

08¢ =T+ T7, (16)

and T =3 T Tm =
(Z%, T, T,,) is called the spin bond current between
the orbitals 7 and m and is defined as

Zyn =Im [Hnmlofym + Hy(:mpmn - S.2}1171an:|‘ 17)
T = (TF, T, T7) is the torque acting on S, with
771m = 2Re[H,,, x Pmn] (18)

If 77, is positive, it will describe the spin-a current due to the
flow into the orbital n from the orbital m. In contrast, if Z7
is negative, it will describe the spin-a current due to the flow
out of the orbital n towards the orbital m. It is then straightfor-
ward to verify that 7\ = —Z° . Equation (16) represents the
equivalent in orbital representation of Eq. (9). We note that 7T,
in Eq. (18) contains the contributions from both SOC and the
Zeeman (exchange-correlation) field, which were previously
separated in Eq. (9).

Equilibrium bond currents are obtained inserting the
equilibrium density matrix and energy density matrix into
Eq. (17). Assuming the calculations to be carried out for a
rectangular cuboid supercell, the global ESC per supercell is
expressed as a pseudotensor

s5)

a __ N a
where In - Zm:l Inm

L LI
o L. (19)
E I

Each component [{ is obtained by summing the spin-a bond
currents Z; connecting the pairs of orbitals n and m located
on the opposite sides of the supercell surface with normal
along the i Cartesian direction. Details on how the calcula-
tions are practically carried out are given in Appendix A. The
results are then rescaled for unit cells of arbitrary shapes or, al-
ternatively, converted into the ESC densities ji defined in the
previous section. We note that bond-current and therefore also
global spin-current components have the unit of an energy.
However, it is sometimes useful to express them in the same
unit as the charge current. This can be done by multiplying the
bond currents in Eq. (17) by e/#.

The bond-current method was first introduced within the
tight-binding approach for models [58,60,61] and, recently,
used in KS-DFT with localized basis orbitals to evaluate
spin-transfer torque [57,62] and spin Hall effect [63,64] in
nanodevices from first principles. Bond currents have, how-
ever, no physical meaning per se in KS-DFT calculations. In
fact, their values depend on the specific choice of the basis
set and on the specific population used to define the local
spin S, [for example, here we opted for the symmetrized

Mulliken population of Eq. (15)]. Furthermore, we have im-
plicitly assumed that the basis set is complete, but this is never
the case in practical numerical calculations. In spite of these
issues, total currents are well-defined quantities since the total
spin Si¢ of a cell does not depend on the local population.
Furthermore, the inspection of the bond currents generally
provides useful physical insights into the transport properties
of a system in the same way as the local population analysis
helps to understand the electronic structure. We will then
use bond spin currents to analyze interatomic local current
distributions.

IV. DFT RESULTS

We employ KS-DFT with the bond-current method to es-
timate how large ESCs are in few representative systems and
to understand how the general phenomenology described in
Sec. II manifests in real materials. Specific computational
details are given in Appendix B. We first present results for
metallic structures analyzing the emergence of the (almost)
universal surface ESCs and questioning whether they orig-
inate from bulk or surface states. We then go on studying
insulating materials and demonstrating that the appearance of
ESCs is by no means limited to metals as long as the system
has gyrotropic symmetry. Finally, we estimate the magnitude
of ESCs in tellurium, a prototypical gyrotropic material al-
ready widely studied in the context of other gyrotropy-related
effects [65-68].

A. Metallic surfaces

The 4d and 5d transition metals have fcc, bee, and hep
centrosymmetric crystals, and therefore bulk ESCs are absent
despite the large atomic SOC. Nonetheless, ESCs emerge at
surfaces and interfaces. For example, Fig. 1 displays the ESC
pseudotensor of Eq. (19) calculated for the three common gold
surfaces Au(001), Au(011), and Au(111), with gyrotropic
point groups Cy,, C;,, and C3, (note that we use rectangular
2 x 2 supercells in the surface plane to carry out the calcu-
lations, but the results are presented in meV per surface unit
cell). In all cases, the calculated ESCs are completely confined
within the first three atomic layers underneath the surface, and
the structure of the pseudotensor is dictated by the surface
symmetry, as demonstrated in Appendix C for Au(111) and
Appendix G for Au(011) and Au(001). Our first-principles
numerical results for real material surfaces support the general
phenomenology described in Sec. II. Besides, we note that
these surface ESCs should be subtracted from the total spin
current to obtain the transport contribution when performing
atomistic calculations of spin-charge conversion at surfaces
and interfaces [63], otherwise the magnitude might be
overestimated.

We focus in particular on Au(111), which is a paradig-
matic system to understand SOC-driven effects. This is
because of its Shockley L-gap surface bands [69-71], which
can be mapped into the eigenenergies of the 2D Rashba
model [71-75]. There is an ESC associated to these surface
bands and it can be calculated by means of Egs. (12) and (13).
The results from the model can then be compared to those in
Fig. 1. Since the bond-current method provides the total ESC
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FIG. 1. Left: top view of the Au(001), Au(011), and Au(111)
surfaces. To carry out the calculations we use rectangular 2 x 2
supercells in the surface xy plane. Right: calculated ESC pseudoten-
sor as defined in Eq. (19). The components are expressed in meV
per surface unit cell. The surface unit cells are represented by the
dashed blue lines. The components I, I, and I  are zero because z
is the direction normal to the surface and there can not be current
flowing into the vacuum. Aside from that, the structure of the ESC
pseudotensor can be determined by analyzing the surface symmetry,
as demonstrated in Appendix C for Au(111) and in Appendix G for
Au(011) and Au(001). The mirror reflection lines of the surface point
groups are represented as red lines (see also Appendixes C and G).

summed over all bands, bulk as well as surface bands, the
proposed comparison will eventually reveal how important the
contribution of the Rashba-type surface bands is and whether
an effective 2D Rashba model description is adequate to ac-
count for the main phenomenology. As already mentioned,
this is a very important open question in the wide context of
SOC-driven interfacial phenomena, which have so far been
described considering only spin-textured surface bands and
completely neglecting bulk states [33,42,43].

The band structure of Au(111) along the I'-L direction is
displayed in Fig. 2 (left panel). We can clearly distinguish the
Rashba-type states. The green and red lines are the fit to the
Rashba model eigenenergies [4]

h2 2
Egy =
K om

+ s|Arlk, (20)
where k = (k,, k,) is the wave number, m, is the electron
effective mass, Ar the Rashba SOC constant introduced in
Sec. II, and s = +1 labels the two bands, with s = +1 and
s = —1 corresponding to spin up and spin down defined as
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FIG. 2. Band structure of Au(111) (left) and Ag(111) (right). The
red and green lines are the fitted Rashba bands.

locally perpendicular to k. The estimated m, is 0.24m and Ag
is as large as 0.99 eV A. Both values are in good agreement
with the results of previous works [74]. The ESC densities
J¥ = —Jx = jg associated to these Rashba bands are calcu-
lated using Eqs. (12) and (13) (with Ap = 0 and m, instead of
m). We find jz = 1.25 meV/A, which corresponds to Rashba
surface ESC components I , = —I}é,x = 3.6 meV per unit
cell. Their order of magnitude is comparable to that of the
nonzero ESC components in Fig. 1 (we note that any com-
parison, which addresses the actual numbers and not just the
order of magnitude, is difficult and not fully reliable because
of numerical limitations). Based on our findings, we might
then argue that the surface ESC is mostly associated to the
Rashba-type surface bands, and that this is a general feature
of metallic surfaces. However, such conclusion is not correct.
To show that, we first extend our study to consider also silver,
in particular the Ag(111) surface.

We assume Ag to have the same lattice constant as Au, so
that, in practice, the only difference between the two systems
is the atomic species. The band structure, which is shown in
Fig. 2 (right panel), still presents well recognizable Rashba-
type surface bands. However, the fitted Rashba parameter
Ag = 0.185 eV A is rather small. Considering an estimated ef-
fective mass m* = 0.37m, this gives Rashba ESC components
Iy, = —Ix . equal to 6 x 10=% meV, a value three orders of
magnitude smaller than in Au(111). These results based on the
Rashba model can now be compared to the DFT calculations,
which sums over all bands. In doing so, we find that the total
component [; of the ESC pseudotensor is 0.6 meV per unit
cell, i.e., two orders of magnitude larger than the Rashba value
I ,. Clearly, surface bands have a negligible importance in the
case of Ag(111).

To further analyze the problem, we systematically rescale
the atomic SOC by a factor « in our calculations. For small
o, the Rashba constant scales linearly as a function of «.
Then, the nonzero ESC components would scale cubically
according to Eq. (12). Instead, we find that I and I; show
a linear behavior for small « in both Ag(111) and Au(111)
(Appendix D). This provides an additional confirmation that
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bands other than the Rashba-type surface states determine sur-
face ESCs. Specifically, these bands are bulk states scattered
off the surface. In fact, model calculations for a semi-infinite
jellium model show that the lowest-order contribution to sur-
face ESCs is due to the interference between the incident and
the reflected bulk states, and is linear in the SOC constant [76].
This is very much reminiscent of what already observed in the
case of current-induced spin polarization, where the contribu-
tion of the surface states to the total surface spin polarization
is rather small, compared to the that of bulk states [44]. Hence,
we conclude that a description of interfacial effects including
only surface bands via an effective 2D Rashba model is in-
adequate. To determine ESCs in any specific situation, one
must draw on detailed microscopic calculations, which take
into account not just surface bands, but also the effect of the
atomic SOC on bulk electronic states.

B. Zinc-blende and wurtzite semiconductors

ESCs are not unique to metals. They likewise emerge in
semiconductors, as long as the SOC is not negligible and
the crystal symmetry is gyrotropic. This is because all oc-
cupied bands, and not just those crossing the Fermi energy,
can contribute to ESCs. The presence of a band gap at the
Fermi energy is therefore irrelevant. To demonstrate this, we
present calculations of ESCs for semiconductors. In particu-
lar, we compare two of the most common crystal structures,
namely, zinc blende and wurtzite. We consider InP and InN
as representative examples because of the large SOC of the In
atoms.

InP has a zinc-blende structure and point group T, which
is noncentrosymmetric, but also not gyrotropic. As such, there
are no global bulk ESCs, although we observe that individual
spin bond currents are nonzero (see Appendix E). The situa-
tion will drastically change if we consider nanostructures.

An InP(001)-oriented slab, which presents the same atomic
termination at the two surfaces, has gyrotropic D,; point
symmetry. This further reduces to C,, in case of different
terminations. ESCs are then allowed by symmetry in both
systems. We consider 20-layer and 21-layer slabs. The cal-
culated ESC pseudotensors of Eq. (19) are reported in Fig. 3,
together with the crystal structures of the slabs. The nonvan-
ishing components can be determined using general symmetry
arguments. This is discussed in detail in Appendix G. Here,
we focus instead on a more interesting property. The total
slab ESC is the sum of the current at the top surface (TS)
and bottom surface (BS), whereas there are no ESCs flowing
through the middle of the slab. This is seen in Fig. 4, which
displays the ESC components resolved per atomic layer. They
reach the largest absolute value either at the first or second
surface layer. Importantly, the top-down slab symmetry in the

21-layer slab imposes that Ii((;)) s = —I;((j)) ps and 1;8’)) s =
IX(}')

».Bs (see also Appendix G and in particular Fig. 14). Thus,

IX()’)

*) s cancel out, whereas oy1s and I;(S?,BS add

Ii’((;f))’TS and I)f((y
up to give 1) . = 21;8;),TS = 0.22 meV for the whole slab.
This result serves as a clear example of the distinctive feature
of ESCs compared to diamagnetism. Diamagnetic charge cur-

rents at the bottom and top surfaces of a slab would cancel
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FIG. 3. Left: InP(001)-oriented slabs with and without the same
top and bottom terminations. The large gray spheres and small yel-
low spheres are, respectively, the In and P atoms. The calculations
are carried out for 2 x 2 supercells in the xy plane. The surface
unit cell is contained inside the blue dashed rectangle. The mirror
reflection lines are in red (see Appendix G). Right: corresponding
ESC pseudotensors as defined in Eq. (19) and expressed in meV per
unit cell. The components I7, I}, and I are zero because z is the
normal direction to the slab surfaces. The symmetry analysis of the
ESC pseudotensors is presented in Appendix G.

out satisfying the Bloch-Bohm theorem. Surface ESCs can
instead contribute to give an overall finite slab ESC.

For a more quantitative analysis, we extract the surface
ESC densities and convert them in A/cm. The results are
reported in Table 1. Notably, some surface ESC densities are
larger at InP(001) surfaces than at Au surfaces, in spite of

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12345678 91011121314151617181920 21
layer

FIG. 4. Layer-resolved components of the ESC for the InP(001)-
oriented slabs (units meV). Top: 21-layer slab. Bottom: 20-layer slab.

At each surface, the various ESC components are related by the
surface symmetry operations as demonstrated in Appendix G.
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TABLEI. Nonzero components of either the surface ESC density
(in A/cm) or of the bulk ESC density (in MA/cm?) for all investi-
gated systems. The subscripts S, TS, and BS stand for surface, top
surface, and bottom surface as defined in Secs. IV A and IV B.

Au(001) By =0k, 20.5 A/cm
Au(011) i —15.3 A/cm
iy 278 A/em
Au(111) By = —Jsa 20.3 A/em
InP(001) Dy Fsmsa = —Frs/ps.y 0.425 A/cm
InP(001) Dy, Jhsx = —Jbsy —75 A/ecm
InP(001) Doy Jhs. = —Jisa —-57.5 A/cm
InP(001) Dy Jis. = —Jtsy 75 A/em
InP(001) Doy Ts. = —Jis. 57 A/em
InP(001) C,, Jis. = ~Jps, 1.6 A/cm
InP(001) Cs, Tose = —Js, —74 AJcm
InP(001) Cs, Fisw = —Jtsy —12A/em
InP(001) C», Tsw = —Jks, 74.8 AJ/cm
InP(011) Jisa 55.8 A/cm
InP(011) Frsa 120.3 A/cm
InP(011) Fsy —94.2 A/cm
InN == 0.37 MA/cm?
Te =0 42.5 MA/cm?
Te i 28 MA/cm?
Te it 145 MA /cm?

In and Au having atomic number 49 and 79, respectively.
The magnitude of ESCs can not be guessed based solely on
the atomic species, but it results from the complex interplay
of atomic SOC, system symmetry, and electronic structure.
First-principles calculations are the only reliable way to quan-
titatively estimate ESCs.

An inspection of the electronic structure of the InP(001)-
oriented slabs indicates that they are metallic with some
quantum well bands crossing the Fermi energy. The
presence of surface currents might be attributed to that. We
therefore extend our investigation to (011)-oriented slabs,
which are found to be semiconducting. In particular, we
consider the slab with 15 atomic layers displayed in Fig. 5.
The symmetry is C,,. Therefore, we find a global ESC even
though the system has no metallic bands. The structure of the
ESC pseudotensor is again understood based on the point-
group operations (see Appendix G), but the layer-resolved
analysis of the various ESC components provides more com-
pelling physical insights. Figure 6 shows that I and I; have
the largest absolute value in the atomic layers at the top and at
the bottom surfaces, while they are negligible in the central
layers. Furthermore, I){((;)),TS = _15:((;)),35 so that If((;))’slab =0
owing to the slab top-down symmetry. This is the very same
behavior already described for InP(001). Differently from
that case, though, we note that the ESC component ijslab is
nonzero in InP(011). To understand this result we note that the
unit cell of bulk InP consists of two atomic layers along the
(110) direction (see the magenta dashed rectangle in Fig. 5).
Each of these layers has a finite I7, but with opposite sign as
shown by the magenta points in Fig. 6. In infinite InP there
would be a perfect compensation and the total I per unit
cell would vanish. In contrast, in the slab, which has an odd
number of layers, we find an uncompensated bulk contribution

0 0
0 0
0

0
—180x1072 0 0

FIG. 5. Left: InP(011)-oriented slab. The large gray spheres and
small yellow spheres are, respectively, the In and P atoms. The
calculations are carried out for a 2 x 2 supercell in the xy plane.
The surface unit cell is delimited by the blue dashed rectangle. The
mirror reflection lines are in red (see Appendix G). The bulk InP unit
cell, which is composed of two parallel atomic layers along (001),
is shown inside the magenta dashed rectangle. Right: corresponding
ESC pseudotensor as defined in Eq. (19) and expressed in meV per
unit cell. The components I, I, and I} are zero because z is the
normal direction to the slab surfaces. The structure of the ESC pseu-
dotensor can be further understood based on the symmetry analysis
in Appendix G.

to I7 ., in addition to the surface one. Global bulk ESCs are
therefore possible and they result from noncompensating local
currents. This property is not peculiar to some nanostructures,
but it is general for all gytropic systems, for example, wurtzite
crystals.

InN is an example of wurtzite semiconductor with Cg,
point group. The ESC pseudotensor is displayed on the left-
hand side of Fig. 7 (we note that the calculations are carried
for rectangular 2 x 2 x 2 supercells, but the ESC compo-

30f ¢ 1
20 I /’

10 (N
01> | / —/ I y

/

‘e

_10: 4 ee Iyx
20[ 1 =
I , ] I
11 S R S S b
1 23 4 5 6 7 8 91011121314 15
layer

FIG. 6. Layer-resolved ESC for the InP(011)-oriented slab (units
meV). [} is zero for all atomic layers. The magenta diamonds corre-
spond to the layer-resolved I? components for the bulk InP unit cell
(which is shown inside the magenta dashed rectangle in the Fig. 5).
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0 -30 ,
Y 300 |x107?
00 0

FIG. 7. Left: top view of the InN 2 x 2 x 2 rectangular supercell
used in the calculations. The large and small spheres are, respec-
tively, the In and N atoms. The unit cell is delimited by the dashed
lines. The x, y, and z axes are, respectively, along the (0001), the
(1100), and the (1120) directions. There are three mirror planes (red
lines) and three glide planes (green lines) in the Cg, point group.
The structure of the ESC pseudotensor can be fully understood based
on the corresponding symmetry operations like in the case of the
Au(111) and of the InP(001) surfaces. Left: ESC pseudotensor in
meV per unit cell.

nents are in meV per unit cell). There are two nonzero ESC
components, namely, I and I}, which are equal in modulus
and opposite in sign as dictated by the system symmetry.
Microscopically, the finite ESC can be understood as resulting
from a noncancellation of several bond currents. This is shown
in Appendix F. Here we instead point out that I} and I} are
two orders of magnitude smaller than surface ESCs in Au and
InP. Although the wurtzite crystal structure is gyrotropic, it
is obtained from the zinc-blende structure through a defor-
mation of the tetrahedrally coordinated bond angles from a
cis- to a trans-configuration. InP can therefore be seen as a
“mild” gyrotropic system. Very different results are obtained
for “strong” gyrotropic materials, such as Te.

C. Tellurium

Te is a semiconductor. At ambient conditions, it has a
trigonal crystal structure (Te-I) consisting of weakly inter-
acting infinite helical chains, which spiral around the C axis
and which can be either right or left handed. Each atom
forms strong covalentlike intrachain bonds with its two near-
est neighbors and weak van der Waals interchain bonds with
its four next-nearest neighbors. The symmetry point group is
D3, which is gyrotropic. Hence, global ESCs are allowed.

The unit cell of right-handed Te (Fig. 8) contains three
atoms at the positions (—u, 0, a;), (1/2u, —\/_/2u a,/3),
and (1/2u, ~/3/2u, 2a,/3), where u=1213 A is the
internal atomic position parameter and a, = 5.96 A is
the lattice constant along z. The atoms are therefore
related by a 120° rotation around the C axis followed
by a translation of (a,/3)(0,0, 1). This rototranslation is
the main symmetry operation that determines the global
ESC along z, I, = (I;,Izy,lj). To show that, we calculate
I, through three consecutive nonequivalent planes 1, 2,
and 3 translated by a,/3 along z (Fig. 8). The results are
summarized in Table II and can be written as (—1. l, 0, I?),

(1/2LF, —/3/21-,IF), and (1/21F,V/3/21-, 1),
IF = /UX)?+ (7> =1.05 meV and IF = 0.2 meV. [ is

where

FIG. 8. Top view (left) and side view (right) of the rectangular
supercell of right-handed Te used in the calculations. In the left panel
the rhombohedral unit cell is delimited by the blue dashed line. The
rotation axes R, Ry, and R; are represented as red dashed lines. The
right panel also shows the three planes, which are normal to the C
axis (dashed black line) and through which I, is calculated.

the current for the spin locally parallel to the projection of
the Te-Te interchain bond onto the xy plane. I L is conserved
along the chain, while I} and I; are not. This is due to a torque
at every atomic site that causes I} and I to swap along the
chain as verified by using Eq. (18)

In left-handed Te the three atoms in the unit cell
are at the positions (—u,0,a;), (—1/2u, —\/5/2u, a,/3),
and (—1/2u, /3/2u,2a./3). The rotation around C is
of 120°. Therefore I, = (IF, I}, —I?) through three planes
1, 2, and 3 is, respectively, equal to (— Il, 0, =1I7),
(=1/2I%, —=/3/21F, —IF), and (—1/2}+, /3/215, —IF). Fi-
nally, we note that D3 also contains three 90° rotations Ry, Ry,
and R3, in addition to the rototranslation. The corresponding
axes are represented by the red dashed lines in Fig. 8 and
determine the ESC components in the plane perpendicular to
the helices. It is easy to show that I} and I;,‘ vanish, while I
and I are finite and of identical magnitude. The calculated
values per unit cell are I¥ = I} = 0.35 meV [the — (+) sign
applies to right- (left-)handed Te]. Interestingly, these currents
are of the same order of magnitude as I despite the relatively
large interchain distance a = 4.51 A.

TABLE II. ESC components (in meV per unit cell) along a heli-
cal chain of Te through the three planes in Fig. 8.

Plane A A I
1 —1.05 0 0.2
0.53 —0.91 0.2

3 0.53 0.91 0.2
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The ESC densities jj, J% Ji» and Ji are readily calculated
and reported in Table I. jj is the largest and it is of the order
of 1078 A/A2. To set a reference for the magnitude, we calcu-
late the transport spin current through an ideal Fe/MgO/Fe
magnetic tunnel junction with 4 MgO layers and with the
magnetizations of the two Fe electrodes set in the parallel con-
figuration. Notably, an applied bias voltage as large as 4.5 V
is required to drive a spin-current density of ~10~% A/A?
through such device [57], which behaves as an almost perfect
spin filter [77]. Hence, the case of Te indicates that bulk ESCs
are by no means small compared to transport spin currents
used in spintronics. Nonetheless, we remind that ESCs are not
transport currents and they can not be used to read and write
information.

V. CONCLUSIONS

Global ESCs are allowed by symmetry and therefore ex-
ist in the very broad class of gyrotropic materials. ESCs
emerge in metals and insulators alike; they do not transport
spin and they do not result in spin accumulation. Nonethe-
less, ESCs should be carefully subtracted when calculating
transport spin currents. The physical origin can be uncov-
ered by making an analogy between electronic systems with
SOC and non-Abelian gauge theories. ESCs can be identified
with diamagnetic color currents appearing as the response to
an effective (non-Abelian) magnetic field. They lead to the
appearance of an electric polarization, which, although very
small, could be eventually measured.

Systems, which are not gyrotropic, can become gyrotropic
by lowering their symmetry, for example, through some crys-
tal deformations. ESCs are therefore quite common properties
of bulk materials. Moreover, they are universal at surfaces and
interfaces.

An ESC is mathematically described in terms of a
second-rank pseudotensor. Its structure in a given system is
completely dictated by the system symmetry. However, the
magnitude of the components depends on the subtle interplay
of atomic SOC and electronic structure. It can not be predicted
based on effective models, but only by means of accurate
first-principles studies. We therefore used DFT to compute
ESCs via the bond-currents method. Calculations performed
for a wide range of systems, including metallic surfaces as
well as common semiconductors, showed that global ESCs
can be quite large. In particular, in the prototypical gyrotropic
material Te, we found that their magnitude is comparable to
transport currents used in common spintronics applications.
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APPENDIX A: IMPLEMENTATION DETAILS FOR THE
BOND-CURRENTS CALCULATIONS

The calculation of bond currents is straightforward for a
finite system. They are obtained through Eq. (17) inserting
the Hamiltonian matrix, the density matrix, and the energy
density matrix. In contrast, some care is needed for infinite
systems, such as crystals and surfaces.

Crystals are treated in KS-DFT by applying periodic
boundary conditions. The Hamiltonian and the overlap ma-
trices Hyx and 2 depend on the the wave number K inside the
Brillouin zone (BZ), and the eigenstates of the Schrodinger
equation are Bloch states. The density matrix px and the
energy density matrix Fg introduced in Sec. III also de-
pend on k, and have elements py ,, and Fy,,. Both the
indices n and m refer to orbitals inside the simulation cell
and centered at the coordinates R, = (Ry,, R, ,, R;,) and
R, = (Rym, Ry, R, ). In order to obtain the current flowing
in and out of that cell, we have to upfold the Hamiltonian
matrix, the overlap matrix, the density matrix, and the energy
density matrix to real space by performing the inverse Fourier
transform [54]

1 .

Hn’m = ]V Z eilk(R"/iRn)Hk,nma (Al)
k keBz
1 .

Qn’m = ]V Z 6‘71k(R"/7R'1)S2k,nma (AZ)
k keBz
1 )

Pn'm = ]V Z eilk(R"/iRn)pk,nm’ (A3)
k keBZ
1 )

Fn’m - ]V Z eilk(R"/iRn)Fk,nma (A4)
* keBZ

where N is the number of k points. n’ refers to the or-
bital equivalent to n, and which is centered at the coordinate
R, = (Ry v, Ry v, R ,v) outside the cell and related to R, by
a lattice vector translation. The bond current connecting any
two orbitals m and n’ can then be computed by using Eq. (17).
The global spin current /{* for the spin component a(= x, y, z)
through the cell surface along the normal direction i(= x, y, 7)
is obtained as

a a
I' = E Lim» fOrR; v > R;p.

n'>m

(A5)

This procedure is illustrated in Fig. 9(a) for a 2D model
system with one atom 1 inside a square unit cell. After per-
forming the inverse Fourier transform from reciprocal to real
space we obtain the spin-a bond current Z},; between the atom
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FIG. 9. Procedure to calculate the bond currents for a periodic
system. The model simulation cell contains the atom 1 inside a
square unit cell. We perform an inverse Fourier transform of the
Hamiltonian matrix, of the the overlap matrix, and of the (energy)
density matrix to a real-space representation. Once this is done, the
a-spin component bond current Zj,, between 1 and its equivalent
atom 1’ can be easily calculated. In (a) the global a-spin current
through the surface A is equal to Z7,, . In (b) we assume that nonzero
bond currents extend to second-nearest-neighbor atoms. Therefore,
we need to use the 2 x 1 supercell in the calculation. The global
current is given by the sum of Z,,, Z7,, and 75, .

1 and its equivalent atom 1’ in a neighbor cell. The global bond
spin current for the spin component a through the cell surface
A is then equal to Z7},.

In first-principles calculations, nonzero bond currents ex-
tend generally beyond nearest-neighbor atoms. Therefore, the
considered cells have to be large enough to contain all orbitals
n and m with a finite Z7, . The size of the supercell is set by
the extension of the basis orbitals. This is shown in Fig. 9(b),
where we now assume that nonzero bond currents extend to
second-nearest-neighbor atoms. The global current through
the surface A is equal to Z{/, in a calculation that only con-
siders the unit cell. In contrast, the global current is given by
the sum of 77, Z{,, and Z%,, when we properly consider a
supercell with two atoms 1 and 2. Using the unit cell instead
of the supercell would result in an error in the calculation of
the global current.

Surfaces are studied by using the implementation of DFT
based on the Green’s function method [55,59]. This allows for
an effective description of systems, which are semi-infinite
in the direction perpendicular to the surface, while periodic
boundary conditions are applied only in the parallel direc-
tions. In practice, the implementation relies on the partition of
the system into the surface region (SR), with Ngg orbitals, and
the bulk region. The effect of the bulk on the SR is described
through the embedding self-energy X. The retarded Green’s

function is then defined as

Gsr(E, ky) = [(E +i8)Qrk, — Hsrk, — Z(E, kI,
(A6)

where § — 0%. K| is the momentum parallel to the surface,
Hsg x, is the SR Hamiltonian, and Qsg i, is the SR overlap
matrix. The density matrix and the energy density matrix read
as

1
PSRk, = E/dE FE)Asr(E, K)), (AT)
1
Fsrk, = E/dE Ef(E)Asr(E, k), (A8)
where
Asr(E, K)) = i[Gsr(E, K) — G§R(E, k)] (A9)

is the spectral function. Bond currents are evaluated after
upfolding posr k,» Fsr.k,» Hsr k> and sg k, to real space as
explained above.

APPENDIX B: COMPUTATIONAL DETAILS

Our calculations are carried out with a development ver-
sion of the SIESTApackage [54] and of the SMEAGOL quantum
transport code [55-57], which is based on SIESTA [54]. We
use the LSDA exchange-correlation density functional for
all systems, except for Te. Since the LSDA predicts Te to
be a metal instead of a semiconductor, we use the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation
(GGA) [78,79] for this material. The SOC is included by
means of the onsite approximation of Ref. [80]. We treat
core electrons with norm-conserving Troullier-Martin pseu-
dopotentials. Although ESCs stem from all occupied states,
we expect that core states will contribute marginally as they
are localized very close to the nuclei. The error introduced
by not including core states should be negligible. The va-
lence states are expanded through a numerical atomic orbital
basis set including multiple-¢ and polarized functions [54],
which are set to zero beyond a certain cutoff radius. For all
materials, these functions are optimized in order to closely
reproduce the occupied KS band structure calculated with the
QUANTUM ESPRESSO plane-wave code [81]. We have shown
in several previous works that our development versions of
SIESTA and SMEAGOL are able to accurately describe mate-
rials with large SOC [82-84]. The DFT band-gap problem
for semiconductors is not expected to impact our results as
only occupied states contribute to ESCs. The LSDA and the
GGA valence bands of InN and Te are quite well described
when compared to the results obtained either by many-body
perturbation theory within the GW approximation [85,86] or
by using hybrid functionals [68]. We note that there are only
some slight differences in the effective masses. Addressing the
impact of these differences on quantitative results is beyond
the goal of this paper and it is left for possible future studies.

The numerical precision of the computed bond currents
depends on the k-point grid and on the convergence thresh-
old for the density matrix. We set that threshold to 1075,
which is extremely tight for SIESTA and SMEAGOL. We then
systematically converge the k-point grid until the change in
each bond current is smaller than 10~° eV. Going beyond
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this limit is too computationally demanding. Furthermore, and
more importantly, the computed global currents are generally
several orders of magnitude larger than 10~° eV and no better
precision is therefore needed.

For all materials we use the experimental lattice constants
unless stated otherwise, and the atomic positions are not
optimized in order to prevent small reductions of the ideal
systems’ symmetry. We consider rectangular supercells to
simplify the evaluation of Eq. (AS), and we rescale the results
to the values per unit cell at the end of the computation. The
size of the used supercell varies from system to system. The
lattice vectors have to be chosen larger than the cutoff radius
of the basis set orbitals, as explained in detail in Appendix A.

APPENDIX C: TRANSFORMATIONS OF THE ESC
COMPONENTS IN Au(111)

Au(111) has C3, point group, which contains (1) one mir-
ror reflection through the mirror line m, parallel to the y axis,
(2) one reflection through the line m, forming an angle of
150° with the x axis, and (3) one reflection through the line
m3 forming an angle of 30° with the x axis (see the bottom
left panel of Fig. 1). The structure of the ESC pseudotensor in
the bottom right panel of Fig. 1 can be fully understood based
on these transformations, as we now outline.

Under the reflection through m;, the components of the
ESC pseudotensor transform as

I'f = detM » " M{I'M;, (C1)
bj
where the reflection matrix M is
-1 0
M = . 2
I

We then obtain [} = —I, I’;ﬁ =-0L, 1" =1L, and I’;C, =1I.
The ESC pseudotensor therefore remains invariant only if
I'=rL=0.

Next, we consider the reflection through the mirror plane
m3. This is expressed through the matrix

—1/2 J/3)2
M; = / / ) (C3)
V3212
For this case we find that
1 3 3 3
"= —-I" - £1y — £1x —p, (C4)
4 4 47 47
V3 3 1 V3
) Gy L 0+ I+ =1, C5
y 4 4 L+ 4 + 4 €5
V3 3 1 V3
1N =——I— I I Co
Y Tk 4‘,+4x+4.‘,, (C6)
" V3 f 1
I;=—Zl"+—x R I 413. (C7)

The ESC pseudotensor will be invariant only if I¥ =) =0
and I = —I. A similar reasoning also applies to the reflec-
tion through m;. Hence, we clearly see how the C3, symmetry
dictates the structure of the ESC pseudotensor in Fig. 1.

5 T T T
i e Au(lll) 1
4 o Ag(111)| 7
st .
(]
é - 4
’_‘mzf |
T M/ -
0 L ‘ L ‘ L ‘ L ‘ L ‘ L ‘ L ‘ L ‘ L ‘ L

0 02 04 06 08 1 12 14 16 18 2
o

FIG. 10. ESC I = I; = —I as a function of the SOC rescaling
parameter « for the Au(111) and the Ag(111) surfaces.

APPENDIX D: ESC COMPONENTS AS A FUNCTION
OF THE SOC STRENGTH IN Au(111) AND Ag(111)

The SOC Hamiltonian matrix elements
(palVSOC|@p,,) in the DFT calculations can be rescaled
by a constant o, that is VS9C — aV,f,?C The surface ESC
components Is = I} = 1" defined in Sec. IVA can then
be calculated as a function of «. The results are represented
in Fig. 10. The data can be approximated with very high
accuracy to a quadratic function Iy = ao® + aja + ag. The
fitted parameters are ayp = 0.165 meV, a; = —0.6 meV,
a;=2.83 meV for Au(lll) and ap=0.04 meV,
a; = 0.29 meV, a; = 0.275 meV for Ag(111).

SOC _
Vnm -

APPENDIX E: BOND CURRENTS IN BULK InP

InP has T, point group. As a result, there are no global bulk
ESCs as discussed at the beginning of Sec. IV B. Individual
spin bond currents are nonetheless nonzero. In particular, we
find that the largest spin bond currents are between nearest-
neighbor (NN) P atoms despite the much larger SOC of the In
atoms. These P-P NN bond currents are equal to 32 meV.

In Fig. 11 we show the bond currents for the spin x com-
ponent, which connect an atom P; to all its NN P atoms
[note that for simplicity we use a square unit cell with the
x, v, and z axes along the (100), (010), and (001) directions].
The bond currents respect the T, symmetry of the unit cell
and they transform as pseudovectors. In particular, we find
i, = —1j, and Ij5; = —TIj; because of the reflection through
the plane bisecting In,-P;-In;. At the same time we see that
1js = —Ij, because of the reflection through the Ing-P;-In.
plane. These symmetries therefore imply that 77, and Z7;,
respectively, cancel Z7, and Z7; along x. The other smaller
(in modulus) bond currents, which connect P; to the In atoms
and to the farther P atoms, undergo identical compensations.
Hence, the global ESC component I vanishes. Similarly, I}
and I* vanish as well. This is because Zj; = —Z7, under the
reflection through the In,-Pi-In. plane and Zj5; = —Z7; un-
der the reflection through In,-P;-In, plane. Therefore, global
ESC:s for the spin-x component do not exist along any Carte-
sian direction. The very same reasoning can be easily applied
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X

FIG. 11. Spin-x bond currents from a P atom (labeled P;) in
bulk InP to its surrounding nearest-neighbor P atoms. The large
gray spheres and small yellow spheres are, respectively, the In and
P atoms. An arrow entering (leaving) P; means that the bond current
is negative (positive). The bond currents have all the same modulus.

to the spin-y and -z components finally demonstrating that the
ESC pseudotensor vanishes.

APPENDIX F: BOND CURRENTS IN BULK InN

InN has a wurtzite crystal structure. Some components of
the ESC pseudotensor per unit cell do not vanish, as discussed
at the end of Sec. IV B. Here we show that these results can
be understood by analyzing the bond spin currents.

The largest bond currents in InN are between N atoms,
and not between In atoms. This is similar to what found for
InP, where the largest bond currents were those connecting
the P atoms (see Appendix E). The x-spin bond currents in
the rectangular unit cell of InP are presented in Fig. 12. There
are four N atoms in the cell. Ny and N, are on the same zy
plane, while N3 and Ny are shifted along x by half the lattice
constant. Ny and N3 are related to N, and Ny via a transre-
flection, whose glide plane is parallel to xz. This symmetry
implies that Z7; = —75, and these two bond currents cancel
each other along x. Similarly, one can see that Z7, = —75;, so
that they also cancel each other out along x. The other smaller
bond currents follow the same symmetries and undergo iden-
tical cancellations. As a result, the global ESC component I}
vanishes.

FIG. 12. Spin-x bond currents, which connect N atoms in bulk
InP. Left: bond currents relevant for I7. Right: bond currents relevant
for I7. Bond currents represented in different colors have different
magnitudes.

In contrast, Zj; and 7}, do not compensate each other
along y, but they effectively add up. There is another large
bond current in the supercell, namely, Z{,. This has opposite
sign with respect to Zy; and Zj, along y. It is, however, not
connected by symmetry to them. Hence, there is no exact
cancellation and ultimately the ESC component /7 is finite.

APPENDIX G: SYMMETRY ANALYSIS OF THE ESC
PSEUDOTENSOR

The components of the ESC pseudotensor in Eq. (19) trans-
form under symmetry operations as the direct product of the
momentum vector and of the spin pseudovector. This is shown
in Fig. 13. Following Ref. [30], we then use a simple general
reasoning to derive the structure of the ESC pseudotensor
for Au(001), Au(011), and InP(001)- and InP(011)-oriented
slabs.

Au(011) surface. The point symmetry group is Cj,. It
contains two mirror reflections through the lines m; and m;,
which are parallel to the y and the x axis, respectively [see
Fig. 1 (central panel)]. Additionally there is a 180° rotation
around the normal axis. To obtain the structure of the ESC
pseudotensor we need to determine which one of its compo-
nents remain invariant under these operations.

I} (I}) transforms as the direct product of the momentum
and of the spin both parallel to the x (y) axis. The reflection
through m, (m;) leaves invariant the momentum vector, but
it changes the direction of the spin pseudovector as shown in
Figs. 13(a)-13(d). Hence, I} () is reflected into —I (—1)).
Both I and Ij’ vanish [the same conclusion can be reached by
looking at Figs. 13(b) and 13(c) instead of Figs. 13(a)-13(d)].

I% and I} correspond to the spin along the z axis and the
momentum along x and y, respectively [Figs. 13(e) and 13(f)].
Using arguments similar to those above, we find that 7 (I}) is
reflected through m, (m;) into —I} (—Iyz). Thus, I? and I; are
equal to zero.

I} transforms as the direct product of the the momentum
along the x axis and the spin parallel to the y axis. Neither the
momentum nor the spin are affected by the reflection through
my [Fig. 13(g)], whereas both of them change sign after the
reflection through m, [Fig. 13(h)]. The net effect of this simul-
taneous sign change is nonetheless that I remains invariant.
I is also left unchanged after the 180° rotation through the
normal axis as such rotation flips both the momentum and the
spin [Fig. 13(i)]. The ESC component I} is therefore allowed
by the C,, symmetry. Similar arguments apply also for I,
which is therefore allowed as well.

In conclusion, I} and [} are the only nonzero components
of the ESC pseudotensor, which has the same structure as in
anisotropic Rashba systems [87], confirming the DFT results
in the central panel of Fig. 1.

Au(001) surface. The point group is Cy,. In addition to
the mirror reflection lines m; and m,, which are respectively
parallel to the y and x axes, there are two other reflection
lines, m3 and my, along the diagonals (see the top panel of
Fig. 1). Similarly to the Au(011) case, I and I} are the
only nonzero components of the ESC pseudotensor allowed
by symmetry. However, we now have the additional relation
[} = —I; imposed by the reflection through ms and my. In
fact, as shown in Fig. 13(j), the momentum parallel to the x
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FIG. 13. Transformations of the momentum vector, of the spin pseudovector, and therefore of the ESC components under various symmetry
operations. The momentum and the spin are, respectively, represented as a black thin arrow and a rounded tridimensional arrow. Mirror
reflection lines are painted in red. 180° rotations in (i) and (n) are represented as thin dashed lines terminating with an arrow.

(v) axis is transformed into a negative momentum along y (x)
after the reflection through my. At the same time, the x- (y-)
spin component is swapped with the y- (x-) spin component.
Alternatively, one can reach the same results by analyzing
the reflection through mj3 [Fig. 13(k)]. In conclusion, the ESC
pseudotensor in Au(001) has the same structure as in isotropic
Rashba systems [4]. This supports the DFT results in the top
panel of Fig. 1.

InP(001)-oriented slab. The studied slabs are presented in
Fig. 3. The Cartesian x and y axes are parallel to the (100)
and (010) directions, while the z axis lays along the (001)
direction. The 21-layer and the 20-layer slabs have D,; and
C,, point groups, which comprise a 180° rotation around a C
axis parallel to z and two reflection planes m; and mj,, which
are respectively along the (110) and the (110) directions. Ad-
ditionally, D, has a top-down symmetry operation S4, which
is a 90° rotation around the C axis, followed by a reflection
through the mj3 plane cutting the slab in two halves.

At each surface, the effects of the reflections through m;
and my, are analyzed using similar arguments as in the case
of Au. In particular, we see that I 15 g5 (I} 15/ps) transforms

%
[Fig. 13(1)]. This operation also imposes that []1g g and

I} 1s/ps are, respectively, equal to —I) 1 ps and —I g pg
[Figs. 13(j) and 13(k)]. These exact relations are fulfilled
within numerical accuracy by our DFT results in Fig. 4.

In the case of the 21-layer slab with D,; point group,
the transformation of the ESC components according to the
rotoreflection Sy is presented in Fig. 14. We distinguish two

cases.

into —I{TS/BS (=13 1s/ps) upon reflection through m; or m;

(1) Both the momentum and the spin at the top surface
point along the same direction, for instance, x. They are
initially rotated to the y direction, so that [ ;g is changed

(@ 84 (b)

© X (d)

X \.' —Iy

AN I f( @)
" .
A ¢ Ii

FIG. 14. Top-down symmetry transformations for the InP(001)-
oriented slab [(a) and (b)] and the InP(011)-oriented slab [(c), (d),
and (e)].
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into I ;¢ [Fig. 14(a)]. Then, the top-down reflection converts
the sign of the spin, but not that of the momentum, giving
Lgs = —I;TS [Fig. 14(a)]. Since IyTS —I g [Fig. 13(D)],
we finally find I] g = I 15 and therefore 't stab = 23 1. This
is the result described in the main text. ’

(2) The momentum and the spin at the top surface are
perpendicular. For example, we assume the momentum to lay
along the y axis and the spin along the x axis [Fig. 14(b)].
The rotation followed by the top-down reflection gives I 1 =
x Bs- Since IX 1s = —L1s [Figs. 13(j) and 13(k)], we finally
have that
BS = 1 —I 15 =0, (G1)

y
Ix,s]ab x TS + X,

in agreement with the DFT results in the top panel of Fig. 3.

The S4 rotoreflection is absent in the C,, point group of the
20-layer slab. The components of the ESCs at the two surfaces
are therefore not related by symmetry. I, and I} . assume
nonzero values because there is no cancellatlon between the
ESC:s at top and bottom surfaces. This confirms the structure
of the ESC pseudotensor calculated by DFT and presented in
the bottom panel of Fig. 3.

Finally, we analyze the current for the z- spin component.

The reflection through m; and m; implies that I* =I

A slab — y,slab

[Fig. 13(m)]. However, both D,; and C,, contain a 180°
rotation around the C axis normal to the slab surfaces As seen
in Fig. 13(n) this transforms I¢ g, (I} .p,) into =17 g0 (=17 1)
and, as a result, It 4., =0 (/] ;,, = 0). Hence, all elements
in the third row of the ESC pseudotensor are zero as seen in
Fig. 3.

InP(011)-oriented slab. The studied slab is presented in
Fig. 5. The Cartesian x and y axes lay parallel to the (101)
and (110) directions, respectively. The slab has point group
C,,. There are therefore two mirror reflection planes m; and
my. my is parallel to the yz plane, whereas m; is associated to
the top-down symmetry of the slab and is parallel to the xy
plane.

The ESC components LY o and I Slab are transformed into

—I7 4 and —I7 . after reflection through my [Figs. 13(c)

x,slal v sla
and 13(d)]. The component I} glab changes sign in a similar
fashion [Fig. 13(f)]. Only I} 3 slab> L Slab, and I? "~ slab A€ invariant
at the reflection through m, [Figs. 13(h) and 13(0)] However,
the reﬂectlon through the second mrrror plane m, transforms

I; slab and I’  slab into —I* [ slab and — x Sldb [Fig. 14(c)]. Thus, the
only component, Wthh is left invariant, is I)C Jap LFig. 14(e)].

This result explains the structure of the ESC pseudotensor in
Fig. 5.
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