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When searching for new gravitational-wave or electromagnetic sources, the n signal parameters
(masses, sky location, frequencies,...) are unknown. In practice, one hunts for signals at a discrete
set of points in parameter space. The computational cost is proportional to the number of these
points, and if that is fixed, the question arises, where should the points be placed in parameter space?
The current literature advocates selecting the set of points (called a “template bank”) whose Wigner-
Seitz (also called Voronoi) cells have the smallest covering radius (≡ smallest maximal mismatch).
Mathematically, such a template bank is said to have “minimum thickness”. Here, we show that at
fixed computational cost, for realistic populations of signal sources, the minimum thickness template
bank does not maximize the expected number of detections. Instead, the most detections are
obtained for a bank which minimizes a particular functional of the mismatch. For closely spaced
templates, the most detections are obtained for a template bank which minimizes the average squared
distance from the nearest template, i.e., the average expected mismatch. Mathematically, such a
template bank is said to be the “optimal quantizer”. We review the optimal quantizers for template
banks that are built as n-dimensional lattices, and show that even the best of these offer only a
marginal advantage over template banks based on the humble cubic lattice.

I. INTRODUCTION

Many searches for gravitational-wave and electromag-
netic signals are carried out using matched filtering,
which compares instrumental data to waveform tem-
plates [1–3]. Because the parameters of the sources are
not known a priori, many templates are required, form-
ing a grid in parameter space [4–7]. Like the mesh on a
fishing net, the grid needs to be spaced finely enough that
signals don’t slip through. But if the grid has far more
points than are needed, the computational cost becomes
excessive. For this reason, a substantial technology has
evolved to create these grids [8–14].

What choice of grid is optimal, for a particular number
of grid points? The literature on the topic answers the
question as follows: select the grid which minimizes the
largest distance between any point in parameter space
and the nearest grid point [14].

If the grid is an n-dimensional lattice, then this choice
corresponds to picking the lattice of minimum “thick-
ness”. That is to say, it selects the lattice whose Wigner-
Seitz (WS) cells (also called Voronoi cells, Brillouin
zones, and Dirichlet cells) have the smallest maximum
radius. (An introduction to lattices and a description of
the “classical” lattices may be found in Chapters 2 and
4 of [15].)

Here, we show that the minimum-thickness grid is not
the best choice: it does not minimize the number of sig-
nals which are “lost” because of the discreteness of the
grid. For that purpose, and provided that the grid points
are not too widely separated, the best choice is the grid
that minimizes the (normalized) second moment, which
is the mean value of the squared distance (mismatch) to
the nearest grid point. If the grid is a lattice, then math-
ematicians call such a lattice the “optimal quantizer”.

In this paper, we obtain simple expressions for the frac-

tion of lost sources, in terms of the moments of the grid.
If the grid is closely spaced, this expression only involves
the second moment. For more widely spaced grids, we
replace the usual quadratic approximation for the mis-
match with a more accurate spherical approximation [16].
The resulting expression for the fraction of sources lost
involves all of the even moments, although in most cases
the first half-dozen even moments is sufficient for an ac-
curate approximation.

The main results of this paper apply to any grid of
templates in parameter space. However, in many appli-
cations a regular grid is desirable; this may be system-
atically constructed as an n-dimensional lattice [15]. A
lattice is obtained from a set of n linearly-independent
basis vectors, forming all linear combinations with inte-
ger coefficients. For a lattice, all WS cells are identical
under lattice translation. In addition to “grid” and “lat-
tice” there is a third type of object that arises in this
paper, which we will call a “tessellation”. We define this
as set of points whose WS cells have identical size and
shape, but may be oriented differently (via reflection and
rotation). This is also called a “packing”.

The paper is structured as follows. In Section II we
briefly review matched filtering, templates and template
banks, the overlap between templates, and the mismatch
function m on parameter space. In Section III we show
how, using the mismatch as a distance measure, the pa-
rameter space is broken up into WS cells surrounding
each template. The radius of the smallest sphere which
encloses one of these WS cells is called the covering radius
(or WS radius) of the grid. In Section IV we review the
conventional wisdom for template placement, which is
to select the template grid points so as to minimize the
covering radius R for a given average WS cell volume.
This minimizes a quantity known as the thickness of the
lattice. Section V contains the main results of this pa-
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per: we calculate the fraction of detections which are lost
because of the discreteness of the template bank. Mini-
mizing the fraction of lost detections for a fixed number
of templates (i.e., at fixed computing cost) is achieved by
minimizing a particular functional of the mismatch, given
in Eq. (5.9). For closely spaced templates, this amounts
to minimizing the second moment of the template grid,
as shown in Eq. (5.6). In the mathematical literature,
grids which minimize this quantity are called “optimal
quantizers”. In Section VI we extend these results to the
case where the putative signals are not uniformly dis-
tributed in parameter space. Lastly, in Section VII we
discuss possible choices of template grids, and summarize
the current state of knowledge about optimal quantizers
when the grids are lattices or tessellations. This is fol-
lowed by a short conclusion.

This paper concentrates on the case of closely-spaced
templates (small mismatch m ≈ r2, valid for r � 1).
A companion paper [17] investigates the large-mismatch
case in more detail, exploiting the spherical approxima-
tion m ≈ sin2 r, valid for r . π/2 [16].

II. MATCHED FILTERING AND THE
OVERLAP BETWEEN TEMPLATES

The classic signal detection problem is the following.
We have instrumental or detector data in the form of a
continuous or discretely sampled time series s(t), which
might or might not contain a weak signal with waveform
T (t) and unknown amplitude α. The signal data stream
is contaminated with zero-mean additive noise n(t), so

s(t) = n(t) + αT (t). (2.1)

The problem is to identify (with some desired confidence)
if the weak signal is present, and to estimate its ampli-
tude.

The classic solution to this problem is called linear
matched filtering [5, 6, 18–25]. This takes as input the
data stream s and the template T and produces as output
a single value, which is a positive-definite inner product

ρ = (QT , s), (2.2)

where QT = T/(T, T )1/2 is the “optimal filter” or
“matched filter” associated with the template T . The
inner product may be computed in the time or frequency
domain; the optimal choice depends upon the properties
of the noise. For example, if the noise is stationary and
Gaussian, then the inner product is

(A,B) =

∫
A∗(f)B(f)

N (f)
df, (2.3)

where on the right-hand side the functions A,B have
been transformed to the frequency domain, and N (f) is
the power spectrum of the noise n(t). This inner product
suppresses frequencies where the noise is large.

The expected value of ρ (with a fixed signal and many
instances of noise) is α(T, T )1/2, and the expected value
of ρ2 is α2(T, T )+1. The square of ρ is called a “detection
statistic”; large values indicate that the signal is likely
present. Since the variance of ρ is unity, the actual or
expected values of ρ, |ρ|, and/or ρ2 are called the signal-
to-noise ratios (SNR). For Gaussian noise, the statistical
significance (log of the likelihood ratio) is proportional
to ρ2. This is reviewed in a signal-processing context in
[26, 27] and in the gravitational-wave (GW) context in
[28] and [29].

If there was only a single possible signal waveform,
then one template T and one filter QT would suffice.
However, in most cases of interest, the signal waveform
is dependent upon a number of unknown parameters. For
example, the gravitational-wave signals produced by the
inspiral of two masses depend upon the values of the
masses, the sky location of the system, the spins of the
two bodies, and the relative orientation and shape of the
binary orbit. Here n denotes the dimension of that pa-
rameter space and λa with a = 1, · · · , n are coordinates
on that space. We use λ with no superscript to refer to
the collection of these coordinate values.

Since the signal parameters are unknown, the template
cannot match them precisely. This reduces the SNR com-
pared to a perfect-match template, which has expected
SNR ρmax = α(T, T )1/2. The mismatch m is easy to
characterize. In a mismatched template T ′, with corre-
sponding filter QT ′ , the expected (detected) SNR would
be ρdet = α(T ′, T )/(T ′, T ′)1/2. The mismatch m is the
fractional loss

m =
ρ2

max − ρ2
det

ρ2
max

= 1− (T ′, T )2

(T, T )(T ′, T ′)

= 1− cos2(θ) = sin2(θ), (2.4)

where θ is the angle between T and T ′. It follows imme-
diately that m lies in the unit interval m ∈ [0, 1].

In practice, many templates Ti must be employed,
where i labels the template, corresponding to a signal
with parameters λai . A set of i = 1, · · · ,M discrete points
λai in parameter space is called a template bank with M
templates. Each template has an associated matched fil-
ter Qi = QTi

A search of the instrumental output data s is carried
out as follows. For each template in the bank, the SNR
ρ2
i = (Qi, s)

2 is computed. If any of the ρ2
i are above

the detection threshold ρ2
D, a detection is claimed [30].

In most cases, the parameters of the source are close to
those of the template which registered the largest SNR.

While the signal parameters λa might be close to the
parameters λai of one (or more) of the templates Ti, they
will never be precisely the same; ρ2 will be decreased by
the parameter mismatch. If this causes ρ2 to dip be-
low the detection threshold in all templates, a potential
detection would be missed. To quantify this, one uses
Eq. (2.4) to define a mismatch function m(λ) ≥ 0 every-
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where on parameter space. Thus

m(λ) = min
i=1,··· ,M

[
1− (Tλ, Ti)

2

(Tλ, Tλ)(Ti, Ti)

]
, (2.5)

where T is placed at λa and Ti = T (λai ) ranges over all
of the different templates in the bank.

By definition, m(λ) vanishes at the locations of the
templates λ = λi. Because m is non-negative and
smooth, it has quadratic behavior near these minima.
Thus, for λa near the parameters λai of the i’th template,
one has

m(λ) ≈ r2 = gab∆λ
a∆λb, (2.6)

where ∆λa = λa−λai , and gab is a positive-definite sym-
metric quadratic form called the parameter-space metric.
In general, gab will depend upon λ, but to simplify the
treatment that follows, we will assume that the metric is
independent of the coordinates and thus flat. Then, the
quantity r2 is precisely the squared distance to the near-
est point in the template bank. An example is shown in
Figure 1.

It follows from Eq. (2.5) that r andm are dimensionless
quantities, so while we often refer to r as a “distance”, it
is not a physical length. For this reason, in this paper,
quantities which are independent of an overall re-scaling
of r are called “scale invariant” rather than “dimension-
less”.

Most of the literature assumes the quadratic approxi-
mation for the mismatch given in Eq. (2.6). While this
is valid provided that m << 1, it is unbounded above,
whereas by definition the mismatch is bounded above by
m ≤ 1. Recent work [16] has shown that in many cases a
better approximation to the mismatch is the “spherical
approximation” m(λ) = sin2(r). This approximation is
also bounded to the correct range.

In what follows, we will investigate both approxima-
tions to the mismatch, and their consequences. For clar-
ity, we will use r2 = gab∆λ

a∆λb to denote the quadratic
approximation to the mismatch, and sin2 r to denote the
spherical approximation.

III. WIGNER-SEITZ CELLS

Using the mismatch m as a “distance measure”, the
parameter space for a given template bank may be par-
titioned into WS cells [31] which are in one-to-one cor-
respondence with the templates: there is one cell sur-
rounding each template. The WS cells are defined by
the property that the points in a given cell have smaller
mismatch to that cell’s template than to any other tem-
plate.

These cells were also studied by Dirichlet [32], Voronoi
[33–36] and Brillouin [37]. Since Voronoi was the first
to investigate them in arbitrary dimension for arbitrary
grids, it would be fair to use his name for them. How-
ever, in this paper we use “V” to denote volume, whereas
“WS” is unambiguous.

FIG. 1. The plane represents a two-dimensional parameter
space with coordinates λ1, λ2. Templates have been placed
on a lattice formed from the vertices of equilateral triangles.
The vertical axis shows the squared-distance r2(λ1, λ2), to
the nearest template point. The zeros of the function are at
the template locations, which here form an A∗

2 lattice. The
discontinuities in the gradient of r2 lie on the boundaries of
the Wigner-Seitz (WS) cells, which are hexagons. The WS
radius R is the maximum value of r.

Any given template bank has a maximum value of r2,
which here we denote by R2 and call the “Wigner-Seitz
radius”. An example can be seen in Figure 1. R is also
called the “covering radius”: it is the radius of the small-
est ball [38] which encloses all points of the WS cell.

Traditionally, template banks have been constructed
by (a) deciding how many templates are needed, then (b)
placing the grid points so as to obtain the smallest pos-
sible value of R. This “traditional wisdom” corresponds
to minimizing the thickness of the template grid.

IV. THICKNESS, AND TRADITIONAL
TEMPLATE PLACEMENT

The thickness (also called “covering density”) Θ ≥ 1
is a scale-invariant quantity, defined as follows for an n-
dimensional lattice. Suppose that the lattice includes the
origin, let WS denote the Wigner-Seitz cell of the origin,
and let V (WS) denote its n-volume. Let R denote the
WS “covering radius”: the maximum distance r between
the origin and any point in WS. Then the thickness is
defined as

Θ =
V (Bn(R))

V (WS)
, (4.1)

where Bn(R) is an n-ball of radius R, and V (Bn(R)) =
πn/2Rn/Γ(n/2 + 1) is its n-volume. Since the ball covers
the WS cell, its volume cannot be smaller than that of
the WS cell. Thus, by definition, Θ ≥ 1.

Note that the thickness is determined by the “shape”
of the lattice and is independent of its scale. If all of
the lattice spacings are re-scaled by a factor f , then R is
re-scaled by the same factor, and the volumes V (Bn(R))
and V (WS) are both re-scaled by fn, leaving Θ invariant.
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The thickness is a measure of the way in which the
balls of radius R “overcover” space. If a ball of radius R
is placed around each lattice point, then Θ is the average
number of balls in which a random point of parameter
space lies, where we assume that the parameter space
is large enough to contain many lattice points. A com-
prehensive review of classical lattices and their thickness
and other properties may be found in Chapters 2 and 4
of [15].

The existing literature on template placement asserts
that the best choice of grid is the one which has min-
imal thickness Θ. The idea is that the available com-
puting capacity determines the number M of templates
which can be employed, which means that V (WS) is
fixed, since M · V (WS) is the total volume of parameter
space. Picking the grid with the smallest covering radius
then ensures that the worst case mismatch (in either the
quadratic or the spherical approximation) is minimized.
This in turn minimizes the thickness, Eq. (4.1). For ex-
ample [14] states, “The construction of optimal template
banks for matched-filtering searches is an example of the
sphere covering problem.... An optimal template bank
therefore consists of the smallest possible number of tem-
plates that still guarantees that the worst-case mismatch
does not exceed a given limit.”. A recent textbook [28],
Section 7.2.1, says, “The problem of constructing a grid
in parameter space is equivalent to the so-called covering
problem.... The optimal covering would have minimum
possible thickness.”

We will shortly show that, under reasonable assump-
tions, this choice, i.e. minimizing the thickness, is not
optimal. If the goal is to maximize the expected num-
ber of detections for a given number of templates (i.e.,
at fixed computing power), it is better to place the tem-
plates to achieve the smallest average value of r2 (if r is
small) or on some other combinations of moments (if r2

is not small).

This fallacy, that the minimum thickness template
bank is the best choice, may have a historical basis.
The search for gravitational waves was the initial mo-
tivation for the study of matched-filter template banks
in the 1990s, and for the development of the technology
for template bank placement in the two decades that fol-
lowed. Until the first signals were detected in late 2015
[39] the community focused on obtaining the most con-
straining “upper limits”. These are upper bounds (with a
stated statistical confidence) on the strength of different
possible gravitational-wave sources: if a stronger source
had been present, it would have been detected. For that
purpose, obtaining the most constraining upper limits,
which apply strictly over the entire parameter space, a
minimum thickness template bank is optimal.

This has some important implications. Let’s com-
pare the cubic lattice Zn to the A∗n lattice, which is
an n−dimensional generalization of the 2-dimensional
hexagonal lattice. For dimensions n ≤ 17, as explained
in [14], A∗n is either the thinnest or close to the thinnest
classical root lattice. (Thinner non-classical lattices have

been constructed numerically, see Table 2 in [40].)
The thickness of Zn is easily computed from Eq. (4.1),

giving

Θ[Zn] =
(πn/4)n/2

Γ(n2 + 1)
, (4.2)

whereas the thickness of the A∗n lattice is [15, 17]

Θ[A∗n] =
(πn(n+ 2)/12)

n/2
(n+ 1)(1−n)/2

Γ(n2 + 1)
. (4.3)

As the parameter-space dimension n → ∞, the ratio
asymptotes to Θ[Zn]/Θ[A∗n] → 3n/2/2

√
n+ 1, and Zn

becomes much thicker than A∗n. This is illustrated in
Figure 2 of [14]. For example, in 8 dimensions, Θ[Z8] =
2π4/3 ≈ 64.94, whereas Θ[A∗8] = 20000π4/531441 ≈
3.66585. If lattice thickness were directly relevant, this
would appear to give great advantage to the A∗8 lattice.
However, we will see shortly that when ranked by lost
detections, these two lattices are quite similar.

V. DETECTIONS LOST FROM TEMPLATE
MISMATCH

We now examine how the choice of template locations
influences the expected number of detections.

Assume that the sources populate the parameter space
uniformly, and have a distribution of expected SNR val-
ues (in perfectly matched templates) which is described
by a population distribution function P , so that dN =
P (ρ2)dρ2 is the number of sources in the SNR range
(ρ2, ρ2 + dρ2). If the signal amplitude is inversely pro-
portional to distance ` (as is the case for GWs), then
ρ2 ∝ 1/`2. For sources uniformly distributed in a flat
d=2-dimensional Galactic disk, one therefore has dN ∝
`d` ∝ ρ−4dρ2, and for sources uniformly distributed in
flat d=3-dimensional space, one has dN ∝ `2d` ∝ ρ−5dρ2

[41]. Thus we take

dN = P (ρ2)dρ2 =
d

2
ND

(
ρ2

D

ρ2

)d/2
dρ2

ρ2
, (5.1)

where d is the effective dimension [42] of the source distri-
bution and ND is the total number of detectable sources
(i.e., sources with SNR above the detection threshold
ρD).

Suppose that the parameter space is densely covered
with a very large number of closely-spaced templates. In
this case, the expected number of detections is

ND =

∫
dN =

∫ ∞
ρ2D

P (ρ2)dρ2. (5.2)

This is the best-case scenario.
Now consider the more realistic case, where the tem-

plates are spaced at mismatch m. The expected number
of detections is reduced, because some of the population,
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whose SNR would be only slightly above the threshold if
there was a perfectly matching template, will fall below
the detection threshold, due to mismatch losses to the
nearest template. To be detectable the SNR must satisfy
ρ2(1−m) ≥ ρ2

D. So the expected number of detections is

Nfound = V −1

∫ ∫ ∞
ρ2D/(1−m(λ))

P (ρ2)dρ2 dV. (5.3)

Here, m(λ) denotes the mismatch to the nearest tem-
plate, the outer integral is over the n-dimensional pa-
rameter space with invariant volume measure dV =√

det g dnλ, and V =
∫
dV is the n-volume of parame-

ter space.
The number of detections “lost” because of the finite

spacing of the template bank is the difference Nlost =
ND −Nfound, which is therefore

Nlost = V −1

∫ ∫ ρ2D/(1−m(λ))

ρ2D

P (ρ2)dρ2 dV. (5.4)

We now investigate several limits of this expression.
A simple limit is obtained if the template bank is

closely spaced, so that everywhere in the parameter space
the maximum mismatch m is small compared to unity,
implying that m ≈ r2. In this limit ρ2

D/(1 − m) ≈
ρ2
D(1 + r2), so that

Nlost ≈ V −1

∫ ∫ ρ2D+ρ2Dr
2(λ)

ρ2D

P (ρ2)dρ2dV

≈ V −1ρ2
DP (ρ2

D)

∫
r2(λ)dV. (5.5)

Making use of Eq. (5.1), the fraction of lost detections is
then

Nlost

ND
=
d

2
V −1

∫
r2(λ)dV =

d

2
〈r2〉, (5.6)

where the final equality serves to define the “average sec-
ond moment” 〈r2〉 of the template grid.

Thus, the number of “lost” detections is determined
by the average value of the mismatch over the template
bank. If the template bank is a lattice or tessellation
in parameter space, then the fraction of lost detections
(compared with a very closely-spaced template bank) is

Nlost

ND
=
d

2
V −1
WS

∫
WS

r2 dV, (5.7)

where the integral is over a single WS cell of volume VWS ,
and we have assumed that the parameter space contains
a large number of such cells.

The computational cost is determined by the number
of templates at which the SNR is calculated, so fixing
the computational cost is equivalent to fixing the number
of templates, or fixing the volume VWS . Thus, at fixed
computational cost, if the templates are closely spaced,
the number of lost signals is minimized by minimizing
the average mismatch over the template bank.

In the mathematical literature, the quantity∫
WS

r2 dV/VWS is called the “normalized second
moment of the lattice”. The lattice that minimizes this
quantity in n-dimensions, for fixed Wigner-Seitz cell
volume V (WS), is called the optimal quantizer [15].
To compare lattices, it is conventional to introduce a
scale-invariant quantity G, defined in Eq. (7.1). In terms
of this quantity, for a closely-spaced template bank,

Nlost

ND
=
nd

2
(VWS)

2/n
G[lattice]. (5.8)

Thus, the relative number of lost signals at fixed comput-
ing cost for two closely-spaced lattices can be estimated
from the ratio of the lattice’s scale-invariant quantization
constants G.

If the mismatch m is not small, then the fraction of
lost signals also depends upon the higher moments of the
grid. One example is the search for continuous gravita-
tional waves (CW) from rapidly spinning neutron stars
in the Galactic disk, which have approximately a d=2 di-
mensional distribution. The parameter space for an un-
informed search is very large, and so these searches are
computationally limited, and often carried out at large
mismatch. Let us assume a d-dimensional source distri-
bution, and use Eq. (5.1) to evaluate the inner integral
in Eq. (5.4). The fraction of lost detections is then

Nlost

ND
= V −1

∫ (
1− (1−m(λ))d/2

)
dV

≈ V −1

∫ (
1− cosd r

)
dV. (5.9)

In the final line, we have used the spherical approxima-
tion [16] to the mismatch m = sin2 r. This approxima-
tion only holds in the interval r ∈ [0, π/2], where it can
be represented by a Taylor series of a few terms. (For
r > π/2 the mismatch should be set to unity, m = 1.)

If the grid is a lattice, then the integral can be replaced
by the integral over a single WS cell. If the WS radius
R < π/2 we obtain

Nlost

ND
=
d

2
〈r2〉 − d(3d− 2)

24
〈r4〉+

d(15d2 − 30d+ 16)

720
〈r6〉

−
d
(
105d3 − 420d2 + 588d− 272

)
40320

〈r8〉+ · · · ,(5.10)

where

< rp >= V −1
WS

∫
WS

rpdV (5.11)

denotes the normalized p’th moment of the WS cell.
Several authors have investigated how continuous

gravitational-wave searches should be structured, to pro-
vide maximum sensitivity at fixed computing cost [43–
46]. Their results, which assume closely-spaced tem-
plates, foreshadow ours. While those papers and later
work do not explicitly discuss the optimization of a tem-
plate bank or lattice, they indicate that the optimal
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search-parameter choices (for example, stack-slide time
baseline) and achievable population-averaged sensitivity
[46–49] are determined by the average value that the
mismatch takes over the template bank, and not by the
bank’s thickness.

VI. NON-UNIFORM POPULATION DENSITY
AND THRESHOLD

Earlier in this Section we assumed that the sources
populate the parameter space uniformly, and that the
detection threshold is independent of the source type.
Both of these assumptions can be dropped. Let dN =
P (ρ2, λ)dρ2dV be the expected number of sources in
the parameter-space volume dV with SNR in the range
(ρ2, ρ2 + dρ2). Then the more general result is

Nlost = V −1

∫ ∫ ρ2D(λ)/(1−m(λ))

ρ2D(λ)

P (ρ2, λ)dρ2dV. (6.1)

The small-mismatch limit is easily obtained, showing
that the number of lost signals is determined by the av-
erage value of the mismatch, appropriately weighted by
the number of sources in that region of parameter space.

VII. CHOICE OF OPTIMAL LATTICE

In a given parameter-space dimension n, what lattice
is optimal? In contrast, how much is lost if a non-optimal
lattice is selected? How would this compare with a lat-
tice selected for minimum thickness (smallest covering
radius)?

If the mismatch is large (i.e., the quadratic approxima-
tion cannot be used), then these questions are not easily
answered. In a companion paper [17] we have computed
the fraction of lost detections for the cubic lattice Zn and
the A∗n lattice, which is an n-dimensional generalization
of the hexagonal lattice.

If the mismatch is small enough that the quadratic
approximation m ≈ r2 is valid, then we have shown in
Eqs. (5.6) and (5.7 that the optimal lattice is the one
that minimizes the normalized second moment of the lat-
tice. The n-dimensional lattice that minimizes this sec-
ond moment (for fixed V (WS)) is known as the “optimal
n-dimensional quantizer”. To easily compare the second
moment of n-dimensional lattices at fixed V (WS), it is
conventional to introduce the scale-invariant “quantiza-
tion constant”

G =
1

n

∫
WS

r2dV(∫
WS

dV
)1+ 2

n

. (7.1)

In contrast to the normalized second moment 〈m2〉, the
quantization constant G has the property that its value
is invariant under uniform re-scaling of the lattice. The
factor of n−1 appearing in the definition ensures that the

cubic lattice Zn has a scale-invariant second moment G =
1/12 = 0.08333 · · · which is independent of dimension.

Table I summarizes the current state of knowledge for
dimensions n < 16: it shows the lattices which have the
smallest-known quantization constants G, along with ref-
erences. In dimensions 7 and 9, the best currently known
quantizers are the non-lattice tessellations D+

7 and D+
9 ;

for completeness we have also listed the best currently
known lattice. For comparison, we have also listed the
“classical” root lattices with the smallest known thick-
ness. (For n ≥ 6, thinner lattices have been constructed
numerically, by semidefinite optimization in the space of
lattices; see Table 2 of [40]).

What is remarkable, and immediately visible from Ta-
ble I, is that for small mismatch, where the quadratic
approximation m = r2 applies, the best lattices, with
typical G ≈ 0.07, have only a very marginal advantage
in terms of lost signals when compared with the humble
cubic lattice Zn, with G = 1/12 ≈ 0.083.

The second moment of the ball Bn provides a lower
limit for the scale-invariant second moment G. One ob-
tains

G[Any grid] ≥ G[Bn] =
Γ(n/2 + 1)2/n

π(n+ 2)
. (7.2)

One can evaluate G[Bn] in the n → ∞ limit using Stir-
ling’s approximation, showing that G > 1/2πe ≈ 0.0586.
Note that [55] conjectures but does not prove a more
constraining bound, obtained by removing the part of
the ball outside certain flat faces.

This means that in comparison with the cubic lattice
Zn, for closely spaced templates the best choice of grid
can at most reduce the fraction of lost signals by a factor
of

Nlost[Zn]

Nlost[Best n-grid]
≤ G[Zn]

G[Bn]
<
πe

6
≈ 1.423. (7.3)

In practice, the factor is substantially smaller than this.
For example, in 4 dimensions the best known quantizer
is D4, which in comparison with the Z4 lattice would
reduce the fraction of lost detections by about 9%, since
G[Z4]/G[D4] ≈ 1.0879. In 8 dimensions the best known
quantizer is E8, whose fractional advantage over the Z8

lattice is about 16%, since G[Z8]/G[E8] ≈ 1.163.

For the Zn lattice with closely-spaced templates, the
fraction of lost signals in Eq. (5.7) takes very simple form.
Since G = 1/12, we have

Nlost

ND
=
nd

24
(VWS)

2/n
=
d

6
R2 =

d

6
mworst, (7.4)

where R is the WS radius and mworst is the worst-case
mismatch in the quadratic approximation. Thus, for a
d = 3-dimensional distribution, at a worst-case mismatch
of 20%, about 10% of signals would be lost.
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TABLE I. The smallest quantizer constant (smallest G) lat-
tices currently known for low dimension n. Also listed are
the thinnest (smallest Θ) classical root lattices (but note that
thinner non-classical lattices have been constructed for n ≥ 6,
see text and [40]). Respectively, these minimize the second
moment and covering radius at fixed WS-cell volume; smaller
values are boldfaced. A minimum-Θ template bank yields
the most constraining (strict) upper limit on source ampli-
tude; a template bank of minimum G yields the fewest “lost”
detections (for small mismatch). In dimensions 7 and 9, the
best known quantizers are the non-lattice tessellations D+

7

and D+
9 , see text, footnotes, and [50] for details.

dimension Lattice Thickness Second Ball limit

n Θ Moment G on G a

1 A∗1 = Z 1 b 0.083333 c 0.0833333

2 A∗2 1.2092 b 0.080188 c 0.0795775

3 A∗3 1.4635 b 0.078543 c 0.0769669

4 D4 2.4674 d 0.076603 c 0.0750264

A∗4 1.7655 b 0.077559 c

5 D∗5 2.4982 d 0.075625 c 0.0735161

A∗5 2.1243 b 0.076922 c

6 E∗6 2.65207 e 0.074244 n 0.0723009

A∗6 2.5511 b 0.076490 f

7 D+
7 4.7248 m 0.072734 g 0.071298

E∗7 4.1872 h 0.073116 o

A∗7 3.0596 b 0.076187 i

8 E8 4.05871 d 0.071682 c 0.0704536

A∗8 3.6658 b 0.075971 i

9 D+
9 4.3331 m 0.071103 g 0.069731

AE9
j 10.3278p 0.071622j

A∗9 4.3889 b 0.075816 i

10 D+
10 7.7825 m 0.070813 k 0.0691043

A∗10 5.2517 b 0.075704 i

11 A∗11 6.2813 b 0.075624 i 0.0685548

12 K12 17.7834 d 0.070095 l 0.0680682

A∗12 7.5101 b 0.075568 i

13 A∗13 8.9761 b 0.075531 i 0.0676338

14 A∗14 10.727 b 0.075507 i 0.0672433

15 A∗15 12.817 b 0.075495 i 0.0668899

a Eq. (7.2).
b Eq. (4.3) or Table 2.1 in Conway and Sloane [15].
c Table 2.3 in [15].
d Table 2.1 in [15].
e Use R and det following Ch. 4 Eq. (126) in [15].
f Ch. 21 Eq. (51) in [15].
g Non-lattice packing (tessellation). See Agrell and Eriksson [50]

and Notes on Ch. 2 in [15]. Exact values were found by Sikirić
[51] using the methods of [52] and are G[D+

7 ] = 178751/2457600

and G[D+
9 ] = 924756607/13005619200.

h Use R and det following Ch. 4 Eq. (115) in [15].
i Appendix of Allen and Shoom [17].
j Lattice of Eq. (31) of [50], not a classical lattice, denoted here

with the initials of Agrell and Eriksson.
k Identified in [50]; exact value from Sikirić et al. [52].
l Exact value from [52].

m Text before Ch. 4 Eq. (94) of [15] with last paragraph [50]
Section 3.

n Estimated for Table 2.3 of [15]; exact value from Worley [53].
o Estimated for Table 2.3 of [15]; exact value from Worley [54].
p E. Agrell, private communication. The deep holes of the lattice
B of Eq. (31) of [50] have the form (±1, 0, 0, 0, 0, 0, 0, 0,±a),
where a ≈ 0.573, giving a covering radius R = (1 + a2)1/2. The
volume of the WS cell is det(B) = 2a, giving
Θ = π9/2R9/2/ det(B)Γ(11/2) = 16π4(1 + a2)9/2/945a.

VIII. CONCLUSION

In this paper, we have shown in Eq. (5.9) how to quan-
tify the fraction of detections which are lost because of
the discreteness of a template bank; these sources could
have been detected had the templates been more finely
spaced. The fraction depends upon the properties of the
source distribution and upon the placement of the tem-
plates. If the templates are not too far apart, the latter
dependence is through the average value of the mismatch
(second moment of the distance) as in Eq. (5.7).

For simplicity, our source models Eq. (5.2) assume
time-independent source distributions with “Euclidean”
volume measures. This is sufficient if sources are not
at cosmological distances, so that the large-scale geom-
etry of space-time does not influence the measure, and
if the sources are closer than cτ , where τ is the time
scale on which the properties of the source distribution
evolve, and c is the speed of light. Future generations of
gravitational-wave detectors will have a reach which ex-
tends to the Hubble radius, and will study sources which
have significant evolution over redshifts of a few. For
those, a precise estimate of “lost” sources may require
population models that incorporate source and/or cos-
mological evolution.

To maximize the expected number of signal detec-
tions for a given number of templates, we have shown
that a template bank must minimize the average of a
function of the mismatch m, given in Eq. (5.9). For
closely spaced templates, where the mismatch reduces
to the squared distance to the nearest template, this cor-
responds to choosing a grid which is the “optimal quan-
tizer” as in Eq. (5.8), which minimizes the average value
of the squared distance to the closest point in the tem-
plate bank. This contrasts with standard wisdom, which
holds that the optimal choice of template bank is the one
which minimizes the covering radius (or equivalently, the
thickness).

Template bank thickness is relevant for upper limits,
but it is necessary to distinguish between two types of
upper limits: “strict” and “population-averaged”. Strict
upper limits apply at every point in parameter space,
whereas the population-averaged upper limits only apply
on average (with the stated confidence) to the entire pop-
ulation. The literature contains examples of both. Some-
times (for example see [56–59]) both variants are given
in the same paper. While the thinnest template bank
will give the most constraining strict upper limit, it does
not maximize the expected number of detections, and is
probably also not optimal for the population-averaged
upper limits.

Often, template banks are constructed as regular lat-
tices. To compare two lattices in the closely spaced case,
and to identify which choice maximizes the expected
number of detections for a fixed number of templates,
one need only compare the scale-invariant second mo-
ment (quantization constant) G of the lattice. The ra-
tios of G for two lattices is proportional to the relative
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numbers of “lost” detections at fixed computing cost, as
can be seen from Eq. (5.6).

This has an important consequence for the humble cu-
bic lattice Zn. While it has much thinner and more so-
phisticated cousins such as A∗n, the ratios of their quan-
tization constants G are not far from unity. This can be
seen from Table I, keeping in mind that for the cubic lat-
tice, G = 1/12 ≈ 0.08333 in any number of dimensions.
The Zn lattice is very thick, because the corners of the
cube “stick out”, giving it a large covering radius. This
makes it a poor choice for obtaining strict upper limits,
because a signal hidden in one of those distant corners at
radius R could have much larger amplitude than the bulk
of the population, yet might still go undetected. How-
ever, if the goal is detection (or a population-averaged
upper limit), this does not matter. The volume in the
corners is quite small, which in turn means that the ex-
pected number of signals lost there is also small [60].

There are many types of computationally limited sig-
nal searches, for which these results are relevant. For
example, it is currently not possible to do an all-sky
search for gamma-ray pulsations in binary systems, or
for continuous gravitational waves from neutron stars in
binary systems. The parameter space here (counting di-
mensions in parentheses) includes sky-position (2) and
frequency and spindown (2). For circular orbits one ad-
ditionally has orbital period, inclination angle, and mod-
ulation depth (3); if the orbit is eccentric, then two ad-

ditional parameters are needed. So in this case, the pa-
rameter space is 7- or 9-dimensional [61]. The situation
is even worse for gravitational-wave searches from binary
inspiral systems where spin effects are significant; for cir-
cular orbit systems there are 14 parameters [6]. Current
technology does not have the computational power to
explore such large dimensional spaces, but advances in
quantum computing may permit such searches in the fu-
ture.

A companion publication [17] looks in more detail at
the case where the templates are not closely spaced, mak-
ing use of the spherical approximation [16] to the mis-
match, m = sin2 r.
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Mathieu Dutour Sikirić, who computed the exact values
of G[D+

7 ] and G[D+
9 ] given in the footnote to Table I,

and brought the thinnest known lattices of [40] to my
attention.

[1] B. F. Schutz, Classical and Quantum Gravity 6, 1761
(1989).

[2] B. F. Schutz, in The Detection of Gravitational Waves,
edited by D. G. Blair (1991) p. 406.

[3] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown,
and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).

[4] L. S. Finn and D. F. Chernoff, Phys. Rev. D 47, 2198
(1993), arXiv:gr-qc/9301003 [gr-qc].

[5] B. S. Sathyaprakash, Phys. Rev. D 50, R7111 (1994),
arXiv:gr-qc/9411043 [gr-qc].
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